
Real-Time Systems

Security through

Scheduler Constraints

SIBIN MOHAN, MAN-KI YOON, RODOLFO PELLIZZONI AND RAKESH BOBBA

Information Trust Institute

Dept. of Computer Science Dept. of Electrical and Computer Engineering

Introduction

 Real-time systems (RTS) considered to be invulnerable to external security attacks

 Due to use of proprietary hardware/protocols

 Physical isolation

 Above assumptions are being challenged

 Subsystems interconnected with each other (even through the Internet)

 Malware developers able to overcome air gaps

 Attacks demonstrated on automobiles, avionics systems, UAVs, power grids, etc.

 Security violations in real-time systems could be more catastrophic than other systems

 Loss of life, physical harm to humans, system & environment, etc.

 Cannot tack on regular security mechanisms without concern for real-time properties

2

Contributions

 Problem: Information leakage in real-time systems

 Use of shared resources (e.g.: caches, DRAMs, etc.) to leak critical data

 Between tasks with different security levels

 Contribution: integrate security at design phase of RTS using intelligent scheduling constraints

 Fixed-priority (FP) scheduling schemes

 Analysis bounds for the integration of such constraints in FP algorithms

3

Outline

 System model, adversary model, assumptions

 Security problem, Outline of our Solution

 Scheduling constraints: PreFlush, Half-PF, Constrained PreFlush

 Analysis

 Further scheduling considerations: Ordering

 Evaluation

 Conclusion

4

Assumptions, adversary model, etc.

 Information leakage possible in systems with multiple levels of security

 E.g.: DO-178B style avionics system with navigation system (low) and flight control (high)

 Security levels could differ from real-time priorities

 E.g.: UAV with camera and real-time control tasks

 Image capture and processing tasks higher requirements for confidentiality

 Real-time control tasks (flight path, engine control, etc.) higher real-time priorities

5

 Adversary

 Can insert new tasks or compromise existing tasks respects RT guarantees to avoid detection

 Passively gleans secure information by observation of shared resource usage

 Cannot observe RAM contents of other tasks

 Cannot tamper with system operation

System Model

 Real-Time

 Liu and Layland task model

 Set of sporadic tasks

 Fixed-priority (FP) scheduling algorithm

 Security

 Set of security ‘levels’ of tasks forms a total order

 Given any two tasks, τi and τj, ‘security ordering’ can be one of

 Will generalize to a partial order in future work

6

Si Si

Sj Sj

or

Security problem

 Information leakage through storage channels over implicitly shared resources

 Consider two tasks, H and L such that

 H has higher real-time priority than L

 H is also at a higher security level than L

 Hence, L should not be privy to H’s information/internal state

 If L follows H at any point, then there is potential that a compromised L can snoop upon H

 Consider:

7

H

L

H H H

L L L

Solution

1. Clean up the shared resource (eliminating storage channel)

 Between every transition from/to H and L

 E.g.: flush the cache after each task has completed

2. Scheduling constraints to prevent situations where leakage can occur

 No instance of L can be scheduled after any instance of H

 If an instance of L is preempted by H and then resumes later, leakage can still occur avoid

 From an implementation perspective, the above constraints translate to:

a. Flush/clean out shared resource on every transition of type H L

b. Ensure that all jobs of H complete before transitioning to L

c. Prevent L from being preempted by H once it has started executing

8

PREFLUSH (PF)

CONSTRAINED PREFLUSH (CPF)

MISSED DEADLINES

SYNTHETIC FLUSH TASK (FT)

PreFlush (PF), Half-PF

 Rules for PF are

1. For every pair of tasks, τi and τj, such that invoke FT on every transition, τi τj

2. Invoke FT on every transition of type, τj τi

 Second rule prevents ‘responses’, i.e. confirmations in a covert channel setup

 If the first rule is active then even if the responses can be sent, it doesn’t matter

 HALF-PF

9

Si

Sj

H H H

L L L

Flush Task (FT)

Constrained PreFlush (CPF)

 Rules for CPF are

1. For every pair of tasks, τi and τj, such that prevent τi from preempting τj

2. For every pair of tasks, τi and τj, such that allow τi to preempt τj

 For the first rule, if there exist one or more tasks such that

 τi is still allowed to execute after τj avoids situation where τi faces inordinate priority inversion

 We are concerned more with direct priority inversion and not indirect ones

10

Si

Sj

τi

τj

Si

Sj

τi

τj

Si

Sk

τi

τk

FP and Security

 Fixed Priority (FP) Schedulers are a class of well known static scheduling algorithms

 We show how to integrate the Half-PF constraint into FP scheduling algorithms

 Start with non-preemptive FP schedulers one of the easier algorithms to implement/analyze

 Our techniques

1. Provide insights into how security-related constraints can be integrated into scheduling algorithms

2. Demonstrate how worst-case response-time analysis can be carried out for such situations

 Let

 τi : task under analysis

 cft : execution time for one invocation of the flush task (FT)

 FTs are executed non-preemptively

11

Analysis
 Analysis strategy

 Use standard response-time analysis for non-preemptive FP

 Compute number of higher or equal priority jobs that interfere with τi

 Determine maximum number of FT invocations required by such jobs increase response times

 Iterate until convergence is achieved

 Worst-case response time of task τi at iteration ‘k’,

 Ij: number of instances of higher or equal

 priority task τj that interfere with τi

 Bi: max. blocking time

12

Analysis (contd.)

