Clustering Solutions of Multiobjective Function Inlining

Problem

Kateryna Muts, Heiko Falk
k.muts@tuhh.de, heiko.falk@tuhh.de

Hamburg University of Technology

Workshop on Worst-Case Execution Time Analysis (WCET 2023)
July 11, 2023

Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET) code size

energy consumption

Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET) code size

energy consumption

Several contradicting objectives \longrightarrow Multiobjective problem

What is a solution of a multiobjective problem?

What is a solution of a multiobjective problem?

What is a solution of a multiobjective problem?

How to choose the best solution?

How to choose the best solution?

How to choose the best solution?

How to choose the best solution?

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective

How to choose the best solution?

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective
- a decision maker conducts in direction of the desired solution

How to choose the best solution?

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective
- a decision maker conducts in direction of the desired solution
one solution

How to choose the best solution?

System designer's preferences

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective
- a decision maker conducts in direction of the desired solution
one solution

How to choose the best solution?

System designer's preferences

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective
- a decision maker conducts in direction of the desired solution
one solution

"The magical number seven, plus or minus two" effect ${ }^{1}$: Humans can handle only a limited amount of information simultaneously.

[^0]"The magical number seven, plus or minus two" effect ${ }^{1}$: Humans can handle only a limited amount of information simultaneously.

[^1]"The magical number seven, plus or minus two" effect ${ }^{1}$: Humans can handle only a limited amount of information simultaneously.

[^2]How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

3 clusters

Refine large clusters

8 clusters

Merge small clusters

6 clusters

How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

3 clusters

Refine large clusters

8 clusters

Merge small clusters

6 clusters

How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

3 clusters

Refine large clusters

8 clusters

Merge small clusters

6 clusters

How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

3 clusters

Refine large clusters

8 clusters

Merge small clusters

6 clusters

Original clustering Refine large clusters Merge small clusters

Given:

- set S to be clustered
- maximum cluster size τ
\Longrightarrow Divide S into $n=\left\lceil\frac{|S|}{\tau}\right\rceil$ clusters by using an existing clustering method ${ }^{2}$

[^3]
Original clustering \longrightarrow Refine large clusters \longrightarrow Merge small clusters

Given:

- set S to be clustered
- maximum cluster size τ
\Longrightarrow Divide S into $n=\left\lceil\frac{|S|}{\tau}\right\rceil$ clusters by using an existing clustering method ${ }^{2}$
- K-Means clustering
- Agglomerative clustering
- Spectral clustering

[^4]
Clusters
 Original clustering \longrightarrow Refine large clusters \longrightarrow Merge small clusters

Given:

- clusters
- maximum cluster size τ

Clusters
 Original clustering \longrightarrow Refine large clusters \longrightarrow Merge small clusters

Given:

- clusters
- maximum cluster size τ

Original clustering $\xrightarrow{\text { Clusters }}$ Refine large clusters $\xrightarrow{\text { Clusters }}$ Merge small clusters

Given:

- Clusters
- maximum cluster size τ
- maximum distance between clusters dist

Original clustering $\xrightarrow{\text { Clusters }}$ Refine large clusters $\xrightarrow{\text { Clusters }}$ Merge small clusters

Given:

- Clusters
- maximum cluster size τ
- maximum distance between clusters dist
\Longrightarrow Merge two clusters if
- the distance between them is less than dist
- the size of the merged cluster is less than or equal to τ

Function inlining decreases WCET and energy consumption but increases code size.

```
int max (int i, int j)
```

int max (int i, int j)
{
{
int main()
int main()
{
{
a = max (c,d);
a = max (c,d);
b}=\operatorname{max}(f,g)
b}=\operatorname{max}(f,g)
}

```
}
```

 return i>j?i:j; 1 int main()
 Function inlining decreases WCET and energy consumption but increases code size.

```
    {nt max (int i, int j)
} (a)
int main()
{
    a = max (c,d);
    b = max (f,g);
}
```

 return i>j?i:j; 1 int main()
 2 \{
(WCET, code size, energy consumption) \longrightarrow min

Function inlining decreases WCET and energy consumption but increases code size.

```
    int max (int i, int j)
{
}
5
6
7
8
9
10
1 1
12
```

 return i>j?i:j; 1 int main()
 2
(WCET, code size, energy consumption) \longrightarrow min
WCET-Aware Compiler Framework WCC

Setup

Cluster sizes after each stage of the proposed approach

Clusters for benchmark iirflt01 and spectral clustering

Final clusters for benchmark iirflt01

Spectral clustering

Runtime

Agglomerative clustering
K-Means
Spectral clustering

Conclusion

- The proposed clustering method guarantees that the sizes of all clusters are less than a predefined limit.
- We demonstrated the approach on multiobjective function inlining with WCET, code size and energy consumption as objectives.
- K-Means, agglomerative and spectral clusterings showed similar results in terms of the number of clusters and their sizes, but agglomerative clustering showed the smallest runtime.

Maximum distance between two clusters

$$
\begin{equation*}
\text { dist }=\frac{d_{\max }}{n-1} \tag{1}
\end{equation*}
$$

n is the number of clusters in the input set S and $d_{\max }$ is the maximum distance between two points from the set S :

$$
\begin{equation*}
d_{\max }=\max _{p, q \in S}\|p-q\| \tag{2}
\end{equation*}
$$

[^0]: ${ }^{1}$ George A. Miller. "The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information". In: Psychological Review 63 (1956), pp. 81-97.

[^1]: ${ }^{1}$ Miller, "The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information".

[^2]: ${ }^{1}$ Miller, "The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information".

[^3]: ${ }^{2}$ Fabian Pedregosa et al. "Scikit-Learn: Machine Learning in Python". In: Journal of Machine Learning Research (Jan. 2012). arXiv: 1201.0490v4.

[^4]: ${ }^{2}$ Pedregosa et al., "Scikit-Learn: Machine Learning in Python".

