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Introduction 

 Real-time systems (RTS) considered to be invulnerable to external security attacks 

 Due to use of proprietary hardware/protocols 

 Physical isolation 

 Above assumptions are being challenged 

 Subsystems interconnected with each other (even through the Internet) 

 Malware developers able to overcome air gaps 

 Attacks demonstrated on automobiles, avionics systems, UAVs, power grids, etc. 

 Security violations in real-time systems could be more catastrophic than other systems 

 Loss of life, physical harm to humans, system & environment, etc. 

 

 Cannot tack on regular security mechanisms without concern for real-time properties 
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Contributions 

 Problem: Information leakage in real-time systems 

 Use of shared resources (e.g.: caches, DRAMs, etc.) to leak critical data 

 Between tasks with different security levels 

 

 Contribution: integrate security at design phase of RTS using intelligent scheduling constraints 

 

 Fixed-priority (FP) scheduling schemes 

 Analysis bounds for the integration of such constraints in FP algorithms 
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Outline 

 System model, adversary model, assumptions 

 Security problem, Outline of our Solution 

 Scheduling constraints: PreFlush, Half-PF, Constrained PreFlush 

 Analysis 

 Further scheduling considerations: Ordering 

 Evaluation 

 Conclusion 
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Assumptions, adversary model, etc. 

 Information leakage possible in systems with multiple levels of security 

 E.g.: DO-178B style avionics system with navigation system (low) and flight control (high) 

 Security levels could differ from real-time priorities 

 E.g.: UAV with camera and real-time control tasks 

 Image capture and processing tasks  higher requirements for confidentiality 

 Real-time control tasks (flight path, engine control, etc.)  higher real-time priorities 
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 Adversary 

 Can insert new tasks or compromise existing tasks  respects RT guarantees to avoid detection 

 Passively gleans secure information  by observation of shared resource usage 

 Cannot observe RAM contents of other tasks 

 Cannot tamper with system operation 



System Model 

 Real-Time 

 Liu and Layland task model 

 Set of sporadic tasks 

 Fixed-priority (FP) scheduling algorithm 

 

 Security 

 Set of security ‘levels’ of tasks forms a total order 

 Given any two tasks, τi and τj, ‘security ordering’ can be one of   

 

 Will generalize to a partial order in future work 
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Security problem 

 Information leakage through storage channels over implicitly shared resources 

 

 Consider two tasks, H and L such that 

 H has higher real-time priority than L 

 H is also at a higher security level than L 

 Hence, L should not be privy to H’s information/internal state 

 

 If L  follows H at any point, then there is potential that a compromised L can snoop upon H  

 Consider: 
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Solution 

1. Clean up the shared resource (eliminating storage channel) 

 Between every transition from/to H and L 

 E.g.: flush the cache after each task has completed 

2. Scheduling constraints to prevent situations where leakage can occur 

 No instance of L can be scheduled after any instance of H 

 If an instance of L is preempted by H and then resumes later, leakage can still occur  avoid 

 

 From an implementation perspective, the above constraints translate to: 

a. Flush/clean out shared resource on every transition of type H  L 

b. Ensure that all jobs of H complete before transitioning to L 

c. Prevent L from being preempted by H once it has started executing 
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PREFLUSH (PF) 

CONSTRAINED PREFLUSH (CPF) 

MISSED DEADLINES 

SYNTHETIC FLUSH TASK (FT) 



PreFlush (PF), Half-PF 

 Rules for PF are 

1. For every pair of tasks, τi and τj, such that             invoke FT  on every transition, τi  τj  

 

2. Invoke FT on every transition of type, τj  τi  

 

 Second rule prevents ‘responses’, i.e. confirmations in a covert channel setup 

 If the first rule is active then even if the responses can be sent, it doesn’t matter 

 

 HALF-PF 
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Constrained PreFlush (CPF) 

 Rules for CPF are 

1. For every pair of tasks, τi and τj, such that                            prevent τi from preempting τj 

 

 

2. For every pair of tasks, τi and τj, such that                            allow τi to preempt τj 

 

 

 

 For the first rule, if there exist one or more tasks such that  

 

 τi is still allowed to execute after τj  avoids situation where τi faces inordinate priority inversion 

 We are concerned more with direct priority inversion and not indirect ones 
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FP and Security 

 Fixed Priority (FP) Schedulers are a class of well known static scheduling algorithms 

 We show how to integrate the Half-PF constraint into FP scheduling algorithms 

 Start with non-preemptive FP schedulers  one of the easier algorithms to implement/analyze 

 Our techniques 

1. Provide insights into how security-related constraints can be integrated into scheduling algorithms 

2. Demonstrate how worst-case response-time analysis can be carried out for such situations 

 

 Let 

 τi : task under analysis 

 cft : execution time for one invocation of the flush task (FT) 

 FTs are executed non-preemptively 
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Analysis 
 Analysis strategy 

 Use standard response-time analysis for non-preemptive FP 

 Compute number of higher or equal priority jobs that interfere with τi 

 Determine maximum number of FT invocations required by such jobs  increase response times 

 Iterate until convergence is achieved 

 Worst-case response time of task τi at iteration ‘k’, 

 

 

 

 Ij: number of instances of higher or equal  

     priority task τj that interfere with τi  

  

 Bi: max. blocking time 
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Analysis (contd.) 

