
ECRTS 2014

26th Euromicro Conference on
Real‐Time Systems

Madrid, Spain
July 8 ‐ 11, 2014

Work‐in‐Progress Proceedings

Edited by Marko Bertogna

9-11 July
Madrid, Spain 2014

© Copyright 2014 held by the authors

Message from the Work-in-Progress Chair

Dear Colleagues:

Welcome to Madrid, and to the Work-in-Progress (WiP) Session of the 26th Euromicro Conference on Real-
Time Systems (ECRTS’14). This session is dedicated to promising new and ongoing research on real-time
systems and applications. I am happy to present seven WiP papers that cover innovative research from a
spectrum of topics, including multicore scheduling and timing analysis, functionality-aware task scheduling,
real-time network architecture, dependable and real-time wireless communications, and component-based
design and model-based development. I am confident that many of the research contributions we feature
here will appear as full-fledged conference and journal papers in the near future. The proceedings will be
published online via the ECRTS 2014 WiP website: http://ecrts.eit.unikl.de/index.php?id=wip11 .

The primary purpose of the WiP session is to provide researchers with an opportunity to discuss their
evolving ideas and to gather feedback from the real-time community at large. Due to time constraints, the
presentations in this session can only provide a brief overview of the new creative ideas and interesting
approaches of the selected research contributions. Nevertheless, I hope that you all will enjoy this session,
and that you will find the ideas presented interesting. Most of all, I hope you will participate in stimulating
discussions, exchange your ideas, and provide valuable feedback to the authors.

I would like to thank the members of the WiP session technical program committee for their help in
reviewing the papers. I would also like to thank the authors for their interesting contributions and their
confidence in ECRTS as a means to improve and advance their research. Last but not least, special thanks go
to the ECRTS’14 organizers, Juan de la Puente, Rolf Ernst, and Gerhard Fohler, for their support.

Marko Bertogna
Real-Time and Algorithmic Research Group
University of Modena, Italy
ECRTS 2014 WiP Chair

http://ecrts.eit.unikl.de/index.php?id=wip11

ECRTS 2014 Work‐in‐Progress Technical Program Committee

WORK-IN-PROGRESS CHAIR

Marko Bertogna, University of Modena, Italy

PROGRAM COMMITTEE

• Benny Åkesson, Czech Technical University in Prague, Czech Republic
• Björn Brandenburg, Max Planck Institute for Software Systems, Germany
• Jeremy Erickson, University of North Carolina at Chapel Hill, USA
• Nathan Fisher, Wayne State University, USA
• Patricia Lopez Martinez, University of Cantabria, Spain
• Ahlem Mifdaoui, University of Toulouse/ISAE, France
• Vincent Nelis, CISTER/ISEP, Portugal
• Sophie Quinton, INRIA, France
• Harini Ramaprasad, Southern Illinois University Carbondale, USA

Table of Contents

MESSAGE FROM THE WORK-IN-PROGRESS CHAIR . i

ECRTS 2014 WiP TECHNICAL PROGRAM COMMITTEE . ii

GUARANTEEING SCHEDULABILITY OF SPLITTABLE HARD REAL-TIME TASKS FOR NON-PREEMPTABLE
DEVICES . 1-4
Mitra Nasri, Gerhard Fohler and Nafiseh Moti

HIGH-LEVEL ENERGY MODEL OF EMBEDDED GPU FOR REAL-TIME GRAPHIC RENDERING. 5-8
Yu-An Chung, Chen-Wei Huang and Shiao-Li Tsao

INTEGRATION FRAMEWORK FOR LEGACY AND GENERATED CODE IN MBD. 9-12
Takayuki Hikawa, Atsushi Ohno, Nobuhiko Nishio and Takuya Azumi

OVERRUN-FREENESS VERIFICATION OF RATE-MONOTONIC LEAST-SPLITTING REAL-TIME SCHEDULER
ON MULTICORES . 13-16
Mahmoud Naghibzadeh and Amin Rezaeian

PHASE-AWARE SCRATCHPAD MEMORY MANAGEMENT TECHNIQUE FOR SAVING ENERGY OF
EMBEDDED SYSTEMS. 17-20
Chia-Chung Lee, Chen-Wei Huang and Shiao-Li Tsao

TOWARDS A HOLISTIC ANALYSIS FOR FORK-JOIN PARALLEL/DISTRIBUTED REAL-TIME TASKS. 21-24
Ricardo Garibay-Martínez, Luis Ferreira, Geoffrey Nelissen, Paulo Pedreiras and Luís Miguel Pinho

TOWARDS NON-INVASIVE RUN-TIME VERIFICATION OF REAL-TIME SYSTEMS. 25-28
Ricardo Pinto and José Rufino

NOTES. 29

Guaranteeing Schedulability of Splittable Hard

Real-Time Tasks for Non-Preemptable Devices

Mitra Nasri

Chair of Real-time Systems,

Technische Universität Kaiserslautern,

Germany

nasri@eit.uni-kl.de

Gerhard Fohler

Chair of Real-time Systems,

Technische Universität Kaiserslautern,

Germany

fohler@eit.uni-kl.de

Nafiseh Moti

School of Electrical & Computer Engineering,

University of Tehran, Tehran,

Iran

n.moti@ut.ac.ir

Abstract—Nowadays it has been possible for many embed-
ded systems to use peripheral computational resources such as
graphics processing units (GPUs) to execute hard real-time data-
parallel applications. However, because of the contentions on the
buses and memory access channels, or the limited interface of
the devices such as GPUs, the executing application must not
be preempted while it is occupying the resource. Since non-
preemptive scheduling of hard real-time periodic tasks is an
NP-Hard problem, one efficient solution is to split the task into
non-preemptive chunks. In this paper we introduce fine-grained
periodic resource model (FG-PRM) which is customized for non-
preemptable devices. Using the notion of reservation task model,
we derive schedulablity condition as a function of the resource
period, then we solve it by applying mathematical function
estimation. The resulting parameter assignment method have
been evaluated by its acceptance ratio. We have demonstrated
the efficiency of our method through the experiments.

I. INTRODUCTION

Nowadays the use of multi-core and many-core architec-
tures as powerful computational resources has been increased
in embedded and cyber-physical systems [1]. Using these
resources it is possible to have hard real-time applications
with significant computational requirements such as emergency
collision avoidance in automatic cars and intelligent cruise
control [2] running on the many-core peripheral computational
devices such as graphics processing units (GPU). Many of
these applications are data-parallel and they can be split into
smaller chunks [3].

For many reasons such as contentions on the buses and
memory access channels, or the use of GPUs which commu-
nicate with the processor through interrupt based interface,
the executing application must not be preempted while it is
occupying the resource [1], [4]. However, guaranteeing schedu-
lability of a non-preemptive system with periodic tasks is an
NP-Hard problem [5]. One efficient solution is to split the task
into non-preemptive chunks. Many applications such as those
consisting of matrix multiplications [3], [2] support flexible
split sizes, however, it has to be performed at design time. One
of the pioneer solutions to split such tasks for guaranteeing soft
deadlines for non-preemptive accessible devices like GPUs has
been introduced in [6], however, to the best of our knowledge,
there is no solution to guarantee hard deadlines.

In this paper we use the notion of periodic resource
model (PRM) [7] and make it customized for non-preemptable
devices. PRM describes the resource behavior as a periodic

model with two phase; the resource is available for duration C
then it becomes idle. This pattern will be repeated periodically
with period P . To determine high priority tasks to be executed
during the execution budget within the active phase, PRM
uses an ordinary scheduler such as RM which might result
in task’s preemptions because the length of active phase might
be greater than period of some of the tasks. Moreover, the
cost of exact schedulability analysis of this model is relatively
high [8] and current approximated solutions such as [9] are
not efficient for all task sets, specially when the ratio between
the shortest and the longest period is large. In those cases,
outputs of [9] and [8] will produce pairs C ≈ P while the
actual required resource might be far less than the resulting
parameters. Due to these drawbacks, the existing feasible pa-
rameter assignment methods for PRM are not computationally
affordable or efficient for our target systems.

PRM can be considered as a special type of server based
solutions which has one periodic task to handle all other
tasks in the system. Although the traditional usage of these
approaches was to effectively execute the aperiodic tasks [10],
by the introduction of constant bandwidth servers [11], the
temporal partitioning model [12], and the reservation task
model [13], these methods have been extended to provide
isolation for the tasks or to handle sporadic tasks as periodic
ones [13]. However, because of the parameter assignment
methods applied in the most of these studies, tasks might be
preempted inside the execution budget of the server task or
because of the preemptions caused by other periodic tasks.

In this paper, we introduce fine-grained periodic resource
model (FG-PRM) as a customized PRM that guarantees non-
preemptive execution inside the active phase. To construct
the basic parameter assignment problem as a function of the
PRM parameters, i.e., C and P , we use the formulations of
the reservation task model [13] which assigns one server to
one task. However, to construct our customized PRM, we
represent the task set with only one reservation task. Thus,
in every period, each task has one portion of execution with
a fixed length, and the tasks finish their execution after a
fixed number of releases of the reservation task. To solve the
parameter assignment problem we use mathematical function
approximation. In summary, in our method, the schedulability
of each task is guaranteed because of the use of the reserva-
tion task model formulation, while non-preemptive execution
is guaranteed by assigning fixed non-interleaving execution
windows to the tasks.

1

Our solution, not only helps GPU applications but also
provides a mean to feasibly schedule any other application
on non-preemptable I/O devices as long as flexible splitting
is permitted. It can be applied on periodic or sporadic tasks
with arbitrary release offsets or explicit deadlines shorter
than period. Besides, our approach does not need real-time
scheduling algorithms; it provides a prioritized queue of the
tasks with specified execution budget for each task within
which the task can be executed non-preemptively. Size of
these budgets (or splits) is obtained as a parameter of the
model at design time, hence, it is available for the applications
beforehand. Moreover, we are able to obtain the upper bound
of the response time of the tasks and its error bound in O(1).

The reminder of the paper is organized as follows; Sect.
II introduces the system model. In Sect. III, the concept our
work is presented which is followed by parameter assignment
method in Sect. IV. Few experimental results have been
presented in Sect. V and the paper is concluded in Sect. VI.

II. SYSTEM MODEL

We consider a set of hard real-time independent sporadic
tasks τ = {τ1, τ2, . . . , τn}. Each task is identified by τi :
(ri, ci, Ti, di), where ri is the release offset, ci is the execution
time, Ti is the minimum inter-arrival time (period), and di ≤ Ti

is the relative deadline of the task τi ∈ τ . The tasks have
been indexed according to their period such that Ti ≤ Ti+1,
1 ≤ i < n. Since we assume non-preemptable devices, ci can
be considered as resource occupation time, however, it has
to be possible that we split ci into smaller values at least at
design time. The device is able to be used by each application
for a specified amount of time, however, during this time, it
cannot be preempted. GPUs are an example for such devices
[2]. When a task enters GPUs, it will not leave it until end of
its execution. Then GPU device notifies the operating system
using an interrupt based interface. Although it is possible to
split the tasks into smaller chunks and run those chunks on
GPU device non-preemptively, size of the splits has to be
known at compile time as mentioned in [6].

III. FINE-GRAINED PERIODIC RESOURCE MODEL

Fine-grained periodic resource model governs the device
as a PRM with period P and budget C. In the active phase,
a queue of tasks is gradually sent to the device each of them
has oi units of device occupation time (DOT). The order of
the tasks in the queue can be either fixed or dynamic, yet none
of these options has any impact on the schedulability. For the
simplicity we assume tasks will occupy the device according
to their index from τ1 to τn unless they are not released before
their dedicated dispatch time. The later case happens when the
original task is not in the system because of the assumptions
regarding explicit deadlines and sporadic releases. If such tasks
come later than their assigned window, they can be dispatched
to the device otherwise their window will be simply ignored.

FG-PRM is based on reservation tasks [13] where for
each original task, one reservation task is assigned. Theis
and Fohler [13] have proven that if the parameters of the
reservation task are selected in the following way, it can
always guarantee schedulability of the original task as long

Fig. 1. An example of task execution using reservation task model [Theis11]

Fig. 2. An example of execution using FG-PRM

as the reservation tasks can be feasibly scheduled by some the
underlying scheduling algorithm.

oi = ci/ki (1)

pi =
di + oi
ki + 1

(2)

where ki ∈ N
+ is the number of releases of the reservation

task under one release of the original task, and pi is the period
of the reservation task. Fig. 1 shows the worst case scenario
happened in the execution of the original task because the first
release of the reservation task cannot be used to execute the
original task. Besides, in our model (shown by Fig. 2), tasks are
not allowed to be split at run time, hence, they can be executed
only if they are released before the scheduled window of the
reservation task. Consequently, we have to consider ki + 1
releases with at least ki effective releases.

If all tasks are scheduled by one reservation task, we can
replace pi by P in (2), then ki and C are obtained as

ki =

{

di/P di/P ∈ N
⌊

di/P
⌋

− 1 otherwise
(3)

C =
n
∑

i=1

ci/ki (4)

The resource utilization UR is obtained by using the worst
case value of (3) in (4) as

UR =
1

P

n
∑

i=1

ci
ki

=
1

P

n
∑

i=1

ci
⌊

di

P

⌋

− 1
(5)

Theorem 1. Task set τ is schedulable by FG-PRM with period
P and budget C if UR ≤ 1.

Proof Having UR ≤ 1, all tasks have their dedicated time
slot in every active phase. Also according to (1) each original
task is guaranteed to have kioi = ci DOT before its deadline,
hence, it can be feasibly scheduled. �

Fig. 3 shows UR as a function of P for one task in two
cases. According to this figure, UR increases with the increase

2

Fig. 3. UR as a function of P for one task in two cases; Ti = di = 30
and Ti = di = 50 and ui = 40

in P . Also it grows fast if tasks have small di. If P tends to
0, UR tends to U =

∑

ci
di−1

since

lim
P→0

1

P

n
∑

i=1

ci
⌊

di

P

⌋

− 1
= lim

P→0

n
∑

i=1

ci

P
⌊

di

P

⌋

− P
≤

n
∑

i=1

ci
di − 1

(6)

Since many of our target applications have considerable
computational requirements, they usually have large periods
as well. Yet it has to be mentioned that maximum value of P
in our model is 0.5d1 and it happens when k1 = 2. As shown
by Fig. 1, response time of the tasks will be WCRT i = di
and its error is

WCRT err
i ≤ 2pi − oi (7)

because in the best case scenario, the execution of the original
task starts in the first release of the reservation task and
finishes after oi DOT after the release of the second-to-last
reservation task. Both WCRT and its error are obtained in
O(1). Since WCRT of the task is equal to their deadlines, our
model is efficient for the hard real-time applications which
are not sensitive to long response times as long as deadlines
are guaranteed. Moreover, in our work the overheads of the
task splitting has been ignored. As a future work, we will
apply [13] formulation to consider extra overheads of splitting
into the utilization formulation. It is worth mentioning that our
solution might not be efficient for dense task sets with tight
deadlines and wide period values since it might have many
ineffective reservations.

IV. PARAMETER ASSIGNMENT METHOD

In this section we solve the parameter assignment problem.
Upper and lower bounds of (5) can be obtained when ⌊di

P
⌋ is

replaced by di

P
− 1 and di

P
respectively. Thus we have

Uup =
1

P

n
∑

i=1

ci
di

P
− 2

=
n
∑

i=1

ci
di − 2P

(8)

Fig. 4 illustrates the upper bound (8) for one task. Using
Theorem 1 we obtain the schedulability problem as

Uup ≤ 1⇒
n
∑

i=1

ci
di − 2P

≤ 1 (9)

Fig. 4. Uup, UR, and U low as a function of P for a task set with 3 tasks
τ1 : (0, 12, 35, 35), τ2 : (0, 10, 55, 55), and τ3 : (0, 20, 99, 99).

Fig. 5. The actual value of 1

1−z
and its approximated value using the first

3 terms of (10).

