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Sloth: Let the Hardware do the Work!

Sloth kernels use hardware for OS purposes, and

are concise (200–500 LoC)
are small (300–900 bytes)
are fast (latency speed-up 2x to 170x)
implement industry standards (OSEK, AUTOSAR OS)
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Automotive Domain: The AUTOSAR OS Family

Families of completely statically configured RTOS
OSEK OS / OSEKtime
AUTOSAR OS

System model with different control-flow types:
Basic Tasks software-triggered, run to completion
Extended Tasks software-triggered, may block
ISRs hardware-triggered, run to completion
...

Preemptive, fixed-priority scheduling
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Sloth: Building Blocks

Main Idea
Threads are interrupt handlers, synchronous thread activation is IRQ
⇒ Interrupt subsystem does scheduling and dispatching work
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Advantages:
Unified control-flow abstraction for HW/SW events
Single, shared priority space
No priority inversion
Predictable event latency
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Sloth OS family

Sloth
event-triggered

Hofer et al. RTSS ’09

Sleepy Sloth
+ events/blocking

Hofer et al. RTSS’ 11

Sloth on Time
+ time-triggered features

Hofer et al. RTSS ’12

Safer Sloth
+ memory/privilege isolation

Danner et al. RTAS ’14

Multi Sloth
+ multi-core support

Müller et al. ECRTS’ 14
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Multi Sloth: Design

Multi Sloth
+ multi-core support

Müller et al. ECRTS’ 14

AUTOSAR system model: partitioned fixed-priority scheduling
Reusing building blocks of Sloth
Generative approach:
tailoring the kernel to the application and the hardware platform
Reference implementation for the Infineon AURIX

32-bit RISC µ-Controller
upcoming multi-core platform in the automotive industry
3 integrated TriCore CPUs
IRQ system with 256 priority levels and up to 1024 remappable sources
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Multi Sloth: Herding Sloths
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Reusing building blocks of Sloth:
Task Activation
Task Dispatching
Task Blocking
Resource Management
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Synchronization in AUTOSAR OS

Synchronization primitives as specified by AUTOSAR OS

Local access on each core
⇒ Resources with OSEK priority-ceiling protocol

GetResource()
ReleaseResource()

Global access across multiple cores
⇒ Spinlocks

GetSpinlock()
ReleaseSpinlock()
TryToGetSpinlock()
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MPCP: Resource access synchronization

AUTOSAR lacks definiton of semantics for spinlocks

Requirement: priority-aware synchronization
⇒ Synchronization protocols

Multi-processor Priority Ceiling Protocol (MPCP)

published by Rajkumar et al. (RTSS ’88, ICDCS ’90)
proposed for AUTOSAR OS by Lakshmanan et al. (SAE 2011)

Resuing building blocks to implement MPCP in Multi Sloth
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MPCP for AUTOSAR OS System Model

All tasks use their assigned priority except in critical sections,
all cores share the same priority space

Local resource access is synchronized using OSEK single-core PCP

Each global resource has a ceiling priority above all task priorities

πres = πmax + πtask

Acquiring a global resource raises the current execution priority to
the ceiling priority

If resource is already held by another task, the requesting task blocks

When a task leaves a global critical section, the highest-priority task
waiting for this global resource is signaled and resumes at the higher
priority
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MPCP: Implementation for Infineon AURIX
GetMPCPResource():
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Priority-ordered waiting queue
queue as bitmask, one bit for each
task accessing this resource
most significant bit for highest-priority
task marks task holding the lock

Atomic enqueue with swapmsk
new instruction on Infineon AURIX
swaps single bits in a word according
to a bit mask
returns previous data word

Get top of queue with clz
count of leading zeros directly
determines highest-priority
waiting task

Wait-free implementation of MPCP in Multi Sloth!
No interference for concurrent actions on the same resource
Guaranteed progress on a per-thread basis
Acquiring and releasing MPCP resources is wait-free
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Evaluation

Microbenchmarks of system service overheads
Basic system on the Infineon AURIX

Transition Cycles

ActivateTask w/o dispatch 65
ActivateTask w/ dispatch 87
ChainTask w/ dispatch 97
GetResource 36
ReleaseResource w/o dispatch 19
ReleaseResource w/ dispatch 41
TerminateTask w/ dispatch 20

ActivateTask() cross-core round-trip 135
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Evaluation

Microbenchmarks of system service overheads
MPCP resources on the Infineon AURIX

Transition Cycles

GetMPCPResource() w/ blocking 217
GetMPCPResource() w/o blocking 112
ReleaseMPCPResource() w/ local dispatch 360
ReleaseMPCPResource() w/o dispatch 134
ReleaseMPCPResource() w/ remote unblock 183
ReleaseMPCPResource() w/ local unblock and dispatch 311
ReleaseMPCPResource() w/o unblock w/ dispatch 231
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Conclusion

Multi Sloth . . .
is an efficient multi-core AUTOSAR OS
implements MPCP: multi-core systems beyond AUTOSAR
offers low latency with predictable overheads
adopts design philosophy of the Sloth kernel family

Rainer Müller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 14


