
ROC: A Rank-switching, Open-row DRAM

Controller for Time-predictable Systems

Yogen Krishnapillai

Zheng Pei Wu

Rodolfo Pellizzoni

Multi-Requestor Systems

CPU CPU CPU

Inter-connect

DRAM DMA I/O

1/24

Multi-Requestor Systems

CPU CPU CPU

Inter-connect

DRAM DMA I/O

INTERFERENCE!!!

1/24

Multi-Requestor Systems

• Schedulability Analysis: needs WCET as input

• WCET depends on hardware platform

• WCET: we need Latency for access to shared resources

(e.g. cache, DRAM) to compute it

• Existing approaches can bound the interference but they

assume the latency for DRAM access is constant

2/24

Problem:
DRAM latency is variable and

changes depending on its state

DRAM Latency - Solutions

• Solution 1: use (complex) analysis to determine upper

latency bound

– Ex: “Bounding Memory Interference Delay in COTS-based

Multi-Core Systems”, RTAS’14

– Problem: COTS DRAM controllers optimized for average

case latency; worst case bound can be very pessimistic

• Solution 2: predictable DRAM controller

– Various solutions available

– Typically simplifies analysis by making latency constant

– Problem: without architectural optimizations, latency can

be high for modern DRAM devices (more on this later)

3/24

Our Solution

• Key idea: design new architectural optimizations targeted at

reducing worst case, not average case latency

• In this paper: DRAM rank-switching with open-row policy

• ROC: Rank-switching,

 Open-row Controller

• We discuss:

– Design

– Latency Analysis

– Implementation

– Results

4/24

Outline

1. Background & Related Work

2. Rank-Switching Mechanism

3. Worst Case Latency Analysis

4. Memory Controller Model

5. Results & Conclusion

Outline

1. Background & Related Work

2. Rank-Switching Mechanism

3. Worst Case Latency Analysis

4. Memory Controller Model

5. Results & Conclusion

Background

Can only Read/Write to Row Buffer

Storage Array contains Data

5/24

Background

5/24

Front End generates the needed commands,
Back End issues commands on command bus

Background

READ

Targeting Data in this Row

Row Buffer contain data from a different row

5/24

Background

READ

P, A, R

5/24

Background

PRE

ACT

P, A, R

Pre-Charge: store the data back into array ACT: Load the data from array into buffer

P

Pre-charge command issued on command bus

A

Timing Constraint 5/24

Background

P, A, R

P A Data R

READ

5/24

CAS (R/W): reads/writes using buffer

Background

R

P A Data R

Targeting Data Already in Row Buffer

READ

Only Need Read Command

Data R

Can be issued immediately

5/24

Background

R

P A Data R

READ

Data R

Latency of a close request Latency of a open request

Latency of a close request is
much longer than the
latency of an open request

5/24

Row Policy

• Close Row Policy:

– Used by most predictable memory controllers

– After each access, the row buffer is automatically

pre-charged

– Constant request latency

– Cannot take advantage of locality (row hits)

• Open Row Policy

– Used in our approach

– Keep the row open to exploit locality

– Different latency for open/close requests

6/24

• Interleaving Banks

Bank 1 Bank 2 Bank 3 Bank 4

Data R

Data R

Data R

Data R

A

A

A

A

Accessing data in multiple banks

Multiple data can be pipelined

7/24

Address Mapping

• Interleaving Banks

Bank 1 Bank 2 Bank 3 Bank 4

Data R

Data R

Data R

Data R

A

A

A

A

A

Problem: requestors can close each other’s
row buffer since they can access all banks

Thus closed row policy is used
to make latency predictable

7/24

Address Mapping

A

• Interleaving Banks

Bank 1 Bank 2 Bank 3 Bank 4

Data R

Data R

Data R

Data R

A

A

A

A

This is good for system
with small DRAM data
bus width (e.g. 16 bits)

Larger data buses can
transfer same amount

of data without
interleaving so many

banks
7/24

Address Mapping

• Interleaving Banks

Bank 1 Bank 2

Data R

Data R

A

A

Interleaving two banks for
wider data bus (e.g. 32 bits)

A

Time Wasted!!

7/24

Address Mapping

• Private Banks

Core 1 Core 2 DMA

Bank 1 Bank 2 Bank 3 Bank 4

• Used in our approach

• Partition banks among

requestors. How:

– Hardware if memory

controller supports

– By compiler

– In OS, using virtual

memory

• No row conflicts

8/24

Address Mapping

Related Work

• AMC[1], Predator [2] (and follow-up work):

– Interleaved Bank

– Close Row Policy

• Conservative Open-Page [3]:

– Interleaved Bank

– Leave row open for a small window of time

• PRET DRAM Controller [4]:

– Private Bank

– Close Row Policy

9/24

In RTSS’13 [5], we presented the first
predictable controller with:
• Open row policy
• Private Banks

Improved latency but…

Problem
DRAM is very inefficient when switching

between write and read

Write to Read Switching

• Transactions of the same type can be pipelined…

• … but a read after a write cannot.

 10/24

Data R

Data R

Data W

Data R

Write-to-Read (WtR) timing constraint

Data W

Data W

Huge Latency Penalty!

We need a solution

Outline

1. Background & Related Work

2. Rank-Switching Mechanism

3. Worst Case Latency Analysis

1. Memory Controller Model

2. Results & Conclusion

Multi-Rank Device

Memory device with up to 4 ranks,
each comprising separate bank set

Multi-Rank Device

Long Write-to-Read constraint replaced
by much shorter Rank-to-Rank one

Data W

Data R

RtR

Example: Write-Read-Write-Read

12/25

(a) Arbitration for 1 Rank

(b) Arbitration for 2 Rank

(c) Arbitration for 4 Rank

Fig. 4: Comparison Between Arbitration with 1, 2 and 4 Ranks
for a DDR3-1333H device

takes 52 clock cycles to complete all four requests, while the
data bus is only used for 16 cycles, resulting in an utilization
of only 31%.

