

Exact Interference of Adaptive Variable-Rate Tasks Under Fixed-Priority Scheduling

Alessandro Biondi, Alessandra Melani, Mauro Marinoni, Marco Di Natale, Giorgio Buttazzo

Engine control applications are composed by Engine-triggered tasks linked to the rotation of the crankshaft

Engine-triggered tasks

<u>In general:</u>

The task activation is triggered at specific rotation angles

Engine-triggered tasks – single activation per revolution

High variability of the inter-arrival time

 $T^{max} = 120 \text{ ms} - T^{min} \sim = 10 \text{ ms}$

Suppose a fixed WCET C

To prevent **overload** at high rates, certain task functions are disabled after given speeds

Real-Time Systems Laborator

Adaptive Variable-Rate Tasks

Adaptive Variable-Rate Tasks

Adaptive Variable-Rate Tasks

The AVR task implements a number of execution modes

AVR Tasks: Dynamic condition

Engine-triggered tasks – **Dynamic** condition

AVR Tasks: Dynamic condition

□ Acceleration $\alpha \in [\alpha_{max}; \alpha_{min}]$, with $\alpha_{min} \leq 0$

Related Work

Kim, Lakshmanan, and Rajkumar @ ICCPS 2012 Preliminary work on a simplified model

Pollex et al. @ DATE 2013 Sufficient analysis with constant speed

Buttazzo, Bini and Buttle @ DATE 2014 Analysis in dynamic condition under EDF

Davis et al. @ RTAS 2014

Sufficient analysis in dynamic condition under FP using ILP programming and quantization on the speed domain

Our work

Concentrate on a single AVR Task release at TDC (one trigger per revolution);

We studied the problem of deriving the exact worst-case interference of an AVR Task

Characterize the worst-case computational request in function of the engine dynamics (i.e., evolution of the speed by accelerations/decelerations).

Critical Instant

Potentially infinite critical instants: one for each instantaneous engine speed w₀ at which occurs;

The interference depends on the engine dynamic starting from ω₀.

Job Releases

 ω_0

 $\alpha_{max}[\omega_0] \dots \alpha_2[\omega_0] \alpha_1[\omega_0] \quad \boldsymbol{\omega}_0 \quad \alpha_{-1}[\omega_0] \alpha_{-2}[\omega_0] \dots \alpha_{-max}[\omega_0]$

v'a max wooden a de ma de for the former of the former of

AND SO ON...

... until the end of the interference time window

Job Releases

 $\boldsymbol{\omega}_{0}$

 $\alpha_{max}[\omega_0] \dots \alpha_2[\omega_0] \alpha_1[\omega_0] \quad \boldsymbol{\omega}_0 \quad \alpha_{-1}[\omega_0] \alpha_{-2}[\omega_0] \dots \alpha_{-max}[\omega_0]$

vanax wooden a fille and the state of the st

We are interested in the maximum interference of all this possible jobs

Brute-Force Approach

Brute-Force Approach

20

Brute-Force Approach

□ Interference(ω_0 , C, time)

Requires a complete visit of the tree;

Very expensive in terms of computational complexity, intractable for most practical uses;

Based on quantization.

- Our approach: derive pruning rules to significantly reduce the search complexity;
- We note that only a finite set of critical job releases must be taken into account to derive the maximum interference.

ω

22

anne and an and a state of a section of the section

Real-Time Systems Laborator

Theorem 1- dominance on single-job interference

If $\omega_a \ge \omega_b$ and $C(\alpha_{min}[\omega_a]) = C(\alpha_{min}[\omega_b])$

Pruning of Job Sequences

Pruning of Job Sequences

Pruning of Job Sequences

Theorem 2- dominance on the sub-tree

If $\omega_a \geq \omega_b$ and $C(\alpha_{min}[\omega_a]^n) = C(\alpha_{min}[\omega_b]^n) \ \forall n \in \mathbb{N}$

Then $I_{\omega_a}(t) \ge I_{\omega_b}(t) \ \forall t$

It allows to construct an algorithm to prune entire sub-trees, reducing the search domain

Real-Time Systems Laboratory

- Performance Compute the interference of an AVR task with 6 modes over a time window of 100ms
- Implementation as MATLAB scripting

```
Brute-force: ~1 hour;
```

Pruning-based algorithm: a few seconds.

Dominant Speeds

- Recall: Potentially infinite critical instants: one for each instantaneous engine speed w₀ at which occurs;
- \Box We have a search tree for each initial speed ω_0
- Thanks to Theorem 2 we are able to identify a limited set of dominant initial speeds

No quantization;

Further improvements in terms of complexity.

Experimental Results

Comparison with the sufficient ILP-based method proposed by Davis et al. in RTAS 2014;

AVR Task from an application provided in the context of the INTERESTED EU project.

Initial speed (rpm)

Acknowledgements

Thanks to Rob Davis, Timo Feld, Victor Pollex, and Frank Slomka for the interesting and fruitful discussions that helped to improve both this and their work.

Conclusion

- We studied AVR Tasks including engine dynamics;
- We proposed a method to compute an exact characterization of the worst-case interference of an AVR Task
 - Pruning rules;
 - Dominant initial speeds.

Thank you!

Alessandro Biondi alessandro.biondi@sssup.it

