
Multi Sloth:
An Efficient Multi-Core RTOS using

Hardware-Based Scheduling

Rainer Müller, Daniel Danner,
Wolfgang Schröder-Preikschat, Daniel Lohmann

July 10, 2014



Sloth: Let the Hardware do the Work!

Sloth kernels use hardware for OS purposes, and

are concise (200–500 LoC)
are small (300–900 bytes)
are fast (latency speed-up 2x to 170x)
implement industry standards (OSEK, AUTOSAR OS)

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 2



Automotive Domain: The AUTOSAR OS Family

Families of completely statically configured RTOS
OSEK OS / OSEKtime
AUTOSAR OS

System model with different control-flow types:
Basic Tasks software-triggered, run to completion
Extended Tasks software-triggered, may block
ISRs hardware-triggered, run to completion
...

Preemptive, fixed-priority scheduling

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 3



Sloth: Building Blocks

Main Idea
Threads are interrupt handlers, synchronous thread activation is IRQ
⇒ Interrupt subsystem does scheduling and dispatching work

IRQ Source
Task1

prio=1

request

IRQ Source
ISR2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
Task4

prio=4

request

Hardware
Periphery

HW IRQ
IRQ
Arbi-
tration
Unit

CPU

curprio=X

ActivateTask(Task4)

ActivateTask(Task3)

ActivateTask(Task1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

Advantages:
Unified control-flow abstraction for HW/SW events
Single, shared priority space
No priority inversion
Predictable event latency

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 4



Sloth: Building Blocks

Main Idea
Threads are interrupt handlers, synchronous thread activation is IRQ
⇒ Interrupt subsystem does scheduling and dispatching work

IRQ Source
Task1

prio=1

request

IRQ Source
ISR2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
Task4

prio=4

request

Hardware
Periphery

HW IRQ
IRQ
Arbi-
tration
Unit

CPU

curprio=X

ActivateTask(Task4)

ActivateTask(Task3)

ActivateTask(Task1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

Advantages:
Unified control-flow abstraction for HW/SW events
Single, shared priority space
No priority inversion
Predictable event latency

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 4



Sloth OS family

Sloth
event-triggered

Hofer et al. RTSS ’09

Sleepy Sloth
+ events/blocking

Hofer et al. RTSS’ 11

Sloth on Time
+ time-triggered features

Hofer et al. RTSS ’12

Safer Sloth
+ memory/privilege isolation

Danner et al. RTAS ’14

Multi Sloth
+ multi-core support

Müller et al. ECRTS’ 14

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 5



Multi Sloth: Design

Multi Sloth
+ multi-core support

Müller et al. ECRTS’ 14

AUTOSAR system model: partitioned fixed-priority scheduling
Reusing building blocks of Sloth
Generative approach:
tailoring the kernel to the application and the hardware platform
Reference implementation for the Infineon AURIX

32-bit RISC µ-Controller
upcoming multi-core platform in the automotive industry
3 integrated TriCore CPUs
IRQ system with 256 priority levels and up to 1024 remappable sources

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 6



Multi Sloth: Herding Sloths

Src 0: Task1

request

enable

prio=23

core=0

Src 1: ISR1

request

enable

prio=24

core=0

Src 2: Task2

request

enable

prio=5

core=1

Src 3: Task4

request

enable

prio=8

core=2

ICU
(IRQ Arbitration)

ICU
(IRQ Arbitration)

ICU
(IRQ Arbitration)

Core 0

curprio=X

Core 1

curprio=Y

Core 2

curprio=Z

IRQ Vector Table IRQ Vector Table IRQ Vector Table

task1()

isr1()

...

task2()

...

task4()

...

A
c
t
i
v
a
t
e
T
a
s
k
(
)
,
S
e
t
E
v
e
n
t
(
)
,
et
c.

HW Periphery

IRQ

Reusing building blocks of Sloth:
Task Activation
Task Dispatching
Task Blocking
Resource Management

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 7



Multi Sloth: Herding Sloths

Src 0: Task1

request

enable

prio=23

core=0

Src 1: ISR1

request

enable

prio=24

core=0

Src 2: Task2

request

enable

prio=5

core=1

Src 3: Task4

request

enable

prio=8

core=2

ICU
(IRQ Arbitration)

ICU
(IRQ Arbitration)

ICU
(IRQ Arbitration)

Core 0

curprio=X

Core 1

curprio=Y

Core 2

curprio=Z

IRQ Vector Table IRQ Vector Table IRQ Vector Table

task1()

isr1()

...

task2()

...

task4()

...

A
c
t
i
v
a
t
e
T
a
s
k
(
)
,
S
e
t
E
v
e
n
t
(
)
,
et
c.