However, it is not easy to solve (9) because the variable
P appeared in the denominator of a sum. To make it solvable
we use the following equality in Geometric series

1

1− z
= 1 + z + z2 + z3 + ... (10)

where z < 1. To keep our formulation solvable, we omitting
degrees higher than 3 and only use from 1 + z + z2 terms of
the series. Fig. 5 shows to what extend we can rely on the
first 3 terms of the series. From this figure it is possible to
deduce that if 2P

d1

≤ 0.6, the error remained below 1. It leads

to P < 0.3d1. We rewrite (9) as

n
∑

i=1

ui

1

1− 2P
di

≤ 1⇒
n
∑

i=1

ui(1 +
2P

di
+

4P 2

d2i
) ≤ 1 (11)

where ui = ci/di. Thus we have

4P 2

n
∑

i=1

ui

d2i
+ 2P

n
∑

i=1

ui

di
+

n
∑

i=1

ui − 1 ≤ 0 (12)

Since ui and di are known, it is easy to calculate values of
the sums so we are able to simplify (12) as aP 2+bP +c ≤ 0.
Since c is

∑n

i=1
ui−1 and it is always negative, ∆ = b2−4ac

is positive, hence, resulting values for P are real numbers, and
the inequality is solvable. However, one of the roots is always
negative and is not acceptable because 0 < P < 0.3d1. Hence,
the only valid value for P is

P ≤
−2∑n

i=1

ui

di

+
√
∆

8
∑n

i=1

ui

d2

i

(13)

To obtain feasible solution, first we calculate P according
to (13). If P is larger than 0.5d1 and UR, which is calculated

3

Fig. 6. Admission ratio, normalized period, and resource utilization as a
function of task set utilization

from (5), is greater than 1, we try P = 0.5d1. This situation
happens in cases where the task set utilization is low and (13)
produces relatively large values of P which are not compatible
with our other constraints. In this case, we set P = 0.5d1 and
check whether UR is smaller than 1 or not.

If a feasible P is obtained, it is possible to find ki from
(3), oi from (1), C from (4). Computational complexity of
this calculation is O(n) since we have to calculate values of
a, b, and c from (12). It is worth mentioning that although P
might be close to 0.3d1, for other tasks with di ≫ d1, the
ratio between P and di is small, hence, (P/di)

3, (P/di)
4,

etc. become very small values which can be ignored during
the calculation of (9). According to Fig. 5, one of the draw
backs of our method is that our estimation of 1

1−z
is not the

upper bound. In the future work we try to find an upper bound
for this function.

V. EXPERIMENTAL RESULTS

In this section we evaluate the efficiency of FG-PRM
regarding admission ratio of the task sets (AR), resource
utilization C/P , and normalized resource period, i.e., P

d1

.
Parameter of the experiments is the utilization of the task
set which ranges from 0.15 to 0.95 with step 0.05. For each
utilization, we generate 10000 random task sets each with
10 tasks, where their utilization is obtained from uUniFast
algorithm. To bound the hyperperiod of the tasks we have
considered fixed value H = 10000 and we have uniformly
chosen value fi ∈ {1, 2, . . . , 100} to be able to compute
Ti = H/fi, ci = uiTi, and di = Ti.

The average results of AR, P, and U for all utilization values
and for all generated task sets have been reported in Fig. 6. AR
is obtain by dividing the number of feasible task sets by total
number of generated task sets. Horizontal axis of this diagram
is task set utilization. As shown by this figure, our method
has a significant admission ratio with average 0.99. Also it
highly utilizes the resource. In this figure, P is constant before
utilization 0.45, and has the maximum value of P = 0.5d1
which leads to normalized P equal to 0.5. From utilization
0.45, P start to decrease which means that condition (13) is
activated. The fall of P continues in high utilization task sets.
On the other hand, before utilization 0.45 where the period of
the resource is constant, by the increase in the utilization of
the task set, resource utilization increases linearly.

VI. CONCLUSION

In this work, a feasible solution for scheduling hard real-
time splittable tasks have been presented which is well suited
for interactions with non-preemptable devices. The solution
is based on the notion of periodic resource model and we
have focused on feasible parameter assignment for this model.
Using the formulation of reservation task model we have
reformulated the schedulability problem. Then the formula
is approximated by a solvable polynomial of degree 2. The
experiments shown the efficiently of the solution. As a future
work, we consider overheads of splitting into account. Also
we perform actual experiments on the GPU devices to show
the efficiency of our solution on real benchmark applications.

ACKNOWLEDGMENT

The authors would like to thank Mehdi Ghasemi for his
helpful comments. This work has been supported by the
DAAD scholarship.

REFERENCES

[1] G. A. Elliott and J. H. Anderson, “Globally scheduled real-time mul-
tiprocessor systems with gpus,” Real-Time Systems, vol. 48, no. 1, pp.
34–74, 2012.

[2] G. Elliott and J. Anderson, “Real-world constraints of gpus in real-
time systems,” in IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA), vol. 2, 2011,
pp. 48–54.

[3] D. Grewe and M. OBoyle, “A static task partitioning approach for
heterogeneous systems using opencl,” in Compiler Construction, ser.
Lecture Notes in Computer Science, J. Knoop, Ed. Springer Berlin
Heidelberg, 2011, vol. 6601, pp. 286–305.

[4] A. Bastoni, “Cache-related preemption and migration delays: Empirical
approximation and impact on schedulability,” in International Workshop

on Operating Systems Platforms for Embedded Real-Time Applications

(OSPERT), 2010, pp. 33–44.

[5] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive
scheduling of period and sporadic tasks,” in IEEE Real-Time Systems

Symposium (RTSS), 1991, pp. 129–139.

[6] C. Basaran and K.-D. Kang, “Supporting preemptive task executions
and memory copies in gpgpus,” in Euromicro Conference on Real-Time

Systems (ECRTS), 2012, pp. 287–296.

[7] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in IEEE International Real-Time Systems Symposium

(RTSS), 2003, pp. 2–12.

[8] N. Fisher and F. Dewan, “A bandwidth allocation scheme for compo-
sitional real-time systems with periodic resources,” Real-Time Systems,
vol. 48, no. 3, pp. 223–263, 2012.

[9] N. Fisher and F. Dewan, “Approximate bandwidth allocation for com-
positional real-time systems,” in Euromicro Conference on Real-Time

Systems (ECRTS), 2009, pp. 87–96.

[10] T.-H. Lin and W. Tarng, “Scheduling periodic and aperiodic tasks in
hard real-time computing systems,” SIGMETRICS Performance Evalu-

ation Review, vol. 19, no. 1, pp. 31–38, 1991.

[11] L. Abeni, G. Lipari, and G. Buttazzo, “Constant bandwidth vs pro-
portional share resource allocation,” in IEEE International Conference

on Multimedia Computing and Systems (ICMCS). IEEE Computer
Society, 1999, pp. 107–111.

[12] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
Response-time analysis and server design,” in ACM International Con-

ference on Embedded Software (EMSOFT). ACM, 2004, pp. 95–103.

[13] J. Theis and G. Fohler, “Transformation of sporadic tasks for off-line
scheduling with utilization and response time trade-offs,” in Interna-

tional Conference on Real-Time and Network Systems (RTNS), 2011,
pp. 119–128.

4

High-Level Energy Model of Embedded GPU for

Real-Time Graphic Rendering

Yu-An Chung, Chen-Wei Huang, and Shiao-Li Tsao

Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

anthonycj04@gmail.com, cwhuang.cs96g@nctu.edu.tw, sltsao@cs.nctu.edu.tw

Abstract—Embedded graphic processing unit (GPU)

accelerates a real-time rendering process of a graphics

application on mobile devices, however, at the cost of consuming

a considerable portion of the system energy [1] which is one of

the most critical design issues for battery-operated devices. To

estimate the power consumption of a graphics application,

conventional approaches collect run-time hardware activities of a

GPU, and derive the power consumption of the graphics

application based on hardware counters. Unfortunately, these

hardware counters and power consumption information are

difficult to evaluate from a programmer's point of view. In order

to provide graphics programmers a firm notion of how

performance and quality relate to energy cost, a high-level power

model to assist programmers to balance performance, quality,

and energy budget is proposed in this study. Preliminary results

demonstrate that the proposed approach is practical and can

provide useful information to programmers to optimize the

energy efficiency of graphics applications.

Keywords—Embedded GPU; OpenGL ES, Power Consumption;

Power Model

I. INTRODUCTION
Due to high demands on graphics processing, graphic

processing unit (GPU) in mobile devices has become an
indispensable component. The GPU accelerates the rendering
process of a graphics application, however, at the cost of
consuming a considerable portion of the system energy [1]. In
contrast to desktop developers, mobile device programmers
have to strike a good balance between performance, quality,
and power consumption in a battery-operated device. It is thus
vital for graphics programmers to have a firm notion of how
performance and quality relate to energy cost at the
development stage.

Desktop GPUs and embedded GPUs are designed
differently to suit their working condition and performance
target. Desktop GPUs aim for high performance and do not
have to worry about power supply. On the other hand,
embedded GPUs operate in a battery-operated device and thus
have to be designed with low-power consumption. Most of the
contemporary embedded GPUs [2, 11, 12] are based on tile-
based rendering design (partition the display into small
rectangles) to reduce memory transfer energy consumption.
Previous studies on GPU power model mainly focuses on
desktop GPUs, without considering tile-based design and the
associated micro-architecture changes. These design
differences have to be considered in constructing an embedded
GPU power model. Specifically, we focused on a state-of-the-
art Tiled-Based Deferred Rendering (TBDR) architecture
proposed by Imagination [2].

Embedded graphics programmers nowadays mainly use
OpenGL ES [4] (OpenGL [3] for Embedded Systems) to
control the GPU for rendering the scenes in real-time.
Therefore we aim to analyze the power consumption behavior
of the GPU executing a real-time OpenGL program. An
OpenGL program mainly consists of data (such as mesh data,
texture data, and camera position) and shader programs (such
as vertex shader and fragment shader). Thus our main concept
is to develop a micro-benchmark suites specifically tailored
for mobile GPUs to systematically stress different pipeline
stages (ex. submit lots of vertices to increase vertex shader’s
loading or even generate pipeline stalls) and analyze the
corresponding energy consumption behavior.

According to the analysis results, important parameters are
chosen to build our high-level power model. Different from
previous studies aiming at low-level hardware dependent
desktop GPU power model [5], this research proposes a high-
level power model of embedded GPUs from a programmers'
perspective. With the proposed power model, graphics
programmers will be better equipped with the knowledge
about how their programs are being processed by the
embedded GPU and the associated energy cost during
development time. With such a high-level power model, it is
also possible to conduct a high-level resource management to
balance between power, performance, and quality for real-time
graphic rendering. In summary, the main contributions of this
study are:

1. Developed a micro-benchmark suites specifically tailored
to the mobile GPU design.

2. Constructed a high-level power model to assist graphics
programmer to balance between performance, quality, and
energy budget.

The rest of the paper is organized as follows: In Section II,
we give a brief summary on previous studies about GPU
power models. In Section III, an introduction on the OpenGL
pipeline and the architecture of an embedded GPU is given. In
Section IV, we discuss the idea of our power model and
experiment design. In Section V, the measurement
environmental and preliminary experimental results will be
shown. Finally, in Section VI, the conclusion and future work
will be brought out.

II. RELATED WORK
Previous research on the power consumption of GPU

mostly focuses on desktop GPUs with comparatively less
focus on embedded GPUs. Collange et al. [6] used an
oscilloscope to measure the GPU energy consumption in a

5

CUDA environment, to find out the bottleneck of a GPGPU
program. Shaikh et al. [7] profiled the power consumption of
two GPU architectures: GF100 and GT200. Their results show
that the power dissipation of a data transfer instruction
consumes less than half of that of a kernel instruction. Thus it
is possible to identify which part of the program is running at
a certain time. Ma et al. [5] chose five main GPU workload
signals to build a power model, where the workload signals
represent the runtime utilizations of the major pipeline stages
on the GPU. They also compared the error rate between two
different regression methods, namely Support Vector
Regression (SVR) and Simple Linear Regression (SLR). The
chosen SVR model outperformed the traditional SLR on their
validation datasets. Hong and Kim [8] designed a set of micro-
benchmarks to stress different architectural components of the
GPU, and built not only the power model of the GPU but also
the temperature model as well. They came out with the result:
power consumption can be reduced by opening the appropriate
number of streaming multiprocessors (SMs) in the GPU
instead of using all the SMs. Leng et al. [9] built a power
model for GPGPU using the power measurement data and
performance counters from GPGPU-Sim, and also can
estimate the GPU component's power consumption. They
proposed a micro-benchmarking design methodology which
includes the following: component stress, access patterns and
test coverage. The above studies are all based on GPUs on
desktop computers. Also, most of the above studies require
hardware performance counters to estimate the power, which
might not be easy to be interpreted by graphics programmers.

Following we list some studies related to mobile GPUs.
Mochocki et al. [10] used three embedded processors to
simulate different stages in the 3D pipeline. They analyzed
how the factors (resolution, frame rate, level of detail, lighting
model, and texture model) affect the 3D pipelines to result
workload variations and imbalances. Moreover, DVFS was
applied to processors to reduce the workload imbalance and
can achieve up to 50% energy saving. Vatjus-Anttila et al. [1]
built a power model based on three render complexity
characteristics: number of triangles, render batches and
addressed texels. Instead of measuring only the GPU's power
consumption, the whole device's power consumption was used.
To compensate the overestimated power, they empirically
deducted 45% of the consumption based on the ad-hoc
hypothesis that 50% of the 3D content could be left
unacknowledged due to the back-face triangle culling, and
10% due to depth testing. Mochocki et al. [10] studied about
how some graphics factors affect the 3D pipelines, but they
did not use a real embedded GPU for their experiments and
neglected the architectural differences between desktop and
embedded GPUs. Vatjus-Anttila et al. [1] built a power model
for the whole embedded system based on render complexity.
Our goal is to first understand the relation between high-level
graphics parameters and the graphics pipelines. Then, we
build a high-level power model for embedded GPU that only
requires high-level parameters to estimate the power for real-
time graphic rendering.

III. BACKGROUND

A. OpenGL Pipelines

OpenGL is an API for advanced 3D graphics and it
provides functionality to control the GPU, while OpenGL ES
is specially targeted at handheld and embedded devices. The
OpenGL graphics pipelines are shown in Fig. 1. Mesh data are
first sent to the GPU, then vertex shading and primitive
assembly are done on each vertex. Primitives are converted
into fragments in the rasterization phase, and the fragment
shader then either discards a non-visible fragment or generates
a color for a visible fragment. The per-fragment stage goes
through a series of tests (scissor test, stencil and depth test,
and blending) and writes the resulting color into the frame
buffer. In an OpenGL program, we provide some input,
including mesh data, vertex and fragment shader program,
texture data, etc. for the GPU. The GPU then takes all the
information about the 3D objects and renders it on screen. In
this paper, we alter those high-level inputs and see how the
GPU hardware reacts.

Fig. 1. OpenGL pipeline.

B. Embedded GPU

Desktop GPUs and embedded GPUs are designed
differently to suit their working condition and performance
target. Desktop GPUs aim for high-performance whereas
embedded GPUs target for low power.

Fig. 2. Immediate Mode Rendering (IMR).
The desktop GPU goes through the Immediate Mode

Rendering (IMR) pipeline as shown in Fig. 2. Under IMR,
each submitted object goes through the entire pipeline
independently until the very last stages. Hence IMR enables
processing with the maximum parallelism and speed. However,
there are two weakness in this design, namely overdraw
(fragments not shown in the final display are still processed)
and large unnecessary memory transfers for fetching data
associated to these unused fragments. This will bring heavy
burdens for the battery-operated mobile devices.

6

Fig. 3. Tile-based deferred rendering.
In order to solve these two critical issues, most of the

contemporary embedded GPUs [2, 11, 12] adopt the tiling-
based architecture. Since the data transfer between system
memory and the GPU is one of the biggest cause for the power
consumption of the GPU, tiling design claims to be able to
reduce memory bandwidth requirement by partitioning the
frame into small rectangles of pixels before rasterization. After
coordinate transformation and triangle setup, the GPU
determines tile-coverage of each triangle and records this
information in a per-tile list. With this per-tile information,
only relevant geometry data is needed when processing each
tile in subsequent stages, therefore lowers the system memory
bandwidth significantly. Imagination PowerVR further adopts
the Tile Based Deferred Rendering (TBDR) [2] pipeline as
shown in Fig. 3 to further reduce both overdraw and
unnecessary memory transfers. We aim to verify the
effectiveness of reducing overdraw and memory transfer of
both TBDR and tiling-based designs in our study.

Fig. 4. Construction of high-level power model.