 Nft: worst-case number of FT required by interfering higher/equal priority tasks

 Nft derived only using

 Ordering of security levels

 Number of interfering jobs that are of higher or equal priority

 No assumptions on arrival times or other parameters of higher/equal priority jobs

 In the paper demonstrate how to compute Nft in polynomial time in the number of jobs

13

Analysis (contd.)

 Nft computation: base idea

 Create a flow graph where nodes represent jobs and edges represent FT

 Each job is represented by a “sender” and a “receiver” node

 SendF represents any job executed before the busy interval; RecvL is the job under analysis

 Run max flow algorithm

14

S1

S2

S3

τ3 under analysis

I1 = 1

I2 = 2

Further Scheduling Considerations

 Important issues arise when trying to integrate security into RT systems

1. What is the best ordering of security levels?

2. Is there such a thing as the “best” ordering of security levels?

3. If it exists, is this “best” ordering in any way related to the real-time priorities of the system?

 Answer: depends!

 Can provide some hints to designers

 Forward Ordering: For every pair of tasks, τi and τj

 Backward Ordering: For every pair of tasks, τi and τj

15

Si

Sj

τi

τj

Si

Sj

τi

τj

 Random Ordering :

 no real relationship
 between task priorities and
 security levels

Ordering & Constraints 16

Forward Ordering Backward Ordering

Half-PF

Every transition of type τi τj

• τi has higher priority than τj
• will result in an FT invocation
• chances are high that most

preemptions will result in FT

Least number of FT invocations
• Transition from higher to lower
 priority transition from
 lower to higher security levels
• Execute FT at preemptions only

CPF

Prevents preemptions, but still
suffers from overheads of
many FT invocations

Same as Half-PF – all preemptions
are by lower security tasks

Evaluation
 Set up simulation and analysis engines

 Generated and analyzed 2000 synthetic task sets

 10 base utilization groups: [0.02+0.1xi, 0.08+0.1xi] for i = 0 …9

 [base utilization: total utilization for the tasks in set]

 Task parameters:

 Task deadlines = periods

 assigned priorities based on Rate Monotonic (RM) algorithm

17

Parameter Value

Number of tasks, N [3, 10]

Task periods, pi [50, 100, 150, … 950, 1000]

Task execution times, ei [3, 30]

FT overhead {1, 5, 10}

Used same task sets for both

1. Evaluation of analysis bounds

2. Simulation-based evaluation

[1] computes worst-case response
times based on analysis.

[2] executes task sets up to one
hyperperiod; system tracks
response times for each task.

On completion of a job, both check
whether response times exceed
task deadlines.

Analysis-based Results
 Non-Preemptive FP with Random ordering, Half-PF constraint

 FT = 5

18

 Vanilla FP performs best no constraints

 Our method [black line] better than naïve

 bounds for number of FT invocations

 Designers can see effects of security constraints

 Reduced schedulability, but increased security

Analysis-based Results (contd.)

 Varying FT Overhead Costs

 As FT overheads go up, our analysis-based methods perform better compared to naïve bounds

 As FT overheads go up, preemptive FP performs worse more FT compared to non-preemptive

19

FT = 1 FT = 5 FT = 10

Simulation-based Results

 Use a simulator that schedules task sets according to one of the following:

1. Preemptive (vanilla) FP: preemptions allowed, no FT invocations [FP]

2. NonPreemptive FP: FP no preemptions; FT allowed between high low security level transitions

 [FP FULLY NON-PREEMPTIVE]

3. Preemptive FP with flush tasks: FT invoked on transitions from high low; Half-PF constraint

 [FP HALF-PF]

4. Preemptive FP with resource flush under certain conditions [FP CPF]

 FT overhead was set to 5 for all simulation experiments

20

Simulation-based Results (contd.) 21

 Vanilla FP performs best no constraints

 FP FULLY NON-PREEMPTIVE worst

 [no preemptions at all]

 FP HALF-PF and FP CPF perform much better

 Both start dropping off around 75 % utilization

Random Security Ordering, FT = 5

Ordering + Simulation Results 22

Forward Security Ordering, FT = 5 Backward Security Ordering, FT = 5

Performs the worst more FT invocations Performs the best least FT invocations

FT: Simulation vs Analysis 23

 Number of FT invocations normalized to
number of jobs

 Red dots: FT invocations [simulation]

 Blue dots: FT invocations [analysis]

Hence

1. Num. FT invocations much less than
number of jobs

2. For most task sets, number of actual FT
invocations lower than calculated values

3. True even for higher utilization task sets!

Limitations

 Transforming security requirements into scheduling constraints

 Our solution for one problem information leakage through storage channels

 Not a silver bullet for all security problems in real-time systems

 Many security properties may not be amenable to being cast as scheduling constraints

 E.g.: communication-related vulnerabilities

 Performance overheads could inhibit adoption in many RTS

 May be mitigated by careful design process

24

Conclusion

 Presented methods to integrate security properties into real-time systems

 Techniques to amend FP algorithms to reduce information leakage through shared resources

 Designers of real-time systems can now consider such security properties

 Can assess tradeoffs between security requirements and real-time guarantees

 Future Work

 Analysis for other scheduling policies / constraints

 Case study

 Architectural mechanisms?

25

Thanks!

 Questions?

26

