# **Towards Multi-Objective Dynamic SPM Allocation**

Shashank Jadhav Heiko Falk

shashank.jadhav / heiko.falk@tuhh.de

Institute of Embedded Systems, TUHH 21st International Workshop on Worst-Case Execution Time Analysis (WCET), Vienna, Austria



July 11, 2023

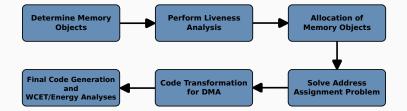


| 2 | Dynamic SPM Allocation (DSA)           |
|---|----------------------------------------|
| 3 | Multi-Objective DSA-based Optimization |
| 4 | Evaluation                             |
| G | Conclusion                             |



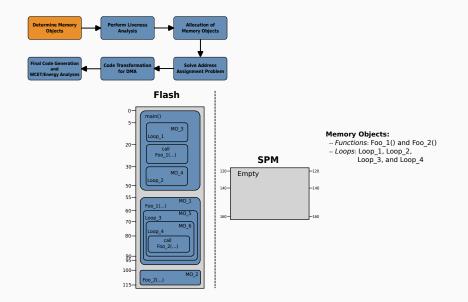
- Worst-Case Execution Time (WCET)
- Energy consumption
- Static SPM allocation constrained by small SPM size




# 2 Dynamic SPM Allocation (DSA)

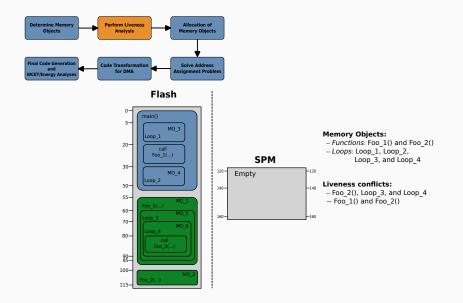


•


# 4 Evaluation

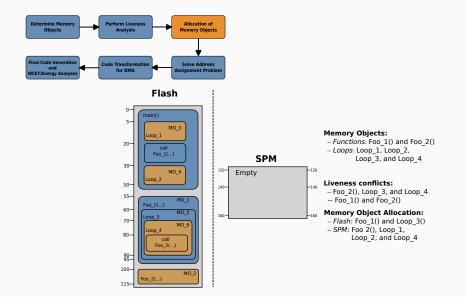





# **DSA: Memory Objects**

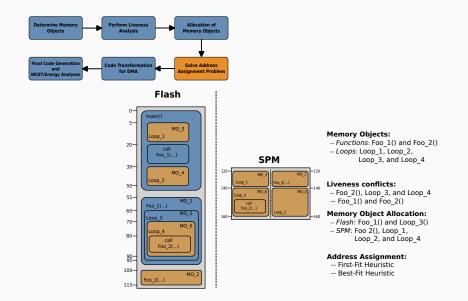





# **DSA: Liveness Analysis**

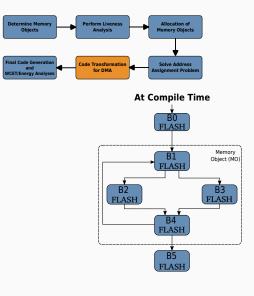





# **DSA: Memory Objects Allocation**

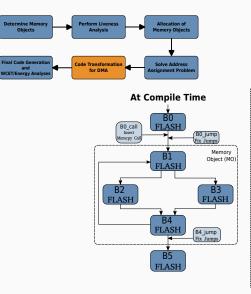





# **DSA: Address Assignment**

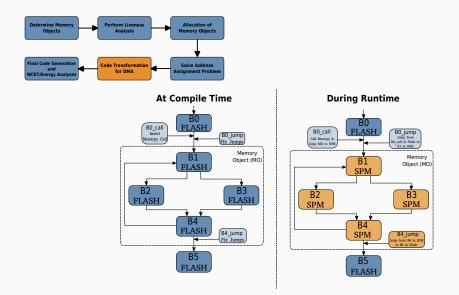




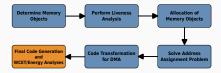

# **DSA: Code Transformation**

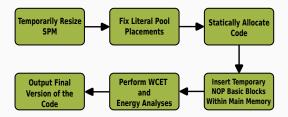





# **DSA: Code Transformation**







# **DSA: Code Transformation**















### **Dynamic SPM Allocation (DSA)**





#### **Evaluation**



- Search Space:
  - $* \ x \in X \in \{0,1\}^d$



- Search Space:
  - $* \ x \in X \in \{0,1\}^d$
- Objective Space:

\* 
$$\Theta = \{F(x) = (F_1(x), F_2(x)) | x \in X\}$$
  
Where,  $F_1(x) = WCET$  objective and  $F_2(x) = Energy$  objective



- Search Space:
  - $* \ x \in X \in \{0,1\}^d$
- Objective Space:
  - \*  $\Theta = \{F(x) = (F_1(x), F_2(x)) | x \in X\}$ Where,  $F_1(x) =$  WCET objective and  $F_2(x) =$  Energy objective
- Minimization function:
  - \*  $\min_{x \in X} F(x)$



- Search Space:
  - $* \ x \in X \in \{0,1\}^d$
- Objective Space:
  - \*  $\Theta = \{F(x) = (F_1(x), F_2(x)) | x \in X\}$ Where,  $F_1(x) =$  WCET objective and  $F_2(x) =$  Energy objective
- Minimization function:
  - \*  $\min_{x \in X} F(x)$
- Search Space Constraint:
  - \*  $x_{(F+1):(F+L)} = x_{(F+1):(F+L)} + \tau$ Where,

$$\tau_{l} = \begin{cases} 1, \text{ if } x_{F+l} = 0 \& (\exists f \mid \lambda_{F+l} \subseteq \lambda_{f} \in \Lambda_{1:F}) \& x_{f} = 1 \\ 0, \text{ otherwise} \end{cases}$$



