# Model Checking Process Algebra of Communicating Resources for Real-time Systems

A.Jalil Boudjadar, Jin Hyun Kim, Kim. G. Larsen, Ulrik Niman CISS, Alborg University {jalil, jin, klg, ulrik}@cs.aau.dk





#### Contents

- Introduction
- PACoR (Process Algebra of Communicating Resources)
  - Syntax
  - Timed Operational Semantics
- Analysis
  - gPACoR
  - Parameterized Stopwatch Automata
- Examples
- Conclusions



# How can we make the system "The brstatis fy not only time braking should react" requirements but also resource 500ms constraints? **REAL-TIME SYSTEMS**



### Context (cont'd)

- Process Algebra, e.g. CCS, CSP,
  - Rigorous analysis method for concurrent behaviors and communicating systems

For real-time systems (RTS),
 ACSR, mCRL2, Timed CSP, tock CSP...



## Context (cont'd)

- Algebra of Communicating Shared
   Resources (ACSR)
  - Expressive to capture resourceconstrained aspect of RTS as well as timing requirements,
- However, ACSR
  - Not supported by advanced analysis methods.

### Contributions

- A new process algebra, called PACoR, for RTS, extending ACSR,
  - Oriented to resource-constrained aspects of RTS,

 Translation rules from PACoR to Uppaal models



## Contributions (cont'd)

## PACoR

Enables to use both symbolic and statistical model checker using the same models.

• to answer qualitative and quantitative questions, such as schedulability and worst-case response time, and so on,



# PACoR: Process Algebra of Communicating Resources

:scheduled by priorities for shared resources

:Instantaneous



#### **Timed Actions**



#### PACoR vs ACSR

|                                   | Attribute                         | ACSR   | PACoR                      |  |
|-----------------------------------|-----------------------------------|--------|----------------------------|--|
| Timed Action                      | Non-preemptable and<br>Urgent     | Yes    | Yes                        |  |
|                                   | Preemptable and No Non-urgent     |        | Yes                        |  |
|                                   | Non-Preemptable and<br>Non-urgent | No     | Yes                        |  |
| Process Creation<br>& Termination |                                   | Static | Static &<br><b>Dynamic</b> |  |
| Verification                      |                                   | No     | Uppaal &<br>Uppaal SMC     |  |

**U D S** S

#### ACSR: ACSR Dense-Time

#### **PACoR : Syntax**





- Two tasks, T<sub>1</sub> and T<sub>2</sub>, execute jobs using shared resource cpu with the following attributes:
  - *T*<sub>1</sub> (5, 2, 5)
  - *T*<sub>2</sub>(10, 3, 7)
- \* T( period, wcet, deadline )



#### Example



Timed Transition System (TTS):

A timed transition system over an alphabet  $\Sigma$  is a tuple  $\langle S, S^0, \rightarrow \rangle$  where S is a set of states,  $S^0 \subseteq S$  is the set of initial states and  $\rightarrow \subseteq S \times \Sigma \times \{\tau\} \cup \mathbb{R}_{\geq 0} \times S$  is the transition relation.

Event Actions

$$P \stackrel{def}{=} E.P$$

$$\frac{Ident(P) := Ident(E.P)}{\langle E.P, x, \mathrm{ID} \rangle \xrightarrow{\mathcal{E}} \langle P, x, \mathrm{ID} \rangle}$$



Timed Actions

$$P \stackrel{def}{=} \mathcal{A}^{[l,u]} : P$$

$$\frac{m \in \mathbb{R}_{\geq 0}, \ l \leq m \leq u, \ Ident(P) := Ident(\mathcal{A}^{[l,u]} : P)}{\langle \mathcal{A}^{[l,u]} : P, x, \mathrm{ID} \rangle \xrightarrow{\mathcal{A}} \langle P, x + m, \mathrm{ID} \rangle}$$

#### Note: x is the global clock

**L D 5** 5

#### E-choiceL

$$P \stackrel{def}{=} E.P_1 + P_2$$

$$\frac{Ident(P_1) := Ident(E.P_1 + P_2)}{\langle E.P_1 + P_2, x, \mathrm{ID} \rangle \xrightarrow{E} \langle P_1, x, \mathrm{ID} \rangle}$$



A-choiceL

$$P \stackrel{def}{=} \mathcal{A} : P_1 + P_2$$

$$\frac{m \in \mathbb{R}_{\geq 0}, \ Ident(P_1) := Ident(\mathcal{A}^{[l,u]} : P_1 + P_2)}{\langle \mathcal{A}^{[l,u]} : P_1 + P_2, x, \mathrm{ID} \rangle \xrightarrow{\mathcal{A}} \langle P_1, x + m, \mathrm{ID} \rangle}$$