IV. METHODOLOGY
Previous studies on GPU power models [1] mostly focus

on relating the power consumption to the hardware events by
observing hardware performance counters of the GPU. A set
of important hardware events such as memory transfer, cache
misses, shader utilization, texture access, etc. were chosen and
they are trained by a benchmark suite to build up the power
model (*1 in Fig. 4). This kind of power models are not very
intuitive to graphics programmers since the programmers
usually do not have a direct feeling about how their programs
translate into hardware events. Our goal is to build a power
model that can estimate power consumption with graphics
related high-level parameters that programmers are familiar
with (*2 in Fig. 4). Using principal component analysis (PCA)
[13] to select high-level parameters that are vital to the energy
consumption, we can statistically relate the high-level
parameters to GPU power consumption (*3 in Fig. 4).

With this power model, programmers can have a better
notion on how the GPU responds to their graphics program
and can achieve a balance between performance, quality and
energy.

TABLE I. HARDWARE PERFORMANCE COUNTER.

Hardware Counter Description

USSE load: vertex

Percentage of time that the Universal Scalable Shader
Engine (USSE) has spent processing vertices.

TA load

Percentage of time that the Tile Accelerator (TA) unit

is busy. The TA unit is responsible for clipping,
projecting, culling and tiling transformed polygons.

ISP load

The load of the Image Synthesis Processor (ISP) unit.

The ISP is responsible for executing the per-tile
Hidden Surface Removal. It also performs the depth

and stencil operations for the tile using the GPU’s on-

chip memory.

TSP load

The percentage of time that the Texture and Shading

Processor (TSP) unit is busy.

The job of TSP is to schedule fragment processing
tasks, iterations, and texture data pre-fetch.

USSE load: pixel
Percentage of time that the Universal Scalable Shader

Engine has spent processing pixels.

As mentioned in Section III, an OpenGL program receives
a set of input data, including mesh data, texture data, vertex
and fragment shader programs and some other control data.
First, we design micro-benchmarks to find out how high-level
parameters affect the GPU components (*2 of Fig. 4). The
experiment environment is PandaBoard using the OMAP4430
processor with Imagination PowerVR SGX540 GPU [14].
Test programs are executed under Ubuntu 11.10 with a 3.1.0
Linux kernel using the OpenGL ES 2.0 library. The
description of the hardware performance counters we chose
are listed in Table I. These hardware counters are chosen
because they represent the runtime utilizations of the major
pipeline stages of the GPU. After the relationship between
high-level parameters and GPU components are known and
understood, we can then build the power model according to
the experimental results (*3 of Fig. 4).

Fig. 5. Test program for resolution.

Fig. 6. Test Program for position of object.

Currently, we conduct two experiments to analyze how
high-level input affects the GPU’s behavior. In each
experiment, we only alter one input parameter while keeping
the others fixed. The first test program alters the resolution of
the program, while leaving the mesh data, texture data, vertex
and fragment shader unchanged. As shown in Fig. 5, four
resolutions (360x225, 720x450, 980x675, and 1440x900) were
tested. Since the number of tiles processed by the GPU

7

increase linearly with the resolution, we aim to see the effect
of number of tiles to the GPU’s behavior. The second test
program changes only the position of the object. As shown in
Fig 6, the object was placed in the center of the screen
showing, 100% of the object; placed at the edge of the screen,
showing around 50% of the object; and placed outside of the
screen, showing 0% of the object. This test will affect the
number of vertices left after clipping, since the vertices that
are out of viewing frustum will be clipped out. With the above
two experiments, we are able to observe how the GPU reacts
to the change on resolutions and vertices after clipping and
culling. Similarly, we will further explore other relevant
events that are important to the graphics programmers in the
future.

V. PRELIMINARY RESULTS

A. Resolution

In the first experiment, the same graphics program is
executed with various resolutions. Table II shows the time
spent on each GPU components. In Table II, we can see that
the time spent on vertex shading under different resolutions
are nearly constant. This is because the same object is
submitted to the vertex shader, and therefore the same amount
of calculation is needed for the vertex shader. When the
resolution increases, more tiles are needed to be processed.
Therefore the TA will have to spend more time on the tiling
operation. Similarly, the rest of the pipeline after TA has more
workload due to the increased number of tiles.

TABLE II. EXPERIMENTAL RESULTS FOR RESOLUTION TESTS.

Resolution

Execution time

USSE:

vertex

time (ms)

TA time

(ms)

ISP time

(ms)

TSP time

(ms)

USSE

pixel time

(ms)

360x225 30.53975 119.1380 67.48887 172.7195 231.2407

720x450 25.58628 184.9845 116.0092 499.6496 731.0922

980x675 26.30886 298.9563 141.1661 954.9022 1391.347

1440x900 24.77687 476.6062 242.2432 1691.457 2469.837

TABLE III. EXPERIMENTAL RESULTS UNDER DIFFERENT POSITIONS OF

OBJECTS.

of

vertices

after

clipping

and culling

Execution time

USSE:

vertex

time (ms)

TA time

(ms)

ISP time

(ms)

TSP time

(ms)

USSE

pixel time

(ms)

7869 367.231 11735.85 8222.787 1356.312 1915.855

3805 340.866 6372.385 3855.828 1108.976 1553.598

51 365.498 1089.121 264.1725 1199.218 1690.872

B. Position of Object

In the second experiment, we keep the mesh data, shading
programs, texture and resolution intact with focus on changing
only the position of the object. Table III shows the same
information as Table II. Since the same object is submitted,
we can see that the time spent on vertex shading remains
relatively stable in Table III. When moving the object to the
border of the screen or even out of the screen, vertices will be

clipped by the TA. Clipping effectively reduce the amount of
visible fragments which enables the TA to process faster in
handling each tile. Similar benefit is enjoyed by the ISP stage.
Since we keep the same resolution in this experiment, the
workload of TSP and USSE spent on processing the pixels is
also relatively stable.

VI. FUTURE WORK
In the future, we will design a complete methodology

consisting of a micro-benchmark suite and statistic method to
analyze the importance of the high-level graphics parameters
on the embedded GPU activities. This will help graphics
programmers to understand how the graphics programs relate
to the GPU power consumption. With the power model, we
can conduct high-level power management which can
adaptively achieve a balance between rendering performance,
quality, and energy for real-time graphic rendering.

VII. REFERENCES
[1] J. M. Vatjus-Anttila, T. Koskela, and S. Hickey, “Power Consumption

Model of a Mobile GPU Based on Rendering Complexity,” in
Proceedings of the 2013 Seventh International Conference on Next
Generation Mobile Apps, Services and Technologies, Washington, DC,
USA, 2013, pp. 210–215.

[2] ImaginationTechnologies Ltd, “PowerVR Series 5 Architecture Guide
for Developers.” 2014.

[3] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane,
OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Version 4.3, 8th ed. Addison-Wesley Professional, 2013.

[4] A. Munshi, D. Ginsburg, and D. Shreiner, OpenGL(R) ES 2.0
Programming Guide, 1st ed. Addison-Wesley Professional, 2008.

[5] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical Power
Consumption Analysis and Modeling for GPU-based Computing,” in
Proc. of ACM SOSP Workshop on Power Aware Computing and
Systems (HotPower), 2009.

[6] S. Collange, D. Defour, and A. Tisserand, “Power Consumption of
GPUs from a Software Perspective,” in Proceedings of the 9th
International Conference on Computational Science: Part I, Berlin,
Heidelberg, 2009, pp. 914–923.

[7] M. Z. Shaikh, M. Gregoire, W. Li, M. Wroblewski, and S. Simon, “In
Situ Power Analysis of General Purpose Graphical Processing Units,” in
Proceedings of the 2011 19th International Euromicro Conference on
Parallel, Distributed and Network-Based Processing, Washington, DC,
USA, 2011, pp. 40–44.

[8] S. Hong and H. Kim, “An Integrated GPU Power and Performance
Model,” in Proceedings of the 37th Annual International Symposium on
Computer Architecture, New York, NY, USA, 2010, pp. 280–289.

[9] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, New York, NY, USA, 2013, pp.
487–498.

[10] B. Mochocki, K. Lahiri, and S. Cadambi, “Power Analysis of Mobile 3D
Graphics,” in Proceedings of the Conference on Design, Automation and
Test in Europe: Proceedings, 3001 Leuven, Belgium, Belgium, 2006, pp.
502–507.

[11] ARM, “ARM Mali GPU - OpenGL ES Application Optimization
Guide.” 2013.

[12] Rob Clark, “Adreno tiling.” Internet:
https://github.com/freedreno/freedreno/wiki/Adreno-tiling, Apr-2014.

[13] I. T. Jolliffe, Principal Component Analysis. New York: Springer Verlag,
2002.

[14] PandaBoard: http://pandaboard.org/

8

Integration Framework for Legacy and Generated Code in MBD

Atsushi Ohno∗, Takayuki Hikawa†, Nobuhiko Nishio†, Takuya Azumi‡
∗Graduate school of Information Science and Engineering, Ritsumeikan University

†College of Information Science and Engineering, Ritsumeikan University
‡Graduate School of Engineering Science, Osaka University

Abstract—On-board software becomes large-scale and
more complicated, as an electronic control system and
high functionalities of automobile progresses. Model Based
Development (MBD) has appeared as a technology that
control designers create and verify control models on MAT-
LAB/Simulink. The control designers, however, do not con-
sider the software development in the control design phase.
It causes differences of interfaces between driver code and
automatically generated code. In particular, some required
information for adjusting I/O relations does not exist on the
code description. Thus, a software development workload has
been increased and human errors may increase. This paper
presents an integration framework for treating automatically
generated code as a component on a component based system
and producing a wrapper component based on interface
information from a command line. Integrated code running
on an actual machine is demonstrated and it contributes to
improve the automation efficiency.

Keywords-Automobile, Component-Based Development,
Model-Based Development, Legacy code, Code integration

I. I NTRODUCTION

Recently, as the electronic control system of automobile
progresses, the number of Electronic Control Unit (ECU)
required in automobile and code lines of on-board software
are increasing rapidly. Embedded systems have become
a large-scale and more complicated. Thus, it is difficult
for software developer to create the software that meets
control designer requirements.

Model-Based development (MBD) has paid attention as
a method to make control design process more efficient.
In particular, it becomes to be implemented in automobile
developments. Control designers design controller models
with CAE tools such as MATLAB/Simulink. Hence, they
can share the behavior of the model each other.

The MBD tools generate code based on control design
models and ensure that the generated code is the same as
what the controller designer intended. However, it does not
mean that all the code used on the software is generated by
MBD tools. Whole code consists of OS, middleware, I/O
driver and generated code. In terms of OS, middleware,
and I/O drivers, legacy code has been used. Therefore,
software developers must integrate the legacy and gener-
ated code. Developers are required to match the interface
of the legacy code and the automatically generated code
manually. There are variable types, increments treated
per bit, and mapping. In particular, required information
for converting the increments and mapping do not exist
on the code description. Thus, a complete automation
is difficult. In a large-scale and complicated embedded

system development, a workload of software developers
has been increased and thus human errors may increase.

The purpose of this paper is to reduce workloads of
software developers by proposing a framework for semi-
automatically integrating generated code with legacy code.
On an integration process of a conventional development,
it is necessary to fill the difference of interface between
generated code and legacy code. Therefore, the software
developers make wrapper code and integrate them man-
ually to fill the difference. After the implementation of
MBD, the wrapper code is still necessary. This is because
an increment treated per bit of input and output are
sometimes different between the automatically generated
code control designers create using the tool and existing
driver code software developers handle. The framework
has a mechanism which automatically generates wrapper
code converting increment treated per bit only by inter-
active exchange on a command line and minimizes the
human intervention during integration using component
based system. Component-Based Development (CBD) is
a technique for building software with composing as parts
divided by function. The CBD contributes to increasing
visibility and reusability. Component based framework for
embedded systems have been proposed such as TECS [1],
THINK [3], SaveCCM [2], and SmartC [4]. The reason for
using the component based framework is easy to manage
each interface as an integration support.
The contributions are as follows:

• reduction in the workloads of software developers
• reduction in human errors occurred during the inte-

gration process
• solving the differences of interfaces between the

control design and software development phases

The rest of this paper is organized as follows. This paper
discusses conventional MBD in Section II, and Section III
describes the design goals. Section IV presents design and
implementation. Section V evaluates the framework, and
then Section VI concludes.

II. CONVENTIONAL MBD
An example of an MBD control design flow of in-

verted pendulum is shown below. Controlled object called
“puppy” is a parallel two-wheel type robot. First, control
designers make a controlled object model itself, such as
differential equations expressed in physical equations. In
addition, the control designers create a controller model of
an inverted pendulum using a control theory. A controller
determines an output for the controlled object based on its

9

controller
Angular velocity of body[rad/s]

Rotation angle of wheel[rad]

Torque[N/m]Controller

Model for inverted

pendulum

Plant

Model of Puppy

a
V

9619259.0

0

08091920.0

0

011.9088759619259.00

1000

00.207975008091920.00

0010

Figure 1. Control design model

Legacy code

Rotary encoder

(Sensor)

Legacy code

Gyro sensor

(Sensor)

Generated code

Controller

Model for inverted

pendulum

[output] Value of analog to digital conversion[V]

[input] Angular velocity of body[rad/s]

[I/O]Rotation angle of wheel[rad]

[output]Torque[N/m]

[input]Target current value[A]

Legacy code

Motor driver

(Actuator)

Plant

Actual machine

Figure 2. I/O relation

state. Using thesenumerical formulas and controller mod-
els, the control designers perform simulation on CAE tools
such as MATLAB/Simulink. Figure 1 shows an example
of a control design model created by control designers
in MBD. The controller outputs a torque value of motor
based on a motor turning angle and an angular velocity
inputs from the controlled object. Simulink Coder is a code
generator of MATLAB/Simulink extension. It generates C
code based on the controller model. The generated code
enables software developers to use a control algorithm
working as designed.

The control design model shown in Figure 1, however,
does not consider the implementation environment. Figure
2 describes a re-designed model of Figure 1 and taking the
implementation environment into consideration. A numer-
ical formula model is replaced with an actual machine. In
addition, three models are added. A first model is the gyro
sensor model which outputs an inclination of a body as a
gyro sensor value. A second model is the rotary encoder
model which outputs rotational angles of the wheels. The
last model is the motor driver model which controls a
motor using an input of a target current value for the
motor. Legacy code previously developed or provided by
vendors is applied for an implementation program of the
gyro sensor, rotary encoder, and motor driver models.

I/O relations in Figure 2 indicate that output of the
rotary encoder and input of the controller have the same
unit of rotational angles of the wheels. The input of
the controller, however, is the body angular velocity and
output of gyro sensor is the AD conversion value of it.
Therefore, the unit does not match. Non-consideration of
coding during control design phase cause this problem.

In order to match input with output in the I/O relations,
additional manually-created code is required. Hence, it
enables the software developers to use generated code
as shown in Figure 3. In the control design phase, an
ignorance of implementation resulted in making the model
shown at Figure 1. As a result, the software developers
must change interface of legacy code in a software devel-

Legacy code

Rotary encoder

(Sensor)

Legacy code

Gyro sensor

(Sensor)

Generated code

Controller

Model for inverted

pendulum

Legacy code

Motor driver

(Actuator)

[output] Value of analog to digital conversion[V]

[input] Angular velocity of body[rad/s]

[I/O]Rotation angle of wheel[rad]
[output]Torque[N/m]

[input]Target current value[A]

Hand

written

codeHand

written

code

Plant

Actual machine

Figure 3. Implementation model

opment process shown in Figure 3. Converting the smallest
unit that can be represented per bit and mapping a input
value to other data are given as an operation for adjusting
I/O relations. Details of each element are described in
below. On an operation of a Least Significant Bit (LSB)
conversion, minimum unit of input increment information
per bit is adjusted to the unit of output. The control system
may use a value by converting the voltage such a torque
or an angle value to other value for being treated as an
argument. While converting, a minimum unit treated per
bit on arguments is called “LSB”. LSB is defined as below:

LSB = maximumvoltage− minimumvoltage
maximumargument value−minimumargument value (1)

On an operation of mapping a data to other data, the
software developers write the code which converts input
value to other values as an output. For instance, as shown
in Figure 3, the gyro sensor outputs an AD conversion
value while an input for the controller assumes the angular
velocity of the vehicle. In this conversion, hand-written
code is required to provide functions which outputs 0 when
an AD conversion value of a gyro sensor is an infinitesimal
value, and otherwise outputs a converting value multiplied
the AD conversion value and a conversion factor. Thus,
the software developers must write code when the I/O
relations of control design phase is different with that
of implementation phase. In particular, control designers
set maximum and minimum voltage of LSB on their own
terms. The software developers need to communicate with
them or check specifications in order to convert LSB.
It indicates that using manpower is unavoidable while
converting LSB. Therefore, it is a challenge to make code
integration automated while keeping the use of manpower
at the minimum.

