

EnergyAnalyzer:

Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications

<u>Simon Wegener</u>¹, Kris K. Nikov², Jose Nunez-Yanez³, Kerstin Eder² ¹AbsInt Angewandte Informatik GmbH ²University of Bristol ³Linköping University

Acknowledgements

Funded by the Horizon 2020 Framework Programme of the European Union

- This work was supported by the H2020 project TeamPlay, Grant Agreement No. 779882.
- The authors like to thank:
 - Marcos Martinez de Alejandro, Nikos Fragoulis, Ali Sahafi, and Vangelis Vassalos for the work on the use cases
 - Heiko Falk and Shashank Jadhav for the integration of EnergyAnalyzer into WCC
 - Previous versions of the energy models have been generated by Kyriakos Georgiou and Zbigniew Chamski

Motivation

- Safety-critical systems must satisfy non-functional requirements
 - Computation must finish before a task reaches its deadline
 - Enough stack memory must be available for the system
- Solution: WCET/WCRT analysis, stack usage analysis
- What about energy-constrained systems?
- Idea: Apply techniques known from WCET analysis to statically estimate energy usage of embedded software

Tool Structure of EnergyAnalyzer

Performance Monitoring Units

- PMUs are hardware units that track various events during the execution of software
- Examples:
 - Cache hits
 - Cache misses
 - Memory accesses
 - Number of executed instructions
 - •••
- We use the PMU counters as proxy for energy usage

Energy Model Derivation

- Energy models are build using linear regression
 - We employed a Non-Negative Least Squares (NNLS) solver
- $E = \Sigma_x(\beta_x \times C_x) + \alpha$
 - where x are the various events tracked by PMU counters
 - C_x are the counter values
 - β_x are the coefficients of the model
 - α is the residual error term

Target Architectures – ARM Cortex-M0

- Our specific target was the STM32F051R8T6
- This processor does not have a PMU
- We used thumbulator, an instruction set simulator, to count PMU events:
 - Executed instructions
 - Executed multiplication instructions
 - RAM reads
 - RAM writes
 - Flash reads
 - Taken branches

Target Architectures – LEON3

- Cobham Gaisler GR712RC
- A PMU (L3STAT) is available, but not included in this target
- We used a FPGA implementation of the LEON3 including L3STAT in sync with the original target

- First energy model: time as proxy for energy [1, 2]
 - Derived using BEEBS benchmarks [3]
- E = 0.0004 W × t

- Second energy model: time as proxy for energy [4]
 - Derived using BEEBS benchmarks and Irida Labs' CNN benchmarks
 - The CNN benchmarks exercise much more memory accesses
- E = 0.04387 J + 0.007242 W × t

10

- Third energy model: PMU events as proxy for energy [5]
 - Derived using BEEBS benchmarks and Irida Labs' CNN benchmarks

 $E_{\text{Cortex-M0}} = 0.972565030 \times C_{\text{executed instructions without multiplications}}$

- + 0.652871770 × $C_{\rm RAM~data~reads}$
- + 1.031341343 × $C_{\text{RAM writes}}$
- + $1.037625441 \times C_{\text{Flash data reads}}$
- + 1.354953706 \times C_{taken branches}
- + 2.274650563 × $C_{\rm multiplication\ instructions}$

