ROC: A Rank-switching, Open-row DRAM
Controller for Time-predictable Systems

Yogen Krishnapillai
Zheng Pei Wu
Rodolfo Pellizzoni




Multi-Requestor Systems

-

1/24



Multi-Requestor Systems

|

1/~

DRAM

INTERFERENCE!!!

1/24



Multi-Requestor Systems

e Schedul:

« WCETd Problem:
DRAM latency is variable and

changes depending on its state KRt

« WCET:
(e.g. cac

« Existing approaches can bound the interference but they
assume the latency for DRAM access Is constant

2/24



DRAM Latency - Solutions

« Solution 1: use (complex) analysis to determine upper
latency bound

— EX: “Bounding Memory Interference Delay in COTS-based
Multi-Core Systems”, RTAS' 14

— Problem: COTS DRAM controllers optimized for average
case latency; worst case bound can be very pessimistic

« Solution 2: predictable DRAM controller
— Various solutions available
— Typically simplifies analysis by making latency constant

— Problem: without architectural optimizations, latency can
be high for modern DRAM devices (more on this later)

3/24



Our Solution

Key idea: design new architectural optimizations targeted at
reducing worst case, not average case latency

In this paper: DRAM rank-switching with open-row policy

ROC: Rank-switching,
Open-row Controller

We discuss:

— Design

— Latency Analysis
— Implementation
— Results




Outline

1. Background & Related Work
2. Rank-Switching Mechanism
3. Worst Case Latency Analysis
4. Memory Controller Model

5. Results & Conclusion



Outline

1. Background & Related Work



Background

Requestor

NE—

Memory Controller

Front End

Back End

Command
Bus

o g
>

Data
Bus

Storage Array contains Data

Can only Read/Write to Row Buffer

Memory Device
.7 Bank N T
4 7
k . Pl
Bank 1 I
|
I |
2 7
| y
Row Buffer e’

5/24



Background

Requestor

NE—

Memory Controller

Front End

Back End

Command
Bus

o g
>

Data
Bus

Memory Device
.7 Bank N A
4 7
k . P
Bank 1 I
I
|
|
| T
Row Buffer Lk

Front End generates the needed commandes,
Back End issues commands on command bus

5/24



Background

Requestor

N~ Front End

Memory Controller

Back End

Command
Bus

o g
>

Data
Bus

Targeting Data in this Row

Row Buffer contain data from a different row

Memory Device
.7 Bank N T
4 7
L . P
Bank 1 I
|
7
//
Row Buffer Lk

5/24



Background

Memory Controller| Command | Memory Device
READ Bus 7| Bank N 7

4
Requestor ﬁ" Front End <‘;~ P [ 14~ 1

Bank]_l
Yrar | <& || A |
Data |
Back End Bus EEEEEEE R
Row Buffer &’

5/24



Background

Requestor

NE—

Memory Controller

Front End

Back End

Command
Bus

o g
>

Da
Bu

Memory Device

iz

7
s

V4

Bank N

Bank 1

Row Buffer

/1
7]
7
7

ACT: Load the data from arPag-iObhaipetferore the data back into array /

A

—_

< N
7~

T~

~

Pre-charge command issued on command bus

Timing Constraint

5/24



Background

Memory Controller| Command | Memory Device
BUS 7| Bank N 7
PR P an P
Requestor Lot | Front End <::» e’ P
Bank 1 |
AN |
|
Data
Back End Bus R
K Row Buffer e’

CAS (R/W): reads/writes using buffer

NE > Z
7

N

5/24



Background

Requestor

Memory Controller

Front End

Back End

Command
Bus

o g
>

Data
Bus

Memory Device
.7 Bank N T
4 7
L _ P
Bank 1 I
in
7
//
Row Buffer Lk

5/24



Background

Command | Memory Device
Bus .7 Bank N 7
Latency of a close request is ‘]‘3 o | L&
an
much longer than the EEEEEEN |
latency of an open request |
/1
Row Buffer Pad
Latency of a close request Latency of a open request

P A R <Data > R

N
7~

N

< N N N ~
< P XK P 7KK 7z

5/24



Row Policy

* Close Row Policy:
— Used by most predictable memory controllers

— After each access, the row buffer is automatically
pre-charged

— Constant request latency
— Cannot take advantage of locality (row hits)

 Open Row Policy
— Used in our approach
— Keep the row open to exploit locality

— Different latency for open/close requests
6/24



Address Mapping

Bankd | Bk 2| vank 3 Bankd

* Interleaving Banks
Accessing data in multiple banks
I .

1
1
1
[}
I
il
N

NE
7N

Multiple data can be pipelined

I [R] -/\

N
7N

&
™~

/\.