**L D 5** 5

E-sync

 $P \stackrel{def}{=} E.P_1 \| \overline{E}.P_2 \|$ 

## $\langle E.P_1 \| \overline{E}.P_2, x, \mathrm{ID} \rangle \xrightarrow{\tau} \langle P_1 \| P_2, x, \mathrm{ID} \rangle$



E-async

 $P \stackrel{def}{=} E.P_1 || P_2$ 

# $\langle E.P_1 \| P_2, x, \mathrm{ID} \rangle \xrightarrow{E} \langle P_1 \| P_2, x, \mathrm{ID} \rangle$



A-sync

$$P \stackrel{def}{=} \mathcal{A}_1 : P_1 \| \mathcal{A}_2 : P_1, \quad \rho(\mathcal{A}_1) \cap \rho(\mathcal{A}_1) = \emptyset$$

$$\frac{\rho(\mathcal{A}_1) \cap \rho(\mathcal{A}_2) = \emptyset, m = max_t(\mathcal{A}_1, \mathcal{A}_2)}{\langle \mathcal{A}_1 : P_1 \| \mathcal{A}_2 : P_2, x, \mathsf{ID} \rangle \xrightarrow{\mathcal{A}_1 \cup \mathcal{A}_2} \langle P_1 \| P_2, x + m, \mathsf{ID} \rangle}$$

Note :  $max_t()$  is the maximum execution time of an action (set of actions) that may also include delays caused by preemption, depending on the action deadline



- A-async
  - $P \stackrel{def}{=} \mathcal{A}_1 : P_1 \| \mathcal{A}_2 : P_2, \quad \rho(\mathcal{A}_1) \cap \rho(\mathcal{A}_1) \neq \emptyset$

 $\{(r,1)\}: P_1 \parallel \{(r,2)\}: P_2$ 



Priority relation:

Given two actions  $\alpha$  and  $\beta$  we say that  $\beta$  has priority over  $\alpha$  denoted by  $\alpha \prec \beta$ , if one of the following cases holds:

- 1)  $\alpha \in DR$  and  $\beta \in DE$
- 2) Both  $\alpha$  and  $\beta$  are actions in  $D_R$ , where

 $\forall r \in \rho(\beta) \cap \rho(\alpha), \ (r,p) \in \alpha \land (r,p') \in \beta \Rightarrow p < p'$ 



Priority relation

 $\{(\mathbf{r}_1, 2)\} \prec \{(r_1, 7)\}$  $\{(\mathbf{r}_1, 2), (\mathbf{r}_2, 0)\} \prec \{(\mathbf{r}_1, 7)\}$  $\{(\mathbf{r}_1, 2), (r_2, 5)\} \prec \{(r_2, 7), (r_3, 5)\}$  $\{(\mathbf{r}_1, 2), (r_2, 5)\} \not\prec \{(r_1, 7), (r_2, 3)\}$  $\{(\mathbf{r}_1,3),(r_2,3),(r_3,1)\} \not\prec \{(r_1,1),(r_2,1),(r_3,1)\}$ 

- A-async
  - $P \stackrel{def}{=} \mathcal{A}_1 : P_1 \| \mathcal{A}_2 : P_2, \quad \rho(\mathcal{A}_1) \cap \rho(\mathcal{A}_1) \neq \emptyset$

# $\frac{\rho(\mathcal{A}_1) \cap \rho(\mathcal{A}_2) \neq \emptyset, \neg(\mathcal{A}_1 \prec \mathcal{A}_2)}{\langle \mathcal{A}_1 : P_1 \| \mathcal{A}_2 : P_2, x, \mathrm{ID} \rangle \xrightarrow{\mathcal{A}_1} \langle P_1 \| \mathcal{A}_2 : P_2, x + m, \mathrm{ID} \rangle}$



#### Example

A-async

 $P \stackrel{def}{=} \mathcal{A}_1 : P_1 \| \mathcal{A}_2 : P_2, \quad \rho(\mathcal{A}_1) \cap \rho(\mathcal{A}_1) \neq \emptyset$ 



**L D 5** 5

Close

$$\{(r,3)\}^{[1,3]} : P_1 + \{\}^{[1,2]} : P_2$$
$$\{(r,3)\}^{[1,3]} \qquad \{\}^{[1,2]}$$
$$P_1 \qquad P_2$$



