

Clustering Solutions of Multiobjective Function Inlining Problem

Kateryna Muts, Heiko Falk k.muts@tuhh.de, heiko.falk@tuhh.de Hamburg University of Technology

Workshop on Worst-Case Execution Time Analysis (WCET 2023) July 11, 2023

Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET)

code size

energy consumption

Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET)

code size

energy consumption

Several contradicting objectives \longrightarrow Multiobjective problem

What is a solution of a multiobjective problem?

What is a solution of a multiobjective problem?

What is a solution of a multiobjective problem?

"The magical number seven, plus or minus two" effect¹: Humans can handle only a limited amount of information simultaneously.

¹George A. Miller. "The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information". In: *Psychological Review* 63 (1956), pp. 81–97.

"The magical number seven, plus or minus two" effect¹: Humans can handle only a limited amount of information simultaneously.

¹Miller, "The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information".

"The magical number seven, plus or minus two" effect¹: Humans can handle only a limited amount of information simultaneously.

¹Miller, "The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information".

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters

8 clusters

6 clusters

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters

8 clusters

6 clusters

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters

8 clusters

6 clusters

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters

8 clusters

6 clusters

Original clustering ——→ Refine large clusters ——→ Merge small clusters

- set S to be clustered
- maximum cluster size τ

$$\implies$$
 Divide S into $n = \left\lceil \frac{|S|}{\tau} \right\rceil$ clusters by using an existing clustering method²

²Fabian Pedregosa et al. "Scikit-Learn: Machine Learning in Python". In: *Journal of Machine Learning Research* (Jan. 2012). arXiv: 1201.0490v4.

Original clustering ——→ Refine large clusters ——→ Merge small clusters

Given:

- set S to be clustered
- maximum cluster size τ

 \implies Divide S into $n = \left\lceil \frac{|S|}{\tau} \right\rceil$ clusters by using an existing clustering method²

- K-Means clustering
- Agglomerative clustering
- Spectral clustering

²Pedregosa et al., "Scikit-Learn: Machine Learning in Python".

 $\begin{array}{c} \text{Clusters} \\ \hline \\ \text{Original clustering} \\ \hline \\ \hline \\ \hline \\ \text{Horizon} \\ \hline \\ \\ \text{Refine large clusters} \\ \hline \\ \hline \\ \\ \text{Merge small clusters} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \end{array}$

- clusters
- maximum cluster size τ

 $\begin{array}{c} \text{Clusters} \\ \hline \\ \text{Original clustering} \\ \hline \\ \hline \\ \hline \\ \text{Horizon} \\ \hline \\ \\ \text{Refine large clusters} \\ \hline \\ \hline \\ \\ \text{Merge small clusters} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \end{array}$

- clusters
- maximum cluster size τ

 $\begin{array}{c} \textbf{Original clustering} & \overset{Clusters}{\longrightarrow} \textbf{Refine large clusters} & \overset{Clusters}{\longrightarrow} \textbf{Merge small clusters} \end{array}$

- Clusters
- maximum cluster size τ
- maximum distance between clusters dist

 $\begin{array}{c} \textbf{Original clustering} & \overset{Clusters}{\longrightarrow} \textbf{Refine large clusters} & \overset{Clusters}{\longrightarrow} \textbf{Merge small clusters} \end{array}$

- Clusters
- maximum cluster size τ
- maximum distance between clusters dist
- \implies Merge two clusters if
 - the distance between them is less than dist
 - the size of the merged cluster is less than or equal to $\boldsymbol{\tau}$

Function inlining decreases WCET and energy consumption but increases code size.

```
int max (int i, int j)
123456789
          return i>j?i:j;
                                                            int main()
                                                   1
2
3
4
5
6
7
         }
                                                            {
                                                              . . .
         int main()
                                                            a = c > d?c:d;
         {
                                                             . . .
           . . .
                                                             b = f > g?f:g;
          a = max(c,d);
10
          . . .
          b = max(f,g);
11
12
```

Function inlining decreases WCET and energy consumption but increases code size.

1 2	int max (int i, int j)		
3 4 5	return i>j?i:j; }	1 2	int main() {
5 6 7	int main() {	3 4 5	a = c>d?c:d;
8 9 10	a = max(c,d);	6 7	<pre>b = f>g?f:g; }</pre>
11 12	<pre>b = max(f,g); }</pre>		

(WCET, code size, energy consumption) \longrightarrow min

Function inlining decreases WCET and energy consumption but increases code size.

1 2	int max (int i, int j)		
- 3 4 5	return i>j?i:j; 1 } 2	:	int main() {
6 7	int main() 3 {		a = c>d?c:d;
8 9	a = max(c,d); 5 5 7		 b = f>g?f:g;
10	• • •	-	,
11	b = max(f,g);		
12	}		

(WCET, code size, energy consumption) \longrightarrow min

WCET-Aware Compiler Framework WCC

Setup

Cluster sizes after each stage of the proposed approach

 $12 \, / \, 16$

Clusters for benchmark iirflt01 and spectral clustering

Final clusters for benchmark iirflt01

Runtime

Benchmark

Conclusion

- The proposed clustering method guarantees that the sizes of all clusters are less than a predefined limit.
- We demonstrated the approach on multiobjective function inlining with WCET, code size and energy consumption as objectives.
- K-Means, agglomerative and spectral clusterings showed similar results in terms of the number of clusters and their sizes, but agglomerative clustering showed the smallest runtime.

Maximum distance between two clusters

$$dist = \frac{d_{max}}{n-1} \tag{1}$$

n is the number of clusters in the input set *S* and d_{max} is the maximum distance between two points from the set *S*:

$$d_{max} = \max_{p,q \in S} ||p - q|| \tag{2}$$