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Sloth: Let the Hardware do the Work!

Sloth kernels use hardware for OS purposes, and

are concise (200-500 LoC)

are small (300-900 bytes)

are fast (latency speed-up 2x to 170x)

= implement industry standards (OSEK, AUTOSAR OS)
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Automotive Domain: The AUTOSAR OS Family

m  Families of completely statically configured RTOS
= OSEK OS / OSEKtime
= AUTOSAR 0S

B System model with different control-flow types:
= Basic Tasks software-triggered, run to completion
= Extended Tasks software-triggered, may block

= ISRs hardware-triggered, run to completion

m  Preemptive, fixed-priority scheduling
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Sloth: Building Blocks

Main Idea

Threads are interrupt handlers, synchronous thread activation is IRQ
= Interrupt subsystem does scheduling and dispatching work
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Sloth: Building Blocks

Main Idea

Threads are interrupt handlers, synchronous thread activation is IRQ
= Interrupt subsystem does scheduling and dispatching work
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Advantages:

= Unified control-flow abstraction for HW/SW events
= Single, shared priority space

Ac
= No priority inversion
= Predictable event latency
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Sloth OS family

Sleepy Sloth Sloth on Time
+ events/blocking + time-triggered features
Hofer et al. RTSS' 11 Hofer et al. RTSS '12
Sloth

event-triggered

Hofer et al. RTSS '09

Safer Sloth Multi Sloth
-+ memory/privilege isolation + multi-core support
Danner et al. RTAS '14 Miiller et al. ECRTS' 14
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Multi Sloth: Design

Multi Sloth

+ multi-core support

Miiller et al. ECRTS' 14

B AUTOSAR system model: partitioned fixed-priority scheduling
m  Reusing building blocks of Sloth
m  Generative approach:

tailoring the kernel to the application and the hardware platform
B Reference implementation for the Infineon AURIX

32-bit RISC u-Controller

upcoming multi-core platform in the automotive industry
3 integrated TriCore CPUs

IRQ system with 256 priority levels and up to 1024 remappable sources
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Multi Sloth: Herding Sloths

HW Periphery
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Multi Sloth: Herding Sloths

HW Periphery

Src0: Taskl Src1: ISR1 Src2: Task2 Src3: Task4
- IRQ - : :

request Ipr|o=23 request Iprlo=24 request I prio=5 request I prio=8

enable I core=0 enable I core=0 enable I core=1 enable I core=2

1

ICU ICU ICU
(IRQ Arbitration) TV S — anoa e e
1 Reusing building blocks of Sloth:
curprio =X

ActivateTask(), SetEvent (), etc.

= Task Activation
m Task Dispatching
= Task Blocking

IRQ Vector Table = Resource Management

Core 0
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task1() task2() task4 ()
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Synchronization in AUTOSAR OS

Synchronization primitives as specified by AUTOSAR OS

Local access on each core

Resources with OSEK priority-ceiling protocol

m GetResource()
m ReleaseResource()

Global access across multiple cores
Spinlocks

m GetSpinlock()

= ReleaseSpinlock()

m TryToGetSpinlock()
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MPCP: Resource access synchronization

AUTOSAR lacks definiton of semantics for spinlocks

Requirement: priority-aware synchronization
= Synchronization protocols

Multi-processor Priority Ceiling Protocol (MPCP)

= published by Rajkumar et al. (RTSS '88, ICDCS '90)
m proposed for AUTOSAR OS by Lakshmanan et al. (SAE 2011)

B Resuing building blocks to implement MPCP in Multi Sloth
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MPCP for AUTOSAR OS System Model

m  All tasks use their assigned priority except in critical sections,
all cores share the same priority space

B Local resource access is synchronized using OSEK single-core PCP

m  Each global resource has a ceiling priority above all task priorities
Tres = Tmax T Ttask
B Acquiring a global resource raises the current execution priority to
the ceiling priority
m If resource is already held by another task, the requesting task blocks

m  When a task leaves a global critical section, the highest-priority task
waiting for this global resource is signaled and resumes at the higher
priority
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MPCP: Implementation for Infineon AURIX

GetMPCPResource() :

Priority-ordered waiting queue
Disable Local IRQs = queue as bitmask, one bit for each

task accessing this resource

| Disable IRQ Source |

Raise Source Prio

N = new instruction on Infineon AURIX

\ = swaps single bits in a word according
to a bit mask

= returns previous data word

task marks task holding the lock
Atomic enqueue with swapmsk

Other tasks
in queue?

= most significant bit for highest-priority

N\

Raise CPU Prio | | Block Task :
Enable Local IRQs

Enable IRQ Source

O Resource Acquired
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MPCP: Implementation for Infineon AURIX

GetMPCPResource() :

Disable Local IRQs

I Disable IRQ Source I

Enable Local IRQs
Enable IRQ Source

Resource Acquired

Raise Source Prio

Other tasks
in queue?

N\

ReleaseMPCPResource() :

Disable Local IRQs

Other tasks
in queue?

N yes

L WPl

Resource Released
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MPCP: Implementation for Infineon AURIX

GetMPCPResource(): ReleaseMPCPResource():

Disable Local IRQs Disable Local IRQs

Disable IRQ Source Reset Source Prio

Raise Source Prio Dequeue

Wait-free implementation of MPCP in Multi Sloth!
= No interference for concurrent actions on the same resource
= Guaranteed progress on a per-thread basis

= Acquiring and releasing MPCP resources is wait-free

Raise CPU Prio Block Task i Unblock Task

Enable Local IRQs Lower CPU Prio

Enable IRQ Source Enable Local IRQs
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Evaluation

m  Microbenchmarks of system service overheads
= Basic system on the Infineon AURIX

Transition Cycles
ActivateTask w/o dispatch 65
ActivateTask w/ dispatch 87
ChainTask w/ dispatch 97
GetResource 36
ReleaseResource w/o dispatch 19
ReleaseResource w/ dispatch 41
TerminateTask w/ dispatch 20
ActivateTask() cross-core round-trip 135
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Evaluation

m  Microbenchmarks of system service overheads
= MPCP resources on the Infineon AURIX

Transition Cycles
GetMPCPResource() w/ blocking 217
GetMPCPResource() w/o blocking 112
ReleaseMPCPResource() w/ local dispatch 360
ReleaseMPCPResource() w/o dispatch 134
ReleaseMPCPResource() w/ remote unblock 183
ReleaseMPCPResource() w/ local unblock and dispatch 311
ReleaseMPCPResource() w/o unblock w/ dispatch 231
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Conclusion

Multi Sloth . ..
= is an efficient multi-core AUTOSAR OS
m implements MPCP: multi-core systems beyond AUTOSAR

offers low latency with predictable overheads

adopts design philosophy of the Sloth kernel family
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