

Jaume Abella^{1,4}, <u>Damien Hardy</u>², Isabelle Puaut², Eduardo Quinones^{1,4}, <u>Francisco J. Cazorla</u>^{1,3,4}

26th Euromicro Conference on Real-Time Systems (ECRTS14) 8-11 July Madrid, Spain

BACK IN ECRTS 2013 CONFERENCE

I have an argument about this WCET approach

I have a contraargument

I have another argument

I argue on your argument

Timing Validation

- Critical step in the design of a real-time system
 - WCET estimates derived per task (Unit of Scheduling)
 - Task WCET estimate given as an input to schedulability analysis
- Classification of existing WCET estimation techniques:
 - Deterministic Timing Analysis (DTA) vs
 Probabilistic Timing Analysis (PTA)
 - Static vs Measurement-Based

DTA and PTA

- Deterministic Timing Analysis (DTA)
 - Single WCET estimate
 - Designed primarily for deterministic HW/SW
- Probabilistic Timing Analysis (PTA)
 - Multiple WCETs with an associated probability (probabilistic WCET or pWCET)
 - HW/SW designs: deterministic and randomised
- DTA and PTA have their static and measurement based variants

Varian	7	DTA	РТА
Static		SDTA	SPTA
Measuren based	nent	MBDTA	MBPTA 5

Comparison

- Difficult so far:
 - PTA still in its infancy
 - Each approach (DTA and PTA) performs better on a different hardware design
- Our goal: Carry out the first comparison between DTA and PTA
 - No apocalyptic take-out message
 - 'This will never work'
 - Qualitative
 - Strengths and limitations of each technique
 - Sensitivity to different parameters
 - Quantitative
 - Common setup in which all methods are applicable

Considered hardware

- Fixed execution latency but the instruct. cache
- Cache structured into sets and ways
 - Placement: Defines the possible set in cache
 - Replacement: Defines which block will be evicted

Considered hardware

- Cache structure: Fully-assoc., Set-Associative
- Placement: Deterministic (modulo) vs randomized
- Replacement policy: Deterministic (LRU) vs randomized (Evict on Miss, EoM)

Cache short names		Placement		
		Mod	Rand	
cement	LRU	Time Det. (TD)	No quan titative results	
Replace	EoM	Partially Time Rand (pTR)	Time Rand (TR)	

Deterministic Timing Analysis (DTA)

Static Deterministic Timing Analysis (SDTA)

SDTA provides safe WCET estimates

- Needs: Information about the HW/SW
- Approach: Analysis divided into 2 steps
 - Low-level analysis: modeling of hardware timing
 - Caches, pipeline, predictors...
 - High-level analysis: longest execution path computation

Static Deterministic Timing Analysis (SDTA)

- High-level analysis Longest execution path computation
 - Implicit Path Enumeration Technique (IPET)
 - ILP formulation of the WCET calculation problem
 - Linear programming solver

- Low level analysis: Cache Analysis
 - Based on Abstract Interpretation
 - Determines guaranteed hit
 - Cache Hit Miss Classification: Always hit, First miss
 - Defined for different replacement policies
 - LRU, EoM...

Probabilistic Timing Analysis (PTA)

Probabilistic Timing Analysis (PTA)

Different WCETs with associated probabilities

 Approach: introduce randomization in the time behavior of HW and SW and apply probabilistic and statistical techniques

Most techniques presented here from:

PROARTIS PROXIMA

Static PTA (SPTA)[6][2][9]

Execution Time profile (ETP)

$$- ETP = \langle (L_1, L_2, ..., L_n), (P_1, P_2, ...P_n) \rangle$$

- Along each path instructions combined using convolution ⊗
 - − Inherits ⊗ requirements
- Require probabilities in the ETP
 - To be computed or upper-bounded
 - Probability (or its bound) should be independent from history of execution
 - Example: ETP of instruction using probability of hit from [9]: if $k \ge N$, 0, else $((N-1)/N)^k$

Measurement-based PTA (MBPTA)

- Works with end-to-end runs
 - Uses Extreme Value theory (EVT)
 - Inherits EVT reqs (i.i.d) and also has its own [1]
- Probabilities must exist, not to be computed
 - Approximation expression to show probabilistic behavior of cache hit/misses [16][17]

Qualitative comparison

Suitability: cache designs for SDTA and SPTA

- <u>Time Deterministic caches</u>: Works for SDTA
- <u>Time Randomized caches</u>: Pessimistic for SDTA.
 OK for MBPTA. SPTA not shown to work yet
- pTR caches (partially Time Randomised)
 - Dependence among addresses and cache lines
 - SPTA:
 - Requires addresses (or alignments) of accesses
 - As much information as SDTA → defies PTA goal [JR]

Policy		SDTA	SPTA	MBPTA	
	Placement	Replacement			
	TD	TD	yes	no	no
I	TD	TR	pessimistic	yes	yes
	TR	TR	very pessimistic	no	yes

Other elements of comparison

- Multipath programs: affect analysis
 - SDTA: safely supported
 - MBPTA: path coverage issue → PUB (next talk ☺)
 - SPTA: Some first methods already [9]
- Sensitivity to the lack of information
 - Get addresses (alignments) of accesses is complex
 - Impact of lack of addresses/alignments
 - SDTA (TD cache): sensitive
 - MBPTA (TR caches): insensitive
 - SPTA (pTR caches): sensitive

Other challenges

- SPTA for random placement
 - Random placement not modelled yet [JR]
 - Mod. placement: assume accesses go to the same set
- SPTA tighter hit/miss
 - Baseline upperbound formula [9]
 - Approximation formulas in [16][17] not meant for SPTA
- Trustworthiness of MBPTA for random placement [JR] → HoG technique (last talk)

Quantitative comparison

Experimental setup

- Common denominator supported by all methods
 - Programs: Single path code & addresses are known
 - Mälardalen WCET benchmarks
 - Autobench benchmarks
 - Common ISA (MIPS) + compiler toolchain (gnu)
- Instruction cache design
 - 1KB cache 32B lines
 - Structure
 - 4-way Set-Associative (SA-4), latency: 1/70 cycles
 - Fully Associative (FA), latency 2/70 cycles
 - Placement: deterministic (modulo)
 - Replacement
 - Deterministic (LRU)
 - Random (EoM)

WCET estimation techniques

- SDTA
 - Heptane WCET estimation tool
 - Al-based analysis of cache + IPET
- SPTA
 - Formula from [9] to derive ETPs on traces
 - Convolutions of ETPs
- MBPTA
 - End-to-end measurements + EVT
 - Statistical test to check i.i.d property

SPTA-EoM and MBPTA-EoM: strictly higher than simu-EoM & pWCET estimates between SDTA-LRU and SDTA-EoM²⁶

Comparison at fixed probability (10⁻¹⁵, SA-4)

Comparison at fixed probability (10⁻¹⁵, SA-4)

Comparison at fixed probability (10⁻¹⁵, SA-4)

Conclusions

Conclusions & Future work

- We proposed a first comparison between deterministic and probabilistic methods
 - Qualitative & Quantitative studies to identify the
 HW & SW for which each method perform best
- Next step
 - Multi-path programs
 - Data caches
 - Sensitivity to the lack of address information
- Challenges
 - SPTA tighter hit/miss probability estimation
 - SPTA for random placement

— ...

Jaume Abella^{1,4}, <u>Damien Hardy</u>², Isabelle Puaut², Eduardo Quinones^{1,4}, <u>Francisco J. Cazorla</u>^{1,3,4}

26th Euromicro Conference on Real-Time Systems (ECRTS14) 8-11 July Madrid, Spain