Our key idea is that we can improve the worst-case latency
by noticing that tRT W and tW T R do not apply between
requests that target banks in different ranks. Figure 4(b) shows
the schedule derived by assigning the four requestors to two
different ranks and alternating servicing requests to the two
ranks. Since the only constraint between requests to different
ranks is the shorter tRT R , the schedule now takes 35 cycles to
complete, a 33% improvement. Similarly, Figure 4(c) shows
the effect of assigning each requestor to a different rank. Note
that in this case, after data is started at cycle 7, we use the
data bus for 4 cycles every 6, resulting in an utilization of 2/3.
Finally, notice that alternating ranks also helps reducing the
latency of ACT commands of close requests, since the tRRD

and tF A W constraints do not apply between different ranks.

Our illustrative example shows that a rank-switching mech-
anism in the back end can both significantly decrease the la-
tency of memory requests and increase bus utilization without
requiring us to reorder requests in the front end, which is
unsuitable for hard real-time requestors needing guaranteed
latency bounds. The challenge is how to implement such
mechanism in a predictable way. In particular, a simple static
TDMA schedule is not suitable since requestors can dynami-
cally submit different types of requests at run-time. Instead, a
set of dynamic arbitration rules is proposed next.

B. Arbitration Rules

We consider a device with R ≥ 2 ranks. The memory
controller can support both hard and soft real-time requestors.
Our design goal is to minimize the latency bound of requests of
hard requestors, while simultaneously attempting to maintain
high data bus utilization and thus provided memory bandwidth
to all requestors. To this end, each rank is assigned either
to hard or to soft requestors (hard or soft rank), and each
requestor uses only one rank; let M r , 1 r R, be the
number of requestors that use rank r . The banks in hard rank
r are statically partitioned among the M r requestors in r ,
according to the private bank principle.

PA Arbiter

CAS Arbiter

Command Queues Level 3 Arbitration

Rank 1: Hard Requestor Arbitration

Rank R: Soft Requestor Arbitration

...

PA Arbiter

CAS Arbiter

Level 2 Arbitration

Level 1

Command

 Arbitration

To Device

Controller Back End

Fig. 5: Back End Command Arbitration Logic

Figure 5 shows an example block diagram of the command
arbitration logic in the back end, where Rank 1 is a hard rank,
Rank R is a soft rank, and M 1 = 4. Arbitration is performed in
three levels. For hard ranks, commands generated by the front
end are enqueued in the per-requestor command queues. Level
3 (L3), or Requestor Arbitration, arbitrates among requestors
within the same rank. The command at the front of the
selected requestor queue ispropagated to Level 2 (L2), or Rank
Arbitration, which arbitrates among the R ranks. Note that
Level 3 and Level 2 arbitrations are split between a PA Arbiter
that handles PRE and ACT commands, which are needed
only for close requests, and a C Arbiter that handles CAS
commands, which are needed by all requests. Finally, Level 1
(L1), or Command Arbitration, simply assigns higher priority
to CAS than PRE or ACT command; i.e., if during the current
clock cycle the L2 C Arbiter propagates a CAS command
to Level 1, the Command Arbiter will issue it to the device,
otherwise, if the L2 PA Arbiter propagates a PRE/ACT the L1
Arbiter will issue it. This is done to ensure that the critical
timings of CAS commands in the rank-switching mechanism
are not disrupted by command bus contention with PRE/ACT
commands. The following rules capture the behavior of the
Level 2 arbiters and of the Level 3 arbiters for a hard rank r .

1) The command at the head of each per-requestor queue is
said to be active if all timing constraints that are caused by
previous commands of the same requestor are satisfied; in
addition, a CAS command does not become active until the
data of the previous CAS command of the same requestor
has been transmitted. In other words, an active command can
be issued immediately if there are no other requestors in the
system.

2) The L3 PA Arbiter uses amodified First-Come-First-Serve
(FCFS) arbitration; a requestor is enqueued at the back of a
FIFO queue as soon as it has an active PRE or ACT command,
and it is removed from the queue once the command is finally
issued by L1. Every clock cycle, the arbiter scans the FIFO
queue and propagates to Level 2 the first command that can
be issued (without violating timing constraints), if any. Note
that an active PRE command can always be issued; an active
ACT command could instead by blocked by tRRD or tF A W

constraints caused by other requestors.

3) The L3 C Arbiter uses standard FCFS arbitration, with a
requestor being enqueued once it has an active CAS command
and removed once the CAS command is issued by L1. The L3
C Arbiter propagates to L2 the CAS command of the first
requestor in FCFS order (if any). It also computes the earliest
time tSD r

at which the data transmission for that requestor
could be started, and pass it to L2. tSD r

is calculated based on

(a) Arbitration for 1 Rank

(b) Arbitration for 2 Rank

(c) Arbitration for 4 Rank

Fig. 4: Comparison Between Arbitration with 1, 2 and 4 Ranks
for a DDR3-1333H device

takes 52 clock cycles to complete all four requests, while the
data bus is only used for 16 cycles, resulting in an utilization
of only 31%.

Our key idea is that we can improve the worst-case latency
by noticing that tRT W and tW T R do not apply between
requests that target banks in different ranks. Figure 4(b) shows
the schedule derived by assigning the four requestors to two
different ranks and alternating servicing requests to the two
ranks. Since the only constraint between requests to different
ranks is the shorter tRT R , the schedule now takes 35 cycles to
complete, a 33% improvement. Similarly, Figure 4(c) shows
the effect of assigning each requestor to a different rank. Note
that in this case, after data is started at cycle 7, we use the
data bus for 4 cycles every 6, resulting in an utilization of 2/3.
Finally, notice that alternating ranks also helps reducing the
latency of ACT commands of close requests, since the tRRD

and tF A W constraints do not apply between different ranks.

Our illustrative example shows that a rank-switching mech-
anism in the back end can both significantly decrease the la-
tency of memory requests and increase bus utilization without
requiring us to reorder requests in the front end, which is
unsuitable for hard real-time requestors needing guaranteed
latency bounds. The challenge is how to implement such
mechanism in a predictable way. In particular, a simple static
TDMA schedule is not suitable since requestors can dynami-
cally submit different types of requests at run-time. Instead, a
set of dynamic arbitration rules is proposed next.

B. Arbitration Rules

We consider a device with R ≥ 2 ranks. The memory
controller can support both hard and soft real-time requestors.
Our design goal is to minimize the latency bound of requests of
hard requestors, while simultaneously attempting to maintain
high data bus utilization and thus provided memory bandwidth
to all requestors. To this end, each rank is assigned either
to hard or to soft requestors (hard or soft rank), and each
requestor uses only one rank; let M r , 1 r R, be the
number of requestors that use rank r . The banks in hard rank
r are statically partitioned among the M r requestors in r ,
according to the private bank principle.

