Real-Time Systems
Security through
Scheduler Consiraints

SIBIN MOHAN, MAN-KI YOON, RODOLFO PELLIZZONI AND RAKESH BOBBA

Information Trust Institute

Dept. of Computer Science

ILLINOTIS
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Dept. of Electrical and Computer Engineering

Infroduction

» Real-time systems (RTS) considered to be invulnerable to external security attacks
» Due to use of proprietary hardware/protocols
» Physicalisolation

» Above assumptions are being challenged
» Subsystems interconnected with each other (even through the Internet) Sy .
» Malware developers able to overcome air gaps *

» Attacks demonstrated on automobiles, avionics systems, UAVs, power grids, etc.
» Security violations in real-time systems could be more catastrophic than other systems

» Loss of life, physical harm to humans, system & environment, etc.

» Cannot tack on regular security mechanisms without concern for real-time properties

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Contributions 3

» Problem: Information leakage in real-time systems
» Use of shared resources (e.g.: caches, DRAMs, etc.) to leak critical data

» Between tasks with different security levels
» Contribution: integrate security at design phase of RTS using intelligent scheduling constraints

» Fixed-priority (FP) scheduling schemes

» Analysis bounds for the integration of such constraints in FP algorithms

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Ouvutline 4

» System model, adversary model, assumptions

» Security problem, Outline of our Solution

» Scheduling constraints: PreFlush, Half-PF, Constrained PreFlush
» Analysis

» Further scheduling considerations: Ordering

» Evaluation

» Conclusion

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Assumptions, adversary model, etc. 5

» Information leakage possible in systems with multiple levels of security

» E.g.: DO-178B style avionics system with navigation system (low) and flight control (high)
» Security levels could differ from real-time priorities

» E.g.: UAV with camera and real-time control tasks

» Image capture and processing tasks = higher requirements for confidentiality

» Real-time control tasks (flight path, engine control, etc.) = higher real-time priorities

» Adversary

B« » Caninsert new tasks or compromise existing tasks = respects RT guarantees to avoid detection
O » Passively gleans secure information = by observation of shared resource usage
N\ » Cannot observe RAM contents of other tasks
- » Cannot tamper with system operation

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

System Model 6

» Real-Time
» Liu and Layland task model
» Set of sporadic tasks
» Fixed-priority (FP) scheduling algorithm

» Security

» Set of security ‘levels’ of tasks forms a total order

O
¥

» Given any two tasks, T; and T, ‘security ordering’ can be one of 2> or

O
*
O

» Will generalize to a partial order in future work

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Security problem 7

» Information leakage through storage channels over implicitly shared resources

» Consider two tasks, H and L such that
» H has higher real-time priority than L

» Hisalso at a higher security level than L

O
¥
O

» Hence, L should not be privy to H’s information/internal state

» IfL follows H at any point, then there is potential that a compromised L can snoop upon H

» Consider:

Monday, August 04, 2014

Real-Time Systems Security Through Scheduler Constraints

Solution 8

1. |Clean up the shared resource (eliminating storage channel) SYNTHETIC FLUSH TASK (FT) |

» Between every transition from/to H and L

» E.g.: flush the cache after each task has completed

2. Scheduling constraints to prevent situations where leakage can occur
» No instance of L can be scheduled after any instance of H

» If aninstance of L is preempted by H and then resumes later, leakage can still occur = avoid

» From an implementation perspective, the above constraints translate to:
a. l Flush/clean out shared resource on every transition of type H 2 L PREFLUSH (PF) l
c. l Prevent L from being preempted by H once it has started executing =~ CONSTRAINED PREFLUSH (CPF) |

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

PreFlush (PF), Half-PF ?

» Rules for PF are

1. Forevery pair of tasks, T;and t, such that & invoke FT on every transition, T, - T,

2. Invoke FT on every transition of type, T, 2 T,

» Second rule prevents ‘responses’, i.e. confirmations in a covert channel setup

» If the first rule is active then even if the responses can be sent, it doesn’t matter

» HALF-PF T : T |-| T d

> Flush Task (FT)

N . N . R

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Constrained PreFlush (CPF) 10

» Rules for CPF are °

1. Forevery pair of tasks, T; and T, such that prevent T; from preempting T;

¥
O
O

¥

2. Forevery pair of tasks, T; and t, such that allow T; to preempt T,

¥
O
s

1
O

O
L 4 ¥
0

> 1 is still allowed to execute after t; 2 avoids situation where t; faces inordinate priority inversion

» For the first rule, if there exist one or more tasks such that

» We are concerned more with direct priority inversion and not indirect ones

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

FP and Security 1

» Fixed Priority (FP) Schedulers are a class of well known static scheduling algorithms
» We show how to integrate the Half-PF constraint into FP scheduling algorithms
» Start with non-preemptive FP schedulers = one of the easier algorithms to implement/analyze
» Our techniques
1. Provide insights into how security-related constraints can be integrated into scheduling algorithms