11

Evaluation – ARM Cortex-M0

Benchmark	Analysis Result	Model Result	Δ	Note	Benchmark	Analysis Result	Model Result	Δ	Note
aha-compress	78.885 m.I	78.828 m.I	<1%		nettle-arcfour	$105.880~\mathrm{mJ}$	105.880 mJ	< 1 %	
aha-mont64	99.396 m.I	99.396 m.I	<1%		nettle-cast128	$23.214 \mathrm{~mJ}$	23.211 mJ	< 1 %	
hubblesort	366 763 m I	366 762 m I	<1%		nettle-des	$22.595~\mathrm{mJ}$	$22.595 \mathrm{~mJ}$	< 1 %	
out	40.012 m J	40.804 m I	< 1.07		nettle-md5	$5.467 \mathrm{~mJ}$	$5.467 \mathrm{~mJ}$	< 1 %	
Cit	42.015 IIIJ	42.804 mJ	< 1.70		nettle-sha256	$50.507 \mathrm{~mJ}$	$50.507 \mathrm{~mJ}$	< 1 %	
compress	27.895 mJ	27.895 mJ	< 1 %		newlib-exp	$70.439 \mathrm{~mJ}$	70.439 mJ	< 1 %	
crc	9.623 mJ	9.623 mJ	<1%		newlib-log	$52.954~\mathrm{mJ}$	52.954 mJ	< 1 %	
cubic	7.801 J	4.138 J	89%	flow constraints	newlib-sqrt	10.289 mJ	10.289 mJ	<1%	
duff	4.349 mJ	4.349 mJ	< 1%		nsichneu	$61.017 \ {\rm mJ}$	29.185 mJ	109%	
edn	302.762 mJ	302.762 mJ	< 1 %		picojpeg	4.885 J	4.885 J	< 1 %	
expint	43.315 mJ	$43.315 \mathrm{~mJ}$	< 1 %		prime	209.663 mJ	209.663 mJ	< 1 %	
fac	$2.934 \mathrm{~mJ}$	2.904 mJ	1%		qsort	27.294 mJ	20.408 mJ	34%	flow constraints
fasta	29.383 J	21.100 J	39%	flow constraints	qurt	139.891 mJ	139.890 mJ	<1%	
fdct	12.292 mJ	12.292 mJ	< 1 %		rijndael	7.176 J	7.042 J	2%	
fibcall	$1.493 \mathrm{~mJ}$	1.493 mJ	<1%		sglib-arraybinsearch	76.596 mJ	76.596 mJ	< 1 %	
fir	1.994 J	1.994 J	<1%		sglib-arrayheapsort	$86.857 \mathrm{~mJ}$	86.857 mJ	< 1 %	
frac	1.183 J	1.183 J	<1%		sglib-arrayquicksort	$65.600 \mathrm{~mJ}$	65.600 mJ	< 1 %	
insertsort	3.089 mJ	3.089 mJ	<1%		sglib-queue	$126.250~\mathrm{mJ}$	$126.250 \mathrm{~mJ}$	< 1 %	
ianne complex	1.402 mJ	1.402 mJ	<1%		slre	$206.734~\mathrm{mJ}$	$206.734~\mathrm{mJ}$	< 1 %	
ifdctint	31.481 m.J	31.476 m.I	< 1 %		sqrt	11.529 J	11.529 J	< 1 %	
lcdnum	886 941 u.I	805 000 m.I	10 %		st	4.142 J	2.945 J	41%	flow constraints
levenshtein	400.926 m I	400.926 m I	<1%		statemate	13.331 mJ	9.308 mJ	43%	
ludemp	400.320 mJ	174 550 m I	< 1 %		stb_perlin	5.145 J	5.145 J	< 1 %	
	174.009 110	174.009 110	< 1.07		stringsearch1	$46.362~\mathrm{mJ}$	46.362 mJ	< 1 %	
matmult-noat	1.037 J	1.537 J	< 1 %		strstr	$5.480 \mathrm{~mJ}$	5.480 mJ	< 1 %	
matmult-int	842.724 mJ	842.649 mJ	<1%		trio-snprintf	$105.378 \ {\rm mJ}$	65.427 mJ	61%	flow constraints
minver	131.316 mJ	84.348 mJ	56 %	flow constraints	trio-sscanf	$139.345 \ {\rm mJ}$	71.618 mJ	95%	flow constraints
nbody	25.844 J	25.844 J	< 1 %		ud	21.863 mJ	21.862 mJ	< 1 %	
ndes	$293.387~\mathrm{mJ}$	293.297 mJ	< 1 %		whetstone	22.533 J	16.687 J	35%	flow constraints

Table 1: Evaluation of the energy model integration into EnergyAnalyzer for ARM Cortex-MO

- Even more energy models: PMU events as proxy for energy
 - The ARM Cortex-M0 allows a diversity of system configurations:
 - Frequency can bei either 20, 24, or 48 MHz
 - The instruction prefetch buffer can be enabled or not
 - Flash memory can be accessed with 0 or 1 waitstate
 - In total, the processor manual permits 10 combinations