III. D ESIGN GOALS

The following problems are required to solve in regard
to the integration process of conventional MBD:

A. Integration with legacy and generated code
The framework enables the software developers to in-

tegrate and generate code produced from a control design
tool, and legacy code and utilize them. It also enables them
to generate wrappers automatically as much as possible.

B. Providing a wrapper of LSB conversion
The framework provides a function to convert the

LSB difference between the input and output increment
per bit when software developers integrate the generated
code with legacy code. The wrapper converts the LSB
value of calling function to the LSB value of providing

10

Component
developer

Signature description
(Definition of Interface)

Cell type Description
(Definition of component)

Build description
(Definition of configuration)

Application
developer

Component
diagram

Template code

Header

Interface code

Kernel
configuration file

Application
developer

Cell type code

Compiler/Linker

Application

TECS generator

Control
designer

Controller model
(MATLAB/Simulink)

Generated code
(Simulink coder)

Control
component

Wrapper
component

C code/header
of wrapper
component

C code/header
of control component

C code/header
of control task

component

Cell type code
of wrapper
component

Cell type code
of control component

Cell type code
of control task

component

Control task
component

TECS development

Framework

Framework

CDL

developers

Converter

Element of CDL

C code

Cell type code

：Compiler’s I/O

：TECS generator’s I/O

：Framework’s I/O

：Developer’s workloads

Builder

：MBD’s flow

MATLAB/Simulink
models

Framework
Framework

Framework

Framework

Framework

Framework

Figure 4. Integration flow

function. In order to warn the software developers that
there is a conversion error after the conversion process,
the framework needs a warning system.

C. Providing a wrapper of mapping function
The framework also provides a function to convert a

value of calling function to a value of providing function
by the conversion method an user selected.

IV. D ESIGN AND IMPLEMENTATION

The framework integrates legacy components with a
component utilizing automatically generated code．The
Code generation tool is Simulink Coder. TECS is used as
a component based framework on this study and overview
of it is examined below.

A. Overview of TECS
Development flow of TECS is shown in dashed line

enclosing the image in Figure 4. TECS which features
static binding and C based development is suitable for
embedded systems [1]. The reason of using TECS on
this framework is that TECS generator is available. The
TECS generator generates code automatically based on
Component Description Language (CDL). The code in-
cludes kernel configuration files, interface code, header,
and template code. It contributes to reduce a labor of
managing interfaces, such as data type during compile-
time and link-time.

B. Integrative approach
A component has entry port and call port interfaces

based on the TECS component model [1]. The entry port
is an interface to provide services to other components.
The service of the entry port is called the entry function.
The call port is an interface to use the services of other
components. Based on the above, legacy and generated
code integration flow is examined and shown in Figure 4.
First, the framework makes the generated code available
as a component. This component is defined as “control

component”. Control component’s interfaces are input and
output of control design model. Second, the framework
makes control component available as a cyclic task. In
addition, it makes a function of control component exe-
cutable from legacy code. The component is defined as
a “control task component”. An argument value as an
interface of control component is required for generation
of the control task component. Finally, software developers
confirm the differences of the interfaces between the
control component and the control task component. If
the interfaces are different, software developers generate
a wrapper component, and after that these components
are integrated on TECS. Wrapper components provide
functions converting an input value to other value as an
user selected form. LSB and mapping components are
described below.

1) LSB component:This component provides function
converting input resolution to output resolution．As men-
tioned above, LSB is defined in equation 1. Difference
of LSB between input and output is a problem software
developers cannot find from the implementation model.
Therefore, software developers enter LSB control design-
ers sets and LSB software developers sets from terminal.
For LSB conversion, the framework generates code of LSB
wrapper component. Converting LSB is calculated based
on equation 2. ‘y’ means voltage value which software
developers or control designers consider, and ‘x’ means
an argument value. In addition, minimum value between
a voltage value and argument value may be different.
Therefore, an intercept which compensates the difference
is defined ‘I’.

y = x× LSB + I (2)

On software, argument value ‘x’ is needed. ‘y1’ is a
voltage value of a call port and ‘y2’ is a voltage value
of an entry port.y1 = y2 is expressed in equation 3.

11

Table I
COMPARING THE RESULT

A B C D E F G
Former After Former After Former After Former After Former After Former After former After

CDL 8 0 28+2α 0 6+3α 0 15 0 11 0 18+3γ 0 12 0
C code &
header

10+α+β 0 1+α 0 1+α 0 1 0 5 0 5+2γ 0 1 0

Total 18+α+β 0 29+3α 0 7+4α 0 16 0 16 0 23+5γ 0 13 0

Table II
CORRESPONDING TABLE

Letter Required description for each component

A Control component
B Control task component
C Modification of control component for wrappercomponent
D LSB conversion component
E Mapping component using all data
F Mapping component using inflection point
G Mapping component using proportional relations

x1 × LSB1 + I1 = x2 × LSB2 + I2 (3)

This frameworkis designed and implemented to convert
the call port value ‘x1’ adjusting the entry port. ‘x2’ is
calculated by equation 4.

x2 =
x1 × LSB1 + I1 − I2

LSB2
(4)

2) Mapping component: This component provides
functions converting an input value to other value, and
output the other value by corresponding relationship of
data prepared in advance. There are situations when com-
plex calculations are needed to convert data value. In
the case, data conversion requires significant processing.
It could influence optimization of control. Therefore, the
framework provides three kinds of components as below:

A method using all data:This method is preparing a
corresponding relation of all data between the call port and
the entry port in advance. Hence, calculating processing
can be skipped and it reduces an executing time.

A method using inflection point:In this method,
correspond value is calculated based on input value using
linear functions. Linear functions exists between inflec-
tions points. Therefore, processing time increases although
memory area is decreased, compared to the method using
all data. Based on information of inflection points the user
selects, the linear function is determined and it calculates
a value of the entry port. As for this method, equivalent
value may not represent. In this case, the framework must
warn the user to announce the extent of an error.

A method using proportional relationship:This com-
ponent uses a coefficient of proportion for mapping output
value. In case of proportion such as relationships of
electric current and voltage, electric current, and torque,
this mapping component is efficient.

V. EVALUATION
Evaluation environment is examined in Section II and

IV. A demonstration shows that an actual machine runs
inverted pendulum after the code integration on the frame-
work. The framework is evaluated in terms of automation
and efficiency. Greek characters in Table I means as
following. ‘α ’ expresses the number of I/O in the Model.
‘β ’ describes lines of code copied from automatically

generated code. ‘γ’ presents the number of inflection
points. As shown in Table I and Table II, an amount
of hand-coding is reduced while integrating. Software
developers, however, input LSB and mapping information
into terminal for generating each component. Software
developers do not have to consider how to implement
software, and only need to consider the differences of
interfaces compared to coding. Therefore, it indicates
that the workloads of the software developers can be
reduced by the proposed automation. Next, hand coding
may cause human errors and an amount of hand-written
code decreasing indicates its reduction. Third, LSB and
mapping components runs on an actual machine without
any problem. It shows handling the difference of I/O
relations between the control and software design phases.

VI. CONCLUSION

This paper described the framework aimed at efficient
integration for legacy and generated code in MBD. Verifi-
cation of an actual machine and evaluation of automation
have been done, and they show the usefulness. As for
reduction of software developer workloads, the framework
contributes providing a mechanism of integration automat-
ically. Regarding human errors reduction, it contributes
providing wrapper components. In terms of handling the
difference of the interfaces, it also contributes providing
LSB and mapping components. The future work is sup-
porting OS functionalities assigning an appropriate priority
and a periodic task on the framework.

ACKNOWLEDGMENT

This research was partially supported by JSPS KAK-
ENHI (#40582036).

REFERENCES

[1] T. Azumi, M. Yamamoto, Y. Kominami, N. Takagi,
H. Oyama, and H. Takada. A new specification of
software components for embedded systems. InObject
and Component-Oriented Real-Time Distributed Computing,
2007. ISORC ’07. 10th IEEE International Symposium on,
pages 46–50, May 2007.

[2] J. Carlson, J. Hakansson, and P. Pettersson. Saveccm: An
analysable component model for real-time systems.Elec-
tronic Notes in Theoretical Computer Science, 160:127–140,
2006.

[3] J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A
software framework for component-based operating system
kernels. In 2002 USENIX Annual Technical Conference,
pages 73–86, 2002.

[4] G. Yang, H. Li, and Z. Wu. Smartc: A component-based
hierarchical modeling language for automotive electronics.
In Dependable, Autonomic and Secure Computing, 2nd IEEE
International Symposium on, pages 203–210. IEEE, 2006.

12

Overrun-freeness verification of Rate-Monotonic
Least-Splitting Real-Time Scheduler on Multicores

Mahmoud Naghibzadeh and Amin Rezaeian
Department of Computer Engineering

Ferdowsi University of Mashhad, Mashhad, Iran
naghibzadeh@um.ac.ir, amin.rezaeian@stu-mail.um.ac.ir

Abstract—In real-time task scheduling, semi-partitioning
allows some tasks to be split into portions and each portion to
be assigned to a different core. This improves the performance
of system but by counting each portion as a separate task it
increases effective number of tasks to be scheduled. This
research suggests a semi-partitioning method and assigns each
partition to a separate core to be scheduled by the well-known
scheduler called Rate-Monotonic (RM). To assure non-
concurrent execution of portions of a task, there is no need to
define release time for any portion. It is theoretically proven
that with the proposed semi-partitioning and RM scheduling, all
cores always run their tasks overrun-free. Besides, experimental
results show that overall system utilization is noticeably boosted
and also number of broken tasks is not higher than the best RM-
based methods.

keywords: rate-monotonic least splitting, semi-partitioning,
hard real-time scheduling

I. INTRODUCTION

A multicore system is composed of several processing
elements, called cores, in which all cores can do their
processing in parallel. They all share the same main memory
but each can have its own private cache memory. With this
structure, a sequential computation can be shared among
many cores if not more than one core is executing the
computation simultaneously [1]. While manufacturers tend to
use multicore processors in new artifacts, software facilities to
use all available power of multicores are yet to develop [2].
Scheduling algorithms play a significant role in overrun-
freeness verification of hard real-time systems, i.e., making
sure that every request is executed before its deadline.
However, being multiprocessor/multicore adds a new
dimension to the analysis; how to assign tasks or their requests
to different processors/cores.

 In this paper, the problem of scheduling periodic hard
real-time task sets with implicit deadlines, i.e., when the
relative deadline of a request is equal to its minimum request
interval, on multicores is investigated. One way of
categorizing scheduling methods for multicores is global,
partitioned, and semi-partitioned, categories. In global
scheduling, there is only one queue (or pool) of requests and
each core takes its next request for execution from this queue.
In partitioned, the set of tasks are divided and each partition is
assigned to a separate core. Finally, in semi-partitioned, some
tasks are wholly assigned to specific cores and some tasks are
shared among more than one cores, with the restriction that

not more than one core can work on a request of the shared
task, simultaneously.

It is usually the case that semi-partitioned scheduling leads
to a higher overall utilization of the whole system than global
scheduling, for both fixed-priority and dynamic priority.
However, partitioning is a time consuming task which is
computationally equivalent to bin-packing problem that is
known to be an NP-hard problem [3]. The good side of it is
that portioning is done off-line. Therefore, for small number
of tasks the time taken by partitioning is tolerable, but for large
number of tasks efficient heuristics are thought. A semi-
partitioned approach binds a disjoint set of whole tasks to each
core and lets remaining tasks be executed on multiple cores
while everyone’s share is defined. In one of the researches on
semi-partitioned methods in which Rate-Monotonic (RM)
scheduler is used in each processor, worst case utilization is
reported to be 0.693 [4].

In this paper, a different semi-partitioned scheduling
algorithm called Rate-Monotonic Least Splitting (RMLS) is
proposed for multicores. The scheduler of each core is
basically RM with very minor changes to avoid simultaneous
execution of a shared task by more than one processor. Using
this algorithm, the number of split tasks is at the most equal to
number of used cores minus one. Besides, no task is split in
more than two portions. Splitting fewer tasks has two benefits,
(1) effective number of tasks in the Liu and Layland’s bound,
i.e., Ѳ(n)=2(21/n-1), is reduced which in turn (2) increases
overall system utilization.

 The following notations are used throughout the paper. n:
total number of tasks, n1: total number of task and subtasks,
m: total number of available cores (or processors), m1: total
number of used cores, τi: ith task, Ti: minimum interarrival time
between any two consecutive requests of task τi, Ci: maximum
computation time needed by every request of task τi with Ci ≤
Ti, and finally ݑ௜: the utilization of task τi which is equal to
Ci/Ti.

In Section 2 related work is briefly reviewed: Section 3
describes the proposed RMLS semi-partitioned scheduling,
Section 4 is the theoretical foundations and overrun-freeness
proof of the algorithm, in Section 5 the algorithm is simulated
and results are documented, and finally a summary and future
work is presented in Section 5.

II. RELATED WORK

Many researchers have studied the semi-partitioning
problem with Earliest Deadline First (EDF) scheduling [5-7].

13

The best known worst-case utilization bound using semi-
partitioned EDF scheduling on multicores is 65% for Earliest
Deadline Deferrable Portion (EDDP) algorithm [8]. Later,
they proposed EDF with Window-constraint Migration (EDF-
WM) which has less context switch overhead [9]. The NPS-F
is a configurable method that has a tradeoff parameter
between utilisation and preemptions [10]. On the other hand,
relatively fewer algorithms are proposed for fixed-priority
algorithms [11]. Rate Monotonic Deferrable Portion (RMDP)
and Deadline Monotonic with Priority Migration (DM-PM)
fixed-priority algorithms are proposed by Kato et al [12, 13].
The worst-case utilization bound of those algorithms is 50%.
The concept of portion and how a shared request migrates
between two cores is explained in the same references.
PDMS_HPTS_DS is proposed by Lakshmanan et al. [2]
which reaches 65% utilization. This bound can be extended to
69.3% for light tasks, i.e., tasks with utilizations less than 0.41.
Guan et al. proposed two algorithms called SPA1 and SPA2
[4, 11]. SPA2 has a pre-assignment phase in which special
heavy tasks are assigned to processors, first. The number of
split tasks is m-1 and SPA2 reaches the worst-case utilization
bound of 0.693. This is equal to the Liu and Layland bound
[14] for single processor systems. However, the worst-case
bound in SPA2 is calculated using n which is the cardinality
of the whole task-set, and every processor’s utilization must
be less than or equal to that. For further reading on real-time
scheduling algorithms and related issues refer to [15].

III. SEMI-PARTITIONED RMLS

Basic idea of the semi-partitioned method which is being
presented here is presented in workshop [16]. There, the
fundamental theorem which guarantees the overrun-freeness
of system was not proven. In addition, none of the other
theoretical results provided by this paper have appeared in that
paper. A brief introduction of the method is repeated here and
new findings and performance evaluations follow. The
method is called Rate-Monotonic Least splitting (RMLS)
because it is a semi-partitioned method in which only m1-1
tasks are split.

 Our experiments show that achieved processor utilization
is higher than the best known results for general real-time
systems, i.e., no restrictions on utilization of individual tasks,
running with fixed-priority schedulers up to now. The
proposed assignment algorithm is composed of two steps, see
Algorithm 1.

In Step 1 (Lines 1 to 9), all pairs of tasks, τi, and τj, with
total utilizations satisfying Ѳ(3) ≤ Ui + Uj ≤ 1 are found and
each pair is assigned to a separate processor. Meanwhile,
heavy tasks, i.e. a task τl with Ul ≥ Ѳ(2), are recognized and
each such task is assigned to a separate processor. The
scheduler of each core with two tasks is taken to be Delayed
Rate Monotonic (DRM) which is a modified version of RM.
Details of how DRM works are explained in [17]. Any system
composed of two tasks with utilization less than or equal to
one can run overrun-free with DRM. The scheduler of all
other sets will be the conventional RM.

Step 1 serves two purposes: (1) it increases the number of
cores with high, and (2) it increases the number of processors

with no split task, i.e., decreases the total number of split-
tasks.