>. Demonstrate how worst-case response-time analysis can be carried out for such situations

> Let
» T, :task under analysis

» ¢, execution time for one invocation of the flush task (FT)

» FTs are executed non-preemptively

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Analysis 12

» Analysis strategy
» Use standard response-time analysis for non-preemptive FP
» Compute number of higher or equal priority jobs that interfere with T,
» Determine maximum number of FT invocations required by such jobs = increase response times

» Iterate until convergence is achieved

» Worst-case response time of task T, at iteration ‘k’,

Ri(k+1) = B;--N#(S,11;i7; € hep;})ce+ Z (Ljcj)+c;

Vichep;

l: number of instances of higher or equal

priority task t;that interfere with T

B.: max. blocking time max ¢; — 1

V1€lp; °

Monday, August 04, 2014

Analysis (conid.) 13

Ri(k+1) = Bi+N#(S,{1L;|1; € hep;})cs+ Z (Ljc;)+c;

Vichep;

» N;: worst-case number of FT required by interfering higher/equal priority tasks

» N derived only using
» Ordering of security levels
» Number of interfering jobs that are of higher or equal priority

» No assumptions on arrival times or other parameters of higher/equal priority jobs

» Inthe paper 2 demonstrate how to compute N in polynomial time in the number of jobs

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Analysis (conid.) 14

» N computation: base idea
» Create a flow graph where nodes represent jobs and edges represent FT
» Eachjob is represented by a “sender” and a “receiver” node

» SendF represents any job executed before the busy interval; RecvL is the job under analysis

Sendy 1 ‘ ‘ Recv 1

‘ SendF ‘ BT L,

Real-Time Systems Security Through Scheduler Constraints

» Run max flow algorithm

Monday, August 04, 2014

Further Scheduling Considerations 15

» Important issues arise when trying to integrate security into RT systems

1. What is the best ordering of security levels?

2. Is there such a thing as the “best” ordering of security levels?

3. If it exists, is this “best” ordering in any way related to the real-time priorities of the system?
» Answer: depends!

» Can provide some hints to designers

» Forward Ordering: For every pair of tasks, T;and T, » Random Ordering :

no real relationship
between task priorities and

» Backward Ordering: For every pair of tasks, t;and t, security levels

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Ordering & Constraints 16

Forward Ordering Backward Ordering
Every transition of type T; 2 T; Least number of FT invocations
Half-PF T, has higher priority than T, * Transition from higher to lower
* will resultin an FT invocation priority = transition from
* chances are high that most lower to higher security levels

preemptions will resultin FT ¢ Execute FT at preemptions only

Prevents preemptions, but still Same as Half-PF - all preemptions
CPF suffers from overheads of are by lower security tasks
many FT invocations

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Evaluation

» Set up simulation and analysis engines
» Generated and analyzed 2000 synthetic task sets

» 10 base utilization groups: [0.02+0.1xi, 0.08+0.1xi] fori=0...9

[base utilization: total utilization for the tasks in set]

» Task parameters:

Number of tasks, N [3,10]

Task periods, p; [50, 100, 150, ... 950, 1000]
Task execution times, e, [3, 30]

FT overhead {1, 5, 10}

» Task deadlines = periods

» assigned priorities based on Rate Monotonic (RM) algorithm

Real-Time Systems Security Through Scheduler Constraints

17

~

Used same task sets for both
1. Evaluation of analysis bounds

>. Simulation-based evaluation

[1] computes worst-case response
times based on analysis.

[2] executes task sets up to one
hyperperiod; system tracks
response times for each task.

On completion of a job, both check
whether response times exceed
task deadlines.

- J

Monday, August 04, 2014

Analysis-based Results 18

Non-Preemptive FP with Random ordering, Half-PF constraint

RANDOM SECURITY ORDER [FT OVERHEAD 5]

—k & U

» Vanilla FP performs best = no constraints

=]
N
o

» Our method [black line] = better than naive

©
[0
o

bounds for number of FT invocations
—,‘\,,Fp

—+—FP [Obvious Bound] » Designers can see effects of security constraints

o
B
o

=
w
o

-=~ FP Fully Non Preemptive [Obvious Bound]

o
N
o

Reduced schedulability, but increased security

(%]
o
o
=
=
[%2]
=
w
-
g
2
(o]
Lt
I
O
v
T8
@)
[T}
2
’—
=
[rr}
Q
o
w
(=

=i=FP Fully Non Preemptive [Analysis Bound]

o
N
o

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

BASE UTILIZATION

FT

1
i

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Analysis-based Results (contd.) 19

Varying FT Overhead Costs

RANDOM SECURITY ORDER [FT OVERHEAD 1]

—_— C

i

RANDOM SECURITY ORDER [FT OVERHEAD 5]
2 " " ¥

—3

RANDOM SECURITY ORDER [FT OVERHEAD 10]

