
PUB: Path Upper-Bounding for
Measurement-Based Probabilistic Timing Analysis

This project and the research leading to these results

has received funding from the European

Community’s Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

www.proxima-project.eu

Measurement-Based Probabilistic Timing Analysis

Leonidas Kosmidis, Jaume Abella, Franck Wartel,

Eduardo Quiñones, Antoine Colin, Francisco J. Cazorla

Madrid, July 11th, ECRTS 2014

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

2 Madrid, Spain 11 July 2014

� Conclusion

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

3 Madrid, Spain 11 July 2014

� Conclusion

Motivation

� Modern Safety-Critical Real-Time Systems (CRTS) require

more computing power

� More computational power is delivered by

� More complex SW

� More complex HW: caches

� Worst Case Execution Time (WCET) must be derived

4 Madrid, Spain 11 July 2014

� Measurement-Based Probabilistic Timing Analysis

(MBPTA)

� Trustworthy WCET estimates on complex hardware (e.g. multiple

levels of caches)

� Some properties required to emanate from the HW

The problem

� Traditional MPBTA provides a

pWCET upper-bound of exercised

paths at analysis time

� Deriving the pWCET for the

program � user has to provide

inputs exercising paths leading to

if
cond

5 Madrid, Spain 11 July 2014

inputs exercising paths leading to

highest execution times (Worst-

Case Path or WCP)

Conditional control-flow constructs (CFC)

if

cond

true false

Cache

� Complicate Analysis

�In the general case only a

subset of the branches of a

CFC are going to be captured

in the observations

� Impact of the unobserved

branches:

6 Madrid, Spain 11 July 2014

ET

Cache

state
branches:

� May be longer execution time

that observed branches

� May leave the stateful resources (e.g. cache) in a worse state than

observed branches � longer Exec. Time of following code

PUB solution

� Path Upper-Bounding (PUB)

� Relaxes the input requirement from user:

- No need to provide input vectors exercising WCP

- Required to have loop iteration bounds (already a hard problem)

� Provides a pWCET estimate that upper-bounds any path, even

when input vectors don’t exercise WCP

7 Madrid, Spain 11 July 2014

� Simplifies Timing Analysis and broadens applicability of MPBTA

How?

� How:

� Creating an

extended version

of the original

program for

analysis

8 Madrid, Spain 11 July 2014

� Unmodified

program is used

for deployment

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

9 Madrid, Spain 11 July 2014

� Conclusion

Measurement-Based PTA

� PTA aims at reducing dependence of software timing

behaviour on execution history

� How is this done:

�Selectively introduces randomisation into the timing behaviour of

the hardware and/or software [1]

- Jittery resources with high impact on pWCET and hard-to-track state are

randomised (e.g. cache)

�Control of input-data dependent jitter�Control of input-data dependent jitter

�Functional behaviour is left unchanged

� MBPTA

� Collects execution time of end-to-end runs (observations)

� Applying Extreme Value Theory (EVT)

10 Madrid, Spain 11 July 2014

[1] Kosmidis et al, Measurement-Based Probabilistic Timing Analysis to Buffer Resources, WCET 2013

Measurement-Based PTA Requirements

� MBPTA requirements:

� Inherited from EVT:

- Observations have to be modeled by independent and identically

distributed (i.i.d.) random variables [1]

� Its own requirements [2]

- At analysis time events affecting execution time need to match or upper-

bound deterministically or probabilistically those events at deployment

� No need to compute that probability [2], unlike SPTA that requires it� No need to compute that probability [2], unlike SPTA that requires it

[1] L. Cucu et al, Measurement-Based Probabilistic Timing Analysis for Multi-path Programs, ECRTS 2012

[2] F. Cazorla et al, Upper-bounding program execution time with extreme value theory,” in WCET 2013

11 Madrid, Spain 11 July 2014

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

12 Madrid, Spain 11 July 2014

� Conclusion

MBPTA and Time Randomised caches

�Time-Randomised (TR) Caches [1]

� Implement Random-Placement and Random-Replacement

� Provide a probability for each access to be a hit/miss

� Decouple addresses from placement and replacement

�TR caches provide some properties

� Next we review them and show how to use them� Next we review them and show how to use them

� Those properties do not necessarily hold for time-deterministic

caches

13 Madrid, Spain 11 July 2014

[1] Kosmidis et al, A Cache design for Probabilistically Analysable Real-Time Systems, DATE 2013

Theorem 1

� Given an Instruction Sequence (IS) the introduction of any

access at any point of the sequence increases its pET.

IS1 = A B C B … F

IS2 = A B X C B … F

pET(IS2) >= pET(IS1)

14 Madrid, Spain 11 July 2014

pET(IS1)

pET(IS2)

Theorem 1 (cnt’d)

Intuition:

- If X is a hit, pET increases by a hit latency. Cache state remains the same.