Algorithm 1. Packing algorithm

In step 2 (Lines 11 to 16.), all unassigned task are sorted in
decreasing order of RM priorities, i.e., non-descending order
of their request interval lengths. An empty core is picked and
starting from the first unassigned task, tasks are assigned to
the core one at a time until the current task, say task τi, will
make the core overloaded. Task τi is also assigned to the core
but one of the assigned tasks, except the one which is shared
with the previous core, is selected to be split and shared with
the next core. The split task may happen to be τi. In the
following example a scenario is explained and it is clarified
what criteria is used to select a task to be split. The selected
task is split into two subtasks such that the first subtask is
assigned to the current core and makes it full with respect to
Liu and Layland’s bound for the respective number of tasks
and subtasks in this processor.

A new core is taken and the second portion of the current
split task is assigned to it. The process of assigning tasks to
cores continues until all tasks are assigned. If there are enough
cores the assignment successfully complete.

Example 1: suppose the current core is pk and task τi is the
task which is split into two portions τi1 and τi2 with execution
times Ci1 and Ci2, respectively. The utilization of τi1 is ݑ௜ଵ ൌ
	
஼೔భ
்೔

 for core pk. A new core, pk+1, is taken and the second

portion of task τi, τi2, is assigned to this core. Although the
actual utilization of this portion is

஼೔మ
்೔

, its effective utilization

on core pk+1 is taken to be

1

2
2

ii

i
i CT

C
u


 (1)

This is because, in the worst case, a request from subtask τi2
will have only Ti-Ci1 time to be executed. Effective utilization
of the subtask is always greater than or equal to its actual
utilization. Therefore, ܷݏݏ݋ܮ݊݋݅ݐܽݖ݈݅݅ݐ ൌ

஼೔మ
்೔ି஼೔భ

െ	
஼೔మ
்೔
	൒ 0.

Since higher utilization loss causes lower total utilization of
system, when we are forced to split a task, a whole task with
the least utilization loss is selected.

Data: Task-Set
Result: Processor assignments

1 Find tasks with largest and smallest utilizations;
2 While smallest and the largest tasks are different
3 If it’s worth assigning them to a separate processor
4 do so and find the next largest and smallest;
5 Else if it’s worth to assign largest task to a separate
6 processor do so and find the next largest;
7 Else if sum of both utilization is too large
8 discard current largest and find next largest;
9 Else discard current smallest and find next smallest;
11 Take an unassigned processor as current-processor
12 While there is an unscheduled task
13 Find the unscheduled task with highest priority as
 current-task and assign it to current-processor;
14 If current-processor is not overrun-free
15 Remove the task with least loss from current-processor as
 split-task, split it and assign its first-portion to
 current-processor;
16 Take a new processor and make it current-processor and
 assign the second-portion of the task to it;

14

IV. OVERRUN-FREENESS VERIFICATION OF RMLS

In this section, we assume that two processors pk and pk+1
share a task τi = (Ti, Ci) and for each request of the common
task Ci1 is executed by pk and Ci2 is executed by pk+1 such that
Ci=Ci1+Ci2.

Lemma 1: If Liu&Layland’s bound is satisfied by all
processors, the second part of a request from a shared task, τi,
between two processors, pk and pk+1, never overruns.

Proof: The preference of executing a request from a
shared task τi between processors pk and pk+1 is always given
to pk. Whenever pk is not executing such a request pk+1 will be
executing it unless the execution of the second part of the
request is completed. This is because this request has the
highest priority in pk+1. Therefore, in the worst case, the
execution of the second part of the task will be complete after
a time length of Ci is passed since the request is received,
where Ci≤ Ti.■

Definition 1: a conflict-idle period is a time interval in
which both processors, pk and pk+1, that share the shared task,
τi, want to run a request from the task but because pk is given
a higher precedence it will proceed with the execution; and at
the same time, there is no other pending request for processor
pk+1 within this period and it will be idle. Note that, not all
conflict periods of processors pk and pk+1 are necessarily
conflict-idle because if there are other requests for pk+1 it will
proceed with their execution and hence it will not be idle.

Lemma 2: If the utilization of each of the two processors,
pk and pk+1, which share a tasks, τi, is not higher than Liu and
Layland’s bound and there is no conflict-idle period with
respect to the share task, both processors always run their
corresponding tasks safely.

Proof: Since processor pk has a higher precedence to run
the shared task τi than pk+1, this processor will always run safe.
On the other hand, the only effect that pk can have on tasks of
processor pk+1 is that it may cause the execution of the second
part of a request from the shared task to be postponed. This
may harm the safety of the shared task in pk+1 but it may be
beneficial to other tasks of this processor. However, in Lemma
1 it is proven that the second part of a request from a shared
task never overruns.■

Lemmas 1 and 2 will hold even if actual utilization of
subtask τi2, i.e.

஼೔మ
்೔

 , is used in the computation of utilization of

pk+1. It is for compensation of possible conflict-idle periods
that, in general, effective utilization of the shared task on
processor pk+1 is computed as

஼೔మ
்೔ି	஼೔భ

.

Definition 2: Effective utilization of a request (not a task
or subtask) at a given time t is defined as below:

ఛ೔,௧ܧ ൌ
௜߬	݂݋	݁݉݅ݐ	݊݋݅ݐݑܿ݁ݔ݁	ܴ݃݊݅݊݅ܽ݉݁
௜߬	ݎ݋݂	݈݁݊݅݀ܽ݁݀	݋ݐ	݁݉݅ݐ	ܴ݃݊݅݊݅ܽ݉݁

For example, suppose task τ = (10, 4) has generated a
request at time 20 and current time is 26 and up to now this
request has received 1.5 unit of CPU time then the effective
utilization of the request at time 26 is (4-1.5)/(30-26)=0.625.

Lemma 3: Suppose two processors pk and pk+1 share a
task τi. Effective utilization of a request from τi for processor
pk+1 is maximal at the exact time when the execution of
processor pk’s share of this request is completed and pk starts
this request immediately after it is generated and continues
until completion.

Proof: Suppose as soon as a request from τi is generated at
a time t0 processor pk starts executing it until its share is
finished at time t0+Ci1. At this time effective utilization of the
subtask τi2 on pk+1 is equal to

஼೔మ
்೔ି஼೔భ

. We show that this is in

fact maximal effective utilization of τi2, which means subtask
τi2’s effective utilization never becomes greater than this.
Recall that requests of task τi have the highest priority in
processor pk+1. This implies that any request from this task
will be immediately pick up for execution by pk+1 if pk is not
executing it. On the other hand, if the execution of the second
part of a request from task τi is completed by processor pk+1,
then its effective utilization becomes zero and remains zero
until a new request is generated from the same task. With these
points in mind, consider a situation where at any time t1, t0 ≤
t1 ≤ t0+Ci, processor pk has executed this request for duration
of length a, a ≤ Ci1, and processor pk+1 has executed the same
request for duration b, b < Ci2 and a+b = t1-t0. See Figure 1.

Fig. 1. A Sapmle execution of parts of a split task.

At time t1 effective utilization of τi2 is
஼೔మି௕

்೔ିሺ௔ା௕ሻ
 .

Since a ≤ Ci1,

஼೔మି௕

்೔ିሺ௔ା௕ሻ
 ≤

஼೔మି௕

்೔ିሺ஼೔భା௕ሻ
 =

஼೔మି௕

்೔ି஼೔భି௕

To show that maximal effective utilization of τi2 is
஼೔మ

்೔ି஼೔భ
 it has

to be shown that
஼೔మି௕

்೔ି஼೔భି௕
 ≤

஼೔మ
்೔ି஼೔భ

 .

That is, ሺܥ௜ଶ െ ܾሻሺ ௜ܶ െ ௜ଵሻܥ ൑ ௜ଶሺܥ ௜ܶ െ ௜ଵܥ െ ܾሻ
Or,

െܾ ௜ܶ ൅ ௜ଵܥܾ ൑ 	െܾܥ௜ଶ
Or,

ܾሺܥ௜ଵ ൅ ௜ଶሻܥ ൑ 	ܾ ௜ܶ
which is always true because b is positive and ܥ௜ଵ ൅ ௜ଶܥ ൑ ௜ܶ.

 Theorem 1: If effective utilization of each of two
processors pk and pk+1 which share a task τi, is not greater than
Liu and Layland’s bound, both processors will always safely
run their corresponding tasks.

Proof: This theorem is similar to Lemma 2 in which it is
assumed that there will be no conflict-idle period. However,
here, this restriction is removed. In Lemma 2, it is mentioned
that processor pk+1 does not have any influence on the
execution of tasks and subtasks assigned to processor pk. Since

t0 t1

τi1 in pk

τi2 in pk+1

time

a

b

15

Liu and Layland’s bound is satisfied for pk it will always
safely run its assigned tasks. In the packing algorithm, the
utilization of the shared task on processor pk+1 is computed as
஼೔మ

்೔ି	஼೔భ
 which, based on Lemma 3, is the maximum utilization

which τi2 can ever impose on the processor. On the other hand,
the utilization is taken to be less than or equal Liu and
Layland’s bound. Therefore, this processor will always safely
run its assigned tasks, too.■

V. SIMULATIONS

In this section, the proposed method is compared with
SPA2. We used UUnifast algorithm [18] to produce random
unbiased task-sets in which each task’s utilization must not
exceed one. For each category of task sets, e.g., task sets with
total utilization equal to 4, the total of 3000 task-sets, with
different number of tasks are generated. For RLMS we do not
have to know the number of cores in advanced but we must
know it for SPA2. Therefore, for a fair comparison, for SPA2
and for each tasks set, we had to find the overrun-free case
with the least number of processors. As the minimum number
of processors needed for each method are found, the average
utilization of all processor is calculated by dividing overall
utilization of the task-set by the number of processors used.

To be brief, only two experiments are shown here. In the
first experiment, for task-sets with total utilization equal to 16
and task sets of sizes 38, 48, 67, 106, and 183, the calculated
average utilizations are depicted in Figure 2. RLMS leads to
an average utilization which is always higher than that of
SPA2. Figure 3 shows number of cores used by each method.

Fig. 2. Average of performance, by each method, for U=16

Fig. 3. Number of cores used for each method, for U=16

In the second experiment, rates of schedulable tasks are
compared. Figure 4 shows the result of one such experiment
where average utilization of task sets grows from 0.5 to 1.0.

Fig. 4. Rate of schedulable task-sets

More experiments should be performed on RMLS and also
should be compared with other methods. Finding a utilization
bound for RMLS is in progress.

REFERENCES
[1] C.L. Liu, “Scheduling algorithms for multiprocessors in a hard real-

time environment”. JPL Space Programs Summary, vol. 37-60, pp. 28–
31, 1969.

[2] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in Real-
Time Systems, 2009. ECRTS’09. 21st Euromicro Conference on. IEEE,
2009, pp. 239–248.

[3] M. R. Gary and D. S. Johnson: “Computers and Intractability; A Guide
to the Theory of NP-Completeness” (W. H. Freeman & Co.), 1979

[4] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority
multiprocessor scheduling with liu and layland's utilization bound,”
in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010 16th IEEE. IEEE, 2010, pp. 165–174.

[5] J. Anderson, V. Bud, and U. Devi, “An edf-based scheduling algorithm
for multiprocessor soft real-time systems,” in Real-Time
Systems, 2005. (ECRTS 2005). Proceedings. 17th Euromicro
Conference on, 2005, pp. 199–208.

[6] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” in Embedded and Real-Time Computing Systems and
Applications, 2006. Proceedings. 12th IEEE International Conference
on. IEEE, 2006, pp. 322–334.

[7] A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned edf
scheduling for multiprocessors using a c=d task splitting scheme,”
Real-Time Systems, vol. 48, no. 1, pp. 3–33, 2012.

[8] S. Kato and N. Yamasaki, “Portioned edf-based scheduling on
multiprocessors,” in Proceedings of the 8th ACM international
conference on Embedded software. ACM, 2008, pp. 139–148.

[9] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling
of sporadic task systems on multiprocessors,” in Real-Time Systems,
2009. ECRTS’09. 21st Euromicro Conference on. IEEE, 2009, pp.
249–258.

[10] Bletsas, K. & Andersson, B. “Preemption-light multiprocessor
scheduling of sporadic tasks with high utilisation bound” Real-Time
Systems, vol. 47, no. 4, pp. 319-355, 2011

[11] N. Guan and W. Yi, “Fixed-priority multiprocessor scheduling:
Critical instant, response time and utilization bound,” in Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 2012, pp. 2470–
2473.

[12] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on
multiprocessors,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on. IEEE, 2008, pp. 1–
12.

[13] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling
on multiprocessors,” in Real-Time and Embedded Technology and
Applications Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009,
pp. 23–32.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of the
ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[15] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys (CSUR), vol. 43,
no. 4, p. 35, 2011.

[16] M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A. Rezaeian, and T.
Dehghani, “Efficient semi-partitioning and rate-monotonic scheduling
hard real-time tasks on multi-core systems,” in Industrial Embedded
Systems (SIES), 2018 8th IEEE International Symposium on. IEEE,
2013, pp. 85–88.

[17] M. Naghibzadeh, and K.H. Kim “The yielding-first rate-monotonic
scheduling approach and its efficiency assessment”, International
Journal of Computer System Science & Engineering, 2003, pp. 173-
180

[18] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154,
2005.

16

Phase-aware Scratchpad Memory Management

Technique for Saving Energy of Embedded Systems

Chia-Chung Lee, Chen-Wei Huang and Shiao-Li Tsao

Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

david2658@gmail.com, cwhuang.cs96g@nctu.edu.tw, sltsao@cs.nctu.edu.tw

Abstract—Embedded applications such as multimedia usually

have better memory access predictability thus providing the

chance to utilize scratchpad memory (SPM) as a better

alternative to the hardware cache in terms of performance and

energy [2][6]. Static allocation techniques lock the most

frequently executed parts in the SPM, do not alter the content,

and are simple and effective approaches. However, for complex

applications with numerous hotspots, static allocation techniques

usually lead to underutilization of the SPM space. Dynamic SPM

allocation techniques remedy the shortcoming by allowing the

freedom of altering the SPM composition at runtime. However,

for large real applications such as multimedia codecs exhibiting

clear phase behavior [15], the importance of the code and data

object may vary significantly in different execution phases

indicating inflexibility of fixed classification and lower SPM

utilization. Therefore, in this study, we incorporate phase

detection techniques in dynamic SPM management. Preliminary

results demonstrate the phased-aware SPM management

outperforms the conventional dynamic SPM schemes.

Keywords—scratchpad memory; phase behavior; dynamic

management

I. INTRODUCTION

Reducing energy consumption is important for battery-
operated devices such as handsets and tablets. Hardware-
controlled caches pull the gap between external memory and
CPU at runtime transparently to the program at the cost of
auxiliary hardware control logic, however limited by the
visibility scope, in an ad-hoc manner. In contrast, software-
controlled caches (also known as Scratchpad Memory, SPM)
stripped the area and energy premium of hardware control units
at the cost of requiring delicate software analysis at design time.
For applications with better memory access predictability such
as multimedia in the embedded systems, SPM can serve as a
better alternative than the hardware cache in terms of
performance and energy [2] [6].

Scratchpad memory (SPM) is widely used in embedded
CPUs such as ARMv6 cores [9], IBM Cell SPU [6] and in
recent Nvidia [13] and AMD GPUs [14]. Abundant research
have been devoted to effectively use the SPM as a placeholder
for data and/or code either statically [11] [12] or dynamically
[1] [2] [3] [4] [6] [9]. Both approaches classify the code and/or
data objects to be accessed from the SPM or main memory.
Static allocation techniques lock the most frequently executed
parts to the SPM and do not alter the content. For simple
applications with a few hotspots, static allocation is a simple
and effective approach. However, for complex applications
with numerous hotspots, static allocation techniques usually
lead to underutilization of the SPM space. Dynamic SPM

allocation techniques remedy the shortcoming by allowing the
freedom of altering the SPM composition at runtime.

Depending on the way that the features of code and data
objects are gathered, dynamic SPM management schemes can
be broadly categorized into two classes, namely profile-based
[1] [2] [3] and static-based analysis [4] [6]. Profile-based
methods obtain the information via executing the target
program several times with different inputs to synthesis a
representative executed trace which classification depends.
Static-based analysis analyzes the control flow graph of each
function together with call graph representing possible caller-
callee relationship to derive possible interferences between
functions without actually executing the program. Both
approaches classify the code and data objects into fixed
categories, that is either they will be accessed from the SPM or
main memory whenever needed during the entire execution.

