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Motivation

� Modern Safety-Critical Real-Time Systems (CRTS) require 

more computing power

� More computational power is delivered by

� More complex SW 

� More complex HW: caches

� Worst Case Execution Time (WCET) must be derived

4 Madrid, Spain 11 July 2014

� Measurement-Based Probabilistic Timing Analysis 

(MBPTA)

� Trustworthy WCET estimates on complex hardware (e.g. multiple 

levels of caches)

� Some properties required to emanate from the HW



The problem

� Traditional MPBTA provides a 

pWCET upper-bound of exercised 

paths at analysis time

� Deriving the pWCET for the 

program � user has to provide 

inputs exercising paths leading to 

if 
cond

5 Madrid, Spain 11 July 2014

inputs exercising paths leading to 

highest execution times (Worst-

Case Path or WCP)



Conditional control-flow constructs (CFC)

if 

cond

true false

Cache

� Complicate Analysis

�In the general case only a 

subset of the branches of a 

CFC are going to be captured 

in the observations

� Impact of the unobserved 

branches:
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ET

Cache

state
branches:

� May be longer execution time 

that observed branches

� May leave the stateful resources (e.g. cache) in a worse state than 

observed branches � longer Exec. Time of following code



PUB solution

� Path Upper-Bounding (PUB)

� Relaxes the input requirement from user: 

- No need to provide input vectors exercising WCP

- Required to have loop iteration bounds (already a hard problem)

� Provides a pWCET estimate that upper-bounds any path, even 

when input vectors don’t exercise WCP
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� Simplifies Timing Analysis and broadens applicability of MPBTA



How?

� How:

� Creating an 

extended version 

of the original 

program for 

analysis
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� Unmodified 

program is used 

for deployment
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Measurement-Based PTA

� PTA aims at reducing dependence of software timing 

behaviour on execution history

� How is this done:

�Selectively introduces randomisation into the timing behaviour of 

the hardware and/or software [1]

- Jittery resources with high impact on pWCET and hard-to-track state are 

randomised (e.g. cache)

�Control of input-data dependent jitter�Control of input-data dependent jitter

�Functional behaviour is left unchanged

� MBPTA

� Collects execution time of end-to-end runs (observations)

� Applying Extreme Value Theory (EVT)
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[1] Kosmidis et al, Measurement-Based Probabilistic Timing Analysis to Buffer Resources, WCET 2013



Measurement-Based PTA Requirements

� MBPTA requirements:

� Inherited from EVT: 

- Observations have to be modeled by independent and identically 

distributed (i.i.d.) random variables [1]

� Its own requirements [2]

- At analysis time events affecting execution time need to match or upper-

bound deterministically or probabilistically those events at deployment

� No need to compute that probability [2], unlike SPTA that requires it� No need to compute that probability [2], unlike SPTA that requires it

[1] L. Cucu et al, Measurement-Based Probabilistic Timing Analysis for Multi-path Programs, ECRTS  2012

[2] F. Cazorla et al,  Upper-bounding program execution time with extreme value theory,” in WCET 2013
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MBPTA and Time Randomised caches

�Time-Randomised (TR) Caches [1]

� Implement Random-Placement and Random-Replacement

� Provide a probability for each access to be a hit/miss

� Decouple addresses from placement and replacement

�TR caches provide some properties

� Next we review them and show how to use them� Next we review them and show how to use them

� Those properties do not necessarily hold for time-deterministic 

caches
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[1] Kosmidis et al, A Cache design for Probabilistically Analysable Real-Time Systems, DATE 2013



Theorem 1

� Given an Instruction Sequence (IS) the introduction of any 

access at any point of the sequence increases its pET.

IS1 = A  B  C  B … F

IS2 = A  B  X C  B … F

pET(IS2) >= pET(IS1)
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pET(IS1)

pET(IS2)



Theorem 1 (cnt’d)

Intuition: 

- If X is a hit, pET increases by a hit latency. Cache state remains the same.

- If X is a miss, pET increases by a miss latency. Perhaps later X’, which was 

a miss, becomes a hit. Overall, pET increases at least by a hit latency.

IS1 = A  B  C  B … F

IS2 = A  B  X C  B … F

� (Probabilistic) cache state (PCS) after executing IS1 and 

IS2 differ due to access to X

� For the sake of this presentation assume that program finishes

� Proof showing that extra accesses increase pET despite effects in 

PCS also in the paper
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a miss, becomes a hit. Overall, pET increases at least by a hit latency.

Proof in the paper



� Create a sequence ISPUBam so that 

� pET(ISPUBam) >= pET(ISleft), and

� pET(ISPUBam) >= pET(ISright)

� Straightforward solution

� ISPUBam = ISleft U Isright

� In the example: ISPUB = A B C D E

Theorem 1 and CFC Upper-Bounding
if 

cond

true false

A

B

C

D

EISleft

ISright

� In the example: ISPUB = A B C D E

� Based on Theorem 1, it does not 

matter actual path executed

� pET through both paths upperbounds

both original paths
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if 

cond

true false

A

B

C

D
E

A
B
C
D

E

ISPUBam

ISPUBam



� PUBam (address merging)

� No need to replicate all code

� ISPUBam must include both ISleft and ISright

� Identify repeated sequences in ISleft and ISright and avoid 

replicating them

� They are already replicated across paths

Refining PUBam

� They are already replicated across paths
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PUBam example

if cond

true false

A
B

C
D

A

C
F

�Identify the longest 

common access pattern
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Different Control Flow Structures