PA Arbiter

CAS Arbiter

Command Queues Level 3 Arbitration

Rank 1: Hard Requestor Arbitration

Rank R: Soft Requestor Arbitration

...

PA Arbiter

CAS Arbiter

Level 2 Arbitration

Level 1

Command

 Arbitration

To Device

Controller Back End

Fig. 5: Back End Command Arbitration Logic

Figure 5 shows an example block diagram of the command
arbitration logic in the back end, where Rank 1 is a hard rank,
Rank R is a soft rank, and M 1 = 4. Arbitration is performed in
three levels. For hard ranks, commands generated by the front
end are enqueued in the per-requestor command queues. Level
3 (L3), or Requestor Arbitration, arbitrates among requestors
within the same rank. The command at the front of the
selected requestor queue ispropagated to Level 2 (L2), or Rank
Arbitration, which arbitrates among the R ranks. Note that
Level 3 and Level 2 arbitrations are split between a PA Arbiter
that handles PRE and ACT commands, which are needed
only for close requests, and a C Arbiter that handles CAS
commands, which are needed by all requests. Finally, Level 1
(L1), or Command Arbitration, simply assigns higher priority
to CAS than PRE or ACT command; i.e., if during the current
clock cycle the L2 C Arbiter propagates a CAS command
to Level 1, the Command Arbiter will issue it to the device,
otherwise, if the L2 PA Arbiter propagates a PRE/ACT the L1
Arbiter will issue it. This is done to ensure that the critical
timings of CAS commands in the rank-switching mechanism
are not disrupted by command bus contention with PRE/ACT
commands. The following rules capture the behavior of the
Level 2 arbiters and of the Level 3 arbiters for a hard rank r .

1) The command at the head of each per-requestor queue is
said to be active if all timing constraints that are caused by
previous commands of the same requestor are satisfied; in
addition, a CAS command does not become active until the
data of the previous CAS command of the same requestor
has been transmitted. In other words, an active command can
be issued immediately if there are no other requestors in the
system.

2) The L3 PA Arbiter uses amodified First-Come-First-Serve
(FCFS) arbitration; a requestor is enqueued at the back of a
FIFO queue as soon as it has an active PRE or ACT command,
and it is removed from the queue once the command is finally
issued by L1. Every clock cycle, the arbiter scans the FIFO
queue and propagates to Level 2 the first command that can
be issued (without violating timing constraints), if any. Note
that an active PRE command can always be issued; an active
ACT command could instead by blocked by tRRD or tF A W

constraints caused by other requestors.

3) The L3 C Arbiter uses standard FCFS arbitration, with a
requestor being enqueued once it has an active CAS command
and removed once the CAS command is issued by L1. The L3
C Arbiter propagates to L2 the CAS command of the first
requestor in FCFS order (if any). It also computes the earliest
time tSD r

at which the data transmission for that requestor
could be started, and pass it to L2. tSD r

is calculated based on

(a) Arbitration for 1 Rank

(b) Arbitration for 2 Rank

(c) Arbitration for 4 Rank

Fig. 4: Comparison Between Arbitration with 1, 2 and 4 Ranks
for a DDR3-1333H device

takes 52 clock cycles to complete all four requests, while the
data bus is only used for 16 cycles, resulting in an utilization
of only 31%.

Our key idea is that we can improve the worst-case latency
by noticing that tRT W and tW T R do not apply between
requests that target banks in different ranks. Figure 4(b) shows
the schedule derived by assigning the four requestors to two
different ranks and alternating servicing requests to the two
ranks. Since the only constraint between requests to different
ranks is the shorter tRT R , the schedule now takes 35 cycles to
complete, a 33% improvement. Similarly, Figure 4(c) shows
the effect of assigning each requestor to a different rank. Note
that in this case, after data is started at cycle 7, we use the
data bus for 4 cycles every 6, resulting in an utilization of 2/3.
Finally, notice that alternating ranks also helps reducing the
latency of ACT commands of close requests, since the tRRD

and tF A W constraints do not apply between different ranks.

Our illustrative example shows that a rank-switching mech-
anism in the back end can both significantly decrease the la-
tency of memory requests and increase bus utilization without
requiring us to reorder requests in the front end, which is
unsuitable for hard real-time requestors needing guaranteed
latency bounds. The challenge is how to implement such
mechanism in a predictable way. In particular, a simple static
TDMA schedule is not suitable since requestors can dynami-
cally submit different types of requests at run-time. Instead, a
set of dynamic arbitration rules is proposed next.

B. Arbitration Rules

We consider a device with R ≥ 2 ranks. The memory
controller can support both hard and soft real-time requestors.
Our design goal is to minimize the latency bound of requests of
hard requestors, while simultaneously attempting to maintain
high data bus utilization and thus provided memory bandwidth
to all requestors. To this end, each rank is assigned either
to hard or to soft requestors (hard or soft rank), and each
requestor uses only one rank; let M r , 1 r R, be the
number of requestors that use rank r . The banks in hard rank
r are statically partitioned among the M r requestors in r ,
according to the private bank principle.

PA Arbiter

CAS Arbiter

Command Queues Level 3 Arbitration

Rank 1: Hard Requestor Arbitration

Rank R: Soft Requestor Arbitration

...

PA Arbiter

CAS Arbiter

Level 2 Arbitration

Level 1

Command

 Arbitration

To Device

Controller Back End

Fig. 5: Back End Command Arbitration Logic

Figure 5 shows an example block diagram of the command
arbitration logic in the back end, where Rank 1 is a hard rank,
Rank R is a soft rank, and M 1 = 4. Arbitration is performed in
three levels. For hard ranks, commands generated by the front
end are enqueued in the per-requestor command queues. Level
3 (L3), or Requestor Arbitration, arbitrates among requestors
within the same rank. The command at the front of the
selected requestor queue ispropagated to Level 2 (L2), or Rank
Arbitration, which arbitrates among the R ranks. Note that
Level 3 and Level 2 arbitrations are split between a PA Arbiter
that handles PRE and ACT commands, which are needed
only for close requests, and a C Arbiter that handles CAS
commands, which are needed by all requests. Finally, Level 1
(L1), or Command Arbitration, simply assigns higher priority
to CAS than PRE or ACT command; i.e., if during the current
clock cycle the L2 C Arbiter propagates a CAS command
to Level 1, the Command Arbiter will issue it to the device,
otherwise, if the L2 PA Arbiter propagates a PRE/ACT the L1
Arbiter will issue it. This is done to ensure that the critical
timings of CAS commands in the rank-switching mechanism
are not disrupted by command bus contention with PRE/ACT
commands. The following rules capture the behavior of the
Level 2 arbiters and of the Level 3 arbiters for a hard rank r .