However, for large real applications such as multimedia
codecs exhibiting clear phase behavior [15], the importance of
the code and data object may vary significantly in different
execution phases indicating inflexibility of fixed classification
and possibly lower SPM utilization. Experimental results [1]
show that the state-of-the-art approaches do not adequately
handle programs with many phases such as the H.264 decoder.

Program phase behavior has been exploited to improve
performance or power consumption in hardware
reconfiguration and dynamic translation [5]. To the best of our
knowledge, this is the first study to incorporate phase detection
techniques in dynamic SPM management. Since memory
transfer is expensive, we will also consider the possibility of
retaining a code object classification across two consecutive
phases. Considering the inter-phase correlation makes our
approach unique from previous phase-aware optimizations.

The rest of this paper is organized as follows: Section II
discusses previous work in the dynamic SPM allocation
techniques and program phase detection. In Section III, we
give an educational example to demonstrate the benefit of
incorporating phase concept to better illustrate our main ideas.
Section IV presents the preliminary result of phase detection
and phased-aware SPM management. Section V discusses our
future work.

II. RELATED WORK

Fruitful work concerning optimal use of scratchpad
memory exist. We refrain the discussion here to studies which
are more closely to our focus in dynamic SPM management of
code objects. For broader discussions, please refer to [12] [9]
[11]. Previous studies [1] [2] [3] [4] [6] presented various

17

approaches to decide management strategies with the goals of
reducing energy consumption. Most of the studies [1] [2] [3]
are profile-based approaches, and comparatively less studies [4]
[6] are based on purely static analysis techniques.

Egger et al. [1] classified the code into three groups (pinned,
paged, and external). Pinned code objects are loaded and
remain in the SPM. Paged code objects are loaded into the
SPM from the main memory on demand during execution with
a simple LRU replacement. External code objects are always
fetched directly from the external memory when required. A
SPM manager is in charge to manage the dynamic update of
the SPM content. They formulated an integer liner
programming (ILP) model to classify the code to minimize the
energy consumption. In [2], authors presented an architecture
consisting of the SPM, mini-cache, and MMU. The MMU
converts virtual address to physical address, and uses a
comparator to lead the access to either the SPM or mini-cache.
A page manager is responsible to update the page table
enabling the MMU to detect a page miss in the SPM. The page
manager updates the SPM content when receiving a page fault
from the MMU. In [3], Verma et al. introduced a two-step
algorithm determining the best set of memory objects to be
accessed from the SPM and the optimal spill locations to load
and unload them from and to the main memory.

Baker et al. [4] proposed a greedy algorithm to generate an
overlay strategy to minimize interferences between functions
mapping to the same region with purely static analysis of the
code structure. Pabalkar et al. [6] expanded the function nodes
in the call graph to their respective control flow graphs to
create a data structure called Global Call Control Flow Graph
(GCCFG). Weights are assigned to nodes to calculate the
interferences between functions mapping to the same SPM
region. They presented an ILP model and heuristic to calculate
the functions mapping to the overlay regions.

Dhodapkar and Smith [5] compared three program
detection techniques, namely working set signatures based,
basic block vectors based, and conditional branch counter
based. The working set signatures approach compare two
consecutive working sets using a similarity metric. Phase
change is indicated when the metric exceeds the preset
threshold. The basic block vectors (BBVs) record the basic
block executed frequency during a particular fixed-length
execution interval. It compares two consecutive BBVs using
Manhattan distance. When the distances exceed a threshold, it
indicates a program phase change. The conditional branch
counter approach tracks the count of conditional branch during
a fixed-length interval. When the difference in branch counts of
two consecutive intervals exceeds a threshold, program phase
change is detected. In their conclusions, the BBV based
technique provides better sensitivity and lower performance
variation in phases compared to other techniques. On the other
hand, instruction working set technique provides slightly
higher stability and longer phases length.

III. MAIN IDEA OF PHASE-AWARE ALLOCATION

TECHNIQUES

We use an educational example to illustrate our idea. The
example program has four functions as shown in Fig. 1, and the
function B is the program entry. We execute the program and

collect the function trace as follows (exponent means
repetitions):

((BA)
5
BD)

6
(BA)

2
((BC)

2
BD)

5
.

 Table I summarizes the size, executed time percentage, and
the total called count of each function. Table II shows the
percentage of time that functions executed in each time slot. In
the following subsections, we first allocate the SPM without
using the concept of program phases in Section III.A. Then we
demonstrate the benefits of incorporating the concept of
program phases in Section III.B. Finally, we compare two
approaches in energy consumption in Section III.C.

Function A

 // Do something

End A

Function B

 For i from 1 to 32 Do

 Call A

 If i mod 5 is 0 Then Call D

 End for

 For j form 1 to 10 Do

 Call C

 If j mod 2 is 0 Then Call D

 End for

End B

Function C

 // Do something

End C

Function D

 // Do something

End D

Fig. 1. Educational example.

TABLE I. FUNCTIONS METADATA.

Func.
Information of the function

Function size
Total executed time

percentage
Total call count

A 128 bytes 70% 32

B 64 bytes 6.25% 1

C 64 bytes 17.5% 10

D 64 bytes 6.25% 11

TABLE II. EXECUTED TIME PERCENTAGE OF EACH TIME SLOT.

Func.
Percentage of each time slot

S1 S2 S3 S4 S5 S6 S7 S8

A 90% 90% 90% 90% 90% 90% 20% 0%

B 5% 5% 5% 5% 5% 5% 12% 8%

C 0% 0% 0% 0% 0% 0% 60% 80%

D 5% 5% 5% 5% 5% 5% 8% 12%

TABLE III. PHASE COMPOSITION.

Phase name Phase composition

18

Phase name Phase composition

A Reading network abstraction layer units

B Entropy decoding and motion compensation

C Deblocking filter

A. Approch A: without the concept of program phase

According to Table I, we may think function A is the
hottest function, with function C being the second, and
function B and D being the least important ones. Assume that
there is a 192-byte SPM partitioned into three pages each with
a fixed size of 64 bytes. Using the ILP model proposed by
Egger et al in [1], function A will be classified as a pinned
function occupying 2 pages of the SPM without replacement
during the whole execution. Function B, C, and D will compete
for the remaining 1-page free SPM space as demanded. All
works well during time slots S1 to S6. Function B and D
replace each other in turn. However, during time slot S7 and S8,
function C is actively used, in contrast function A ceases to
appear but occupying valuable SPM resource. This leads to the
unpleasant under-utilization of SPM resource by having
functions B and C repeatedly evicting each other. This situation
results in consuming large amount of energy for copying
functions into the SPM from the external memory which
downgrades the performance.

B. Approch B: with the concept of program phase

We add the concept of program phase to this example.
According to Table II, using a simple function vector collecting
the frequency of each function called during the time slot as the
metric, we can detect there is a phase change during time slot
S6 and S7. We divide the original trace into two sub-traces
corresponding to phase transition point.

((BA)
5
BD)

6
, and (BA)

2
((BC)

2
BD)

5
.

The first part consists of the sub-trace in time slot S1 to S6,
and the second part corresponds to time slot S7 to S8. Using
the same ILP model in [1] twice on the two sub-traces gives us
two allocation schemes. The solution of first part classifies
function A as a pinned function, whereas function B and D
classified as paged functions, and function C is classified as the
external function which is fetched directly from the external
main memory bypassing the SPM. The solution is similar to
Approach A in the SPM space distribution. The difference
between Approach A and Approach B is the role of the function
C. However, the program does not call function C in S1-6. The
solution corresponding to the second phase classifies function
A, C, and D as paged functions, and classifies function B as a
pinned function. Function B is loaded in time slot S7 and
remains in the SPM during S7-8. Other three functions are
moved into the SPM dynamically as demanded. Unlike the
fixed allocation scheme mentioned in Section III.A, we change
the allocation scheme dynamically tailored for the current
program phase.

C. Compare two approaches

Assume that fetching an instruction from the SPM and
fetching an instruction from the external memory cost 1-unit,
and 10-unit energy, respectively.

As the function misses in the SPM, there is the miss penalty
including the function relocation and management energy
consumption spending. The management composes of 100
instructions in the SPM, and it costs 100-unit energy. As a new
phase occurs, the manager needs to swap in the suitable
management strategy for this phase and initialize the SPM state.
This is more complex than management and we assume it costs
1000-unit energy.

In Approach A, the manager is called for moving functions
43 times, and functions B, C, and D are moved into the SPM
22 times, ten times, and eleven times, respectively. At loading
time, the manager loads function A. The total management
energy consumption is 31820-unit energy.

In Approach B, the manager is called for moving functions
13 times during S1-6 and moving functions three times during
S7-8. Function B and C are moved into the SPM seven times
and six times, respectively during S1-6, and function A, C, and
D are moved into the SPM only once, respectively. At the
starting of S1, the manager loads the function A, and as the
program phase change, the manager loads the function B into
the SPM. The total management energy consumption is 13480-
unit energy. Using the concept of program phase, we can
reduce the management overhead by 58%.

IV. PRELIMINARY RESULTS

In this section, we use the H.264 reference decoder [7] as
the target benchmark compiled on ARM platform with several
video clips. To have a quick estimation on the benefits of
exploiting phase behavior in dynamic SPM management, we
use the intuitive approach of dividing the program phases from
an algorithmic point of view. Table III lists the major tasks in
each phase. In the following subsections, we first verify the
quality of dividing phases using an algorithmic approach with
the optimal management strategy in Section IV.A. Then we
point out the benefits of incorporating the concept of program
phases in Section IV.B.

A. OPT and Phase-OPT management

Assume the CPU is equipped with a 32KB instruction SPM,
and functions are divided into 128-byte pages and aligned to
the page size. In a paged environment with a fixed number of
available pages, the optimal page-replacement algorithm (OPT)
is known to have the lowest page-fault rate [8]. To evaluate the
efficiency of our algorithmic-based phase partition, we use
OPT as the page replacement strategy in both phased and the
original non-phased trace to understand the extra page-fault
penalty. In a phased trace, we partition the original non-phased
trace by phase entry points. In contrast to the phased trace
where OPT has complete knowledge about the future, in a
phased-trace the OPT has no visibility beyond the phase
boundary when determining which page to evict. To be
conservative, we assume the worst case that the SPM is
completely flushed during phase transition.

The comparison result is quite promising. For the original
non-phased trace, OPT moves 23,404,928 bytes from the
external memory to the SPM, and for the phased-trace OPT
moves 24,502,912 bytes. The increasing penalty is merely
4.69%. The increment of copying is caused by flushing
contents in the SPM while phase changing and the wrong

19

decisions of replacement. The small extra page-fault penalty
indicates that we have found a good boundary where the
accesses beyond the boundary are irrelevant to the replacement
choices.

B. SPM allocation for H.264 decoder

We first collect instruction traces for constructing the ILP
formulation, and use one of the state-of-the-art dynamic SPM
management approach [1] for classifying the functions in both
phase-aware and phase-unaware manner. Table IV lists
classification of functions in both original phase-unaware and
proposed phase-aware manner. The first column of the Table
IV is the original approach, and the other three columns is the
phase-aware approach.

In the original phase-unaware strategy, the classification of
function remains fixed. In comparison, the classification of
functions adapts to the need of each phase in our proposed
phase-aware strategy. The simulation results are illustrated in
Table V. We estimate the energy consumption using (1) with
the following parameter definitions.

 ... (1)

 Accessed bytes from pinned functions;

 Accessed bytes from paged functions;

 Accessed bytes from external functions;
 Number of byres moved by the manager;
 Nomber of times which paged function misses;
 Number of times which the phase changes;

 Energy of reading one byte from SPM;

 Energy of writing one byte from SPM;

 Energy of reading one byte from external memory;
 Energy of one paged function missing;

 Energy of one phase changing.

Using CACTI [16], we can obtain the energy consumption
value for the

,
, , , and is

0.210442, 0.00361979, 4.08893, 21.0442, and 6752.73 (nj),
respectively. The original approach consumes
5,007,430,307.85 (nj), and phase-aware approach consumes
752,307,327.20 (nj). The phase-aware effectively reduces the
energy consumption by 85%. We found that many functions in
the original phase-unaware approach are classified into paged
functions whereas they were promoted to pinned class in the
phase-aware classification. This effectively reduces the
competition of the limited buffer for paged functions in the
SPM.

V. FUTURE WORK

In the future, we will propose a dynamic SPM management
strategy with suitable phase identification techniques. We will
also develop a cost model incorporating the inter-phase
behavior.

REFERENCES

[1] Bernhard Egger, Seungkyun Kim, Choonki Jang, Jaejin Lee, Sang Lyul
Min, and Heonshik Shin. Scratchpad Memory Management Techniques
for Code in Embedded Systems without an MMU. In IEEE Transactions
on Computers, Vol. 59, No. 8, 1047-1062, August 2010.

[2] Bernhard Egger, Jaejin Lee and Heonshik Shin. Dynamic Scratchpad
Memory Management for Code in Portable Systems with an MMU.
ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2,
Article 11, February 2008.

[3] Manish Verma, and Peter Marwedel. Overlay Techniques for Scratchpad
Memories in Low Power Embedded Processors. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 14, No. 8, 802-815
Auguest 2006.

[4] Michael A. Baker, Amrit Panda, Nikhil Ghadge, Aniruddha Kadne, and
Karam S. Chatha. A Performance Model and Code Overlay Generator
for Scratphad Enhanced Embedded Processors. CODES+ISSS’10,
October 24-29, 2010, Scottsdale, Arizona, USA, 2010.

[5] Ashutosh S. Dhodapkar and James E. Smith. Comparing Program Phase
Detection Techniques. Proceedings of the 36th International Symposium
on Microarchitecture (MICRO-36’03), 2003.

[6] Amit Pabalkar, Aviral Shrivastava, Arun Kannan, and Jongeun Lee.
SDRM: Simultaneous Determination of Regions and Function to Region
Mapping for Scratchpad Memories. HiPC 2008, LNCS 5374, p. 569-582,
2008.

[7] H.264/AVC JM Reference Software, http://iphome.hhi.de/suehring/tml/

[8] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating
Systems Concepts (Eighth Edition). Wiley 2010, p. 374-376.

[9] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh. Dynamic management of scratch-pad memory space.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA, 2001.

[10] ARM1156T2-S™ Technical Reference Manual.
http://infocenter.arm.com/. 2007.

[11] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient
Utilization of Scratch-Pad Memory in Embedded Processor Applications.
EDTC '97 Proceedings of the 1997 European conference on Design and
Test Page 7, 1997.

[12] Chen-Wei Huang and Shiao-Li Tsao. Minimizing Energy Consumption
of Embedded Systems via Optimal Code Layout. Computers, IEEE
Transactions on (Volume:61 , Issue: 8), p. 1127-1139, Aug. 2012.

[13] CUDA Toolkit Documentation v6.0. http://docs.nvidia.com/cuda,
Developer Zone, 2014.

[14] Bryan Catanzaro. OpenCL™ Optimization Case Study: Support Vector
Machine Training123. http://developer.amd.com/, Developer Center
2011.

[15] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and
Brad Calder. Discovering and exploiting program phases. Micro, IEEE
(Volume:23 , Issue: 6), p. 84-93, Nov.-Dec. 2003.

[16] Cacti 6.5. http://www.hpl.hp.com/research/cacti/, HP Labs.

TABLE IV. NUMBER OF CLASSIFIED FUNCTIONS.

Classification
Number of functions

Original Phase A Phase B Phase C

pinned 35 56 54 42

paged 132 8 0 8

external 210 313 323 327

TABLE V. RESULT COMPARISON.

 Original Phase-aware

pinned 708,197,476 bytes 1,265,710,060 bytes

paged 543,316,108 bytes 49,577,936 bytes

external 179,532,968 bytes 115,758,556 bytes

Managing count 4,026,953* 208*

Copy functions 959,112,960 bytes 84,480 bytes

Phase changing count 272*

* are the number of management of function missing, and the number of management of phase changing,
respectively.

