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Mo#va#on
§ Safety-cri+cal systems must sa+sfy non-func+onal requirements

§ ComputaEon must finish before a task reaches its deadline
§ Enough stack memory must be available for the system

§ Solu+on: WCET/WCRT analysis, stack usage analysis
§ What about energy-constrained systems?
§ Idea: Apply techniques known from WCET analysis to sta+cally es+mate 

energy usage of embedded soFware
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Using energy models
based on PMU counters

same as in aiT
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Performance Monitoring Units
§ PMUs are hardware units that track various events during the execu+on of 

soFware
§ Examples:

§ Cache hits
§ Cache misses
§ Memory accesses
§ Number of executed instrucEons
§ …

§ We use the PMU counters as proxy for energy usage
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Energy Model Deriva#on
§ Energy models are build using linear regression

§ We employed a Non-Negative Least Squares (NNLS) solver

§ E = Σx(βx × Cx) + α 
§ where x are the various events tracked by PMU counters
§ Cx are the counter values
§ βx are the coefficients of the model
§ α is the residual error term
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§ Our specific target was the STM32F051R8T6
§ This processor does not have a PMU
§ We used thumbulator, an instruc+on set simulator, to count PMU events:

§ Executed instrucEons
§ Executed mulEplicaEon instrucEons
§ RAM reads
§ RAM writes
§ Flash reads
§ Taken branches

Target Architectures – ARM Cortex-M0
7
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§ Cobham Gaisler GR712RC
§ A PMU (L3STAT) is available,

but not included in this target
§ We used a FPGA implementa+on of the

LEON3 including L3STAT in sync with the
original target

Target Architectures – LEON3
8
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Energy Models – ARM Cortex-M0
§ First energy model: +me as proxy for energy [1, 2]

§ Derived using BEEBS benchmarks [3]

§ E = 0.0004 W × t
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Energy Models – ARM Cortex-M0
§ Second energy model: time as proxy for energy [4]

§ Derived using BEEBS benchmarks and Irida Labs‘ CNN benchmarks
§ The CNN benchmarks exercise much more memory accesses

§ E = 0.04387 J + 0.007242 W × t
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Energy Models – ARM Cortex-M0
§ Third energy model: PMU events as proxy for energy [5]

§ Derived using BEEBS benchmarks and Irida Labs‘ CNN benchmarks

11

6 EnergyAnalyzer

ECortex-M0 = 0.972565030 ◊ Cexecuted instructions without multiplications

+ 0.652871770 ◊ CRAM data reads

+ 1.031341343 ◊ CRAM writes

+ 1.037625441 ◊ CFlash data reads

+ 1.354953706 ◊ Ctaken branches

+ 2.274650563 ◊ Cmultiplication instructions

The microarchitectural analysis uses the address intervals computed by the value analysis
phase to determine whether a memory read targets the RAM or the Flash memory (or
possibly both). The number of load and store operations, as well as the number of taken
branches, are predicted by analysing the flow of an instruction through the processor pipeline.
There, the type of an instruction is also taken into account.

4.2 Gaisler LEON3 Setup and Energy Model

The LEON3 energy models were trained and validated on the GR712RC evaluation board [2].
Similarly to the STM32F0-Discovery board, this platform also does not feature a PMU. In
order to get the PMC measurements for the models, a new, dual-platform approach using
a Kintex UltraScale FPGA board was developed. The programmable platform was loaded
with a synthesised version of the LEON3 coupled together with the LEON3 Statistics Unit
(L3STAT [4]). The results were synchronised with physical sensor measurements from the
GR712RC platform to obtain the complete data set for model generation and validation.
More details on the platform setup, methodology, and estimation results are presented in
Nikov et al. [20].

The models presented in that paper describe fine-grained power models which are trained
and validated on all available samples. The models integrated into EnergyAnalyzer use the
same methodology, but with one key di�erence: the samples in the data set are aggregated
for each benchmark to create code-block-sized models, making them more coarse-grained

and the NNLS solver is used to generate positive model weights. Since average power models
would not be very helpful for this purpose, total energy consumption is used instead.

