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Problem, Model and Notation

We address the problem of s
hedule a set of tasks in a

multipro
essor environment

◮
tasks are sporadi


◮
deadline is impli
it (deadline = minimum inter-arrival interval)

◮
a task instan
e has a worst 
ase exe
ution time (w
et)

◮
R(τ) = w
et/period

◮
a task τ :(4, 8) has w
et = 4, deadline = 8 and R(τ) = 0.5
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Figure 1: Real-Time System with tasks τ :(4, 8)



Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of Rate)
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Figure 2: QPS example in two pro
essors
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Figure 3: QPS example in two pro
essors
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Figure 4: QPS example in two pro
essors



Wonderful World
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Figure 5: QPS example in two pro
essors



Wonderful World
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Figure 6: QPS example in two pro
essors



Wonderful World
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Figure 7: QPS example in two pro
essors



Wonderful World
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Figure 8: QPS example in two pro
essors



Wonderful World
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Figure 9: QPS example in two pro
essors



Wonderful World (partitioned systems)

Assigning tasks to pro
essors (First Fit De
reasing of task rate)
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Figure 10: QPS example in two pro
essors



But..

Assigning tasks to pro
essors (First Fit De
reasing of task rate)
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Figure 11: QPS example in two pro
essors
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Figure 12: QPS example in two pro
essors
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Figure 13: QPS example in two pro
essors



Quasi-Partitioning
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Figure 14: QPS example in two pro
essors



Quasi-Partitioning S
heduling

Dealing with a group of tasks with rate greater than 1
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Figure 15: QPS example in two pro
essors



Quasi-Partitioning S
heduling

Dealing with a group of tasks with rate greater than 1
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Figure 16: QPS example in two pro
essors



Quasi-Partitioning S
heduling

Master, Slave and Dedi
ated Servers
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Figure 17: QPS example in two pro
essors



Quasi-Partitioning S
heduling

Pro
essor Hierar
hy
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Figure 18: QPS example in two pro
essors



Overview of Fixed-Rate Server
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Figure 19: Tasks τ
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Adaptation Strategy
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Figure 20: QPS example in two pro
essors



Adaptation Strategy
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Figure 21: QPS example in two pro
essors



Related Work (Optimal Algorithms)

Some te
hniques divide time into windows and exe
ute tasks

proportionally into ea
h window (e.g. DPW,EKG,PFair), solving

theoreti
ally this problem, but imposing a large number of

preemptions.
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Figure 22: τ
1

:(2, 3), τ
2

:(2, 3) and τ
3

:(2, 3) exe
uting in windows

Other (RUN, U-EDF) use di�erent approa
hes with lower number

of preemptions.



Evaluation



QPS Evaluation

◮
Syntheti
 task sets generated a

ording to Emberson

Algorithm [1℄;

◮
Sporadi
 and periodi
 systems are 
onsidered;

◮
QPS is 
ompared against DPW, EKG, RUN and U-EDF

◮
ea
h simulation took into 
onsideration 1, 000 task sets and

run for 1, 000 time units.



Sporadi
 Systems

Figure 23: Average number of preemptions and migrations for systems with 16

sporadi
 tasks s
heduled on 8 pro
essors.



Periodi
 Systems
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Figure 24: Average number of preemptions and migrations for periodi
 systems with

2m tasks that fully utilize m pro
essors.



Periodi
 Systems

Figure 25: Average number of migrations for periodi
 systems with 2m tasks that

utilize 100% and 98% of m pro
essors.



Con
lusions

◮
For sporadi
 task systems: QPS 
an take advantage of late

tasks in the system and exe
ute as a partitioned approa
h.

◮
For periodi
 task systems: QPS has better results, when the

total system utilization is not greater than 98%.

◮
QPS is the �rst algorithm whi
h goes from partitioned to

global s
heduling and vi
e-versa as a fun
tion of system load.



Thank you!
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