Multi Sloth:
An Efficient Multi-Core RTOS using
Hardware-Based Scheduling

Rainer Miiller, Daniel Danner,
Wolfgang Schréder-Preikschat, Daniel Lohmann

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

July 10, 2014

Sloth: Let the Hardware do the Work!

Sloth kernels use hardware for OS purposes, and

are concise (200-500 LoC)

are small (300-900 bytes)

are fast (latency speed-up 2x to 170x)

= implement industry standards (OSEK, AUTOSAR OS)

Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Automotive Domain: The AUTOSAR OS Family

m Families of completely statically configured RTOS
= OSEK OS / OSEKtime
= AUTOSAR 0S

B System model with different control-flow types:
= Basic Tasks software-triggered, run to completion
= Extended Tasks software-triggered, may block

= ISRs hardware-triggered, run to completion

m Preemptive, fixed-priority scheduling

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Sloth: Building Blocks

Main Idea

Threads are interrupt handlers, synchronous thread activation is IRQ
= Interrupt subsystem does scheduling and dispatching work

I
; prio=1||RQ Source
Act teTask(Task1)
criveterask s request| Taskl — CPU
Hardware prio=2||RQ Source curprio=X
HW IR
Periphery Q request ISR2 | IRQ
Arbi-
. tration
ActivateTask(Task3) prio=3 IRQ Source > Unit IRQ Vector
request| Task3
Table
ActivateTask(Task4) Prio=4|IRQ Source 5| task1()
request| Task4 X
isr2()
task3()
task4 ()

Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Sloth: Building Blocks

Main Idea

Threads are interrupt handlers, synchronous thread activation is IRQ
= Interrupt subsystem does scheduling and dispatching work

io=1
ActivateTask(Taskl) prio IRQ Source \
»| request Taskl CPU

Advantages:

= Unified control-flow abstraction for HW/SW events
= Single, shared priority space

Ac
= No priority inversion
= Predictable event latency
ActTIVACCTaSRCTaSKE) - o L e A
»| request Task4 T
isr2()
task3()
task4 ()

Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Sloth OS family

Sleepy Sloth Sloth on Time
+ events/blocking + time-triggered features
Hofer et al. RTSS' 11 Hofer et al. RTSS '12
Sloth

event-triggered

Hofer et al. RTSS '09

Safer Sloth Multi Sloth
-+ memory/privilege isolation + multi-core support
Danner et al. RTAS '14 Miiller et al. ECRTS' 14

Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Multi Sloth: Design

Multi Sloth

+ multi-core support

Miiller et al. ECRTS' 14

B AUTOSAR system model: partitioned fixed-priority scheduling
m Reusing building blocks of Sloth
m Generative approach:

tailoring the kernel to the application and the hardware platform
B Reference implementation for the Infineon AURIX

32-bit RISC u-Controller

upcoming multi-core platform in the automotive industry
3 integrated TriCore CPUs

IRQ system with 256 priority levels and up to 1024 remappable sources

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Multi Sloth: Herding Sloths

HW Periphery

J
2
© Src0: Taskl IRQ Src1: ISR1 Src2: Task2 Src3: Task4
~
e request Iprio=23 request Iprio=24 request I prio=5 request I prio=8
g enable I core=0 enable I core=0 enable I core=1 enable I core=2
i R —
%
%]
c N\ ¥ ¥
o ICU ICU ICU
% (IRQ Arbitration) (IRQ Arbitration) (IRQ Arbitration)
2
4 ! ! !
'L' curprio =X curprio=Y curprio=27
9]
<
Core 0 Core 1 Core 2

IRQ Vector Table

IRQ Vector Table

task1() task2() task4 ()

IRQ Vector Table

isr1()

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Multi Sloth: Herding Sloths

HW Periphery

Src0: Taskl Src1: ISR1 Src2: Task2 Src3: Task4
- IRQ - : :

request Ipr|o=23 request Iprlo=24 request I prio=5 request I prio=8

enable I core=0 enable I core=0 enable I core=1 enable I core=2

1

ICU ICU ICU
(IRQ Arbitration) TV S — anoa e e
1 Reusing building blocks of Sloth:
curprio =X

ActivateTask(), SetEvent (), etc.