L3STAT provides several performance counters that are useful for modelling the energy
consumption [5]. However, not all of them are statically predictable. Those that can be
statically predicted by EnergyAnalyzer with high accuracy are shown in Table 1. Whether a
memory access results in a possible cache miss is predicted by the cache analysis that is part
of the microarchitectural analysis. The type of instructions and consequently, the update
of the respective counters, are tracked in the pipeline analysis. The following energy model
based on the ISA+Cache subset has been selected for integration into EnergyAnalyzer using
the methodology shown in Appendix A. It has a MAPE of <8.3% compared to physical
measurements and provides energy estimations in J:

ELEON3 = 3.93365 ◊ 10≠08 ◊ Cinteger instructions

+ 1.87111 ◊ 10≠07 ◊ Cstore instructions
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Evalua#on  –  ARM Cortex-M0

8 EnergyAnalyzer

the start trigger and the stop trigger. However, the contribution of this overhead is less
than one mJ and hence, negligible. For the other benchmarks, the static analysis selected
di�erent paths as worst-case execution paths. The maximal observed di�erence between
the simulator run and the static analysis is 109% for benchmark nsichneu, which models a
state machine with many di�erent execution paths, and the static analysis was not able to
prune infeasible paths. Since the path analysis is a worst-case analysis, it maximises over the
possible execution paths. Hence, the path analysis selects the worst-case combination which
di�ers significantly from the simulated execution path.

EnergyAnalyzer allows to trade performance for precision by specifying how many calling
and loop contexts should be distinguished during analysis. We used this feature to increase
the analysis precision. The analysis of most benchmarks takes less than four minutes to
complete, with the exception of five benchmarks (rijndael, cubic, sqrt, nbody, picojpeg), which
took between 4 and 59 minutes.

Benchmark Analysis Result Model Result � Note
aha-compress 78.885 mJ 78.828 mJ < 1 %
aha-mont64 99.396 mJ 99.396 mJ < 1 %
bubblesort 366.763 mJ 366.762 mJ < 1 %

cnt 42.813 mJ 42.804 mJ < 1 %
compress 27.895 mJ 27.895 mJ < 1 %

crc 9.623 mJ 9.623 mJ < 1 %
cubic 7.801 J 4.138 J 89 % flow constraints
du� 4.349 mJ 4.349 mJ < 1 %
edn 302.762 mJ 302.762 mJ < 1 %

expint 43.315 mJ 43.315 mJ < 1 %
fac 2.934 mJ 2.904 mJ 1 %

fasta 29.383 J 21.100 J 39 % flow constraints
fdct 12.292 mJ 12.292 mJ < 1 %

fibcall 1.493 mJ 1.493 mJ < 1 %
fir 1.994 J 1.994 J < 1 %

frac 1.183 J 1.183 J < 1 %
insertsort 3.089 mJ 3.089 mJ < 1 %

janne_complex 1.402 mJ 1.402 mJ < 1 %
jfdctint 31.481 mJ 31.476 mJ < 1 %
lcdnum 886.941 uJ 805.000 mJ 10 %

levenshtein 400.926 mJ 400.926 mJ < 1 %
ludcmp 174.559 mJ 174.559 mJ < 1 %

matmult-float 1.537 J 1.537 J < 1 %
matmult-int 842.724 mJ 842.649 mJ < 1 %

minver 131.316 mJ 84.348 mJ 56 % flow constraints
nbody 25.844 J 25.844 J < 1 %
ndes 293.387 mJ 293.297 mJ < 1 %

Benchmark Analysis Result Model Result � Note
nettle-arcfour 105.880 mJ 105.880 mJ < 1 %
nettle-cast128 23.214 mJ 23.211 mJ < 1 %

nettle-des 22.595 mJ 22.595 mJ < 1 %
nettle-md5 5.467 mJ 5.467 mJ < 1 %

nettle-sha256 50.507 mJ 50.507 mJ < 1 %
newlib-exp 70.439 mJ 70.439 mJ < 1 %
newlib-log 52.954 mJ 52.954 mJ < 1 %
newlib-sqrt 10.289 mJ 10.289 mJ < 1 %

nsichneu 61.017 mJ 29.185 mJ 109 %
picojpeg 4.885 J 4.885 J < 1 %

prime 209.663 mJ 209.663 mJ < 1 %
qsort 27.294 mJ 20.408 mJ 34 % flow constraints
qurt 139.891 mJ 139.890 mJ < 1 %

rijndael 7.176 J 7.042 J 2 %
sglib-arraybinsearch 76.596 mJ 76.596 mJ < 1 %
sglib-arrayheapsort 86.857 mJ 86.857 mJ < 1 %
sglib-arrayquicksort 65.600 mJ 65.600 mJ < 1 %

sglib-queue 126.250 mJ 126.250 mJ < 1 %
slre 206.734 mJ 206.734 mJ < 1 %
sqrt 11.529 J 11.529 J < 1 %
st 4.142 J 2.945 J 41 % flow constraints

statemate 13.331 mJ 9.308 mJ 43 %
stb_perlin 5.145 J 5.145 J < 1 %

stringsearch1 46.362 mJ 46.362 mJ < 1 %
strstr 5.480 mJ 5.480 mJ < 1 %

trio-snprintf 105.378 mJ 65.427 mJ 61 % flow constraints
trio-sscanf 139.345 mJ 71.618 mJ 95 % flow constraints

ud 21.863 mJ 21.862 mJ < 1 %
whetstone 22.533 J 16.687 J 35 % flow constraints

Table 2 Evaluation of the integration of the energy model for the ARM Cortex-M0 into static
energy consumption analysis. For most benchmarks, the di�erence between the model and the static
analysis is less than one percent, i.e., the execution path exercised during the simulator run is the
worst-case path. For the other benchmarks, the simulated execution path and the path found by the
worst-case path analysis di�er significantly.