1) The command at the head of each per-requestor queue is
said to be active if all timing constraints that are caused by
previous commands of the same requestor are satisfied; in
addition, a CAS command does not become active until the
data of the previous CAS command of the same requestor
has been transmitted. In other words, an active command can
be issued immediately if there are no other requestors in the
system.

2) The L3 PA Arbiter uses amodified First-Come-First-Serve
(FCFS) arbitration; a requestor is enqueued at the back of a
FIFO queue as soon as it has an active PRE or ACT command,
and it is removed from the queue once the command is finally
issued by L1. Every clock cycle, the arbiter scans the FIFO
queue and propagates to Level 2 the first command that can
be issued (without violating timing constraints), if any. Note
that an active PRE command can always be issued; an active
ACT command could instead by blocked by tRRD or tF A W

constraints caused by other requestors.

3) The L3 C Arbiter uses standard FCFS arbitration, with a
requestor being enqueued once it has an active CAS command
and removed once the CAS command is issued by L1. The L3
C Arbiter propagates to L2 the CAS command of the first
requestor in FCFS order (if any). It also computes the earliest
time tSD r

at which the data transmission for that requestor
could be started, and pass it to L2. tSD r

is calculated based on

1 Rank:
Latency 52 cycles

2 Ranks:
Latency 35 cycles

4 Ranks:
Latency 29 cycles

Challenge:

Design a command scheduling algorithm
to minimize worst case latency by forcing

alternation among ranks

Outline

1. Background & Related Work

2. Rank-Switching Mechanism

3. Worst Case Latency Analysis

4. Memory Controller Model

5. Results & Conclusion

Worst Case Analysis

Worst Case
Single Request

Latency Analysis

Total # of
Requestors
and Ranks

Memory Device
Parameters

Cumulative
Worst Case

Execution Time

Open
Read

Close
Read

Open
Write

Close
Write

Latency for different types of request

Task
Under

Analysis

of open reads

of close reads

of open writes

of close writes

WCET

Part 2 – in-order core

Part 1 – any type of requestor

Assumption:

We want composable analysis –
assume worst case interference

from other requestors

13/24

Worst Case Analysis

Worst Case
Single Request

Latency Analysis
Memory Device
Parameters

Cumulative
Worst Case

Execution Time

Open
Read

Close
Read

Open
Write

Close
Write

Latency for different types of request

Task
Under

Analysis

of open reads

of close reads

of open writes

of close writes

WCET

13/24

Total # of
Requestors
and Ranks

Part 1 - new for ROC

Part 2 – re-use RTSS’13 [5]

Single Request Latency

Data R/W

R/W

Decomposed into two parts

Request Arrival

Arrival until Read/Write
command is arbitrated

Start of Read/Write arbitration
until data is finished transmitting

Arrival to Read/Write Read/Write to Data

14/24

Single Request Latency

Data R/W

Request Arrival

Arrival to Read/Write Read/Write to Data

P A

This part may include PRE-charge
and ACT commands

R/W

14/24

Our arbitration mechanism similarly
distinguishes between PRE/ACT and
CAS (R/W) commands

Outline

1. Background & Related Work

2. Rank-Switching Mechanism

1. Worst Case Latency Analysis

2. Memory Controller Model

3. Results & Conclusion

Back End Model

15/24

P/A Arbiter

CAS Arbiter

Command Queues
Level 3 Arbitration

Rank 1

Rank R

Level 1

Command

 Arbitration

To

Devic

e

Controller Back End

P/A Arbiter

CAS Arbiter

Level 2 Arbitration

• Front End adds constant delay – focus on Back End

• Three levels arbitration

Back End Model

15/24

P/A Arbiter

CAS Arbiter

Command Queues
Level 3 Arbitration

Rank 1

Rank R

Level 1

Command

 Arbitration

To

Devic

e

Controller Back End

P/A Arbiter

CAS Arbiter

Level 2 Arbitration

• L1: CAS (R/W) commands have higher priority than

PRE/ACT commands – priority to data bus contention

Back End Model

15/24

P/A Arbiter

CAS Arbiter

Command Queues
Level 3 Arbitration

Rank 1

Rank R

Level 1

Command

 Arbitration

To

Devic

e

Controller Back End

P/A Arbiter

CAS Arbiter

Level 2 Arbitration

• L2 alternates among ranks

• L3 alternates among requestors within a rank

Back End Model

16/24

• Let:

– : number of ranks

– : number of requestors for rank

• Then given the alternation in L2/L3, the latency of each

command is a function of

– Isolation property: the latency of a requestor does not depend on

the # of requestors or scheduling policy used in other ranks

– We can dedicate some ranks to hard real-time requestors, and

others to soft real-time requestors

– Optimize hard requestors for latency, soft requestors for

bandwidth

• Full details for hard requestors in the paper…

CAS Rank Switching Rule

17/24

• Key idea:

– Schedule ranks in Round-Robin order if transfers on the

data bus are separated by at most Rank-to-Rank constraint

– When this is not possible (due to Write-to-Read constraint),

reorder ranks

Data W
Data R Rank 1

Data R

Data R

RtR RtR

Rank 2 can read
twice while Rank 1
is waiting for WtR

Rank 2

WtR

We prove:

1. Reordering does not increase worst-
case latency if R = 4

2. If the system is backlogged, no more
than RtR between data transfers =>
does not degrade memory
throughput

Outline

1. Background & Related Work

2. Rank-Switching Mechanism

3. Memory Controller Model

4. Worst Case Latency Analysis

5. Results & Conclusion

Results

• Comparison against Analyzable Memory Controller (AMC) [1]