Hardware Config.	Energy Consumption Model [nJ]	Meas. Energy[J]	MAPE [%]
[20, OFF, 0]	$\mathbf{E} = 0.964258 \times C_1 + 1.652455 \times C_2 + 2.091986 \times C_3 + 1.109833 \times C_4 + 0.650563 \times C_5 + 0.633621 \times C_6$	221.4	2.80
[20, OFF, 1]	$\mathbf{E} = 1.282474 \times C_1 + 2.110668 \times C_2 + 2.191545 \times C_3 + 1.185609 \times C_4 + 0.416602 \times C_5 + 1.178991 \times C_6$	274.9	2.97
[20, ON, 0]	$\mathbf{E} = 1.003378 \times C_1 + 1.885309 \times C_2 + 1.802974 \times C_3 + 1.122833 \times C_4 + 0.849223 \times C_5 + 0.475831 \times C_6$	226.38	2.86
[20, ON, 1]	$\mathbf{E} = 0.895879 \times C_1 + 2.185851 \times C_2 + 2.001178 \times C_3 + 1.493364 \times C_4 + 1.076354 \times C_5 + 1.573758 \times C_6$	227.9	3.68
[24, OFF, 0]	$\mathbf{E} = 0.959172 \times C_1 + 1.888565 \times C_2 + 1.357556 \times C_3 + 1.089427 \times C_4 + 0.993145 \times C_5 + 0.562952 \times C_6$	214.62	3.22
[24, OFF, 1]	$\mathbf{E} = 1.178558 \times C_1 + 2.540429 \times C_2 + 2.042475 \times C_3 + 1.190892 \times C_4 + 0.979651 \times C_5 + 0.891088 \times C_6$	264.88	3.16
[24, ON, 0]	$\mathbf{E} = 0.985415 \times C_1 + 1.933276 \times C_2 + 1.448160 \times C_3 + 1.075671 \times C_4 + 1.011891 \times C_5 + 0.617510 \times C_6$	220.03	3.36
[24, ON, 1]	$\mathbf{E} = 0.883755 \times C_1 + 2.156046 \times C_2 + 1.633465 \times C_3 + 1.436556 \times C_4 + 1.152560 \times C_5 + 1.455166 \times C_6$	220.05	4.15
[48, OFF, 1]	$\mathbf{E} = 1.096677 \times C_1 + 2.364495 \times C_2 + 1.627854 \times C_3 + 1.173680 \times C_4 + 0.681475 \times C_5 + 0.652665 \times C_6$	243.44	3.65
[48, ON, 1]	$\mathbf{E} = 0.816331 \times C_1 + 2.014612 \times C_2 + 1.372157 \times C_3 + 1.402116 \times C_4 + 0.835035 \times C_5 + 1.250446 \times C_6$	202.5	4.33

TABLE II: Energy models for selected Cortex-M0 hardware configurations – Hardware Configuration Format: [Frequency
(MHz), PreFetch (ON/OFF), WaitState (0/1)] and MAPE: Mean Absolute Percentage Error(taken from [6])

- EnergyAnalyzer allows to specify an energy model based on PMU counters
 - # EnergyAnalyzer specific attributes, all values have been rounded up to full pJ.

attribute "arm_event_energy_costs": {

```
"instruction_fetch" = 973,
```

```
"ram_data_write" = 1032,
```

```
"ram_data_read" = 653,
```

```
"flash_data_read" = 1038,
```

```
"mul_instruction" = 1303,
```

```
"taken_branch" = 1355
```

};

(a) Comparison of different hardware configurations concerning energy usage

(b) Comparison of different hardware configurations concerning execution time

LEON3

- LEON3 PMU (L3STAT) has many available counters, not all of them being statically predictable
- Energy model has been build using the *ISA+Cache* subset of PMU counters

 $E_{\text{LEON3}} = 3.93365 \times 10^{-08} \times C_{\text{integer instructions}} + 1.87111 \times 10^{-07} \times C_{\text{store instructions}}$