20

Towards Holistic Analysis for Fork-Join

Parallel/Distributed Real-Time Tasks

Ricardo Garibay-Martínez
1
, Luis Lino Ferreira

1
, Geoffrey Nelissen

1
, Paulo Pedreiras

2
, Luís Miguel Pinho

1

1
CISTER/INESC-TEC, ISEP, Porto, Portugal

2
DETI/IT/University of Aveiro, Aveiro, Portugal

1
{rgmaz, llf, grrpn, lmp}@isep.ipp.pt;

2
pbrp@ua.pt

Abstract—Parallel/distributed processing is a solution for

providing scaling computing power for computational-intensive

applications. Parallel/distributed applications are commonly

based on the fork-join model, where precedence constraints have

to be considered on the development of an adequate timing

analysis. Moreover, as the main difference with multicore

architectures, distributed systems entail the transfer of messages

upon a communication network that should be integrated in the

timing analysis. In this context, this paper presents the current

status of the work towards holistic analysis for fixed priority

fork-join parallel/distributed tasks. This analysis takes into

consideration the interactions between parallel threads and their

respective messages. These considerations will be helpful for the

improvement of the combination of existing results for computing

the worst-case response time and the specific case of fork-join

parallel/distributed real-time tasks.

Keywords—Real-time; parallel execution; distributed systems;

holistic analysis.

I. INTRODUCTION

Modern real-time applications are increasingly complex
requiring the use of more powerful computing resources. The
current trend of using parallel processing in the embedded
domain seems a promising solution to cope with the
requirements of such demanding applications. Therefore, the
real-time community has been making efforts to extend
traditional real-time tools and scheduling algorithms to
consider parallel task models. However, in some embedded
applications, the use of powerful enough multi-core processors,
is prohibited due to Size, Weight, and Power (SWaP)
constraints. But it is also possible to comply with the
requirements of computational-intensive applications by
allowing single-core embedded devices connected through a
local real-time network, to distribute its workload to remote
neighbour nodes and execute the applications in parallel.

In this work we consider fork-join distributed real-time

applications [1] which are composed of a set of fork-join

Parallel/Distributed real-time tasks (P/D tasks), executing in a

distributed system. When considering such tasks, the

processing of tasks and messages must comply with their

associated time constraints. A P/D task starts by a master

thread executing sequentially; and then forks to be executed in

parallel on remote processors. When the parallel execution has

completed on each of the remote processors, the results are

aggregated by performing a join operation and the execution

of the sequential thread is resumed within the master thread.

We call to those operations, the Distributed-Fork (D-Fork) and

Distributed-Join (D-Join).

We also consider that P/D tasks are scheduled with the

Partitioned/Distributed - Deadline Monotonic Scheduling

(P/D-DMS) algorithm, proposed in [2]. The P/D-DMS

algorithm can be used for partitioning a set of threads onto

uniprocessor nodes connected through a real-time network.

The algorithm makes use of the Distributed Stretch

Transformation (DST) [2]. After applying the DST, a set of

P/D threads have to be assigned onto the nodes of the

distributed systems, which is done by using the Fisher Baruah

Baker - First Fit Decreasing (FBB-FFD) algorithm [3].

Goal of this work. In a previous work, Axer et al. [4]

presented a method for computing the response time of fixed-

priority parallel tasks on multiprocessors, which considers the

synchronization effects of fork-join tasks. In this paper, we

extend the existing holistic analysis for the computation of the

Worst-Case Response Time (WCRT) of sequential tasks in a

distributed system, to parallel distributed (P/D) tasks. When

considering P/D tasks, the transmission delays due to the

messages exchanged by communicating threads within a P/D

task cannot be considered negligible as it is the case on

multiprocessor platforms. Furthermore, we consider the

specific structure of the P/D tasks after applying the P/D-DMS

algorithm, and its impact when computing their WCRT.

II. SYSTEM MODEL

Formally, we consider that a distributed real-time application

is composed of a set of P/D tasks [2]. Figure

1 shows an example of a P/D task . A P/D task is

activated periodically every time units and is characterised

by an implicit end-to-end deadline . Also, it is considered

that all P/D tasks are released synchronously. A P/D task

() is composed of a sequence of sequential and

parallel/distributed (P/D) segments with .

Where, represents the number of segments composing ,

 is assumed to be an odd integer, as a P/D task should

always start and finish with a sequential segment. Therefore,

odd segments identify sequential segments and even

segments identify P/D segments. Each segment is

composed of a set of threads with ,

where for sequential segments and

threads for P/D segments. is the number of P/D threads in

21

each P/D segment, and it is considered to be the same for all

P/D segments within a P/D task . is the number of

distributed nodes.

All sequential segments within a P/D task must execute

within the same processor. This means that the processor that

performs a D-Fork operation (invoker processor) is in charge

of aggregating the result by performing a D-Join operation.

Threads within a P/D segment are possibly executed on

remote processors. Consequently, for each thread

belonging to a P/D segment (P/D thread), two P/D messages

 and are considered for realizing the

communication between the invoker and remote processors.

That is, P/D threads and messages that belong to a P/D

segment and execute on a remote processor, have a

precedence relation: . For each

sequential and P/D segment, there exists a synchronisation

point at the end of each segment, indicating that no thread that

belongs to the segment after the synchronisation point can

start executing before all threads of the current segment have

completed execution. P/D threads are preemptive, but

messages packets are non-preemptive, although large

messages can be divided in several non-preemptive packets.

Also, each sequential thread has a Worst-Case

Execution Time (WCET) of . A P/D thread has

a WCET of , and each message has a Worst-Case

Message Length (WCML) . It is assumed that for a task

 , every P/D thread and their respective messages

within a P/D segment , have identical WCETs and

identical WCMLs , respectively. However, the WCET

and the WCML of P/D threads and their messages can vary

between different P/D segments. Also, P/D threads and P/D

messages within a task , share the same period .

To summarise, it is possible to describe a P/D task as:

 ,

where:

 is the total number of segments of a task ,

 is the WCET of each sequential segment ,

 is the WCML of a single messages (all P/D

messages on the same P/D segment have the same

WCML),

 is the WCET of a single P/D thread within a segment

 (all P/D threads on the same P/D segment have

exactly the same WCET),

 is the number of P/D threads (two messages are created

for each P/D thread within a P/D segment) in each

P/D segment,

 is the period of a task, which is equal to its deadline

(.

A. Preliminaries

For notational convenience we introduce some definitions that

will simplify the explanation of the P/D-DMS [2] algorithm.

Definition 1. (Master thread). The master thread of a P/D task

 is the collection of all threads belonging to all

segments . A master thread can be represented as:

 {

}

Definition 2. (Minimum execution length). The minimum

execution length represents the minimum execution time a

P/D task needs to execute, if all P/D threads are executed in

parallel. This is equal to the sum of the WCET of all the

threads described in the master thread:

 (∑

) ∑

Definition 3. (Maximum execution length). The maximum

execution length , represent the maximum execution time a

P/D task needs to execute when all P/D threads are

executed sequentially on the invoker processor. This is equal

to the sum of WCET of all threads in a task :

 (∑

) (∑

)

Definition 4. (Slack time). The positive slack time is the

temporal difference between the task’s deadline and the

minimum execution length :

If the slack is a negative number, it means that is larger

than its deadline (). Therefore, such a task is not

schedulable on any number of processors with a speed of .

Fig. 1. The fork-join parallel/distributed periodic real-time tasks (P/D task) model.

22

Definition 5. (Task Capacity). The task capacity is defined

as the capacity of the master thread of a task to execute

extra P/D threads from all P/D segments without missing its

deadline:

∑

III. THE P/D-DMS ALGORITHM

P/D-DMS algorithm [2] is a dispatching algorithm for

partitioning a set of P/D tasks onto the elements of the

distributed system. The P/D-DMS algorithm realizes the

dispatching by: (i) applying the DST [2] to each P/D task in

 , and (ii) partitioning the set of remaining P/D threads after

applying the DST onto processors according to the FBB-FFD

algorithm [3]. P/D messages
 are scheduled according

to the fixed priority scheduling policy of the network.

The DST was inspired by the SST transformation model [5].

The DST also opts for the formation of a stretched master

thread
 for each P/D task . However, the DST

addresses some specific constraints that are related to

distributed systems. For example, when realising a D-Fork

operation, it implies that some messages will be transmitted

within the network, affecting the execution length of the P/D

tasks. Let us illustrate the DST transformation with an

example. Consider two tasks: , and

 to be scheduled on 3 processors. The

DST transformation is illustrated in Figure 2. By calculating

the maximum execution length (Definition 3) of tasks and

 , we obtain and . Then, by looking at Figure

2, it is possible to observe two cases:

1. . This is the case of in our example; whenever

such a case appears for a task , the task is fully

stretched into a master thread and handled as a sequential

task with execution time equal to , a task period of , and

an implicit deadline equal to . Therefore, no messages are

generated for transmission on the network.

2. . This is the case of in our example; for such

tasks, the DST transformation inserts (coalesces) as many

P/D threads of into the master thread as possible. To do

so, it is first needed to calculate the available slack and

capacity of task as indicated in Eq. (4) and (5). For , it

gives and, ⁄ . Thus, the number of

P/D threads that each P/D segment can fully insert into the

master thread without causing to miss its deadline is

given by:

 ⌊ ⌋

In the case of , ⌊ ⌋ . Figure 2 shows that

executes two P/D threads per P/D segment on the invoker

processor rather than only one when considering the non-

stretched master thread.

The number of the remaining P/D threads that have not

been coalesced into the master thread is given by:

The slack of task is equally distributed between all the

P/D segments of a P/D task . Thus, the maximum scheduling

length for the subset of P/D threads and their respective P/D

messages is determined by defining a set of P/D intermediate

deadlines :

Thus, at the end of the DST transformation, a P/D task will

be composed of: (i) a single stretched master thread
 ,

and a set of constrained deadline P/D threads
 , and their

respective constrained deadline messages
 ; per each P/D

segment , or (ii) a single fully stretched sequential task.

The stretched master thread
 is assigned to its own

processor. The remaining single fully stretched sequential

tasks and P/D threads
 are assigned to processors with

the FBB-FFD algorithm [3]. Messages
 are assigned to

the real-time network and scheduled accordingly.

Fig. 2. A task scheduled by the P/D-DMS algorithm.

IV. HOLISTIC ANALYSIS FOR P/D TASKS

The holistic analysis has been conceived as a solution for the

analysis of the interaction of a system composed by a set of

different processing devices (e.g. processors and networks)

[6]. One of the main goals of the holistic analysis approach is

to calculate the so called end-to-end delay. The end-to-end

delay is the WCRT associated to a chain of tasks executing on

the same processor or different processors and interchanging

messages for communication purposes. A holistic approach

considers the analysis of such a chain of dependencies, which

implies higher degree of difficulty when compared to the

analysis of components in isolation. However, since the

parameters in a holistic analysis are dependent but monotonic,

it is possible to formulate a recurrence and progressively

iterate until finding a stable solution.

The holistic analysis relies on a simple concept of attribute

inheritance, for instance, the activation (release) of a P/D

message or P/D thread is based on the response time of

previous processing event (e.g. P/D threads or P/D message,

respectively). It is possible to observe in Figure 2, that after

thread has completed execution, the transmission of the

message is triggered, and in turn this message triggers

the execution of the P/D thread .

23

Fully stretched tasks: when considering tasks that are fully

stretch into a sequential task, no transmissions are required

(Case 1, Section III). Therefore, their WCRT only depends on

the suffered interference caused by other higher priority

threads executing on the same processor.

Non-fully stretched tasks: when considering non-fully

stretched tasks, it is necessary to consider the sequential and

parallel segments independently. Let us recall that for each

sequential and P/D segment, there exist a synchronisation

point at the end of each segment, in which threads of the next

segment can only continue their execution whenever all

threads of the current segment have completed their execution.

Therefore, the WCRT of a task is computed based on the

sum of the maximum execution paths of each segment :

 ∑

Sequential segments within a P/D task, are executed on

their own processor, therefore, they do not suffer any

interference from other threads. Thus, the maximum WCRT is

equal to the WCET (of the corresponding thread

 :

 ()

For parallel segments within a P/D task, the maximum

WCRT is given by the maximum WCRT of two possible

scenarios:

1. the sum of all coalesced P/D threads (denoted as)

within the master thread which are executed sequentially:

 ∑

2. or, the

 , which is the maximum WCRT of the

distributed execution paths (denoted as); per each

P/D segment. A distributed execution path is the execution

of a P/D thread that has not been coalesced with the master

thread and their respective P/D messages that have a

precedence relation: . For

calculating WCRT of a distributed execution path, it is

possible to use the following equation:

 () ()

Then, it is needed to find the maximum as:

Thus, for each P/D segment within a P/D task, the

maximum WCRT is equal to:

 ()

Also, it is important to note that the WCRT of threads and

messages depend on the characteristics of the processing

elements, and on the particular method to calculate the WCRT.

For example, for computing the WCRT of a P/D thread, it is

needed to consider the characteristics of the computing nodes

(e.g. uniprocessor nodes, multicore nodes, etc.). Likewise for

computing the WCRT of P/D messages, it is needed to

consider the specific characteristics of the real-time networks

(e.g. CAN, FTT-SE, etc.). However, when considering the P/D

task model and using a task transformation as the DST, the

reasoning of our generic holistic analysis can be used.

V. CONLUSIONS AND FUTURE WORK

In this paper, we presented a generic holistic analysis

approach. This analysis studies the specific structure of the

P/D tasks after applying the P/D-DMS algorithm, and its

impact when computing their WCRT. Although the methods to

compute the WCRT of P/D tasks depend on the specific

characteristics of computing resources and networks, the

holistic analysis reasoning presented in this paper is completely

generic. Hence, we are currently working on extracting some

characteristics of the P/D task model along with properties of

specific communication protocols such as the Flexible Time

Triggered protocol, with the intention of improving the

computation of the WCRT for parallel tasks in a distributed

environment.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through FCT (Portuguese

Foundation for Science and Technology) and by ERDF (European Regional

Development Fund) through COMPETE (Operational Programme 'Thematic Factors
of Competitiveness'), within project FCOMP-01-0124-FEDER-037281 (CISTER);

by FCT and the EU ARTEMIS JU funding, within projects ENCOURAGE

(ARTEMIS/0002/2010, JU grant nr. 269354), ARROWHEAD

(ARTEMIS/0001/2012, JU grant nr. 332987), CONCERTO (ARTEMIS/0003/2012,

JU grant nr. 333053); by FCT and ESF (European Social Fund) through POPH

(Portuguese Human Potential Operational Program), under PhD grant

SFRH/BD/71562/2010.

REFERENCES

[1] R. Garibay-Martinez, L. L. Ferreira and L. M. Pinho, “A framework for

the development of parallel and distributed real-time embedded systems,”

in Proc. of 38th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA 2012), 2012.

[2] R. Garibay-Martínez, G. Nelissen, L. L. Ferreira and L. M. Pinho, "On the

Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks," in Proc.
of the 9th IEEE International Symposium on Industrial Embedded Systems

(SIES'14), to appear, 2014.

[3] N. Fisher, S. Baruah and T. P. Baker, "The partitioned scheduling of
sporadic tasks according to static-priorities," in Proc. of the IEEE 18th

Euromicro Conference on Real-Time Systems (ECRTS'06), 2006.

[4] P. Axer, S. Quinton, M. Neukirchner and R. Ernst, "Response-Time
Analysis of Parallel Fork-Join Workloads with Real-Time Constraints," in

Proc. IEEE 25th Euromicro Conference on Real-Time Systems

(ECRTS'13), 2013.

[5] M. Qamhieh, F. Fauberteau and S. Midonnet, "Performance Analysis for

Segment Stretch Transformation of Parallel Real-time Tasks," in

Proceedings of the 5th Junior Researcher Workshop on Real-Time
Computing (JRWRTC 2011), 2011.

[6] K. Tindell and J. Clark, "Holistic schedulability analysis for distributed

hard real-time systems," Microprocessing and Microprogramming, vol.
40, no. 2-3, pp. 117 - 134 , 1994.

24

Towards Non-invasive Run-time Verification of

Real-Time Systems

Ricardo C. Pinto

LaSIGE/Faculty of Sciences

University of Lisbon

ricardo.pinto@fc.ul.pt

José Rufino

LaSIGE/Faculty of Sciences

University of Lisbon

ruf@di.fc.ul.pt

Abstract—Support for Run-time Verification (RV) has mostly
been provided by software mechanisms, via the instrumentation
of code for observing (monitor) and handling deviations from
specification. Although this approach is fitting for some domains,
it can have a nefarious influence in embedded real-time systems,
impacting the system from the analysis to the operation stages.

A novel alternative to code instrumentation is the embedding of
such mechanisms directly in hardware, thus negating the impact
in system properties, namely timeliness. The availability of soft-
processors and companion System-on-a-Chip (SoC) Intellectual
Property cores enable the hardware-based approach to RV.