— e -
\
N
53
\

<}
N
=]

=]
o
<]

o
@

—~—FP “—FP

—+—FP [Obvious Bound]

(=]
)

——FP [Obvious Bound] ——FP [Obvious Bound]

030

~=- FP Fully Non Preemptive

—=- FP Fully Non Preemptive [Obvious Bound] [Obvious Bound]

-~ FP Fully Non Preemptive [Obvious Bound]

N

n
&
o
z
=
w
=
w
x|
3
S
=)
@
T
o
)
w
o
w
Q
<
=
&
9
&
&
a

«i=FP Fully Non Preemptive
[Analysis Bound]

=#—FP Fully Non Preemptive [Analysis Bound] =i=FP Fully Non Preemptive [Analysis Bound]

il
&
]
=
g
7y
£
w
b}
Q
e |
2
=
e}
I
]
A
w
o}
B C
Q
<
=
z
o
w0
&
w
a
(

4,0.5] (0.5, 0.6] [0.€ 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.

BASE UTILIZATION

BASE UTILIZATION BASE UTILIZATION

FT =1 FT=5 FT=10
As FT overheads go up, our analysis-based methods perform better 2 compared to naive bounds

As FT overheads go up, preemptive FP performs worse = more FT compared to non-preemptive

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Simulation-based Results 20

» Use a simulator that schedules task sets according to one of the following:
1. Preemptive (vanilla) FP: preemptions allowed, no FT invocations [FP]
2. NonPreemptive FP: FP no preemptions; FT allowed between high = low security level transitions
[FP FULLY NON-PREEMPTIVE]
3. Preemptive FP with flush tasks: FT invoked on transitions from high = low; Half-PF constraint
[FP HALF-PF]

4. Preemptive FP with resource flush under certain conditions [FP CPF]

» FT overhead was set to 5 for all simulation experiments

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Simulation-based Results (contd.) 21

Random Security Ordering, FT =5

RANDOM SECURITY ORDER [FT OVERHEAD 5]

. . . R T =

» Vanilla FP performs best = no constraints
» FP FULLY NON-PREEMPTIVE - worst

[no preemptions at all]

——FP

—+—FP Fully Non-preemptive » FP HALF-PF and FP CPF perform much better

—=- FP Half-PF

» Both start dropping off around 75 % utilization

(7]
—
o
=
s
v
=
w
-
g
2
]
wl
T
(]
(%]
—_
o
w
2
—_
=
[SE)
O
&
—
o

FP CPF

[0.0,0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

BASE UTILIZATION

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Ordering + Simulation Resulis 22

Forward Security Ordering, FT = 5 Backward Security Ordering, FT =5

FORWARDSECURITY ORDER [FT OVERHEAD 5]

' BRI TN, " SRR S

BACKWARD SECURITY ORDER [FT OVERHEAD 5]

-

B e T]

i FP ——FP

——FP Fully Non-preemptive ——FP Fully Non-preemptive

—-= FP Half-PF -~ FP Half-PF

v v
w w
(o] o
= =
= =
v v
z z
w (T8}
—J -
(aa] (a]
< <T
- -
=2 =
(] (]
w wJ
I I
o o
v vy
(U (V1
(] o]
w [=)
g Q
= =
= =
L [
o o
o oc
w J
o (s

FP CPF FP CPF

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0] [0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

BASE UTILIZATION BASE UTILIZATION

Performs the worst = more FT invocations Performs the best = least FT invocations

FT: Simulation vs Analysis 23

Average Number of FT Invocations per Job » Number of FT invocations normalized to
[FP Fully Non-preemptive, FT Overhead 5] .
85 & number of jobs
‘*ﬁ % e . x .]] .
3;: o | 9o » Red dots: FT invocations [simulation]

» Blue dots: FT invocations [analysis]

Hence

1. Num. FT invocations much less than
number of jobs

>. For most task sets, number of actual FT
invocations lower than calculated values

0.5

 Base Utilization | | | 3. True even for higher utilization task sets!

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Limitations 24

» Transforming security requirements into scheduling constraints
» Our solution for one problem - information leakage through storage channels

» Not asilver bullet for all security problems in real-time systems

» Many security properties may not be amenable to being cast as scheduling constraints

» E.g.: communication-related vulnerabilities

» Performance overheads could inhibit adoption in many RTS

» May be mitigated by careful design process

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Conclusion 25

» Presented methods to integrate security properties into real-time systems
» Techniques to amend FP algorithms to reduce information leakage through shared resources

» Designers of real-time systems can now consider such security properties

» Can assess tradeoffs between security requirements and real-time guarantees

» Future Work
» Analysis for other scheduling policies / constraints
» Case study
» Architectural mechanisms?

Real-Time Systems Security Through Scheduler Constraints R e o0, 2014

Thanks! 26

» Questions?

Real-Time Systems Security Through Scheduler Constraints G104, 201 4

