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Problem, Model and Notation
We address the problem of schedule a set of tasks in a
multiprocessor environment
» tasks are sporadic
» deadline is implicit (deadline = minimum inter-arrival interval)

> a task instance has a worst case execution time (wcet)

» R(7) = wcet/period
> a task 7:(4,8) has wcet = 4, deadline =8 and R(7) = 0.5
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Figure 1: Real-Time System with tasks 7:(4, 8)



Wonderful World
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Figure 2: QPS example in two processors
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Figure 3: QPS example in two processors
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Figure 4: QPS example in two processors
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Figure 5: QPS example in two processors



Wonderful World

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

7 N1 Nz v. ]

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 6: QPS example in two processors
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Figure 7: QPS example in two processors
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Figure 8: QPS example in two processors
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Figure 9: QPS example in two processors



Wonderful World (partitioned systems)
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Figure 10: QPS example in two processors



But..
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Figure 11: QPS example in two processors



But..
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Figure 12: QPS example in two processors



But..

Assigning tasks to processors (First Fit Decreasing of task rate)

Set of tasks to be scheduled

% N2 N

w4

Proc,
00 02 04 06 08 1.0

Proc;
00 02 04 06 08 1.0

Figure 13: QPS example in two processors



Quasi-Partitioning
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Figure 14: QPS example in two processors



Quasi-Partitioning Scheduling

Dealing with a group of tasks with rate greater than 1

Local EDF
Procy
00 02 04 06 08 1.0
blue group red group
of tasks of tasks  excess = x
Proc;

00 02 04 06 08 1.0

Figure 15: QPS example in two processors



Quasi-Partitioning Scheduling

Dealing with a group of tasks with rate greater than 1

Procz 0o 02 04 06 08 10
rate x
R(blue) — x R(red) — x
Proc;

00 02 04 06 08 1.0

Figure 16: QPS example in two processors



Quasi-Partitioning Scheduling
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Figure 17: QPS example in two processors



Quasi-Partitioning Scheduling
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Figure 18: QPS example in two processors



Overview of Fixed-Rate Server

0’1:(R(O’1) = 08, cli = {’7’1,7‘2})
7'1:(2.4, 6) = R(Tl) =04
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Figure 19: Tasks 71:(2.4,6),72:(4,10) been served by fixed-rate server
01:(0.8, {71, 72}).



Adaptation Strategy
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Figure 20: QPS example in two processors



Adaptation Strategy
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Figure 21: QPS example in two processors



Related Work (Optimal Algorithms)

Some techniques divide time into windows and execute tasks
proportionally into each window (e.g. DPW,EKG,PFair), solving
theoretically this problem, but imposing a large number of
preemptions.
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Figure 22: 71:(2,3), 72:(2,3) and 73:(2, 3) executing in windows

Other (RUN, U-EDF) use different approaches with lower number
of preemptions.



Evaluation



QPS Evaluation

» Synthetic task sets generated according to Emberson
Algorithm [1];

» Sporadic and periodic systems are considered;
» QPS is compared against DPW, EKG, RUN and U-EDF

» each simulation took into consideration 1,000 task sets and
run for 1,000 time units.



Sporadic Systems
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Figure 23: Average number of preemptions and migrations for systems with 16
sporadic tasks scheduled on 8 processors.



Periodic Systems
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Figure 24: Average number of preemptions and migrations for periodic systems with
2m tasks that fully utilize m processors.




Periodic Systems
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Figure 25: Average number of migrations for periodic systems with 2m tasks that
utilize 100% and 98% of m processors.



Conclusions

» For sporadic task systems: QPS can take advantage of late
tasks in the system and execute as a partitioned approach.

» For periodic task systems: QPS has better results, when the
total system utilization is not greater than 98%.

» QPS is the first algorithm which goes from partitioned to
global scheduling and vice-versa as a function of system load.



Thank youl
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