5.2 EnergyAnalyzer for LEON3

Some of the BEEBS benchmarks contain floating-point computations. However, since the
FPGA implementation of the LEON3 was built without a FPU, the benchmarks cannot use
floating-point instructions but must use a software library that emulates these floating-point
computations. One of the benchmarks—minver—computes a matrix multiplication using
floating-point numbers, where one of the matrices is never initialised. Thus, the analysis has
no knowledge about the possible floating-point values and the actual execution on the CPU
will process random values, depending on what was stored in the respective memory cells.
We performed both the standard worst-case analysis for this benchmark and an analysis
where we assumed that the computations only process normalised IEEE 754 floating-point
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Energy Models – ARM Cortex-M0
§ Even more energy models: PMU events as proxy for energy

§ The ARM Cortex-M0 allows a diversity of system configuraEons:
§ Frequency can bei either 20, 24, or 48 MHz
§ The instrucJon prefetch buffer can be enabled or not
§ Flash memory can be accessed with 0 or 1 waitstate

§ In total, the processor manual permits 10 combinaEons

13

Hardware Config. Energy Consumption Model [nJ] Meas. Energy[J] MAPE [%]

[20, OFF, 0] E = 0.964258⇥ C1 + 1.652455⇥ C2 + 2.091986⇥ C3 + 1.109833⇥ C4 + 0.650563⇥ C5 + 0.633621⇥ C6 221.4 2.80
[20, OFF, 1] E = 1.282474⇥ C1 + 2.110668⇥ C2 + 2.191545⇥ C3 + 1.185609⇥ C4 + 0.416602⇥ C5 + 1.178991⇥ C6 274.9 2.97
[20, ON, 0] E = 1.003378⇥ C1 + 1.885309⇥ C2 + 1.802974⇥ C3 + 1.122833⇥ C4 + 0.849223⇥ C5 + 0.475831⇥ C6 226.38 2.86
[20, ON, 1] E = 0.895879⇥ C1 + 2.185851⇥ C2 + 2.001178⇥ C3 + 1.493364⇥ C4 + 1.076354⇥ C5 + 1.573758⇥ C6 227.9 3.68
[24, OFF, 0] E = 0.959172⇥ C1 + 1.888565⇥ C2 + 1.357556⇥ C3 + 1.089427⇥ C4 + 0.993145⇥ C5 + 0.562952⇥ C6 214.62 3.22
[24, OFF, 1] E = 1.178558⇥ C1 + 2.540429⇥ C2 + 2.042475⇥ C3 + 1.190892⇥ C4 + 0.979651⇥ C5 + 0.891088⇥ C6 264.88 3.16
[24, ON, 0] E = 0.985415⇥ C1 + 1.933276⇥ C2 + 1.448160⇥ C3 + 1.075671⇥ C4 + 1.011891⇥ C5 + 0.617510⇥ C6 220.03 3.36
[24, ON, 1] E = 0.883755⇥ C1 + 2.156046⇥ C2 + 1.633465⇥ C3 + 1.436556⇥ C4 + 1.152560⇥ C5 + 1.455166⇥ C6 220.05 4.15
[48, OFF, 1] E = 1.096677⇥ C1 + 2.364495⇥ C2 + 1.627854⇥ C3 + 1.173680⇥ C4 + 0.681475⇥ C5 + 0.652665⇥ C6 243.44 3.65
[48, ON, 1] E = 0.816331⇥ C1 + 2.014612⇥ C2 + 1.372157⇥ C3 + 1.402116⇥ C4 + 0.835035⇥ C5 + 1.250446⇥ C6 202.5 4.33

TABLE II: Energy models for selected Cortex-M0 hardware configurations – Hardware Configuration Format: [Frequency
(MHz), PreFetch (ON/OFF), WaitState (0/1)] and MAPE: Mean Absolute Percentage Error

other two and the NNLS solver associates a large part of the
energy consumption to them, even if the operation itself uses
much less energy. Introducing a WaitState clearly increases
energy consumption and thus the PMC coefficients for the
entire DUT (however it is needed for correct functionality at
higher frequencies). When the WaitState is 0, turning on the
PreFetch results in slightly higher energy consumption for the
frequencies that support WaitState 0. Consequently, when the
WaitState is 1 and PreFetch is ON, there is a significantly
reduced overall energy consumption with lower model weights
for arithmetic PMCs and branches, but higher model weights
for data movement PMCs.