#### Close



Restrict





#### TTS Restriction (Def 3.4)





Scope Operator for Timed Action



Scope Operator for Timed Action



Scope Operator for Timed Action





Scope Operator for Timed Action

 $P^{[l,u]} \triangle (n, P_t, P_e) : P_1$  $P_e$ 



#### Analysis





#### The Graphical PACoR

| Rule | PACoR                                          | gPACOR                                                                                   |
|------|------------------------------------------------|------------------------------------------------------------------------------------------|
| 1    | $P \stackrel{def}{=} P'$                       | $P \longrightarrow P'$                                                                   |
| 2    | $P \stackrel{def}{=} \mathcal{A}^{[l,u]} : P'$ | $P \xrightarrow{\mathcal{A}} \underbrace{x \leq u}_{x \leq u} \xrightarrow{x \leq l} P'$ |
| 3    | $P \stackrel{def}{=} \mathcal{E}.P'$           | $P \xrightarrow{\mathcal{E}} P'$                                                         |
| 4    | $P \stackrel{def}{=} P_1 + P_2$                | $P \longrightarrow P_{1}$                                                                |
| 5    | $P \stackrel{def}{=} P_1 \parallel P_2$        | $P \xrightarrow{P_1}$                                                                    |

| Rule | PACoR                                                              | gPACOR                                                                                                          |
|------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 6    | $P \stackrel{def}{=} \mathcal{A}^{[l,u]} \Delta(n, P_t, P_e) : P'$ | $P \xrightarrow{X \leq l} P'$ $P \xrightarrow{X \leq u \&\& y \leq n} P_t$ $P_e$                                |
| 7    | $P \stackrel{def}{=} \mathcal{E}\nabla(n, P_t, P_e).P'$            | $\begin{array}{c} \mathcal{E} & \mathcal{P}' \\ \hline \mathcal{P} & \mathcal{P} & \mathcal{P}_{e} \end{array}$ |
| 8    | $[P] \stackrel{def}{=} \mathcal{A}^{[l,u]} : P'$                   | $[P] \xrightarrow{\mathcal{A}} \xrightarrow{x \leq l} [P']$                                                     |

LI



#### **Parameterized Stopwatch Automata**



clock x, y



#### Translation



#### **Translation**



#### **Example: Train Platform System (TPS)**





#### **TPS: PACoR Specification**

$$\begin{split} System &\stackrel{def}{=} [TrnReqP_{1,pri_{1}} \parallel TrnReqP_{2,pri_{2}} \parallel ... \parallel TrnReqP_{T,pri_{T}}]_{\{seg_{j}\}} & 1 \leq j \leq Seg \\ TrnReqP_{i,k} &\stackrel{def}{=} \\ & \emptyset^{\infty} \triangle (wt, TrnReqP_{i,k+1}, \sum_{j=1}^{Seg} \langle (seg_{j},k) \rangle^{[0,st]} : TrnLeaveP_{j,i}) : NIL \\ TrnLeaveP_{j,i} &\stackrel{def}{=} \\ & \emptyset^{mt} : TrnArvl_{i} \\ & TrnArvl_{i} & \stackrel{def}{=} \\ \end{split}$$

## TPS: PACoR Specification (cont'd)



#### TPS: PACoR Specification (cont'd)





# Deadlock freedom (using Uppaal MC) A[] not deadlock





Maximum waiting time (using Uppal SMC)

E[<=simTime;simCount](max:waitTime[i])</pre>



#### **TPS: Analysis**

#### The maximum waiting time with st = 10 5 and wt = 10

|   | Case $_{I}$ (Seg = 2) |                  | Case 2 ( $Seg = 2$ ) |                  | Case 3 ( $Seg = 3$ ) |                 |
|---|-----------------------|------------------|----------------------|------------------|----------------------|-----------------|
| i | $pri_i$               | Wait Time        | $pri_i$              | Wait Time        | $pri_i$              | Wait Time       |
| 1 | 1                     | $14.14 \pm 0.22$ | 5                    | 8.04±0.12        | 5                    | 4.13±0.13       |
| 2 | 1                     | $14.22 \pm 0.22$ | 4                    | $9.42 \pm 0.14$  | 4                    | $4.40 \pm 0.15$ |
| 3 | 1                     | $14.16 \pm 0.22$ | 3                    | $11.76 \pm 0.16$ | 3                    | $4.61 \pm 0.15$ |
| 4 | 1                     | $14.34 \pm 0.23$ | 2                    | $14.41 \pm 0.19$ | 2                    | $7.67 \pm 0.10$ |
| 5 | 1                     | $14.20 \pm 0.22$ | 1                    | $20.94 \pm 0.31$ | 1                    | $9.15 \pm 0.08$ |





### Conclusions

- RTS is a time and resource constrained system,
- For the rigorous analysis, this paper presents
  - A new formalism, PACoR,
  - Translation rules for the analysis using Uppaal and Uppaal SMC

#### Conclusions

#### PACoR

- Rigorous and complete specification of various scheduling systems
- Supported by Uppaal tools to answer to qualitative and quantitative qualities of RTS, such as schedulability, and worstcase response time (WCRT), and so on, using the same model.





