Optimal and Adaptive Multiprocessor
Real-Time Scheduling:
The Quasi-Partitioning Approach

1 2

Ernesto Massa George Lima Paul Regnier 2
Greg Levin 3 Scott Brandt 3

1State University of Bahia - Brazil
2Federal University of Bahia - Brazil

3University of California - USA

july,2014

Problem, Model and Notation
We address the problem of schedule a set of tasks in a
multiprocessor environment
» tasks are sporadic
» deadline is implicit (deadline = minimum inter-arrival interval)

> a task instance has a worst case execution time (wcet)

» R(7) = wcet/period
> a task 7:(4,8) has wcet = 4, deadline =8 and R(7) = 0.5
period e rir)— 05
Poa, ZZZZZZL | Ymzzza |
/0 5 / 10\ 15 20 t
job release CII?a%I;iCrIIE% Ia(t)e]; 5ejlg%se

Figure 1: Real-Time System with tasks 7:(4, 8)

Wonderful World

Assigning tasks to processors (First Fit Decreasing of Rate)

Set of tasks to be scheduled

N A (A)]

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 2: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

2z R W W U]

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 3: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

7 NWz2227) za Wzl U]

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 4: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

7 N1 Nz v.]

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 5: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

7 N1 Nz v.]

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 6: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 AN v

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 7: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 AN v

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 8: QPS example in two processors

Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 AN v vA

Proc,
00 02 04 06 08 1.0

Proc; o,

00 02 04 06 08 1.0

Figure 9: QPS example in two processors

Wonderful World (partitioned systems)

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 AN v vA

Local EDF

Proc,
00 02 04 06 08 1.0

Local EDF

Proc;
00 02 04 06 08 1.0

Figure 10: QPS example in two processors

But..

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 Avz A7

/

if we have
one more task?

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 11: QPS example in two processors

But..

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 N

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 12: QPS example in two processors

But..

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 N

w4

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 13: QPS example in two processors

Quasi-Partitioning

Proc,
00 02 04 06 08 1.0

N
1
N)

00 02 04 06 08 1.0

Figure 14: QPS example in two processors

Quasi-Partitioning Scheduling

Dealing with a group of tasks with rate greater than 1

Local EDF
Procy
00 02 04 06 08 1.0
blue group red group
of tasks of tasks excess = x
Proc;

00 02 04 06 08 1.0

Figure 15: QPS example in two processors

Quasi-Partitioning Scheduling

Dealing with a group of tasks with rate greater than 1

Procz 0o 02 04 06 08 10
rate x
R(blue) — x R(red) — x
Proc;

00 02 04 06 08 1.0

Figure 16: QPS example in two processors

Quasi-Partitioning Scheduling

Master, Slave and Dedicated Servers

Proc,
00 02 04 06 08 1.0

master server (R(M) = x)
Ve
R(A) = R(blue) — x R(B) = R(red) — x
Proc;

slave server (R(S) = x)

Figure 17: QPS example in two processors

Quasi-Partitioning Scheduling

Processor Hierarchy

Local EDF

Procy .
00 02 04 06 038 0

Local EDF

Proc;
00 02 04 06 08 1.0

Figure 18: QPS example in two processors

Overview of Fixed-Rate Server

0’1:(R(O’1) = 08, cli = {’7’1,7‘2})
7'1:(2.4, 6) = R(Tl) =04
72:(4,10) = R(m2) = 0.4

0 2 4 6 8 10 ¢t

Figure 19: Tasks 71:(2.4,6),72:(4,10) been served by fixed-rate server
01:(0.8, {71, 72}).

Adaptation Strategy

Proc,
00 02 04 06 08 1.0

N
1
N)

00 02 04 06 08 1.0

Figure 20: QPS example in two processors

Adaptation Strategy

Local EDF

Proc,
00 02 04 06 08 1.0

I | Local EDF
Proc;

00 02 04 .

Figure 21: QPS example in two processors

Related Work (Optimal Algorithms)

Some techniques divide time into windows and execute tasks
proportionally into each window (e.g. DPW,EKG,PFair), solving
theoretically this problem, but imposing a large number of
preemptions.

01234t

Figure 22: 71:(2,3), 72:(2,3) and 73:(2, 3) executing in windows

Other (RUN, U-EDF) use different approaches with lower number
of preemptions.

Evaluation

QPS Evaluation

» Synthetic task sets generated according to Emberson
Algorithm [1];

» Sporadic and periodic systems are considered;
» QPS is compared against DPW, EKG, RUN and U-EDF

» each simulation took into consideration 1,000 task sets and
run for 1,000 time units.

Sporadic Systems

4 4
O-0-OU-EDF O-O>-OU-EDF
*¢-6QPS *+e-6QPS
Q0 24 4
83 g3
2 8
2 21 @ 21
2 S
£ g
8 =
I
0 0]
151020 30405060 75 100 151020 30405060 75 100
Maximum delay Maximum delay

Figure 23: Average number of preemptions and migrations for systems with 16
sporadic tasks scheduled on 8 processors.

Periodic Systems

Preemptions per job

Migrations per job

DPW —&—
1 EKG ——

Number of processors

4 8 12 16 20 24 28 32
Number of processors

Figure 24: Average number of preemptions and migrations for periodic systems with
2m tasks that fully utilize m processors.

Periodic Systems

“le-seaprs “le-e-ears
TreveU-EDF TreveU-EDF
C-O-ORUN C-O-ORUN
2 61 2 61
o [}
rl rl
9] 9]
o o
241 41
2 k]
£ / 8
2, 2,
0 4 8 12 16 0 4 8 12 16
Number of Processors Number of Processors

Figure 25: Average number of migrations for periodic systems with 2m tasks that
utilize 100% and 98% of m processors.

Conclusions

» For sporadic task systems: QPS can take advantage of late
tasks in the system and execute as a partitioned approach.

» For periodic task systems: QPS has better results, when the
total system utilization is not greater than 98%.

» QPS is the first algorithm which goes from partitioned to
global scheduling and vice-versa as a function of system load.

Thank youl

References: |

[1] P. Emberson, R. Stafford, and R. |. Davis.
Techniques for the synthesis of multiprocessor tasksets.

In Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), pages 6-11, 2010.

	Problem, Model and Notation
	Quasi-Partitioning

	Evaluation
	Conclusions
	Conclusions

