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Multi-Requestor Systems

e Schedul:

« WCETd Problem:
DRAM latency is variable and

changes depending on its state KRt

« WCET:
(e.g. cac

« Existing approaches can bound the interference but they
assume the latency for DRAM access Is constant
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DRAM Latency - Solutions

« Solution 1: use (complex) analysis to determine upper
latency bound

— EX: “Bounding Memory Interference Delay in COTS-based
Multi-Core Systems”, RTAS' 14

— Problem: COTS DRAM controllers optimized for average
case latency; worst case bound can be very pessimistic

« Solution 2: predictable DRAM controller
— Various solutions available
— Typically simplifies analysis by making latency constant

— Problem: without architectural optimizations, latency can
be high for modern DRAM devices (more on this later)
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Our Solution

Key idea: design new architectural optimizations targeted at
reducing worst case, not average case latency

In this paper: DRAM rank-switching with open-row policy

ROC: Rank-switching,
Open-row Controller

We discuss:

— Design

— Latency Analysis
— Implementation
— Results
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Background
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Row Policy

* Close Row Policy:
— Used by most predictable memory controllers

— After each access, the row buffer is automatically
pre-charged

— Constant request latency
— Cannot take advantage of locality (row hits)

 Open Row Policy
— Used in our approach
— Keep the row open to exploit locality

— Different latency for open/close requests
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Address Mapping
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Address Mapping

Bankd | Bk 2| vank 3 Bankd

* Interleaving Banks

Problem: requestors can close each other’s
row buffer since they can access all banks

Thus closed row policy is used
to make latency predictable




Address Mapping

Bankd | Bk 2| vank 3 Bankd

* |Interleaving Banks

This is good for system
with small DRAM data

bus width (e.g. 16 bits) |

Larger data buses can
transfer same amount
of data without

interleaving so many
banks




Address Mapping

* Interleaving Banks

Interleaving two banks for --
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Address Mapping

« Used in our approach

* Private Banks

Partition banks among
requestors. How:

— Hardware if memory
controller supports

— By compiler
— In OS, using virtual
memory

No row conflicts
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Related Work

e Open row policy
Private Banks

Improved latency but...
Problem
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Write to Read Switching

« Transactions of the same type can be pipelined...
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Outline

2. Rank-Switching Mechanism
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Multi-Rank Device
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Example: Write-Read-Write-Read
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Outline

3. Worst Case Latency Analysis



Worst Case Analysis

Total # of Part 1 — any type of requestor
Requestors
and Ranks
ifferent tvoes of request
Memory De Assumption:
Parameters .
We want composable analysis — ¥
assume worst case interference I
Part 2 —
ar from other requestors
—3 # Of Open reads
——> # of close reads WCET

——> # of open writes
——> # of close writes

13/24



Worst Case Analysis

Total # of Part 1 - new for ROC

Requestors
and Ranks

Latency for different types of request

|

Open Close Open Close
Read Read Write Write

Worst Case

Memory Device
Parameters

Part 2 — re-use RTSS’13 [5]
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Single Request Latency

Decomposed into two parts

/ \
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command is arbitrated until data is finished transmitting

14/24



Single Request Latency

This part may include PRE-charge
and ACT commands
Request Arrival A R/W
I
T 3 Al ( ata )
<€ >€ >
Arrival to Read/Write Read/Write to Data

Our arbitration mechanism similarly
distinguishes between PRE/ACT and
CAS (R/W) commands
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2. Memory Controller Model



Back End Model

* Front End adds constant delay — focus on Back End
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Back End Model

« L1: CAS (R/W) commands have higher priority than
PRE/ACT commands — priority to data bus contention
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Back End Model

« L2 alternates among ranks

« L3 alternates among requestors within a rank
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Back End Model

Let:
— R : number of ranks
— M,. . number of requestors for rank r

Then given the alternation in L2/L3, the latency of each
command is a function of R - M,

— Isolation property: the latency of a requestor does not depend on
the # of requestors or scheduling policy used in other ranks

— We can dedicate some ranks to hard real-time requestors, and
others to soft real-time requestors

— Optimize hard requestors for latency, soft requestors for
bandwidth

Full detalls for hard requestors in the paper...
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CAS Rank Switching Rule
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5. Results & Conclusion



Results

« Comparison against Analyzable Memory Controller (AMC) [1]
— Fair arbitration (Round Robin) similar to our approach
— Focus on WCET guarantees for hard real-time tasks

« Synthetic Benchmarks

— Used to show how worst case latency bound varies as parameters
are changed

e CHStone Benchmarks

— Memory traces are obtained from gem5 simulator and used as
Inputs to both analysis and simulators

— Core under analysis is in-order

— Interfering requestors are out-of-order running lbm 18/24



Results

DDR3-1333H memory device
— 64 and 32 bits data bus width

Simulations

— Python simulators for our RTSS'13 work [5] and AMC [1]
ROC Implementation

— Three stages pipelined implementation in Verilog RTL

— Synthesizes to Xilinx FPGA at 340Mhz (original soft memory
controller: 400Mhz)

— ASIC implementation could likely be significantly faster...
Code available at http://ece.uwaterloo.ca/~rpellizz/roc.php
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Results

« Synthetic Benchmarks, 20% write
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Results

« Synthetic Benchmarks, 20% write
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Results

ROC-4 has between 5 and 35%
lower WCET than [5]




Conclusions

Architectural optimizations designed for general purpose
systems do not necessarily work for time-predictable systems

We need to design the architecture around the concept of
guaranteed worst case latency

We introduced a new DRAM optimization targeted at reducing
worst case latency: rank-switching

The implemented ROC memory controller significantly
reduces latency for hard requestors and guarantees strong
Isolation between hard/soft requestors

23/24



Future Work

* Implementation:
— Support for shared data
— Soft requestor optimizations
— Improved RTL code

« Extended comparison with other real-time controllers
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