� If-then: 

� Same process, assuming that the false branch is empty

� Switch (if-then-elsif-…-elsif): 

� More than 2 branches, apply the process for each branch

� ISPUBam must upper-bound ALL paths

� Nested Conditionals: 

� Apply recursively starting from the inner most branch� Apply recursively starting from the inner most branch

� Function calls in conditionals: 

� Dummy function accessing the same addresses or

� PUB Address Aging

� If the function is called with the same inputs, assume it as 

common pattern
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Experimental Setup

� LEON 4-like pipelined processor

� Time-randomised Instruction and Data caches

� 8KB, 8 way set-associative, 16b line size

� Hit latency 1 cycle, miss penalty 100 cycles

� Write-back data cache, dirty evictions cause pipeline stall

� Malardalen and EEMBC automotive benchmarks� Malardalen and EEMBC automotive benchmarks

� For some benchmarks we know the worst case input vectors:

- Malardalen: bs, cnt, insertsort, fir, edn, matmult, janne, cover, fdct, 

fibcall, jfdctint, lcdnum, prime

� PUBam with standard MBPTA methodology [1]
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[1] L. Cucu et al, Measurement-Based Probabilistic Timing Analysis for Multi-path Programs, ECRTS  2012



Results

� Impact on Code Size
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Results

� Impact on pWCET with respect to MBPTA with user 

provided input vectors
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PUBam Inefficiency

switch 

cond

Case 1 Case 10

A[0]

B[0]

A[9]

B[9]
A[5]

B[5]

Case 4

… … …

�PUBam is inneficient

with CFCs with many 

branches and different 

accesses in each 

branch

…
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�PUBam is inneficient

with CFCs with many 

branches and different 

accesses in each 

branch

PUBam Inefficiency

switch 

cond

Case 1 Case 10

A[0]

B[0]

A[1]

B[1]

A[0]

B[0]

A[1]

B[1]

A[0]

B[0]

…

A[5]

Case 4

… … … …

High Overhead compared to the original 

branches!
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B[1]

…

A[9]

B[9]

…

A[9]

B[9]

A[5]

B[5]

…

A[9]

B[9]

……

branches!



Theorem 2

� Given an instruction sequence (IS), if any access is 

replaced by a unique access (U), the pET of the new 

sequence can only increase (or remain the same)

� Unique access: a unique access causes a miss and does not 

bring any benefit (e.g., its data are never reused)

IS1 = A  B  C  B … F

pET(IS ) >= pET(IS )
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IS2 = A  B  U B … F

pET(IS2) >= pET(IS1)



Theorem 2 (cnt’d)

Intuition: 

- If access replaced C is a hit, pET increases as we replace a hit by a miss. U

does not bring any benefit for later instructions

- If access replaced C is a miss, pET remains the same. U does not bring 

IS1 = A  B  C  B … F

IS2 = A  B  U B … F
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- If access replaced C is a miss, pET remains the same. U does not bring 

any benefit for later instructions.

Proof in the paper



PUBaa (address aging)

switch 

cond

Case 1 Case 10

A[0]

B[0]

A[9]

B[9]
A[5]

B[5]

Case 4

… … …

�According to Theorem 

2 now all paths upper-

bound all paths in the 

original code

�But they do not have 

…

U1

U2

U1

U2

U1

U2
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�But they do not have 

their original 

functionality

� Apply Theorem 1 to add 

accesses back
……



�Based on Theorem 1 

original accesses are 

added

PUBaa (address aging)

switch 

cond

Case 1 Case 10

A[0]

B[0]

U1

U2

A[9]

B[9]

U1

U2

A[5]

B[5]

U1

U2

Case 4

… … … …

�All paths upper bound 

all original paths
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U2 2U2

……



Comparison of PUB variants

�PUBam

Efficient with CFCs with few paths: if-then-else, if-then

� Few accesses

� Similar accesses in each branch

� High imbalance

�PUBaa

� Efficient when paths in CFC are many (switch statements)� Efficient when paths in CFC are many (switch statements)
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Orthogonal and complementary to 

each other!



Implementation

� PUBam: Introduced code must not modify the functionality 

of the program or generate any exceptions

� Introduce loads to a non-modifiable register (r0 in SPARC/MIPS) 

or 

� Use any free register

� PUBaa: Unique accesses� PUBaa: Unique accesses

� Non-repeated accesses to a dummy data structure or

� HW support: instruction that always misses and fetches nothing
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Implementation

� Core latency: 

� Leon4 like processor, with fixed core-instruction latency

� Paths are also balanced with the core instructions from other 

paths using a non-modifiable register for result

� Code Alignment: 

� Keep same cache-line alignment during balancing paths� Keep same cache-line alignment during balancing paths

� Reuse-distance is affected by cache line size

� Size of inserted code is exact multiple of cache line size

� PUB solution for instruction caches described in the paper

� Relies mostly on Theorem 1

� Reuses code introduced by PUBam and PUBaa to reduce its 

overhead
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Conclusions

� Traditional MBPTA is based on user provided input vectors 

to determine pWCET

� In this paper we propose PUB

� Builds on properties of Time-Randomised Caches

� Upper-bounds the execution time of all program paths, using with 

a single input-vector

� Creates an extended version of the program, which works on top 

of the traditional MBPTAof the traditional MBPTA

� The unmodified binary is used for deployment

� 5% and 11% slowdown on average compared to pWCET

computed with MBPTA for Malardalen and EEMBC.
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