ANALYSIS OF FEDERATED AND GLOBAL SCHEDULING FOR PARALLEL REAL-TIME TASKS

JING LI^{*}, JIAN-JIA CHEN[!], **KUNAL AGRAWAL^{*}**, CHENYANG LU^{*}, CHRIS GILL^{*} AND ABUSAYEED SAIFULLAH^{*}

*Washington University in St. Louis [!]TU Dortmund University

PROBLEM: SCHEDULING HARD-REAL TIME DAG TASKS

Schedule task set $\tau = \{\tau_1, \tau_2, ..., \tau_k\}$ on *m* identical cores.

Each task τ_i is a DAG

- Nodes: sequential subtasks
- Edges: dependences.

 C_i : Execution time on 1 core (total work) L_i : Execution time on ∞ cores (critical-path length) D_i : Deadline/minimum inter-arrival time

Utilization of $\tau_i: U_i = C_i / D_i$ Total utilization of task set: $U_s = a_i U_i$

 $C_i = 31$ $L_i = 6$

PERFORMANCE CRITERION: CAPACITY AUGMENTATION BOUND

A scheduler S provides a *capacity augmentation bound* of α if it can always schedule a task set τ on m processors if:

Notes: No scheduler can provide a < 1.

The conditions do not depend on the structure of the DAG.

CONTRIBUTIONS

Scheduler	Prior Work	This Paper
Federated		Upper bound: $a \pm 2$ Lower bound: $a > 2 - 1/m$
Global EDF	Resource augmentation (speedup) bound ≤ 2 Schedulability test [BMSW13] Upper bound: $\partial \pm 4$ Lower bound: $\partial 3(3+\sqrt{5})/2 \gg 2.618$ for large <i>m</i> [LALG13]	Upper bound: $\partial floor (3 + \sqrt{5})/2$ for large m Improved lower bound for small m
Global RM	Resource augmentation ≤ 3 Schedulability test [BMSW13] For synchronous tasks (a subset of DAG tasks), $a \pm 2 \pm \sqrt{3}$ for large <i>m</i> (using decomposition and DM)	Upper bound: $a \pm 2 + \sqrt{3} = 3.73$ for large <i>m</i>

OUTLINE

- Canonical form of a DAG task.
- Federated Scheduling
- Upper Bound on GEDF

HIGH VS. LOW-UTILIZATION TASKS

- Classify task as
 - Low-utilization if $U_i
 otin 1$
 - High-utilization if $U_i > 1$
- Low utilization tasks can execute sequentially and still meet their deadlines.
- High utilization tasks need parallelism to complete within their deadline.

- Case 1: D_i = 32; u_i = 0.96
 Low utilization.
- Case 2: $D_i = 18; u_i = 1.72$
 - High utilization.

KEY INTUITION: CANONICAL FORM OF A DAG TASK

LU task: A sequential task with work C_i

$$C_i = 15$$

HU task: A chain of $(L_i / e) - 1$ nodes of size All remaining work is maximally parallel with -sized nodes.

CANONICAL DAG IS THE "WORST-CASE" DAG

Pretend we give the job ∞ processors.

DEFINE

- work_i(t) :maximum work that task τ_i has to finish in any interval of time t.
- work^{*}_i(t):maximum work that task τ_i 's canonical form has to finish in any interval of time t.

We can prove that for all twork^{*}_i(t) ³ work^{*}_i(t)

OUTLINE

- Canonical form of a DAG task.
- Federated Scheduling
- Upper Bound on GEDF

HOW MANY CORES DOES A HIGH-UTILIZATION TASK NEED IF IT IS THE ONLY TASK IN THE SYSTEM?

We can prove that on n_i dedicated cores and using a workconserving scheduler, an HU task never misses a deadline.