III. CONCLUSION AND FUTURE WORK

This paper offers an open-source, ready-to-use energy model
for the Arm Cortex-M0 processor [13]. The model can be
used for profiling-based analysis to accurately estimate the
total energy consumption of a program and in static analysis
to predict the energy budget of a particular block of code
with a MAPE of less that 5%. The models also account for
various frequency and flash instruction-buffer configurations of
the processor that can significantly affect the execution time
and energy consumption of an application. Our customised
open-source ISS [12] is also readily available to profile the
execution time and energy consumption of edge computing
applications for any of the STM32F0xx family of processors.
This allows developers to choose the hardware configuration
that can meet the resource requirements.
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Energy Models – ARM Cortex-M0
§ EnergyAnalyzer allows to specify an energy model based on PMU counters

14

# EnergyAnalyzer specific attributes, all values have been rounded up to full pJ.

attribute "arm_event_energy_costs": {

  "instruction_fetch" = 973,

  "ram_data_write" = 1032,

  "ram_data_read" = 653,

  "flash_data_read" = 1038,

  "mul_instruction" = 1303,

  "taken_branch" = 1355

};
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(a) Comparison of different hardware 

configuraJons concerning energy usage

(b) Comparison of different hardware 

configurations concerning execution time
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LEON3
§ LEON3 PMU (L3STAT) has many available counters, not all of them being 

sta+cally predictable
§ Energy model has been build using the ISA+Cache subset of PMU counters
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# Counter Description # Counter Description

C1 ICMISS instruction cache misses C13 TYPE2 type 2 instructions
C3 DCMISS data cache misses C14 LDST load and store instructions
C7 IINST integer instructions C15 LOAD load instructions

C11 BRANCH branch instructions C16 STORE store instructions
C12 CALL call instructions

Table 1 ISA+Cache subset of PMCs.

5 Evaluation

We integrated the energy models from Section 4 into EnergyAnalyzer for ARM Cortex-M0

and EnergyAnalyzer for LEON3, respectively. We evaluated the integration with the help
of the BEEBS benchmark suite [22]. The goal of the evaluation is to determine how close
the statically estimated energy consumption for a given workload is to the model estimation.
Not all of the BEEBS benchmarks exercise the worst-case path through the program during
execution. Thus, a comparison of the results of the analysis and the actual measurements
would compare in two orthogonal dimensions. First, it would compare the tightness of the
model with respect to the actual hardware measurements. Second, it would compare the
exercised path with the worst-case path. In order to fix the comparison to one degree of
freedom, we compared the energy estimates obtained from static analysis and those obtained
from the energy model based on the actual PMC measurements from the platforms. The
tightness of the models has already been demonstrated in Section 4.

In contrast to the safety-critical embedded hard real-time software that is usually analysed
with aiT, the BEEBS benchmarks also contain dynamic memory management using malloc

and free. We did not analyse these benchmarks because the manual annotation e�ort to
get tight results would be too high. Some of the benchmarks contain computed calls via
function pointers that cannot be resolved automatically. In this case we manually annotated
the call targets. Moreover, we specified constant data in some cases.

For the LEON3, only a subset of the BEEBS benchmarks has been measured on the
hardware setup, because the execution time of some of the benchmarks is too low to
synchronise the FPGA and the ASIC (see Section 4 and accompanying paper [20]).

5.1 EnergyAnalyzer for ARM Cortex-M0

For some benchmarks, the static analysis was not able to derive all loop bounds automatically.
In this case, we used Thumbulator to derive flow constraints for the ILP-based path analysis.
However, the benchmark might not exercise the worst-case path, and thus, using the simulation
trace might not result in the worst-case amount of loop iterations for each loop in the program.
For one of the benchmarks—wikisort—the simulation with Thumbulator fails because the
binary allocated only 4096 bytes of stack, but one routine already needed 4520 bytes of stack.
This causes a stack overflow. Hence, some function pointer variables are overwritten, and
the benchmark cannot be executed correctly. We thus excluded the benchmark from the
evaluation. Two of the benchmarks—qsort and select—contain out-of-bounds accesses.