– Fair arbitration (Round Robin) similar to our approach

– Focus on WCET guarantees for hard real-time tasks

• Synthetic Benchmarks

– Used to show how worst case latency bound varies as parameters

are changed

• CHStone Benchmarks

– Memory traces are obtained from gem5 simulator and used as

inputs to both analysis and simulators

– Core under analysis is in-order

– Interfering requestors are out-of-order running lbm
18/24

Results

• DDR3-1333H memory device

– 64 and 32 bits data bus width

• Simulations

– Python simulators for our RTSS’13 work [5] and AMC [1]

• ROC Implementation

– Three stages pipelined implementation in Verilog RTL

– Synthesizes to Xilinx FPGA at 340Mhz (original soft memory

controller: 400Mhz)

– ASIC implementation could likely be significantly faster…

• Code available at http://ece.uwaterloo.ca/~rpellizz/roc.php

 19/24

Results

• Synthetic Benchmarks, 20% write

20/24

0

50

100

150

200

250

300

350

400

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
as

e
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 14: Synthetic 8 Requestors 64 bits data bus result

0

100

200

300

400

500

600

700

800

900

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
as

e
La

te
n

cy
 (

n
s)

Row Hit %

Synthetic: 16 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 15: Synthetic 16 Requestors 64 bits data bus result

controller back end and command generator in Verilog RTL.
Our implementation uses a fully pipelined architecture with
threestages to increase hardwarespeed. Note that while issuing
a command might impact the timing constraints for following
commands, as discussed in Section V-A no more than one CAS
every tB U S cycles and one ACT every tA C T cycles can be
issued, while PRE commands have no constraints with other
banks. Since both tB U S and tA C T are larger than 3 clock
cycles, effectively the pipeline simply adds a constant delay of
3 cycles to the latency of every command. We synthesized the
back end and command generator on a Xilinx Kintex-7 FPGA,
obtaining a maximum command bus clock frequency of 340
Mhz. While this frequency is lower than the 667Mhz frequency
used in our simulations, weargue that an ASIC implementation
would result in significantly higher speed; furthermore, the
multiport FPGA soft core memory controller provided by
Xilinx [18] for the same platform runs at a comparable speed
of 400 Mhz. We plan to provide a more in-depth description
of our implementation in a future report. All code is available
at [19].

A. Synthetic Benchmark

The delay computed by our analysis is independent of the
activity of other requestors: after we fix the device characteris-
tics and the number of requestors, the latency bound becomes
a function of the number of open/close and load/store requests
performed by the task under analysis. Therefore, we decided
to plot the average per-request worst case latency in nano-
seconds (y-axis) for asynthetic task aswevary the row hit ratio
(percentage of open requests, x-axis) and fixing the percentage
of store requests to 20%. Figures 14 and 15 plot results for data
bus width of 64 bits and either 8 or 16 requestors, respectively.
Figure 16 shows the case of 8 requestors and 32 bits bus. From

0

50

100

150

200

250

300

350

400

450

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-32bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 16: Synthetic 8 Requestors 32 bits data bus result

the figures, we can see that AMC’s plot is constant in the
graph since it uses close row policy, hence the latency does not
depend on row hit ratio. For ROC, the latency decreases as row
hit ratio increases. In addition, as the number of requestors and
ranks increase, our approach performs comparatively better.
For 8 requestors with 32 bits bus (which favors AMC) and
0% row hit, AMC still has 50% higher latency compared to
ROC 4-ranks. Similarly, the latency for our previous work [5]
is at least 50% higher than ROC 4-ranks over all cases. Finally,
changing the percentage of store requests did not significantly
impact the results.

B. Benchmark Results

All twelve CHStone benchmarks were ran on the Gem5
[20] simulator to obtain memory traces, which are used as
inputs to both the analysis and memory controller simulators.
We used an in-order CPU model clocked at 1 GHz with
private LVL1 and LVL2 cache. LVL1 cache is split 32 kB
instruction and 64 kB data. LVL2 is unified cache of 2 MB
and cache block size is 64 bytes. The row hit ratio ranges
from 29% (jpeg) to 52% (sha) and the percentage of stall
time when running in isolation ranges from 3% (jpeg) to 36%
(motion) over all benchmarks. Each trace contains the amount
of execution time between each memory requests. Since the
CPU is in-order, either the analysis or controller simulator can
add the worst case memory latency for each request to produce
the final execution time for the benchmark under analysis
including both computation and memory access time. Note that
to maximally stress the system, all interfering requestors are
instead running the highly bandwidth intensive lbm benchmark
from SPEC2006 CPU suite [21]. The memory trace for lbm is
obtained using an out-of-order CPU model that can generate
up to 20 outstanding requests. Finally, we again point out that
while we simulated our ROC Verilog design to compare it
against related work, the design is fully synthesizable.

We show results for 16 requestors and 64 bits bus in
Figure 17. The y-axis is the normalized execution time of the
benchmarks against the worst case analytical bound of our
previous work [5]. The T-bars are the worst case analytical
bounds while rectangular boxes with shades are simulation
results. In terms of analytical bounds, ROC with 4-ranks is
between 5 and 35% better than our previous work, while AMC
performs significantly worse. The amount of improvement
depends on the benchmark’s row hit ratio as well as the stall
ratio. The difference between simulated and analytical time
is always quite small for AMC, less than 10%. However,
the simulated time for both ROC and our previous work is
significantly lower than the analytical bounds. This is mainly

0

50

100

150

200

250

300

350

400

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 14: Synthetic 8 Requestors 64 bits data bus result

0

100

200

300

400

500

600

700

800

900

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 16 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 15: Synthetic 16 Requestors 64 bits data bus result

controller back end and command generator in Verilog RTL.
Our implementation uses a fully pipelined architecture with
three stages to increase hardwarespeed. Note that while issuing
a command might impact the timing constraints for following
commands, as discussed in Section V-A no more than one CAS
every tB U S cycles and one ACT every tA C T cycles can be
issued, while PRE commands have no constraints with other
banks. Since both tB U S and tA C T are larger than 3 clock
cycles, effectively the pipeline simply adds a constant delay of
3 cycles to the latency of every command. We synthesized the
back end and command generator on a Xilinx Kintex-7 FPGA,
obtaining a maximum command bus clock frequency of 340
Mhz. While this frequency is lower than the 667Mhz frequency
used in our simulations, we argue that an ASIC implementation
would result in significantly higher speed; furthermore, the
multiport FPGA soft core memory controller provided by
Xilinx [18] for the same platform runs at a comparable speed
of 400 Mhz. We plan to provide a more in-depth description
of our implementation in a future report. All code is available
at [19].