- Search Space:
  - $* \ x \in X \in \{0,1\}^d$
- Objective Space:
  - \*  $\Theta = \{F(x) = (F_1(x), F_2(x)) | x \in X\}$ Where,  $F_1(x) =$  WCET objective and  $F_2(x) =$  Energy objective
- Minimization function:
  - \*  $\min_{x \in X} F(x)$
- Search Space Constraint:
  - \*  $x_{(F+1):(F+L)} = x_{(F+1):(F+L)} + \tau$ Where,

 $\tau_{l} = \begin{cases} 1, \text{ if } x_{F+l} = 0 \& (\exists f \mid \lambda_{F+l} \subseteq \lambda_{f} \in \Lambda_{1:F}) \& x_{f} = 1 \\ 0, \text{ otherwise} \end{cases}$ 

Address Assignment Algorithm Constraint:

$$* \ (\mathcal{T} - \eta) = 0$$





#### 3 **Multi-Objective DSA-based Optimization**

Multi-Objective Optimization Problem



#### To solve multi-objective DSA-based optimization problem, we use:

- Flower Pollination Algorithm (FPA)
- Strength Pareto Evolutionary Algorithm (SPEA)

#### Algorithm Multi-Objective DSA-based optimization

- 1: Collect *memObj*, perform Liveness Analysis, and randomly initialize initial population of size *N*
- 2: **for** *n* = 1 : *N* **do**
- 3: Generate DSA code
- 4: while Stopping criteria is not reached do
- 5: Update Individual using respective update operators
- 6: for Each updated Individual do
- 7: Generate DSA code
- 8: Update to next generation using selection operator
- 9: return Pareto-optimal solution set





**3** Multi-Objective DSA-based Optimization



### Evaluation



- Proposed multi-objective DSA-based optimization (MO<sub>D</sub>) ->Solved using:
  - FPA
  - SPEA
- Multi-objective static SPM allocation-based optimization (MO<sub>S</sub>) ->Solved using:
  - FPA
  - SPEA
- ILP-based single objective dynamic SPM allocation (SO<sub>D</sub>)





3



Pareto fronts



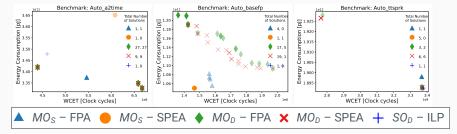



Figure 1: Solutions Obtained from MO<sub>S</sub>, MO<sub>D</sub>, and SO<sub>D</sub> optimization runs



#### The following percent of solutions were on the final Pareto front

- *MO<sub>S</sub>*-FPA: 3.62%
- *MO*<sub>S</sub>-SPEA: 5.26%
- SO<sub>D</sub>-ILP: 0.66%
- *MO<sub>D</sub>*-FPA: 70.4%
- MO<sub>D</sub>-SPEA: 20.1%

-> MO<sub>D</sub>-FPA found most number of solution on the final Pareto front



# **2** Dynamic SPM Allocation (DSA)

**3** Multi-Objective DSA-based Optimization

### 4 Evaluation

Quality Indicators



- Coverage:  $C = 1 \frac{|\{a \in A: \exists p \in \mathcal{P}, a \preceq p\}|}{|A|}$
- Non-Dominance Ratio:  $NDR = \frac{|\mathcal{P} \cap A|}{|\mathcal{P}|}$
- Non-Dominated Solutions:  $NDS = \frac{|a \in A: a \in \mathcal{P}|}{|A|}$



- Coverage:  $C = 1 \frac{|\{a \in A: \exists p \in \mathcal{P}, a \preceq p\}|}{|A|}$
- Non-Dominance Ratio:  $NDR = \frac{|\mathcal{P} \cap A|}{|\mathcal{P}|}$
- Non-Dominated Solutions:  $NDS = \frac{|a \in A: a \in \mathcal{P}|}{|A|}$

### From overall Evaluations, in terms of Quality Indicators:

- MO<sub>D</sub> performed much better than SO<sub>D</sub>
- MO<sub>D</sub> performed slightly better than MO<sub>S</sub>



- Coverage:  $C = 1 \frac{|\{a \in A: \exists p \in \mathcal{P}, a \preceq p\}|}{|A|}$
- Non-Dominance Ratio:  $NDR = \frac{|\mathcal{P} \cap A|}{|\mathcal{P}|}$
- Non-Dominated Solutions:  $NDS = \frac{|a \in A: a \in \mathcal{P}|}{|A|}$

### From overall Evaluations, in terms of Quality Indicators:

- MO<sub>D</sub> performed much better than SO<sub>D</sub>
- MO<sub>D</sub> performed slightly better than MO<sub>S</sub>

### Overheads due to dynamic copying in *MO*<sub>D</sub> optimization run:

- WCET overheads on average: 24.39%
- Energy overheads on average: 22.65%



### **2** Dynamic SPM Allocation (DSA)

**3** Multi-Objective DSA-based Optimization

•

# **4** Evaluation



- Proposed compiler-level DSA-based multi-objective optimization
- WCC performs WCET and energy analysis of DSA code
- $MO_D$  is solved using FPA and SPEA
- MO<sub>D</sub> outperforms SO<sub>D</sub>
- MO<sub>D</sub> performs slightly better than MO<sub>S</sub>

### **Future Work**

- Reducing the WCET and energy overheads by using DMA
- Reducing the compilation time needed by multi-objective DSA-based optimization

# **Thank You**