Table 2 shows the results of the evaluation of EnergyAnalyzer for ARM Cortex-M0. For
43 benchmarks, the di�erence between the model and the static analysis is less than one
percent, i.e., the execution path exercised during the simulator run is the worst-case path.
Note that the analysis results include the energy consumption of the execution of the main
routine, which is not included in the simulator result, which only contains the path between

6 EnergyAnalyzer

ECortex-M0 = 0.972565030 ◊ Cexecuted instructions without multiplications

+ 0.652871770 ◊ CRAM data reads

+ 1.031341343 ◊ CRAM writes

+ 1.037625441 ◊ CFlash data reads

+ 1.354953706 ◊ Ctaken branches

+ 2.274650563 ◊ Cmultiplication instructions

The microarchitectural analysis uses the address intervals computed by the value analysis
phase to determine whether a memory read targets the RAM or the Flash memory (or
possibly both). The number of load and store operations, as well as the number of taken
branches, are predicted by analysing the flow of an instruction through the processor pipeline.
There, the type of an instruction is also taken into account.

4.2 Gaisler LEON3 Setup and Energy Model

The LEON3 energy models were trained and validated on the GR712RC evaluation board [2].
Similarly to the STM32F0-Discovery board, this platform also does not feature a PMU. In
order to get the PMC measurements for the models, a new, dual-platform approach using
a Kintex UltraScale FPGA board was developed. The programmable platform was loaded
with a synthesised version of the LEON3 coupled together with the LEON3 Statistics Unit
(L3STAT [4]). The results were synchronised with physical sensor measurements from the
GR712RC platform to obtain the complete data set for model generation and validation.
More details on the platform setup, methodology, and estimation results are presented in
Nikov et al. [20].

The models presented in that paper describe fine-grained power models which are trained
and validated on all available samples. The models integrated into EnergyAnalyzer use the
same methodology, but with one key di�erence: the samples in the data set are aggregated
for each benchmark to create code-block-sized models, making them more coarse-grained

and the NNLS solver is used to generate positive model weights. Since average power models
would not be very helpful for this purpose, total energy consumption is used instead.

L3STAT provides several performance counters that are useful for modelling the energy
consumption [5]. However, not all of them are statically predictable. Those that can be
statically predicted by EnergyAnalyzer with high accuracy are shown in Table 1. Whether a
memory access results in a possible cache miss is predicted by the cache analysis that is part
of the microarchitectural analysis. The type of instructions and consequently, the update
of the respective counters, are tracked in the pipeline analysis. The following energy model
based on the ISA+Cache subset has been selected for integration into EnergyAnalyzer using
the methodology shown in Appendix A. It has a MAPE of <8.3% compared to physical
measurements and provides energy estimations in J:

ELEON3 = 3.93365 ◊ 10≠08 ◊ Cinteger instructions

+ 1.87111 ◊ 10≠07 ◊ Cstore instructions

Table 2: ISA+Cache subset of L3STAT counters
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LEON3
§ Other subsets are viable, too

§ However, the static prediction of those are less precise
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rce/en/reference_manual/dm00091010-stm32f030x4x6x8xc-and-stm32f070x6xb-advance

d-armbased-32bit-mcus-stmicroelectronics.pdf.
30 Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise WCET

prediction by separated cache and path analyses. Real-Time Systems, 18(2/3):157–179, 2000.
doi:10.1023/A:1008141130870.

31 Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-
Preikschat. Whole-system worst-case energy-consumption analysis for energy-constrained real-
time systems. In Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems,

ECRTS 2018, July 3-6, 2018, Barcelona, Spain, volume 106 of LIPIcs, pages 24:1–24:25. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ECRTS.2018.24.

32 Peter Wägemann, Tobias Distler, Timo Hönig, Heiko Janker, Rüdiger Kapitza, and Wolfgang
Schröder-Preikschat. Worst-case energy consumption analysis for energy-constrained embedded
systems. In 27th Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund, Sweden,

July 8-10, 2015, pages 105–114. IEEE Computer Society, 2015. doi:10.1109/ECRTS.2015.17.
33 Matthew J Walker, Stephan Diestelhorst, Andreas Hansson, Anup K Das, Sheng Yang,

Bashir M Al-hashimi, and Geo� V Merrett. Accurate and Stable Run-Time Power Modeling
for Mobile and Embedded CPUs. Ieee Transactions on Computer Aided Design of Integrated

Circuits and Systems, 36(1):1–14, 2017. doi:10.5258/SOTON/393673.
34 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David

Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem — overview of methods and survey of tools. ACM Transactions on

Embedded Computing Systems, 7(3):36:1–36:53, May 2008. doi:10.1145/1347375.1347389.

A LEON3 Energy Model Selection

# Counter # Counter # Counter
C0 TIME C5 WBHOLD C14 LDST
C1 ICMISS C7 IINST C15 LOAD
C2 ICHOLD C11 BRANCH C16 STORE
C3 DCMISS C12 CALL
C4 DCHOLD C13 TYPE2

Table 4 All supported PMCs by
EnergyAnalyzer.