\'/
N

- m @ "

N
e

V

N2 N
as 7

N



Address Mapping

Bankd | Bk 2| vank 3 Bankd

* Interleaving Banks

Problem: requestors can close each other’s
row buffer since they can access all banks

Thus closed row policy is used
to make latency predictable




Address Mapping

Bankd | Bk 2| vank 3 Bankd

* |Interleaving Banks

This is good for system
with small DRAM data

bus width (e.g. 16 bits) |

Larger data buses can
transfer same amount
of data without

interleaving so many
banks




Address Mapping

* Interleaving Banks

Interleaving two banks for --

wider data bus (e.g. 32 bits)

1
1
1
[}
1
il il
N N

1

1

s ~ A 1
< 2 |<—

1 1

N
7
1 1
1 1
1 1
1 1
1 1
1 1
P 1
N

U
|

N
7

NS
P

N
7

N

Time Wasted!!

7/24



Address Mapping

« Used in our approach

* Private Banks

Partition banks among
requestors. How:

— Hardware if memory
controller supports

— By compiler
— In OS, using virtual
memory

No row conflicts

8/24



Related Work

e Open row policy
Private Banks

Improved latency but...
Problem

9/24



Write to Read Switching

« Transactions of the same type can be pipelined...
(o)

- i We need a solution

Ne
<

N
\%
N

—_— 4

Huge Latency Penalty!

N

* ... but aread after a write cannot.

! Write-to-Read (WtR) timing constraint
W (o) X

N &
7N

N
N4
N
A4

b s

N N
7N 7

10/24



Outline

2. Rank-Switching Mechanism



Multi-Rank Device

________________________________
Memory Controller| Command | Memory Device
Bus Rank1
Requestor <:> Front End <::» L 7 Bank N Py
Bank 1 |
<j> | . |
Data I
Back End Bus | ]
Row Buffer 7
Rank?2
/" Bank N A’
Memory device with up to 4 ranks, o
. . Bank 1 |
each comprising separate bank set |
|
o
|
Row Buffer 7




Multi-Rank Device

Memory Controller| Command | Memory Device

Bus Rankl
Requestor <:> Front End <::» L 7 Bank N Py
Bank 1 |
||| 00T
Data I
Back End Bus | ]
Row Buffer 7
Long Write-to-Read constraint replaced Rank?
by much shorter Rank-to-Rank one BN v
an

—

/ Bank 1

i Row Buffer

W @D

3 J —
S




Example: Write-Read-Write-Read

f—ﬁ&l—h—
five tars  twrr R _ Data 1 Rank:
Latency 52 cycles
Challenge:
Design a command scheduling algorithm
I . 2 Ranks:
to minimize wor:<;t case latency by forcing Latency 35 cycles
alternation among ranks
fwr g tous Data oy Rank2
— o ._ T 4 Ranks:
?er'%ﬂ”m ::m]]:: Latency 29 cycles
TR RN R AR A AN AR A AR FAARA TN
L L 20 30 40 1)

12/25



Outline

3. Worst Case Latency Analysis



Worst Case Analysis

Total # of Part 1 — any type of requestor
Requestors
and Ranks
ifferent tvoes of request
Memory De Assumption:
Parameters .
We want composable analysis — ¥
assume worst case interference I
Part 2 —
ar from other requestors
—3 # Of Open reads
——> # of close reads WCET

——> # of open writes
——> # of close writes

13/24



Worst Case Analysis

Total # of Part 1 - new for ROC

Requestors
and Ranks

Latency for different types of request

|

Open Close Open Close
Read Read Write Write

Worst Case

Memory Device
Parameters

Part 2 — re-use RTSS’13 [5]

13/24



Single Request Latency

Decomposed into two parts

/ \

Request Arrival A R/W
I
T - D
<€ >< >
Arrival to Read/Write Read/Write to Data
Arrival until Read/Write Start of Read/Write arbitration
command is arbitrated until data is finished transmitting

14/24



Single Request Latency

This part may include PRE-charge
and ACT commands
Request Arrival A R/W
I
T 3 Al ( ata )
<€ >€ >
Arrival to Read/Write Read/Write to Data

Our arbitration mechanism similarly
distinguishes between PRE/ACT and
CAS (R/W) commands