This paper addresses the foundations for RV support via
hardware mechanisms. A flexible observer entity is defined, to
be merged into a SoC architecture. Monitoring is performed
at the SoC bus that interconnects processor and peripherals,
enabling the gathering of information regarding events of interest
occurring during system execution and relaying it to external
entities for handling.

I. INTRODUCTION

Run-time Verification (RV) is a well-know technique in

the software world to perform the verification of a system.

It is applied to a software design, to be used throughout

its life-cycle stages - from early verification to operational

deployment. The cornerstone of RV is the monitoring of values

and events, and then comparing them to a given specification.

The classical approach to RV has been through code instru-

mentation. The system software is instrumented with specific

functions which are not part of the functional specification

of the system. These functions are executed during run-time,

monitoring and assessing the state of the system, i.e. its

adherence to the functional requirements. Instrumented code

is therefore closely intertwined with the code dictating the

progression of the system itself (see Figure 1).

Fig. 1: Task Switching and Execution with RV

This work was partially supported by the EC, through project
IST-FP7-STREP-288195 (KARYON) and by FCT, through project
PTDC/EEI-SCR/3200/2012 (READAPT), by LaSIGE Strategic Project
PEst-OE/EEI/UI0408/2014, and Doctoral Grant SFRH/BD/72005/2010.

The usage of current RV techniques in real-time systems is

a double-edged sword: whilst the systems can benefit greatly

from RV, the overhead imposed by code instrumentation raises

issues stemming in system design up to analysis and operation.

At system design, adding code to a real-time task implies

a higher Worst-Case Execution Time (WCET) which must

be computed for schedulability purposes. At operation, the

observation of the system interferes with the system itself due

to the observer effect1.

An illustration of such disturbances can be seen in Figure 1,

where a piece of code has been added to measure the switching

time of a real-time task. The task τi has a computed switching

time at ts. The effective time of switching is tr = tp + tj ,

where tj is the time added by execution jitter, including RV

code. There are additional disturbances caused by other RV

statements, which result in a higher WCET than a task without

RV.

A solution for the RV issues raised by code instrumentation

comes from the hardware domain. The growth in the usage

of reconfigurable logic supporting System-on-a-Chip (SoC)

designs (soft-processors and peripherals) enables the design of

innovative solutions to address issues raised by software, and

RV is no exception. The inclusion of non-invasive, hardware-

based RV mechanisms negates the penalties in timeliness and

performance, thus providing results with higher accuracy and

without any impact on the system itself.

This paper presents the current work on designing and

implementing a hardware-based observer entity aiming at

non-intrusive event monitoring. Such entity will provide the

support for effective, non-intrusive RV in embedded real-time

systems. The remainder of this paper is organized in the

following manner: Section II define the System Model to be

used in the definition of an observer entity for RV; Section III

details the design, specification and implementation in a SoC

platform of such observer entity; Section IV presents related

work in hardware support for RV and Section V concludes this

paper discussing future work directions for achieving robust

RV.

1The observer effect designation stems from physics, where the act of
observing a phenomenon interferes with its characteristics.

25

II. SYSTEM MODEL

The observer entity is to be implemented in an embedded

real-time system, consisting of an execution platform com-

prised both of hardware and software. Therefore, the definition

of such platform is in order. Furthermore, a definition of an

event is also necessary, formalizing what should be captured

by the observer entity.

A. Real-time System Execution

The execution of a real-time system relies on two supporting

platforms: software, through a Real-Time Operating System

(RTOS) providing scheduling and dispatching facilities, to-

gether with system primitives for Input/Output (I/O) activities;

hardware, through an embedded computing platform support-

ing the execution of the software entity.

1) Hardware: Current embedded systems are implemented

resorting to computing platforms which are integrated in

a single integrated circuit. An instance of such computing

platform is a microcontroller, which has a processing element

(CPU) and several I/O peripherals to exchange data with the

environment or other systems. Such systems are known as

System-on-a-Chip (SoC), due to its level of integration. A

diagram showing such a system in presented in Figure 2.

Fig. 2: Generic SoC Computing Platform Architecture

The hardware platform provides the resources necessary for

the software entity: Processing Element, offering the processor

resources; I/O Interfaces, exchanging data with external sys-

tems and/or the environment; Memory, to hold the software

executable and state (variables); Timer Unit, providing the

system with the ability to count time; Interrupt Controller,

managing the interrupt requests coming from peripherals and

feeding them to the processing element.

These components are interconnected through a SoC bus,

in a (multi-)master/slave. Components are memory-mapped,

with each component on the SoC being accessed through a

range of addresses. The operations to be performed are either

read or write, in a similar fashion to a memory device. These

operations are initiated through master components, which are

the only ones allowed to initiate a new transfer. The bus also

embeds the interrupt request lines, allowing the slave devices

to signal the masters of their need to communicate, e.g. signal

they have data available to be transferred to the master.

All instructions to be executed by the processing element

have to pass through the bus, coming from the memory

component. The transfer of data through the bus can be

modelled as Bustrx
def
= (address, data, operation), where:

address is the value of the addressed component; data is the

value of the data being exchanged; operation is the direction

of the data, e.g. read or write. Additional control signals, e.g.

transfer length, are not of interest for monitoring purposes.

Interrupts, Busint, do not carry additional information.

2) Software: The software platform comprises a set of tasks

τi, mapping the intended functional specification into software.

The execution of the tasks is supported by a RTOS. The usage

of a RTOS provides the scheduling and dispatching of the tasks

together with primitives to perform I/O activities, inter-task

synchronization and communications.

Task execution cannot be decoupled from RTOS execution.

Every time a task invokes a system primitive, RTOS facilities

are used to fulfill its function, thus deviating the task execution

from its designed flow. Furthermore, a scheduling function

is performed periodically, deciding which task should be

given processor resources. A companion dispatch function

performesa the actual task switching. An illustration with an

example of these is shown in Figure 3.

Fig. 3: Generic Task Execution Model

During task execution in an RTOS, there are at least three

components: Task Switch, when the RTOS dispatches the task

to be run; Task Processing, with code of the task itself;

System Call for I/O activities or inter-task synchronization

and communication. An additional component is the Interrupt

Processing, which is executed upon interrupt signalling.

B. Events

An event is the information gathered through monitoring of

a parameter of interest, e.g. memory address, interrupt line.

An event ǫ is defined as a tuple ǫ
def
= (t, s, i) where: t is

the time of occurrence; s is the source of the event; i is

the specific information pertaining to the event. The time t
increases monotonically, establishing event causality. Two or

more events may occur at the same time, i.e. tk+1 ≥ tk.

Broadly speaking, events can have two origins: hardware,

such as interrupts, memory accesses; software, such as values

of variables, flow of execution (instructions) or interrupt

handling routines.

The identification of events, both in time and source is

the basic functionality required for monitoring. Additional

information regarding the event enrich the quality of the

information provided by the monitoring, and thus lead to the

support of RV mechanisms.

26

III. OBSERVER ENTITY

The observer does not interfere with the behaviour of the

observed system, thus negating the observer effect. The prop-

erties of the observer are: non-intrusive, not requiring code

instrumentation nor affecting system operation; configurable,

being able to accommodate different event triggers.

A. Design

Using the previously defined system model as working

basis, an Observer Entity (OE) is defined, to be integrated

in an embedded computing platform equivalent to the one

presented in Figure 2. The ability to connect to an internal

bus architecture is crucial, enabling the observation of data

transfers and signalling taking place inside the computing

platform, namely instructions and interrupts.

The ability to monitor interrupts and memory addresses

allows to measure the latency of a task switch, from the instant

the Timer Unit signals the passing of a tick to the scheduler

to the time the task switch is completed. The design of an

entity with the previous requirements results in the architecture

shown in Figure 4.

Fig. 4: Observer Entity Architecture

The OE shown in Figure 4 is plugged to the internal buses

of a SoC architecture, and is comprised of several modules:

Bus Interfaces, managing the physical interface to the buses

and performing the detection of bus activity, e.g. bus transfer

or interrupt; Management Interface, handling the support for

configuration via the bus itself; Observer Configuration, stor-

ing the aforementioned configuration, i.e. which events should

be detected; Event Observer, detecting events of interest based

on the configuration and tagging them to be relayed to other

systems; UART2, providing an Out-of-band (OOB) interface

for relaying the detected events to another system, e.g. a

Personal Computer (PC).

The configuration of the OE can be performed through:

the system being monitored itself, preferably upon system

initialization; OOB, via the UART. The key-point of the OE

is that it can be reconfigured after the system is deployed.

Such architecture effectively enables non-intrusive hardware

monitoring, with the flexibility of being able to accommodate

detection of different events.

The operation of the OE is performed at every hardware

clock cycle, synchronously with the bus. The OE continuously

2UART - Universal Asynchronous Receiver/Transmitter

monitors the bus to detect the start of a new bus transfer

operation, or the assertion of an interrupt line. The operation

of the OE is described by the algorithm shown in Algorithm 1.

Algorithm 1: Event Monitoring

Input: System clock hardware clock tick
Output: Event evt
Initialize(Config)
foreach hardware clock tick do

numTicks ← numTicks + 1
if newEvent(Bus) then

if ∃ id ∈ Config : Config[id] = Bustrx.address
then

evt.time ← numTicks
evt.source ← Config[ID].source
evt.info ← Bustrx.data
outputEvent(evt)

foreach id ∈ Config : Config[id] = Busint do
evt.time ← numTicks
evt.source ← Config[ID].source
evt.info ← null
outputEvent(evt)

The tick count numTicks increases monotonically with

each hardware clock tick. For a 50 MHz clock, it increases

every 20 ns. If bus activity is detected, the configuration table

is checked and if there is a match, the event is tagged with:

timestamp, source and info, e.g. data in a memory access.

B. Implementation

The implementation of the OE architecture shown in Fig-

ure 4 is being performed in VHDL3, and integrated in a

LEON3 SoC [1], which includes the LEON3 soft-processor.

The LEON3 processor implements the SPARC V8 Instruction

Set Architecture (ISA) [2], and is connected to the peripherals

through ARM Advanced Microcontroller Bus Architecture

(AMBA) [3]. A diagram showing the LEON3 SoC together

with the Observer is shown in Figure 5.

Fig. 5: Observer Entity on a LEON3 System-on-a-Chip

The SoC design provides several IP cores implementing I/O

interfaces, together with a Memory Controller for Random-

Access Memory (RAM) and Read-Only Memory (ROM).

3VHDL stands for Very High Speed Integrated Circuit Hardware Descrip-
tion Language

27

The AMBA bus is a high performance multi-master bus.

Data is transferred in parallel, with one transfer per clock-

cycle. Addressing is performed through memory-mapping,

where each component in the SoC is seen as a range of

memory addresses. The memory where software code resides

is no exception, exposing its accesses to hardware monitoring.

The specification [3] defines two types of bus: AMBA High-

performance Bus (AHB), for high-throughput components,

e.g. CPU, RAM, Ethernet; Advanced Peripheral Bus (APB),

for low throughput components, e.g. UART, General Purpose

I/O (GPIO). Both these buses are connected to the OE, en-

abling monitoring of data exchange between SoC components.

The implementation present in the LEON3 SoC embeds the

interrupt request lines of the peripherals in the AMBA bus.

Such embedding eases the monitoring of both data transfers

and interrupt requests, since both are available through the

same bus interface.

The logical structure of the information pertaining to a

monitored event is shown in Figure 6, described in VHDL.

−− Event
t y p e e v e n t t i s r e c o r d

Time : t i m e s t a m p t ; −− Time of o c c u r r e n c e
Source : e v e n t s o u r c e t ; −− Source
I n f o : e v e n t i n f o t ; −− S p e c i f i c Data

end r e c o r d e v e n t t ;

−− Event Source
t y p e e v e n t s o u r c e t i s r e c o r d

ID : i n t e g e r ; −− ID : Task t1 , I n t e r r u p t 15
C l a s s : i n t e g e r ; −− C l a s s e s , e . g . hw or sw

end r e c o r d e v e n t s o u r c e t ;

−− Event S p e c i f i c Data
t y p e e v e n t i n f o t i s r e c o r d

a d d r e s s : a d d r e s s t ; −− Address
d a t a : d a t a t ; −− Data
o p e r a t i o n : o p e r a t i o n t ; −− O p e r a t i o n , e . g . r e a d

end r e c o r d e v e n t i n f o t ;

Fig. 6: VHDL Description of Event Information

The timestamp_t data type should be wide enough

to avoid rollover of time information, and is dependent on

the system clock frequency. The rollover can be seen as a

violation of the monotonicity, where time goes backward. The

Source field stores data pertaining to the source of the event.

Furthermore, it can be configured with the Class extra field,

to provide context for the event specific data field, Info. The

event contained in the format shown in Figure 6 is converted

into a stream of bits to be transmitted by the UART via a

VHDL function.

C. Event Data Output & Exploitation

The usage of an UART as an OOB mechanism enables

the processing and exploitation of the generated event data

on an external system, such as a PC. Therefore, the OE can

be used to: characterize the system during the Verification &

Validation (VV) stage, including timeliness; log the behavior

for performance and timeliness assessment; enable proactive

fault-tolerance mechanism design and execution.

The data output format is configurable via the Observer

Configuration module, and can be formatted to be directly used

by specific verification and visualization tools. The formatting

is performed directly in hardware, by using specific serializing

functions to convert the storage representation of Figure 6 into

a stream of bits to be output by the UART. Output of raw

data together with software filtering on the host system is also

possible, enabling flexible monitoring data exploitation.

An envisaged visualization tool to be used with the OE is

Grasp [4]. Grasp was designed for the visualization of real-

time system execution, namely task execution and switching.

Such a tool enables the verification of scheduling information,

by visualizing the task execution and preemption points.

IV. RELATED WORK

The design of hardware RV mechanisms has been receiving

a growing interest. A first approach to monitoring was intro-

duced in [5], with minimal code instrumentation. The approach

in [6] solved the instrumentation issue, using a dedicated CPU.

Some of the the approaches address both the issue of moni-

toring and verification in a single instance [7]. The verification

procedure is mapped into soft-microcontroller units, embedded

within the design, and use formal languages such as past-time

Linear Temporal Logic (ptLTL) for verification, with clauses

checked by a CPU embedded in the design.

V. CONCLUSION AND FUTURE WORK

Online monitoring and Run-time Verification (RV) of em-

bedded real-time systems is a topic which is expected to

grow in the coming years, thrusted by the design of au-

tonomous control applications. The application of RV to real-

time systems, however, brings an overhead which may be

too costly, due to the impact in timeliness. The availability

of soft-processors and SoC designs opens room for novel

monitoring and RV, supporting non-invasive hardware-based

RV for autonomous applications.

The provision of a reconfigurable and non-invasive Observer

Entity (OE) for monitoring is the first step towards more

sophisticated mechanisms and services. The data gathered by

the OE can be used to feed verification clauses, thus enabling

flexible non-invasive hardware-based RV.

REFERENCES

[1] GRLIB IP Library Users Manual, Aeroflex Gaisler A.B., Apr. 2014.
[Online]. Available: http://gaisler.com/products/grlib/grlib.pdf

[2] The SPARC Architecture Manual, SPARC International Inc., 1992.
[3] ARM Limited, AMBA Specification, ARM Specification 2.0, May 1999.
[4] M. Holenderski, M. van den Heuvel, R. J. Bril, and J. J. Lukkien,

“Grasp: Tracing, visualizing and measuring the behavior of real-time
systems,” in International Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems (WATERS), 2010, pp. 37–42.
[5] M. El Shobaki and L. Lindh, “A Hardware and Software Monitor for

High-level System-on-Chip Verification,” in 2001 International Sympo-

sium on Quality Electronic Design, 2001, pp. 56–61.
[6] J. C. Lee, A. S. Gardner, and R. Lysecky, “Hardware Observability

Framework for Minimally Intrusive Online Monitoring of Embedded
Systems,” Engineering of Computer-Based Systems, IEEE International

Conference on the, vol. 0, pp. 52–60, 2011.
[7] T. Reinbacher, M. Függer, and J. Brauer, “Runtime verification of

embedded real-time systems,” Formal Methods in System Design, pp.
1–37, 2013.

28

Notes

29

30

31

32

	WiP Proceedings A4
	10
	4
	6
	2
	5
	9
	8
	Notes