Model Expression MAPE[%]
Train Test

Energy [J]
All Supported
All Events

E = 0.155261 + 2.94155e-08 ◊ C0
+2.5661e-09 ◊ C2 + 9.93453e-09 ◊ C5
+8.97535e-10 ◊ C12 + 3.21255e-09 ◊ C13
+6.14384e-09 ◊ C15 + 4.54827e-08 ◊ C16

1.14 0.29

Energy [J]
All Supported
Bottom-Up

E = 0 + 3.19557e-08 ◊ C0
+5.79224e-08 ◊ C16

1.20 1.38

Energy [J]
All Supported
Top-Down

E = 0.131077 + 3.13122e-08 ◊ C0
+9.17778e-09 ◊ C5 + 2.99043e-09 ◊ C15
+3.92999e-08 ◊ C16

1.02 1.54

Energy [J]
All Supported
Full-Exhaustive

E = 0.131087 + 3.13122e-08 ◊ C0
+9.17779e-09 ◊ C5 + 2.99043e-09 ◊ C14
+3.63095e-08 ◊ C16

1.02 1.54

Energy [J]
IsaCache
All Events

E = 0 + 1.18567e-06 ◊ C3
+5.9072e-07 ◊ C12 + 3.88949e-08 ◊ C13
+8.03337e-08 ◊ C14 + 6.89885e-08 ◊ C16

8.38 24.03

Energy [J]
IsaCache
Bottom-Up

E = 0 + 3.93365e-08 ◊ C7
+1.87111e-07 ◊ C16

5.84 8.24

Energy [J]
IsaCache
Top-Down

E = 0 + 3.93365e-08 ◊ C7
+1.87111e-07 ◊ C16

5.84 8.24

Energy [J]
IsaCache
Full-Exhaustive

E = 0 + 3.93365e-08 ◊ C7
+1.87111e-07 ◊ C16

5.84 8.24

Table 5 Coarse-grained Model Results for the
Gaisler GR712RC platform.

We have chosen the ISA+Cache subset of PMCs shown in Table 1 because these events
can be statically predicted with highest accuracy. However, there are more events that
are statically predictable. A list of all the supported PMCs can be found in Table 4, with
further information available in the L3STAT User Manual [4]. Separate models are generated
using each of the PMC subsets. In addition to using the bottom-up and top-down search

Table 3: Different energy models for LEON3 based on two different subsets of PMU counters and different search strategies
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Evalua#on – LEON3

S. Wegener, K. Nikov, J. Nunez-Yanez, and K. Eder 9

numbers and zero. This reflects the “flush to zero” option present in many architectures.
The computed energy consumption estimate is then cut in half, which shows that enabling
“flush to zero” in software floating-point computations can save a lot of energy.

The LEON3 implements the SPARCv8 ISA, which uses register windows for fast context
switches, and for providing hardware support for the call stack. However, the number of
register windows is limited. The particular LEON3 model used for our experiments, available
on the GR712RC board and its FPGA equivalent, has eight register windows. Due to the
overlapping nature of the register windows, and their use as a ring bu�er, only seven are
usable. Hence, in case a program needs more than seven register windows, the processor
triggers software traps to handle the register window overflow (and underflow). This happens
for two of the benchmarks—picojpeg and slre. Hence, the processor needs to execute trap
functions when it detects a register window overflow or a register window underflow. This
causes additional energy consumption which must be taken into account during a system-level
energy analysis.

Table 3 shows the results of the evaluation of EnergyAnalyzer for LEON3. The analysis
of most benchmarks takes less than four minutes to complete, but for three benchmarks—
matmult-float, nbody, and picojpeg—the analysis duration was 50 minutes, 45 minutes, and
24 minutes, respectively.

Benchmark Analysis Result Model Result � Note
aha-compress 11.004 J 11.004 J 0 %
aha-mont64 7.499 J 7.491 J < 1 %
bubblesort 3.898 J 3.889 J < 1 %

edn 39.186 J 39.186 J 0 %
fir 159.469 J 159.469 J 0 %

frac 59.391 J 59.339 J < 1 %
levenshtein 25.506 J 25.491 J < 1 %

ludcmp 10.992 J 10.814 J 2 %
matmult-float 2.847 J 2.822 J 1 %

minver 14.372 J 4.643 J 210 % worst-case
minver 7.398 J 4.643 J 59 % assumptions
nbody 4.512 J 4.496 J < 1 %
ndes 24.828 J 24.467 J 1 %