#	Counter	Description	#	Counter	Description
C_1	ICMISS	instruction cache misses	C_{13}	TYPE2	type 2 instructions
C_3	DCMISS	data cache misses	C_{14}	LDST	load and store instructions
C_7	IINST	integer instructions	C_{15}	LOAD	load instructions
C_{11}	BRANCH	branch instructions	C_{16}	STORE	store instructions
C_{12}	CALL	call instructions			

Table 2: *ISA+Cache* subset of L3STAT counters

16

LEON3

- Other subsets are viable, too
 - However, the static prediction of those are less precise

Model	Expression	MAPE[%]		
Model	Expression	Train	Test	
Energy [J] All Supported All Events	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.14	0.29	
Energy [J] All Supported Bottom-Up	$E = 0 + 3.19557e-08 \times C_0 + 5.79224e-08 \times C_{16}$	1.20	1.38	
Energy [J] All Supported Top-Down	$ \begin{split} & \mathbf{E} = 0.131077 + 3.13122 \text{e-}08 \times C_0 \\ & + 9.17778 \text{e-}09 \times C_5 + 2.99043 \text{e-}09 \times C_{15} \\ & + 3.92999 \text{e-}08 \times C_{16} \end{split} $	1.02	1.54	
Energy [J] All Supported Full-Exhaustive	$ \begin{split} & E = 0.131087 + 3.13122e{-}08 \times C_0 \\ & + 9.17779e{-}09 \times C_5 + 2.99043e{-}09 \times C_{14} \\ & + 3.63095e{-}08 \times C_{16} \end{split} $	1.02	1.54	
Energy [J] IsaCache All Events	$ \begin{array}{l} {\rm E} = 0 + 1.18567 {\rm e}{\rm \cdot}06 \times C_3 \\ + 5.9072 {\rm e}{\rm \cdot}07 \times C_{12} + 3.88949 {\rm e}{\rm \cdot}08 \times C_{13} \\ + 8.03337 {\rm e}{\rm \cdot}08 \times C_{14} + 6.89885 {\rm e}{\rm \cdot}08 \times C_{16} \end{array} $	8.38	24.03	
Energy [J] IsaCache Bottom-Up	$E = 0 + 3.93365e-08 \times C_7 + 1.87111e-07 \times C_{16}$	5.84	8.24	
Energy [J] IsaCache Top-Down	$\begin{split} \mathbf{E} &= 0 + 3.93365 \text{e-}08 \times C_7 \\ &+ 1.87111 \text{e-}07 \times C_{16} \end{split}$	5.84	8.24	
Energy [J] IsaCache Full-Exhaustive	$\begin{split} \mathbf{E} &= 0 + 3.93365 \text{e-} 08 \times C_7 \\ &+ 1.87111 \text{e-} 07 \times C_{16} \end{split}$	5.84	8.24	

Table 3: Different energy models for LEON3 based on two different subsets of PMU counters and different search strategies

Evaluation – LEON3

Benchmark	Analysis Result	Model Result	Δ	Note	Benchmark	Analysis Result	Model Result	Δ	Note
aha-compress	11.004 J	11.004 J	0 %		nettle-aes	19.401 J	19.389 J	<1%	
aha-mont64	7.499 J	7.491 J	< 1 %		nettle-arcfour	9.644 J	9.639 J	<1%	
bubblesort	3.898 J	3.889 J	< 1 %		nettle-sha256	2.763 J	2.754 J	<1%	
edn	39.186 J	39.186 J	0 %		newlib-exp	4.374 J	4.319 J	1 %	
fir	159.469 J	159.469 J	0 %		newlib-log	3.284 J	3.252 J	1 %	
frac	59.391 J	59.339 J	<1%		picojpeg	503.732 J	503.918 J	<-1%	traps
levenshtein	25.506 J	25.491 J	< 1 %		prime	3.670 J	3.667 J	<1%	
ludcmp	10.992 J	10.814 J	2%		qurt	8.001 J	7.958 J	1 %	
matmult-float	2.847 J	2.822 J	1%		sglib-arraybinsearch	6.283 J	6.281 J	<1%	
minver	14.372 J	4.643 J	210%	worst-case	sglib-arrayheapsort	13.066 J	13.062 J	<1%	
minver	7.398 J	4.643 J	59%	assumptions	sglib-arrayquicksort	13.066 J	13.052 J	<1%	
nbody	4.512 J	4.496 J	< 1 %		sglib-queue	13.901 J	13.900 J	<1%	
ndes	24.828 J	24.467 J	1 %		slre	14.988 J	15.261 J	-2%	traps