HW Periphery

IRQ

Reusing building blocks of Sloth:
Task Activation
Task Dispatching
Task Blocking
Resource Management

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 7



Synchronization in AUTOSAR OS

Synchronization primitives as specified by AUTOSAR OS

Local access on each core
⇒ Resources with OSEK priority-ceiling protocol

GetResource()
ReleaseResource()

Global access across multiple cores
⇒ Spinlocks

GetSpinlock()
ReleaseSpinlock()
TryToGetSpinlock()

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 8



MPCP: Resource access synchronization

AUTOSAR lacks definiton of semantics for spinlocks

Requirement: priority-aware synchronization
⇒ Synchronization protocols

Multi-processor Priority Ceiling Protocol (MPCP)

published by Rajkumar et al. (RTSS ’88, ICDCS ’90)
proposed for AUTOSAR OS by Lakshmanan et al. (SAE 2011)

Resuing building blocks to implement MPCP in Multi Sloth

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 9



MPCP for AUTOSAR OS System Model

All tasks use their assigned priority except in critical sections,
all cores share the same priority space

Local resource access is synchronized using OSEK single-core PCP

Each global resource has a ceiling priority above all task priorities

πres = πmax + πtask

Acquiring a global resource raises the current execution priority to
the ceiling priority

If resource is already held by another task, the requesting task blocks

When a task leaves a global critical section, the highest-priority task
waiting for this global resource is signaled and resumes at the higher
priority

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 10



MPCP: Implementation for Infineon AURIX
GetMPCPResource():

Disable Local IRQs

Disable IRQ Source

Raise Source Prio

Enqueue

Other tasks
in queue?

Raise CPU Prio Block Task

Enable Local IRQs

Enable IRQ Source

Resource Acquired

un
bl
oc
ke
d

no

yes

ReleaseMPCPResource():

Disable Local IRQs

Reset Source Prio

Dequeue

Other tasks
in queue?

Get Top of Queue

Unblock Task

Lower CPU Prio

Enable Local IRQs

Resource Released

noyes

Priority-ordered waiting queue
queue as bitmask, one bit for each
task accessing this resource
most significant bit for highest-priority
task marks task holding the lock

Atomic enqueue with swapmsk
new instruction on Infineon AURIX
swaps single bits in a word according
to a bit mask
returns previous data word

Get top of queue with clz
count of leading zeros directly
determines highest-priority
waiting task

Wait-free implementation of MPCP in Multi Sloth!
No interference for concurrent actions on the same resource
Guaranteed progress on a per-thread basis
Acquiring and releasing MPCP resources is wait-free

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 11



MPCP: Implementation for Infineon AURIX
GetMPCPResource():

Disable Local IRQs

Disable IRQ Source

Raise Source Prio

Enqueue

Other tasks
in queue?

Raise CPU Prio Block Task

Enable Local IRQs

Enable IRQ Source

Resource Acquired

un
bl
oc
ke
d

no

yes

ReleaseMPCPResource():

Disable Local IRQs

Reset Source Prio

Dequeue

Other tasks
in queue?

Get Top of Queue

Unblock Task

Lower CPU Prio

Enable Local IRQs

Resource Released

noyes

Priority-ordered waiting queue
queue as bitmask, one bit for each
task accessing this resource
most significant bit for highest-priority
task marks task holding the lock

Atomic enqueue with swapmsk
new instruction on Infineon AURIX
swaps single bits in a word according
to a bit mask
returns previous data word

Get top of queue with clz
count of leading zeros directly
determines highest-priority
waiting task

Wait-free implementation of MPCP in Multi Sloth!
No interference for concurrent actions on the same resource
Guaranteed progress on a per-thread basis
Acquiring and releasing MPCP resources is wait-free

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 11



MPCP: Implementation for Infineon AURIX
GetMPCPResource():

Disable Local IRQs

Disable IRQ Source

Raise Source Prio

Enqueue

Other tasks
in queue?

Raise CPU Prio Block Task

Enable Local IRQs

Enable IRQ Source

Resource Acquired

un
bl
oc
ke
d

no

yes

ReleaseMPCPResource():

Disable Local IRQs

Reset Source Prio

Dequeue

Other tasks
in queue?

Get Top of Queue

Unblock Task

Lower CPU Prio

Enable Local IRQs

Resource Released

noyes

Priority-ordered waiting queue
queue as bitmask, one bit for each
task accessing this resource
most significant bit for highest-priority
task marks task holding the lock

Atomic enqueue with swapmsk
new instruction on Infineon AURIX
swaps single bits in a word according
to a bit mask
returns previous data word

Get top of queue with clz
count of leading zeros directly
determines highest-priority
waiting task

Wait-free implementation of MPCP in Multi Sloth!
No interference for concurrent actions on the same resource
Guaranteed progress on a per-thread basis
Acquiring and releasing MPCP resources is wait-free

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 11



Evaluation

Microbenchmarks of system service overheads
Basic system on the Infineon AURIX

Transition Cycles

ActivateTask w/o dispatch 65
ActivateTask w/ dispatch 87
ChainTask w/ dispatch 97
GetResource 36
ReleaseResource w/o dispatch 19
ReleaseResource w/ dispatch 41
TerminateTask w/ dispatch 20

ActivateTask() cross-core round-trip 135

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 12



Evaluation

Microbenchmarks of system service overheads
MPCP resources on the Infineon AURIX

Transition Cycles

GetMPCPResource() w/ blocking 217
GetMPCPResource() w/o blocking 112
ReleaseMPCPResource() w/ local dispatch 360
ReleaseMPCPResource() w/o dispatch 134
ReleaseMPCPResource() w/ remote unblock 183
ReleaseMPCPResource() w/ local unblock and dispatch 311
ReleaseMPCPResource() w/o unblock w/ dispatch 231

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 13



Conclusion

Multi Sloth . . .
is an efficient multi-core AUTOSAR OS
implements MPCP: multi-core systems beyond AUTOSAR
offers low latency with predictable overheads
adopts design philosophy of the Sloth kernel family

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 14