Benchmark Analysis Result Model Result � Note
nettle-aes 19.401 J 19.389 J < 1 %

nettle-arcfour 9.644 J 9.639 J < 1 %
nettle-sha256 2.763 J 2.754 J < 1 %
newlib-exp 4.374 J 4.319 J 1 %
newlib-log 3.284 J 3.252 J 1 %
picojpeg 503.732 J 503.918 J < -1 % traps

prime 3.670 J 3.667 J < 1 %
qurt 8.001 J 7.958 J 1 %

sglib-arraybinsearch 6.283 J 6.281 J < 1 %
sglib-arrayheapsort 13.066 J 13.062 J < 1 %
sglib-arrayquicksort 13.066 J 13.052 J < 1 %

sglib-queue 13.901 J 13.900 J < 1 %
slre 14.988 J 15.261 J -2 % traps

Table 3 Evaluation of the integration of the ISA+Cache energy model for the LEON3 into static
energy consumption analysis. For minver, the measured execution path and the path found by the
worst-case path analysis di�er significantly (see text). The costs of traps are not included in the
microarchitectural analysis (see text).

6 Integration into TeamPlay Toolchain and Case Studies

EnergyAnalyzer for ARM Cortex-M0 and EnergyAnalyzer for LEON3 can be used as stan-
dalone tools to estimate the energy consumption of embedded software. They provide a
rich and user-friendly graphical user interface to ease the analysis process. However, they
have been developed during the TeamPlay project as part of a larger toolchain where they
enable multi-criteria optimisation in a compiler, contract-based programming, and energy-
aware scheduling. In the following, we present the integration of EnergyAnalyzer into the
WCET-aware C compiler WCC [8].

The mechanisms implemented to integrate EnergyAnalyzer within WCC mirror the mech-
anisms in place to perform WCET analysis using AbsInt’s WCET analyser aiT. XTC files
[10] are used to call aiT and EnergyAnalyzer in batch mode (i.e., without graphical user
interface). An XTC file specifies the binary to be analysed, the entry point, the path to an
annotation file which contains details about the target architecture configuration as well as
user-provided annotations like flow facts, and the path to an XML report file. This XML
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Table 4: EvaluaJon of the ISA+Cache energy model integraJon into EnergyAnalyzer for LEON3
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Emulating Floating-point Operations in Software
§ The IEEE 754 standard for floating-point arithmetic defines data formats 

for floating-point numbers
§ Single precision floating-point number consists of one sign bit, eight bits for the 

exponent, and 24 bits for the mantissa
§ Only 23 bits of the mantissa are explicitly stored
§ The first bit of the mantissa is implicitly stored and assumed to be 1 for normalised 

numbers, and 0 for subnormal numbers
§ Subnormal numbers are used to represent numbers near zero with tiny absolute 

value, which cannot be represented as normalised numbers

19
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Emula#ng Floa#ng-point Opera#ons in SoKware
§ Opera+ons on subnormal numbers are usually more costly than opera+ons 

on normalised numbers because they need to be scaled first before the 
actual opera+on is performed
§ Knowing whether a floaEng-point number is normalised or not has a huge impact on 

the analysis precision

20

Finally, aiT and EnergyAnalyser allow to trade performance for preci-
sion and vice versa, by allowing to specify how many calling and loop con-
texts should be distinguished during analysis. The analysis of most bench-
marks takes less than four minutes to complete, but for three benchmarks—
matmult-float, nbody, and picojpeg—the analysis duration was 50 minutes,
45 minutes, and 24 minutes, respectively.

Aside: Emulating Floating-Point Computations in Software

Some of the BEEBS benchmarks contain floating-point computations. How-
ever, since the FPGA implementation of the LEON3 was built without a
FPU, the benchmarks cannot use floating-point instructions but must use a
software library that emulates these floating-point computations. For exam-
ple, instead of selecting instruction fadds, the compiler adds a call to routine
__addsf3. We performed energy analyses for some routines of the software
floating-point library used by the compiler for the BEEBS benchmarks. The
results are shown in Table 2.12.

Routine Worst-case Result Result under Assumptions
__mulsf3 40.167 µJ 9.839 µJ
__addsf3 25.013 µJ 15.966 µJ
__subsf3 25.279 µJ 16.232 µJ
__divsf3 29.753 µJ 20.518 µJ

__ieee754_sqrt 180.879 µJ 113.977 µJ
__muldf3 85.228 µJ 14.225 µJ
__adddf3 76.141 µJ 42.784 µJ
__subdf3 76.367 µJ 43.010 µJ
__divdf3 103.489 µJ 69.945 µJ

Table 2.12: Analysis results using the ISA+Cache energy model for some
routines of the software floating-point library.