- If X is a miss, pET increases by a miss latency. Perhaps later X’, which was

a miss, becomes a hit. Overall, pET increases at least by a hit latency.

IS1 = A B C B … F

IS2 = A B X C B … F

� (Probabilistic) cache state (PCS) after executing IS1 and

IS2 differ due to access to X

� For the sake of this presentation assume that program finishes

� Proof showing that extra accesses increase pET despite effects in

PCS also in the paper

15 Madrid, Spain 11 July 2014

a miss, becomes a hit. Overall, pET increases at least by a hit latency.

Proof in the paper

� Create a sequence ISPUBam so that

� pET(ISPUBam) >= pET(ISleft), and

� pET(ISPUBam) >= pET(ISright)

� Straightforward solution

� ISPUBam = ISleft U Isright

� In the example: ISPUB = A B C D E

Theorem 1 and CFC Upper-Bounding
if

cond

true false

A

B

C

D

EISleft

ISright

� In the example: ISPUB = A B C D E

� Based on Theorem 1, it does not

matter actual path executed

� pET through both paths upperbounds

both original paths

16 Madrid, Spain 11 July 2014

if

cond

true false

A

B

C

D
E

A
B
C
D

E

ISPUBam

ISPUBam

� PUBam (address merging)

� No need to replicate all code

� ISPUBam must include both ISleft and ISright

� Identify repeated sequences in ISleft and ISright and avoid

replicating them

� They are already replicated across paths

Refining PUBam

� They are already replicated across paths

17 Madrid, Spain 11 July 2014

PUBam example

if cond

true false

A
B

C
D

A

C
F

�Identify the longest

common access pattern

18 Madrid, Spain 11 July 2014

D

A

C
E

F

G

C
H

PUBam example

if cond

true false

A
B

C
D

A

C
F

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

19 Madrid, Spain 11 July 2014

D

A

C
E

F

G

C
H

PUBam example

if cond

true false

A
B

C
D

A
B

C
F

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

20 Madrid, Spain 11 July 2014

D

A

C
E

F

G

C
H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

21 Madrid, Spain 11 July 2014

D

A

C
E

D

A

F

G

C
H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

22 Madrid, Spain 11 July 2014

D

A

C
E

D

A

F

G

C
H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

23 Madrid, Spain 11 July 2014

D

A

C
E

D

A

F

G

C
E

H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

24 Madrid, Spain 11 July 2014

D

A

C
E

D

A

F

G

C
E

H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

25 Madrid, Spain 11 July 2014

D

A

F

G

C
E

D

A

F

G

C
E

H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

26 Madrid, Spain 11 July 2014

D

A

F

G

C
E

D

A

F

G

C
E

H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

27 Madrid, Spain 11 July 2014

D

A

F

G

C
E

H

D

A

F

G

C
E

H

PUBam example

if cond

true false

A
B

C
D

A
B

C
D

�Identify the longest

common access pattern

�Introduce the non

common accesses to

each path, preserving

their relative ordering

28 Madrid, Spain 11 July 2014

D

A

F

G

C
E

H

D

A

F

G

C
E

H

Different Control Flow Structures

� If-then:

� Same process, assuming that the false branch is empty

� Switch (if-then-elsif-…-elsif):

� More than 2 branches, apply the process for each branch

� ISPUBam must upper-bound ALL paths

� Nested Conditionals:

� Apply recursively starting from the inner most branch� Apply recursively starting from the inner most branch

� Function calls in conditionals:

� Dummy function accessing the same addresses or

� PUB Address Aging

� If the function is called with the same inputs, assume it as

common pattern

29 Madrid, Spain 11 July 2014

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

30 Madrid, Spain 11 July 2014

� Conclusion

Experimental Setup

� LEON 4-like pipelined processor

� Time-randomised Instruction and Data caches

� 8KB, 8 way set-associative, 16b line size

� Hit latency 1 cycle, miss penalty 100 cycles

� Write-back data cache, dirty evictions cause pipeline stall

� Malardalen and EEMBC automotive benchmarks� Malardalen and EEMBC automotive benchmarks

� For some benchmarks we know the worst case input vectors:

- Malardalen: bs, cnt, insertsort, fir, edn, matmult, janne, cover, fdct,

fibcall, jfdctint, lcdnum, prime

� PUBam with standard MBPTA methodology [1]

31 Madrid, Spain 11 July 2014

[1] L. Cucu et al, Measurement-Based Probabilistic Timing Analysis for Multi-path Programs, ECRTS 2012