A. Synthetic Benchmark

The delay computed by our analysis is independent of the
activity of other requestors: after we fix the device characteris-
tics and the number of requestors, the latency bound becomes
a function of the number of open/close and load/store requests
performed by the task under analysis. Therefore, we decided
to plot the average per-request worst case latency in nano-
seconds (y-axis) for asynthetic task aswevary the row hit ratio
(percentage of open requests, x-axis) and fixing the percentage
of store requests to 20%. Figures 14 and 15 plot results for data
bus width of 64 bits and either 8 or 16 requestors, respectively.
Figure 16 shows the case of 8 requestors and 32 bits bus. From

0

50

100

150

200

250

300

350

400

450

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-32bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 16: Synthetic 8 Requestors 32 bits data bus result

the figures, we can see that AMC’s plot is constant in the
graph since it uses close row policy, hence the latency does not
depend on row hit ratio. For ROC, the latency decreases as row
hit ratio increases. In addition, as the number of requestors and
ranks increase, our approach performs comparatively better.
For 8 requestors with 32 bits bus (which favors AMC) and
0% row hit, AMC still has 50% higher latency compared to
ROC 4-ranks. Similarly, the latency for our previous work [5]
is at least 50% higher than ROC 4-ranks over all cases. Finally,
changing the percentage of store requests did not significantly
impact the results.

B. Benchmark Results

All twelve CHStone benchmarks were ran on the Gem5
[20] simulator to obtain memory traces, which are used as
inputs to both the analysis and memory controller simulators.
We used an in-order CPU model clocked at 1 GHz with
private LVL1 and LVL2 cache. LVL1 cache is split 32 kB
instruction and 64 kB data. LVL2 is unified cache of 2 MB
and cache block size is 64 bytes. The row hit ratio ranges
from 29% (jpeg) to 52% (sha) and the percentage of stall
time when running in isolation ranges from 3% (jpeg) to 36%
(motion) over all benchmarks. Each trace contains the amount
of execution time between each memory requests. Since the
CPU is in-order, either the analysis or controller simulator can
add the worst case memory latency for each request to produce
the final execution time for the benchmark under analysis
including both computation and memory access time. Note that
to maximally stress the system, all interfering requestors are
instead running the highly bandwidth intensive lbm benchmark
from SPEC2006 CPU suite [21]. The memory trace for lbm is
obtained using an out-of-order CPU model that can generate
up to 20 outstanding requests. Finally, we again point out that
while we simulated our ROC Verilog design to compare it
against related work, the design is fully synthesizable.

We show results for 16 requestors and 64 bits bus in
Figure 17. The y-axis is the normalized execution time of the
benchmarks against the worst case analytical bound of our
previous work [5]. The T-bars are the worst case analytical
bounds while rectangular boxes with shades are simulation
results. In terms of analytical bounds, ROC with 4-ranks is
between 5 and 35% better than our previous work, while AMC
performs significantly worse. The amount of improvement
depends on the benchmark’s row hit ratio as well as the stall
ratio. The difference between simulated and analytical time
is always quite small for AMC, less than 10%. However,
the simulated time for both ROC and our previous work is
significantly lower than the analytical bounds. This is mainly

This improvement due
to private bank parallelism…

..this due to open-row
policy…

..this due to rank-swithing

ROC-4 has > 33%
lower latency
than [5] for all

cases

Results

• Synthetic Benchmarks, 20% write

21/24

0

50

100

150

200

250

300

350

400

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
as

e
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 14: Synthetic 8 Requestors 64 bits data bus result

0

100

200

300

400

500

600

700

800

900

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
as

e
La

te
n

cy
 (

n
s)

Row Hit %

Synthetic: 16 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 15: Synthetic 16 Requestors 64 bits data bus result

controller back end and command generator in Verilog RTL.
Our implementation uses a fully pipelined architecture with
three stages to increase hardwarespeed. Note that while issuing
a command might impact the timing constraints for following
commands, as discussed in Section V-A no more than one CAS
every tB U S cycles and one ACT every tA C T cycles can be
issued, while PRE commands have no constraints with other
banks. Since both tB U S and tA C T are larger than 3 clock
cycles, effectively the pipeline simply adds a constant delay of
3 cycles to the latency of every command. We synthesized the
back end and command generator on a Xilinx Kintex-7 FPGA,
obtaining a maximum command bus clock frequency of 340
Mhz. While this frequency is lower than the 667Mhz frequency
used in our simulations, weargue that an ASIC implementation
would result in significantly higher speed; furthermore, the
multiport FPGA soft core memory controller provided by
Xilinx [18] for the same platform runs at a comparable speed
of 400 Mhz. We plan to provide a more in-depth description
of our implementation in a future report. All code is available
at [19].

A. Synthetic Benchmark

The delay computed by our analysis is independent of the
activity of other requestors: after we fix the device characteris-
tics and the number of requestors, the latency bound becomes
a function of the number of open/close and load/store requests
performed by the task under analysis. Therefore, we decided
to plot the average per-request worst case latency in nano-
seconds (y-axis) for asynthetic task aswevary the row hit ratio
(percentage of open requests, x-axis) and fixing the percentage
of store requests to 20%. Figures 14 and 15 plot results for data
bus width of 64 bits and either 8 or 16 requestors, respectively.
Figure 16 shows the case of 8 requestors and 32 bits bus. From

0

50

100

150

200

250

300

350

400

450

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-32bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 16: Synthetic 8 Requestors 32 bits data bus result

the figures, we can see that AMC’s plot is constant in the
graph since it uses close row policy, hence the latency does not
depend on row hit ratio. For ROC, the latency decreases as row
hit ratio increases. In addition, as the number of requestors and
ranks increase, our approach performs comparatively better.
For 8 requestors with 32 bits bus (which favors AMC) and
0% row hit, AMC still has 50% higher latency compared to
ROC 4-ranks. Similarly, the latency for our previous work [5]
is at least 50% higher than ROC 4-ranks over all cases. Finally,
changing the percentage of store requests did not significantly
impact the results.

