
Optimal and Adaptive Multipro
essor

Real-Time S
heduling:

The Quasi-Partitioning Approa
h

Ernesto Massa

1

George Lima

2

Paul Regnier

2

Greg Levin

3

S
ott Brandt

3

1

State University of Bahia - Brazil

2

Federal University of Bahia - Brazil

3

University of California - USA

july,2014

Problem, Model and Notation

We address the problem of s
hedule a set of tasks in a

multipro
essor environment

◮
tasks are sporadi

◮
deadline is impli
it (deadline = minimum inter-arrival interval)

◮
a task instan
e has a worst
ase exe
ution time (w
et)

◮
R(τ) = w
et/period

◮
a task τ :(4, 8) has w
et = 4, deadline = 8 and R(τ) = 0.5

0 5 10 15 20

R(τ) = 0.5

Proc
1

t

period

︷ ︸︸ ︷

worst
ase

exe
ution time

impli
it

deadline

job release

︷ ︸︸ ︷

late release

of a job

Figure 1: Real-Time System with tasks τ :(4, 8)

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of Rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 2: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 3: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 4: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 5: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 6: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 7: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 8: QPS example in two pro
essors

Wonderful World

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 9: QPS example in two pro
essors

Wonderful World (partitioned systems)

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Lo
al EDF

Lo
al EDF

Figure 10: QPS example in two pro
essors

But..

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

if we have

one more task?

Figure 11: QPS example in two pro
essors

But..

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 12: QPS example in two pro
essors

But..

Assigning tasks to pro
essors (First Fit De
reasing of task rate)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Set of tasks to be s
heduled

Figure 13: QPS example in two pro
essors

Quasi-Partitioning

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Figure 14: QPS example in two pro
essors

Quasi-Partitioning S
heduling

Dealing with a group of tasks with rate greater than 1

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

red group

of tasks

blue group

of tasks excess = x

Lo
al EDF

Figure 15: QPS example in two pro
essors

Quasi-Partitioning S
heduling

Dealing with a group of tasks with rate greater than 1

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

rate x

R(blue)− x R(red)− x

Figure 16: QPS example in two pro
essors

Quasi-Partitioning S
heduling

Master, Slave and Dedi
ated Servers

0.0 0.2 0.4 0.6 0.8 1.0

Proc
1

Proc
2

master server (R(M) = x)

slave server (R(S) = x)

R(A) = R(blue)− x R(B) = R(red)− x

S

M

A B

Figure 17: QPS example in two pro
essors

Quasi-Partitioning S
heduling

Pro
essor Hierar
hy

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

S

M

A B

Lo
al EDF

Lo
al EDF

Figure 18: QPS example in two pro
essors

Overview of Fixed-Rate Server

σ
1

:(R(σ
1

) = 0.8,
li = {τ
1

, τ
2

})
τ
1

:(2.4, 6) ⇒ R(τ
1

) = 0.4

τ
2

:(4, 10) ⇒ R(τ
2

) = 0.4

0 2 4 6 8 10

τ
1

τ
2

τ
2

τ
1

t

Figure 19: Tasks τ
1

:(2.4, 6), τ
2

:(4, 10) been served by �xed-rate server

σ
1

:(0.8, {τ
1

, τ
2

}).

Adaptation Strategy

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Figure 20: QPS example in two pro
essors

Adaptation Strategy

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Proc
1

Proc
2

Lo
al EDF

Lo
al EDF

Figure 21: QPS example in two pro
essors

Related Work (Optimal Algorithms)

Some te
hniques divide time into windows and exe
ute tasks

proportionally into ea
h window (e.g. DPW,EKG,PFair), solving

theoreti
ally this problem, but imposing a large number of

preemptions.

0 1 2 3 4

d
1

d
2

d
3

t

0 1 2 3 4

t

Figure 22: τ
1

:(2, 3), τ
2

:(2, 3) and τ
3

:(2, 3) exe
uting in windows

Other (RUN, U-EDF) use di�erent approa
hes with lower number

of preemptions.

Evaluation

QPS Evaluation

◮
Syntheti
 task sets generated a

ording to Emberson

Algorithm [1℄;

◮
Sporadi
 and periodi
 systems are
onsidered;

◮
QPS is
ompared against DPW, EKG, RUN and U-EDF

◮
ea
h simulation took into
onsideration 1, 000 task sets and

run for 1, 000 time units.

Sporadi
 Systems

Figure 23: Average number of preemptions and migrations for systems with 16

sporadi
 tasks s
heduled on 8 pro
essors.

Periodi
 Systems

 0

 4

 8

 12

 16

 20

 0 4 8 12 16 20 24 28 32

Pr
ee

m
pt

io
ns

 p
er

 j
ob

Number of processors

DPW
EKG
QPS

UEDF
RUN

 0

 2

 4

 6

 8

 10

 0 4 8 12 16 20 24 28 32

M
ig

ra
tio

ns
 p

er
 j

ob

Number of processors

DPW
EKG
QPS

UEDF
RUN

Figure 24: Average number of preemptions and migrations for periodi
 systems with

2m tasks that fully utilize m pro
essors.

Periodi
 Systems

Figure 25: Average number of migrations for periodi
 systems with 2m tasks that

utilize 100% and 98% of m pro
essors.

Con
lusions

◮
For sporadi
 task systems: QPS
an take advantage of late

tasks in the system and exe
ute as a partitioned approa
h.

◮
For periodi
 task systems: QPS has better results, when the

total system utilization is not greater than 98%.

◮
QPS is the �rst algorithm whi
h goes from partitioned to

global s
heduling and vi
e-versa as a fun
tion of system load.

Thank you!

Referen
es: I

[1℄ P. Emberson, R. Sta�ord, and R. I. Davis.

Te
hniques for the synthesis of multipro
essor tasksets.

In Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems

(WATERS), pages 6�11, 2010.

	Problem, Model and Notation
	Quasi-Partitioning

	Evaluation
	Conclusions
	Conclusions