 

 

 Nft: worst-case number of FT required by interfering higher/equal priority tasks 

 

 Nft derived only using 

 Ordering of security levels 

 Number of interfering jobs that are of higher or equal priority 

 No assumptions on arrival times or other parameters of higher/equal priority jobs 

 

 In the paper  demonstrate how to compute Nft in polynomial time in the number of jobs 
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Analysis (contd.)  

 Nft computation: base idea 

 Create a flow graph where nodes represent jobs and edges represent FT 

 Each job is represented by a “sender” and a “receiver” node 

 SendF represents any job executed before the busy interval; RecvL is the job under analysis 

 Run max flow algorithm 
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Further Scheduling Considerations 

 Important issues arise when trying to integrate security into RT systems 

1. What is the best ordering of security levels? 

2. Is there such a thing as the “best” ordering of security levels? 

3. If it exists, is this “best” ordering in any way related to the real-time priorities of the system? 

 Answer: depends!  

 Can provide some hints to designers 

 

 Forward Ordering: For every pair of tasks, τi and τj 

 

 

 Backward Ordering: For every pair of tasks, τi and τj 
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Ordering & Constraints 16 

Forward Ordering Backward Ordering 

 
 

Half-PF 

 
Every transition of type τi  τj  

• τi has higher priority than τj 
• will result in an FT invocation 
• chances are high that most 

preemptions will result in FT 
 

 
Least number of FT invocations 
• Transition from higher to lower 
       priority  transition from   
       lower to higher security levels 
• Execute FT at preemptions only 

 
 

CPF 

 
Prevents preemptions, but still 
suffers from overheads of  
many FT invocations 

 
Same as Half-PF – all preemptions 
are by lower security tasks 



Evaluation 
 Set up simulation and analysis engines  

 Generated and analyzed 2000 synthetic task sets 

 10 base utilization groups: [0.02+0.1xi, 0.08+0.1xi] for i = 0 …9  

      [base utilization: total utilization for the tasks in set] 

 Task parameters:  

 

 

 

 

 

 

 Task deadlines = periods  

 assigned priorities based on Rate Monotonic (RM) algorithm 
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Parameter Value 

Number of tasks, N [3, 10] 

Task periods, pi [50, 100, 150, … 950, 1000] 

Task execution times, ei [3, 30] 

FT overhead {1, 5, 10} 

Used same task sets for both 

1. Evaluation of analysis bounds 

2. Simulation-based evaluation 

 

[1] computes worst-case response 
times based on analysis. 

[2] executes task sets up to one 
hyperperiod; system tracks 
response times for each task. 

 

On completion of a job, both check 
whether response times exceed 
task deadlines. 



Analysis-based Results 
     Non-Preemptive FP with Random ordering, Half-PF constraint 

 

 

 

 

 

 

 

 

 

 

     FT = 5             
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 Vanilla FP performs best  no constraints 

 Our method [black line]  better than naïve 

      bounds for number of FT invocations 

 Designers can see effects of security constraints 

 Reduced schedulability, but increased security 

 



Analysis-based Results (contd.) 

               Varying FT Overhead Costs 

 

 

 

 

 

 

 

    As FT overheads go up, our analysis-based methods perform better  compared to naïve bounds 

    As FT overheads go up, preemptive FP performs worse  more FT compared to non-preemptive 
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Simulation-based Results 

 Use a simulator that schedules task sets according to one of the following: 

1. Preemptive (vanilla) FP: preemptions allowed, no FT invocations [FP] 

2. NonPreemptive FP: FP no preemptions; FT allowed between high  low security level transitions  

                 [FP FULLY NON-PREEMPTIVE] 

3. Preemptive FP with flush tasks: FT invoked on transitions from high  low; Half-PF constraint 

                 [FP HALF-PF] 

4. Preemptive FP with resource flush under certain conditions          [FP CPF] 

 

 FT overhead was set to 5 for all simulation experiments 

 

20 



Simulation-based Results (contd.) 21 

 Vanilla FP performs best  no constraints 

 FP FULLY NON-PREEMPTIVE  worst 

      [no preemptions at all] 

 

 FP HALF-PF and FP CPF perform much better 

 Both start dropping off around 75 % utilization 

 

Random Security Ordering, FT = 5 



Ordering + Simulation Results 22 

Forward Security Ordering, FT = 5 Backward Security Ordering, FT = 5 

Performs the worst  more FT invocations Performs the best  least FT invocations 



FT: Simulation vs Analysis 23 

 Number of FT invocations normalized to 
number of jobs 

 Red dots: FT invocations [simulation] 

 Blue dots: FT invocations [analysis] 

 

Hence 

1. Num. FT invocations much less than 
number of jobs 

2. For most task sets, number of actual FT 
invocations lower than calculated values 

3. True even for higher utilization task sets! 

 



Limitations 

 Transforming security requirements into scheduling constraints 

 Our solution for one problem  information leakage through storage channels 

 Not a silver bullet for all security problems in real-time systems 

 

 Many security properties may not be amenable to being cast as scheduling constraints 

 E.g.: communication-related vulnerabilities 

 

 Performance overheads could inhibit adoption in many RTS 

 May be mitigated by careful design process 
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Conclusion 

 Presented methods to integrate security properties into real-time systems 

 

 Techniques to amend FP algorithms to reduce information leakage through shared resources 

 

 Designers of real-time systems can now consider such security properties 

 Can assess tradeoffs between security requirements and real-time guarantees 

 

 Future Work 

 Analysis for other scheduling policies / constraints 

 Case study 

 Architectural mechanisms? 
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Thanks! 

 Questions? 
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