The IEEE 754 standard for floating-point arithmetic defines data formats
for floating-point numbers. For example, a single precision floating-point
number consists of one sign bit, eight bits for the exponent, and 24 bits for
the mantissa. However, only 23 bits of the mantissa are explicitly stored.
The first bit of the mantissa is implicitly stored and assumed to be 1 for
normalised numbers, and 0 for subnormal numbers. Subnormal numbers are
used to represent numbers near zero with tiny absolute value, which cannot
be represented as normalised numbers. Operations on subnormal numbers
are usually more costly than operations on normalised numbers because they
need to be scaled first before the real operation is performed. Hence, from
a worst-case perspective, knowing whether a floating-point number is nor-
malised or not may have a huge impact on the precision.
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Energy	Consumption	for	Entry	'__addsf3':	15965249500	fJ	=	15.966	uJ

__addsf3:	11.43	uJ

__pack_f:	1.771	uJ__unpack_f:	2.766	uJ
cumulative:	2.766	uJ

Start	__unpack_f

<fp-bit.c:425-430,502-509>

<fp-bit.c:510-512> <fp-bit.c:538-540>

<fp-bit.c:541-543>

E=462466500 Σ=2	E=462466500

0x40002b8c

E=78673000

0x40002b8c

Σ=2	E=78673000

Infeasible E=265784000 Σ=2	E=226447500 Infeasible

0x40002b98

Infeasible

0x40002b98 0x40002bdc

Σ=2	E=39336500

0x40002bdc

Infeasible

<fp-bit.c:520-531>

Infeasible

<fp-bit.c:513-519>

E=78673000 <fp-bit.c:567-576>

Σ=2	E=649577500 Infeasible Infeasible

__unpack_f.L1:	0	fJ
			cumulative:	0	fJ

Start	__unpack_f.L1

<fp-bit.c:532-534>

InfeasibleInfeasible

0x40002bc0

Infeasible

0x40002bc0

Infeasible

End	__unpack_f.L1

Infeasible

Infeasible

0x40002c10

E=39336500 0x40002c00

Σ=2	E=39336500

0x40002c1c

Infeasible

0x40002c1c

Infeasible

<fp-bit.c:535-537>

Infeasible

<fp-bit.c:547-566>

Infeasible

<fp-bit.c:544-546>

Infeasible

0x40002bd0

Infeasible

0x40002c40

Infeasible

0x40002c50

Infeasible

Σ=2

End	__unpack_f

		

		

		

		

<fp-bit.c:532-534>

Energy	Consumption	for	Entry	'__addsf3':	25012644500	fJ	=	25.013	uJ

__addsf3:	11.43	uJ

__pack_f:	1.771	uJ__unpack_f:	11.813	uJ
cumulative:	11.813	uJ

Start	__unpack_f

<fp-bit.c:425-430,502-509>

<fp-bit.c:510-512> <fp-bit.c:538-540>

<fp-bit.c:541-543>

Σ=2	E=462466500 E=462466500

0x40002b8c

Σ=2	E=78673000

0x40002b8c

E=78673000

Σ=2	E=265784000 E=265784000 E=226447500 E=78673000

0x40002b98

Σ=2

0x40002b98 0x40002bdc

E=39336500

0x40002bdc

E=39336500

<fp-bit.c:520-531>

Σ=2	E=236019000

<fp-bit.c:513-519>

E=78673000 <fp-bit.c:567-576>

E=649577500 E=78673000 E=265784000

__unpack_f.L1:	9.718	uJ
			cumulative:	9.718	uJ

Start	__unpack_f.L1

<fp-bit.c:532-534>

Σ=2	E=265784000Σ=44	E=157346000

0x40002bc0

Σ=2	E=452895000

0x40002bc0

Σ=46

End	__unpack_f.L1

Σ=44	E=118009500

Σ=2

0x40002c10

E=39336500 0x40002c00

E=39336500

0x40002c1c

E=226447500

0x40002c1c

<fp-bit.c:535-537>

Σ=2	E=78673000

<fp-bit.c:547-566>

E=423130000

<fp-bit.c:544-546>

E=78673000

0x40002bd0

Σ=2	E=39336500

0x40002c40

E=39336500

0x40002c50

E=39336500

Σ=2

End	__unpack_f

		

		

		

<fp-bit.c:425-430,502-509>

Emulating Floating-point Operations in Software
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(a) Worst-case analysis of a soWware floaJng-point rouJne (b) Assuming only normals and zero
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Conclusion
§ EnergyAnalyzer for ARM Cortex-M0 and LEON3 ...

§ are powerful tools for the development of embedded systems with energy 
constraints

§ allow to make informed decisions regarding hardware and compiler configuraEons
§ are versaEle and allow to adapt the used energy model to the concrete plagorm

§ Both tools have been integrated into the TeamPlay toolchain and 
successfully applied to various use cases [9]:
§ MulE-criterial opEmizaEon in WCC
§ Contract-based programming with CSL
§ Camera pill, CNN kernels, satellite sohware 
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