FEDERATED SCHEDULER

- Assign $n_i = \left[\frac{C_i L_i}{D_i L_i}\right]$ dedicated cores to each high-utilization task $\tau_{i.}$
- All remaining processors are assigned to low-utilization tasks collectively.
 HU Tasks

LU Tasks $\begin{bmatrix} C_1 = 31 \\ L_1 = 6 \\ D_1 = 18 \\ u_1 = 1.72 \end{bmatrix} \begin{bmatrix} C_2 = 22 \\ L_2 = 3 \\ D_2 = 7 \\ u_2 = 3.14 \end{bmatrix} \begin{bmatrix} C_3 = 15 \\ L_3 = 4 \\ D_3 = 17 \\ u_3 = 0.88 \end{bmatrix} \begin{bmatrix} C_4 = 30 \\ L_4 = 30 \\ D_4 = 40 \\ u_4 = 0.75 \end{bmatrix}$ Treat as sequential tasks $n_i = 3$ $n_i = 5$ $n_{low} = m - n_{high}$ and use No interference; multiprocessor scheduler such as Use any workconserving P-EDF. m = 12scheduler.

CAPACITY AUGMENTATION BOUND OF $\alpha \leq 2$

1. For HU tasks, show that, if $L_i \leq D_i/2$ (using algebra): $n_i = \left| \frac{C_i - L_i}{D_i - L_i} \right| < 2 u_i$

2. Therefore,
$$n_{low} = m - \mathop{aa}_{t_i:high} n_i^3 m - 2 \mathop{aa}_{t_i:high} u_i = m - 2u_{high}$$

3. If
$$m^3 a U_s = 2U_s = 2u_{high} + 2u_{low}$$
, we have $n_{low}^3 2u_{low}$

- 4. There are many schedulers, such as partitioned EDF [LDG04] and various fixed priority schedulers [ASJ01, AJ03] that guarantee schedulability to sequential tasks if utilization is at most 50%. Any of these can be used to schedule the low-utilization tasks with a total utilization of $n_{low}/2$ on n_{low} cores.
- 5. Checking schedulability for federated scheduler is fast and easy. It often admits task sets with utilization > m/2.

OUTLINE

- Canonical form of a DAG task.
- Federated Scheduling
- Upper Bound on GEDF

BOUND THE TOTAL LOAD OF CANONICAL TASKS

Over all tasks, $\underset{t}{a}$ work $_{i}^{*}(t) \in \frac{aU_{S}}{a-1}t$

GEDF Has Capacity Augmentation Bound $\alpha \leq 2.618$

1. Bonifaci et. al [BMSW13] proved that τ is schedulable by GEDF on m processors if

-
$$aL_i \in D_i$$
, and
- $a_t work_i(t) \in \frac{am - m + 1}{a}t$

- 1. We know that $\underset{t}{a}$ work_i(t) $\underset{t}{b}$ $\underset{t}{a}$ work_i^{*}(t) $\underset{t}{b}$ $\frac{\partial U_{S}}{\partial -1}t$
- 1. Therefore, the task set is schedulable if $\frac{aU_s}{a-1} \stackrel{f}{=} \frac{am-m+1}{a}$
- 1. We substitute $U_{\rm S} \pm m/a$ and solve for α to get

$$a \pm \frac{3 - 1/m + \sqrt{5 - 2/m + 1/m^2}}{2} \gg \frac{3 + \sqrt{5}}{2}$$

EXTENSION TO GEDF ANALYSIS

• With simple extensions, we can show that if $D_{max} = max_i \{L_i / D_i\}$ is "small", then EDF also provides utilization close to m/2.

CONCLUSIONS AND FUTURE WORK

- The canonical DAG allows us to ignore the DAG structure --- we need only know the upper bounds on execution time C_i and critical path length L_i.
- Federated scheduler has close-to-optimal capacity augmentation bound for large *m*. What about small *m*?
- For global RM for parallel tasks, the best lower bound is 2.668 (inherited from sequential tasks) [L02], while the upper bound is 3.73. Can we improve either?
- We have speedup bounds for constrained and arbitrary deadline parallel tasks. Can we prove utilization/capacity augmentation bounds for these tasks?