Table 4: Evaluation of the ISA+Cache energy model integration into EnergyAnalyzer for LEON3

Emulating Floating-point Operations in Software

- The IEEE 754 standard for floating-point arithmetic defines data formats for floating-point numbers
 - Single precision floating-point number consists of one sign bit, eight bits for the exponent, and 24 bits for the mantissa
 - Only 23 bits of the mantissa are explicitly stored
 - The first bit of the mantissa is implicitly stored and assumed to be 1 for normalised numbers, and 0 for subnormal numbers
 - Subnormal numbers are used to represent numbers near zero with tiny absolute value, which cannot be represented as normalised numbers

Emulating Floating-point Operations in Software

- Operations on subnormal numbers are usually more costly than operations on normalised numbers because they need to be scaled first before the actual operation is performed
 - Knowing whether a floating-point number is normalised or not has a huge impact on the analysis precision
 Routine
 Worst-case Result
 Result under Assumptions

Routine	Worst-case Result	Result under Assumptions
mulsf3	40.167 µJ	9.839 µJ
addsf3	25.013 μJ	$15.966 \ \mu J$
subsf3	25.279 μJ	16.232 µJ
divsf3	29.753 μJ	$20.518 \ \mu J$
ieee754_sqrt	180.879 µJ	113.977 µJ
muldf3	85.228 μJ	$14.225 \ \mu J$
adddf3	76.141 μJ	$42.784 \ \mu J$
subdf3	76.367 µJ	43.010 µJ
divdf3	103.489 µJ	69.945 μJ

Table 2.12: Analysis results using the ISA + Cache energy model for some routines of the software floating-point library. (taken from [7])

Emulating Floating-point Operations in Software

(a) Worst-case analysis of a software floating-point routine

(b) Assuming only normals and zero

Conclusion

- EnergyAnalyzer for ARM Cortex-M0 and LEON3 ...
 - are powerful tools for the development of embedded systems with energy constraints
 - allow to make informed decisions regarding hardware and compiler configurations
 - are versatile and allow to adapt the used energy model to the concrete platform
- Both tools have been integrated into the TeamPlay toolchain and successfully applied to various use cases [9]:
 - Multi-criterial optimization in WCC
 - Contract-based programming with CSL
 - Camera pill, CNN kernels, satellite software

22

Bibliography

[1] TeamPlay Consortium. Deliverable D4.1. 2018

[2] TeamPlay Consortium. Deliverable D4.2. 2018

[3] James Pallister, Simon J. Hollis, and Jeremy Bennett. *BEEBS: open benchmarks for energy measurements on embedded platforms.* 2013

[4] TeamPlay Consortium. Deliverable D4.3. 2019

[5] TeamPlay Consortium. Deliverable D4.4. 2019

[6] Kris Nikov, Kyriakos Georgiou, Zbigniew Chamski, Kerstin Eder, and José L. Núñez-Yáñez. Accurate Energy Modelling on the Cortex-MO Processor for Profiling and Static Analysis. 2022

[7] TeamPlay Consortium. *Deliverable D4.5.* 2020

[8] Kris Nikov, Marcos Martínez, Simon Wegener, José L. Núñez-Yáñez, Zbigniew Chamski, Kyriakos Georgiou, and Kerstin Eder. *Robust and accurate fine-grain power models for embedded systems with no on-chip PMU*. 2022

[9] Benjamin Rouxel, et al. *The TeamPlay project: Analysing and optimising time, energy, and security for cyber-physical systems*. 2023

[10] Zbigniew Chamski et al. *Thumbulator*. https://github.com/PicoPET/thumbulator-stm32f0x.git

email: info@absint.com http://www.absint.com

S. Wegener – EnergyAnalyzer – WCET Workshop 2023