Results

� Impact on Code Size

1.2

1.4

1.6

1.8

2.0

2.2

N
o

rm
a
li

z
e
d

 c
o

d
e
 s

iz
e

No CFCs or fully

balanced

32 Madrid, Spain 11 July 2014

1.0

1.2

a
2
ti
m

e

a
if
ft

r

a
if
ir
f

a
iif

ft

c
a
c
h
e
b

iir
fl
t

m
a
tr

ix

p
n
tr

c
h

p
u
w

m
o
d

rs
p
e
e
d

tb
lo

o
k

a
d
p
c
m

c
rc

fa
c

n
s

re
c
u
rs

io
n

b
s

c
n
t

in
s
e
rt

s
o
rt fi
r

e
d
n

m
a
tm

u
lt

ja
n
n
e

c
o
v
e
r

fd
c
t

fi
b
c
a
ll

jf
d
c
ti
n
t

lc
d
n
u
m

p
ri
m

e

E
E

M
B

C

M
ä
la

rd
a
le

n

EEMBC Mälardalen AVG

N
o

rm
a
li

z
e
d

 c
o

d
e
 s

iz
e

balanced

Results

� Impact on Code Size

1.2

1.4

1.6

1.8

2.0

2.2

N
o

rm
a
li

z
e
d

 c
o

d
e
 s

iz
e

33 Madrid, Spain 11 July 2014

1.0

1.2

a
2
ti
m

e

a
if
ft

r

a
if
ir
f

a
iif

ft

c
a
c
h
e
b

iir
fl
t

m
a
tr

ix

p
n
tr

c
h

p
u
w

m
o
d

rs
p
e
e
d

tb
lo

o
k

a
d
p
c
m

c
rc

fa
c

n
s

re
c
u
rs

io
n

b
s

c
n
t

in
s
e
rt

s
o
rt fi
r

e
d
n

m
a
tm

u
lt

ja
n
n
e

c
o
v
e
r

fd
c
t

fi
b
c
a
ll

jf
d
c
ti
n
t

lc
d
n
u
m

p
ri
m

e

E
E

M
B

C

M
ä
la

rd
a
le

n

EEMBC Mälardalen AVG

N
o

rm
a
li

z
e
d

 c
o

d
e
 s

iz
e

Up to 6 CFCs

Results

� Impact on Code Size

1.2

1.4

1.6

1.8

2.0

2.2

N
o

rm
a
li

z
e
d

 c
o

d
e
 s

iz
e

34 Madrid, Spain 11 July 2014

1.0

1.2

a
2
ti
m

e

a
if
ft

r

a
if
ir
f

a
iif

ft

c
a
c
h
e
b

iir
fl
t

m
a
tr

ix

p
n
tr

c
h

p
u
w

m
o
d

rs
p
e
e
d

tb
lo

o
k

a
d
p
c
m

c
rc

fa
c

n
s

re
c
u
rs

io
n

b
s

c
n
t

in
s
e
rt

s
o
rt fi
r

e
d
n

m
a
tm

u
lt

ja
n
n
e

c
o
v
e
r

fd
c
t

fi
b
c
a
ll

jf
d
c
ti
n
t

lc
d
n
u
m

p
ri
m

e

E
E

M
B

C

M
ä
la

rd
a
le

n

EEMBC Mälardalen AVG

N
o

rm
a
li

z
e
d

 c
o

d
e
 s

iz
e

66 CFCs and

frequent nesting

Results

� Impact on pWCET with respect to MBPTA with user

provided input vectors

1.1

1.2

1.3

1.4

1.5

N
o

rm
a
li
z
e
d

 p
W

C
E

T
 (

e
x
c
e
e
d

a
n

c
e
 1

0
 e

-1
5
)

worst-case path

35 Madrid, Spain 11 July 2014

1.0

1.1

a
2
ti
m

e

a
if
ft

r

a
if
ir
f

a
iif

ft

c
a
c
h
e
b

iir
fl
t

m
a
tr

ix

p
n
tr

c
h

p
u
w

m
o
d

rs
p
e
e
d

tb
lo

o
k

a
d
p
c
m

c
rc

fa
c

n
s

re
c
u
rs

io
n

b
s

c
n
t

in
s
e
rt

s
o
rt fi
r

e
d
n

m
a
tm

u
lt

ja
n
n
e

c
o
v
e
r

fd
c
t

fi
b
c
a
ll

jf
d
c
ti
n
t

lc
d
n
u
m

p
ri
m

e

E
E

M
B

C

M
ä
la

rd
a
le

n

EEMBC Mälardalen AVG

N
o

rm
a
li
z
e
d

 p
W

C
E

T
 (

e
x
c
e
e
d

a
n

c
e
 1

0
 e

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

36 Madrid, Spain 11 July 2014

� PUBaa

� Conclusion

PUBam Inefficiency

switch

cond

Case 1 Case 10

A[0]

B[0]

A[9]

B[9]
A[5]

B[5]

Case 4

… … …

�PUBam is inneficient

with CFCs with many

branches and different

accesses in each

branch

…

37 Madrid, Spain 11 July 2014

……

�PUBam is inneficient

with CFCs with many

branches and different

accesses in each

branch

PUBam Inefficiency

switch

cond

Case 1 Case 10

A[0]

B[0]

A[1]

B[1]

A[0]

B[0]

A[1]

B[1]

A[0]

B[0]

…

A[5]

Case 4

… … … …

High Overhead compared to the original

branches!