B. Benchmark Results

All twelve CHStone benchmarks were ran on the Gem5
[20] simulator to obtain memory traces, which are used as
inputs to both the analysis and memory controller simulators.
We used an in-order CPU model clocked at 1 GHz with
private LVL1 and LVL2 cache. LVL1 cache is split 32 kB
instruction and 64 kB data. LVL2 is unified cache of 2 MB
and cache block size is 64 bytes. The row hit ratio ranges
from 29% (jpeg) to 52% (sha) and the percentage of stall
time when running in isolation ranges from 3% (jpeg) to 36%
(motion) over all benchmarks. Each trace contains the amount
of execution time between each memory requests. Since the
CPU is in-order, either the analysis or controller simulator can
add the worst case memory latency for each request to produce
the final execution time for the benchmark under analysis
including both computation and memory access time. Note that
to maximally stress the system, all interfering requestors are
instead running the highly bandwidth intensive lbm benchmark
from SPEC2006 CPU suite [21]. The memory trace for lbm is
obtained using an out-of-order CPU model that can generate
up to 20 outstanding requests. Finally, we again point out that
while we simulated our ROC Verilog design to compare it
against related work, the design is fully synthesizable.

We show results for 16 requestors and 64 bits bus in
Figure 17. The y-axis is the normalized execution time of the
benchmarks against the worst case analytical bound of our
previous work [5]. The T-bars are the worst case analytical
bounds while rectangular boxes with shades are simulation
results. In terms of analytical bounds, ROC with 4-ranks is
between 5 and 35% better than our previous work, while AMC
performs significantly worse. The amount of improvement
depends on the benchmark’s row hit ratio as well as the stall
ratio. The difference between simulated and analytical time
is always quite small for AMC, less than 10%. However,
the simulated time for both ROC and our previous work is
significantly lower than the analytical bounds. This is mainly

0

50

100

150

200

250

300

350

400

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 14: Synthetic 8 Requestors 64 bits data bus result

0

100

200

300

400

500

600

700

800

900

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 16 Requestors-64bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 15: Synthetic 16 Requestors 64 bits data bus result

controller back end and command generator in Verilog RTL.
Our implementation uses a fully pipelined architecture with
three stages to increase hardwarespeed. Note that while issuing
a command might impact the timing constraints for following
commands, as discussed in Section V-A no more than one CAS
every tB U S cycles and one ACT every tA C T cycles can be
issued, while PRE commands have no constraints with other
banks. Since both tB U S and tA C T are larger than 3 clock
cycles, effectively the pipeline simply adds a constant delay of
3 cycles to the latency of every command. We synthesized the
back end and command generator on a Xilinx Kintex-7 FPGA,
obtaining a maximum command bus clock frequency of 340
Mhz. While this frequency is lower than the 667Mhz frequency
used in our simulations, we argue that an ASIC implementation
would result in significantly higher speed; furthermore, the
multiport FPGA soft core memory controller provided by
Xilinx [18] for the same platform runs at a comparable speed
of 400 Mhz. We plan to provide a more in-depth description
of our implementation in a future report. All code is available
at [19].

A. Synthetic Benchmark

The delay computed by our analysis is independent of the
activity of other requestors: after we fix the device characteris-
tics and the number of requestors, the latency bound becomes
a function of the number of open/close and load/store requests
performed by the task under analysis. Therefore, we decided
to plot the average per-request worst case latency in nano-
seconds (y-axis) for asynthetic task aswevary the row hit ratio
(percentage of open requests, x-axis) and fixing the percentage
of store requests to 20%. Figures 14 and 15 plot results for data
bus width of 64 bits and either 8 or 16 requestors, respectively.
Figure 16 shows the case of 8 requestors and 32 bits bus. From

0

50

100

150

200

250

300

350

400

450

0% 20% 40% 60% 80% 100%

A
vg

 W
o

rs
t

C
a

se
 L

at
e

n
cy

 (
n

s)

Row Hit %

Synthetic: 8 Requestors-32bits

AMC

Analysis [5]

ROC-2Rank

ROC-4Rank

Fig. 16: Synthetic 8 Requestors 32 bits data bus result

the figures, we can see that AMC’s plot is constant in the
graph since it uses close row policy, hence the latency does not
depend on row hit ratio. For ROC, the latency decreases as row
hit ratio increases. In addition, as the number of requestors and
ranks increase, our approach performs comparatively better.
For 8 requestors with 32 bits bus (which favors AMC) and
0% row hit, AMC still has 50% higher latency compared to
ROC 4-ranks. Similarly, the latency for our previous work [5]
is at least 50% higher than ROC 4-ranks over all cases. Finally,
changing the percentage of store requests did not significantly
impact the results.

B. Benchmark Results

All twelve CHStone benchmarks were ran on the Gem5
[20] simulator to obtain memory traces, which are used as
inputs to both the analysis and memory controller simulators.
We used an in-order CPU model clocked at 1 GHz with
private LVL1 and LVL2 cache. LVL1 cache is split 32 kB
instruction and 64 kB data. LVL2 is unified cache of 2 MB
and cache block size is 64 bytes. The row hit ratio ranges
from 29% (jpeg) to 52% (sha) and the percentage of stall
time when running in isolation ranges from 3% (jpeg) to 36%
(motion) over all benchmarks. Each trace contains the amount
of execution time between each memory requests. Since the
CPU is in-order, either the analysis or controller simulator can
add the worst case memory latency for each request to produce
the final execution time for the benchmark under analysis
including both computation and memory access time. Note that
to maximally stress the system, all interfering requestors are
instead running the highly bandwidth intensive lbm benchmark
from SPEC2006 CPU suite [21]. The memory trace for lbm is
obtained using an out-of-order CPU model that can generate
up to 20 outstanding requests. Finally, we again point out that
while we simulated our ROC Verilog design to compare it
against related work, the design is fully synthesizable.