14/24



Outline

2. Memory Controller Model



Back End Model

* Front End adds constant delay — focus on Back End
Three levels arbitration

P W

| Command Queues

P/A Arbiter

CAS Arbiter

—

Controller Back End

Level 2 Arbitration

P/A Arbiter

\

CAS Arbiter

\ 4

To
Level 1 Devic
Command e
Arbitration

/

15/24



Back End Model

« L1: CAS (R/W) commands have higher priority than
PRE/ACT commands — priority to data bus contention

| Command Queues
| —— I

S ——————————

\
\

Level 3 Arbitration

|
i
|
P/A Arbiter i
|
|
|
|
|

CAS Arbiter \

g S S S ———————

___________________

Controller Back End

Level 2 Arbitration

P/A Arbiter

\

CAS Arbiter

\ 4

To
Level 1 Devic
Command e
Arbitration

/

15/24



Back End Model

« L2 alternates among ranks

« L3 alternates among requestors within a rank

| Command Queues
| —— I

S ——————————

\
\

Level 3 Arbitration

|
i
|
P/A Arbiter i
|
|
|
|
|

CAS Arbiter \

g S S S ———————

___________________

Controller Back End

Level 2 Arbitration

P/A Arbiter

\

CAS Arbiter

\ 4

To
Level 1 Devic
Command e
Arbitration

/

15/24



Back End Model

Let:
— R : number of ranks
— M,. . number of requestors for rank r

Then given the alternation in L2/L3, the latency of each
command is a function of R - M,

— Isolation property: the latency of a requestor does not depend on
the # of requestors or scheduling policy used in other ranks

— We can dedicate some ranks to hard real-time requestors, and
others to soft real-time requestors

— Optimize hard requestors for latency, soft requestors for
bandwidth

Full detalls for hard requestors in the paper...
16/24



CAS Rank Switching Rule

the
0 We prove: nstraint
MY 1. Reordering does not increase worst- Sigisuy

f caselatencyifR=4
2. If the system is backlogged, no more
than RtR between data transfers => .-

does not degrade memory
throughput

Rank 2 ca Rank 2

twice while Rank 1 : : :
is waiting for WtR . R ii

&
™~

17/24

N4
N
Vv




Outline

5. Results & Conclusion



Results

« Comparison against Analyzable Memory Controller (AMC) [1]
— Fair arbitration (Round Robin) similar to our approach
— Focus on WCET guarantees for hard real-time tasks

« Synthetic Benchmarks

— Used to show how worst case latency bound varies as parameters
are changed

e CHStone Benchmarks

— Memory traces are obtained from gem5 simulator and used as
Inputs to both analysis and simulators

— Core under analysis is in-order

— Interfering requestors are out-of-order running lbm 18/24



Results

DDR3-1333H memory device
— 64 and 32 bits data bus width

Simulations

— Python simulators for our RTSS'13 work [5] and AMC [1]
ROC Implementation

— Three stages pipelined implementation in Verilog RTL

— Synthesizes to Xilinx FPGA at 340Mhz (original soft memory
controller: 400Mhz)

— ASIC implementation could likely be significantly faster...
Code available at http://ece.uwaterloo.ca/~rpellizz/roc.php

19/24



Results

« Synthetic Benchmarks, 20% write

400

350

w
o
o

250

150

100

Avg Worst Case Latency (ns)
S

o

200 §

Synthetic: 8 Requestors-64bits

L ' ' ' A 7-

ROC-4 has > 33%
lower latency

than [5] for all
cases

—— AMC

—=—Analysis [5]
0% 20% 40% 60% 80% 1009

Row Hit % ROC-2Rank

——ROC-4Rank
20/24



Results

« Synthetic Benchmarks, 20% write

450

400

w
U
o

250

200

Avg Worst Case Latency (ns)
= =
U o U
o (@) o

o

300

Synthetic: 8 Requestors-32bits

AMC can parallelize
transactions over 2 banks -
no advantage from private
bank parallelism

—— AMC

0%

20%

40% 60%
Row Hit %

80%

—=—Analysis [5]
100%
ROC-2Rank

——ROC-4Rank
21/24



Results

ROC-4 has between 5 and 35%
lower WCET than [5]




Conclusions

Architectural optimizations designed for general purpose
systems do not necessarily work for time-predictable systems

We need to design the architecture around the concept of
guaranteed worst case latency

We introduced a new DRAM optimization targeted at reducing
worst case latency: rank-switching

The implemented ROC memory controller significantly
reduces latency for hard requestors and guarantees strong
Isolation between hard/soft requestors

23/24



Future Work

* Implementation:
— Support for shared data
— Soft requestor optimizations
— Improved RTL code

« Extended comparison with other real-time controllers

24/24



References

[1] M. Paolieri, E. Quinones, F. Cazorla, and M. Valero, “An Analyzable
Memory Controller for Hard Real-Time CMPs,” Embedded Systems
Letters, IEE

[2] B. Akes ator: a predictable
SDRAM me¢ Thank you! . 251-256.

[3] S. Goos
Policy for

rvative Open- page

Questions? ’in DATE, 2013.

[4] J. Reine
controller:
in CODES+ ) , PP-

“Pret dram
mporal isolation,”

[5] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst Case Analysis of DRAM
Latency in Multi-Requestor Systems”