= Task Activation
m Task Dispatching
= Task Blocking

IRQ Vector Table = Resource Management

Core 0

N2 T
task1() task2() task4 ()

isr1()

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Synchronization in AUTOSAR OS

Synchronization primitives as specified by AUTOSAR OS

Local access on each core

Resources with OSEK priority-ceiling protocol

m GetResource()
m ReleaseResource()

Global access across multiple cores
Spinlocks

m GetSpinlock()

= ReleaseSpinlock()

m TryToGetSpinlock()

Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

MPCP: Resource access synchronization

AUTOSAR lacks definiton of semantics for spinlocks

Requirement: priority-aware synchronization
= Synchronization protocols

Multi-processor Priority Ceiling Protocol (MPCP)

= published by Rajkumar et al. (RTSS '88, ICDCS '90)
m proposed for AUTOSAR OS by Lakshmanan et al. (SAE 2011)

B Resuing building blocks to implement MPCP in Multi Sloth

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

MPCP for AUTOSAR OS System Model

m All tasks use their assigned priority except in critical sections,
all cores share the same priority space

B Local resource access is synchronized using OSEK single-core PCP

m Each global resource has a ceiling priority above all task priorities
Tres = Tmax T Ttask
B Acquiring a global resource raises the current execution priority to
the ceiling priority
m If resource is already held by another task, the requesting task blocks

m When a task leaves a global critical section, the highest-priority task
waiting for this global resource is signaled and resumes at the higher
priority

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling 10

MPCP: Implementation for Infineon AURIX

GetMPCPResource() :

Priority-ordered waiting queue
Disable Local IRQs = queue as bitmask, one bit for each

task accessing this resource

| Disable IRQ Source |

Raise Source Prio

N = new instruction on Infineon AURIX

\ = swaps single bits in a word according
to a bit mask

= returns previous data word

task marks task holding the lock
Atomic enqueue with swapmsk

Other tasks
in queue?

= most significant bit for highest-priority

N\

Raise CPU Prio | | Block Task :
Enable Local IRQs

Enable IRQ Source

O Resource Acquired
Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

11

MPCP: Implementation for Infineon AURIX

GetMPCPResource() :

Disable Local IRQs

I Disable IRQ Source I

Enable Local IRQs
Enable IRQ Source

Resource Acquired

Raise Source Prio

Other tasks
in queue?

N\

ReleaseMPCPResource() :

Disable Local IRQs

Other tasks
in queue?

N yes

L WPl

Resource Released

Rainer Miiller

Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

11

MPCP: Implementation for Infineon AURIX

GetMPCPResource(): ReleaseMPCPResource():

Disable Local IRQs Disable Local IRQs

Disable IRQ Source Reset Source Prio

Raise Source Prio Dequeue

Wait-free implementation of MPCP in Multi Sloth!
= No interference for concurrent actions on the same resource
= Guaranteed progress on a per-thread basis

= Acquiring and releasing MPCP resources is wait-free

Raise CPU Prio Block Task i Unblock Task

Enable Local IRQs Lower CPU Prio

Enable IRQ Source Enable Local IRQs

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

11

Evaluation

m Microbenchmarks of system service overheads
= Basic system on the Infineon AURIX

Transition Cycles
ActivateTask w/o dispatch 65
ActivateTask w/ dispatch 87
ChainTask w/ dispatch 97
GetResource 36
ReleaseResource w/o dispatch 19
ReleaseResource w/ dispatch 41
TerminateTask w/ dispatch 20
ActivateTask() cross-core round-trip 135

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

Evaluation

m Microbenchmarks of system service overheads
= MPCP resources on the Infineon AURIX

Transition Cycles
GetMPCPResource() w/ blocking 217
GetMPCPResource() w/o blocking 112
ReleaseMPCPResource() w/ local dispatch 360
ReleaseMPCPResource() w/o dispatch 134
ReleaseMPCPResource() w/ remote unblock 183
ReleaseMPCPResource() w/ local unblock and dispatch 311
ReleaseMPCPResource() w/o unblock w/ dispatch 231

O Rainer Miiller Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

13

Conclusion

Multi Sloth . ..
= is an efficient multi-core AUTOSAR OS
m implements MPCP: multi-core systems beyond AUTOSAR

offers low latency with predictable overheads

adopts design philosophy of the Sloth kernel family

Rainer Miiller

Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling

14