We show results for 16 requestors and 64 bits bus in
Figure 17. The y-axis is the normalized execution time of the
benchmarks against the worst case analytical bound of our
previous work [5]. The T-bars are the worst case analytical
bounds while rectangular boxes with shades are simulation
results. In terms of analytical bounds, ROC with 4-ranks is
between 5 and 35% better than our previous work, while AMC
performs significantly worse. The amount of improvement
depends on the benchmark’s row hit ratio as well as the stall
ratio. The difference between simulated and analytical time
is always quite small for AMC, less than 10%. However,
the simulated time for both ROC and our previous work is
significantly lower than the analytical bounds. This is mainly

AMC can parallelize
transactions over 2 banks –
no advantage from private
bank parallelism

Results

• CHStone, 16 requestors 64bits data bus

– T-bars: worst case bound

– Solid bars: simulation

21/26 0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

adpcm aes bf gsm jpeg mips motion sha dfadd dfdiv dfmul dfsin

N
o

rm
a

liz
e

d
 E

xe
cu

ti
o

n
 T

im
e

AMC Analysis[5] ROC-2 Rank ROC-4 Rank

Fig. 17: CHStone 16 Requestors 64 bits data bus result

because the analysis assumes a precise worst case pattern of
interfering requests by other requestors. The probability that
such pattern is produced at run-time is very low, albeit non-
zero. Finally, the simulated latency for ROC is always lower
than the one for [5], which shows that even if our simulations
are not optimized for soft requestors, ROC can still provide
improved average case performance.

VII . CONCLUSIONS

We introduced ROC, a new predictable memory controller
for DDR DRAM. Rather than relying on static command
schedules as existing real-time controllers [1], [2], [3], [4],
ROC embraces the dynamic operation of DRAM devices. Our
rank-switching mechanism essentially improves the utilization
of the data bus by guaranteeing that consecutive data transfers
are spaced by at most one rank-to-rank transition delay, which
is much shorter than the write-to-read and read-to-write delays
that apply to data transfers of the same rank. As a result,
ROC significantly improves the worst case latency of memory
requests while guaranteeing isolation among requestors. As a
final note, our current evaluation in Section VI is based on
hard requestor arbitration only. As part of our future work,
we plan to aggressively optimize the Level 3 arbiter for soft
ranks to support requestors requiring high average memory
bandwidth. Since existing predictable memory controllers do
not perform well in terms of average performance as shown in
our simulations, we expect that the improvements in terms of
bandwidth for soft requestors should be even higher compared
to the demonstrated reduction in latency for hard requestors.

ACKNOWLEDGEMENTS

This research was supported in part by NSERC DG
402369-2011 and CMC Microsystems. Any opinions, findings,
and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect
the views of the sponsors.

REFERENCES

[1] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An Analyzable
Memory Controller for Hard Real-Time CMPs,” Embedded Systems
Letters, IEEE, vol. 1, no. 4, pp. 86–90, 2009.

[2] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in CODES+ISSS, 2007.

[3] S. Goossens, B. Akesson, and K. Goossens, “Conservative Open-page
Policy for Mixed Time-Criticality Memory Controllers,” in DATE, 2013.

[4] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET
DRAM Controller: Bank Privatization for Predictability and Temporal
Isolation,” in CODES+ISSS, 2011.

[5] Z. Wu, Y. Krish, and R. Pellizzoni, “Worst Case Analysis of DRAM
Latency in Multi-Requestor Systems,” in RTSS, 2013.

[6] M. Gomony, B. Akesson, and K. Goossens, “Architecture and optimal
configuration of a real-timemulti-channel memory controller,” in DATE,
2013.

[7] JEDEC, “DDR3 SDRAM Standard JESD79-3F,” July 2012.

[8] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-time
scheduling using credit-controlled static-priority arbitration,” in RTCSA,
2008.

[9] R. Bourgade, C. Ballabriga, H. Cass, C. Rochange, and P. Sainrat,
“Accurate analysis of memory latencies for WCET estimation (regular
paper),” in RTNS, 2008.

[10] I. Liu, J. Reineke, and E. A. Lee, “A PRET Architecture Supporting
Concurrent Programs with Composable Timing Properties,” in ASILO-
MAR, 2010.

[11] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed
(PRET) Machine,” in DAC, 2011.

[12] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke, “Temporal
isolation on multiprocessing architectures,” in DAC, 2011.

[13] D. T. Wang, “Modern DRAM Memory systems: Performance Analysis
and Scheduling Algorithm,” Ph.D. dissertation, University of Maryland
at College Park, 2005.

[14] S. Kim, S. Kim, and Y. Lee, “DRAM power-aware rank scheduling,”
in ISLPED, 2012.

[15] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms,” in RTAS, 2014.

[16] Z. P. Wu, “Worst Case Analysis of DRAM Latency in Hard Real Time
Systems,” Master’s thesis, University of Waterloo, 2013.

[17] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone:
A benchmark program suite for practical C-based high-level synthesis,”
in ISCAS, 2008.

[18] Xilinx, 7 Series FPGAs AXI Multi-Port Memory Controller Using the
Vivado Tools, 2012. [Online]. Available: http://www.xilinx.com/support/
documentation/application notes/xapp789-axi-mpmc-using-vivado.pdf

[19] Y. Krish, Z. P. Wu, and R. Pellizzoni, ROC Implementation and
Simulation Code. [Online]. Available: http://ece.uwaterloo.ca/⇠rpellizz/
roc.php

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
2011.

[21] J. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

ROC-4 has between 5 and 35%
lower WCET than [5]

Conclusions

• Architectural optimizations designed for general purpose

systems do not necessarily work for time-predictable systems

• We need to design the architecture around the concept of

guaranteed worst case latency

• We introduced a new DRAM optimization targeted at reducing

worst case latency: rank-switching

• The implemented ROC memory controller significantly

reduces latency for hard requestors and guarantees strong

isolation between hard/soft requestors

23/24

Future Work

• Implementation:

– Support for shared data

– Soft requestor optimizations

– Improved RTL code

• Extended comparison with other real-time controllers

24/24

References

[1] M. Paolieri, E. Quinones, F. Cazorla, and M. Valero, “An Analyzable
Memory Controller for Hard Real-Time CMPs,” Embedded Systems
Letters, IEEE, vol. 1, no. 4, pp. 86–90, 2009.

[2] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in CODES+ISSS, 2007, pp. 251–256.

[3] S. Goossens, B. Akesson, and K. Goossens, “Conservative Open- page
Policy for Mixed Time-Criticality Memory Controllers,” in DATE, 2013.

[4] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram
controller: Bank privatization for predictability and temporal isolation,”
in CODES+ISSS, 2011, pp. 99–108.

[5] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst Case Analysis of DRAM
Latency in Multi-Requestor Systems”

Thank you!

Questions?