38 Madrid, Spain 11 July 2014

B[1]

…

A[9]

B[9]

…

A[9]

B[9]

A[5]

B[5]

…

A[9]

B[9]

……

branches!

Theorem 2

� Given an instruction sequence (IS), if any access is

replaced by a unique access (U), the pET of the new

sequence can only increase (or remain the same)

� Unique access: a unique access causes a miss and does not

bring any benefit (e.g., its data are never reused)

IS1 = A B C B … F

pET(IS) >= pET(IS)

39 Madrid, Spain 11 July 2014

IS2 = A B U B … F

pET(IS2) >= pET(IS1)

Theorem 2 (cnt’d)

Intuition:

- If access replaced C is a hit, pET increases as we replace a hit by a miss. U

does not bring any benefit for later instructions

- If access replaced C is a miss, pET remains the same. U does not bring

IS1 = A B C B … F

IS2 = A B U B … F

40 Madrid, Spain 11 July 2014

- If access replaced C is a miss, pET remains the same. U does not bring

any benefit for later instructions.

Proof in the paper

PUBaa (address aging)

switch

cond

Case 1 Case 10

A[0]

B[0]

A[9]

B[9]
A[5]

B[5]

Case 4

… … …

�According to Theorem

2 now all paths upper-

bound all paths in the

original code

�But they do not have

…

U1

U2

U1

U2

U1

U2

41 Madrid, Spain 11 July 2014

�But they do not have

their original

functionality

� Apply Theorem 1 to add

accesses back
……

�Based on Theorem 1

original accesses are

added

PUBaa (address aging)

switch

cond

Case 1 Case 10

A[0]

B[0]

U1

U2

A[9]

B[9]

U1

U2

A[5]

B[5]

U1

U2

Case 4

… … … …

�All paths upper bound

all original paths

42 Madrid, Spain 11 July 2014

U2 2U2

……

Comparison of PUB variants

�PUBam

Efficient with CFCs with few paths: if-then-else, if-then

� Few accesses

� Similar accesses in each branch

� High imbalance

�PUBaa

� Efficient when paths in CFC are many (switch statements)� Efficient when paths in CFC are many (switch statements)

43 Madrid, Spain 11 July 2014

Orthogonal and complementary to

each other!

Implementation

� PUBam: Introduced code must not modify the functionality

of the program or generate any exceptions

� Introduce loads to a non-modifiable register (r0 in SPARC/MIPS)

or

� Use any free register

� PUBaa: Unique accesses� PUBaa: Unique accesses

� Non-repeated accesses to a dummy data structure or

� HW support: instruction that always misses and fetches nothing

44 Madrid, Spain 11 July 2014

Implementation

� Core latency:

� Leon4 like processor, with fixed core-instruction latency

� Paths are also balanced with the core instructions from other

paths using a non-modifiable register for result

� Code Alignment:

� Keep same cache-line alignment during balancing paths� Keep same cache-line alignment during balancing paths

� Reuse-distance is affected by cache line size

� Size of inserted code is exact multiple of cache line size

� PUB solution for instruction caches described in the paper

� Relies mostly on Theorem 1

� Reuses code introduced by PUBam and PUBaa to reduce its

overhead

45 Madrid, Spain 11 July 2014

Outline

� Motivation and problem description

� Introduction to MBPTA

� Time Randomised Caches and associated properties

� PUB

� Results

46 Madrid, Spain 11 July 2014

� PUBaa

� Conclusion

Conclusions

� Traditional MBPTA is based on user provided input vectors

to determine pWCET

� In this paper we propose PUB

� Builds on properties of Time-Randomised Caches

� Upper-bounds the execution time of all program paths, using with

a single input-vector

� Creates an extended version of the program, which works on top

of the traditional MBPTAof the traditional MBPTA

� The unmodified binary is used for deployment

� 5% and 11% slowdown on average compared to pWCET

computed with MBPTA for Malardalen and EEMBC.

47 Madrid, Spain 11 July 2014

PUB: Path Upper-Bounding for
Measurement-Based Probabilistic Timing Analysis

This project and the research leading to these results

has received funding from the European

Community’s Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

www.proxima-project.eu

Measurement-Based Probabilistic Timing Analysis

Leonidas Kosmidis, Jaume Abella, Franck Wartel,

Eduardo Quiñones, Antoine Colin, Francisco J. Cazorla

Madrid, July 11th, ECRTS 2014

