
Validation of processor timing models using cycle-accurate
timing simulators

Alban Gruin Thomas Carle Christine Rochange Pascal Sainrat

July 11th, 2023

Irit, Univ. Toulouse III Paul Sabatier, CNRS

Motivation

The need for precise and accurate timing models

• We require accurate models for WCET analysis and timing anomalies
detection

1/22

Timing models

Formal pipeline models, based on predicate logic

• Introduced in SIC1, reused in MINOTAuR2 and Vicuna3.
• Based on instruction progress in the pipeline

• Instructions are associated to a stage and a latency.
• cycle(c) function to get the next pipeline state.

• These models allow proofs on the timing behavior of the processor
• Timing-anomaly free processors!

1Hahn and Reineke, 2018
2Gruin, Carle, Cassé, and Rochange, 2021
3Platzer and Puschner, 2021

2/22

The Ariane/CVA6 (and MINOTAuR) core

PC

CO

fqueue iqueue

squeue

EX
IF ID IS ALU

MUL1

DIV

CSR

LSU

MUL2

LU

SU

mqueue

ST

3/22

Example of timing models: (excerpt from) the MINOTAuR core i

c.ready(i) := (c.stg(i) 6= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = pc ⇒ (ichit(i)

∨ (¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ (∀j < i . dep(i, j) ⇒ c.stg(j) wS co))

∧ (c.stg(i) = lsu ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {alu, mul1, csr, mul2, co, post}
∨ (s ∈ {if, is, lsu, su} ∧ c.slot(s))

∨ (s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨ (∃i . c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))

4/22

Example of timing models: (excerpt from) the MINOTAuR core ii

c.ready(i) := (c.stg(i) 6= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = pc ⇒ (ichit(i)

∨ (¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ (∀j < i . dep(i, j) ⇒ c.stg(j) wS co))

∧ (c.stg(i) = lsu ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

5/22

Example of timing models: (excerpt from) the MINOTAuR core iii

c.ready(i) := (c.stg(i) 6= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = pc ⇒ (ichit(i)

∨ (¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))

∧(opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))

∧(∀j < i . dep(i, j) ⇒ c.stg(j) wS co))
∧ (c.stg(i) = lsu ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

6/22

Example of timing models: (excerpt from) the MINOTAuR core iv

c.ready(i) := (c.stg(i) 6= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = pc ⇒ (ichit(i)

∨ (¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ (∀j < i . dep(i, j) ⇒ c.stg(j) wS co))

∧ (c.stg(i) = lsu ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {alu, mul1, csr, mul2, co, post}
∨ (s ∈ {if, is, lsu, su} ∧ c.slot(s))

∨ (s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨ (∃i . c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))

7/22

Issues with timing models

• These models can be tedious to write, and may not be correct wrt. the actual
core.

• Hardware descriptions are complex.
• MINOTAuR→ ~75.000 lines of SystemVerilog…

• Datasheets are imprecise at best.
• The whole process is not very robust.

8/22

Contributions

Validation methodology based on simulation, with a test approach

• Simulation infrastructure for processor models
• Description language for formal processor models
• Simulator compiler

9/22

Validation workflow overview

bit-accurate
cycle-accurate

Verilog simulator
commit

reads to Dcache
writes to Dcache
reads to Icache

divisions
branch mispred.

model
simulator commit

Verilog description
of the processor

identical?

Verification workflow

10/22

Traces

Trace kind Contents

Icache Addresses, opcodes, timings, cancellations of accesses
Dcache reads Timings and cancellations

Dcache writes, divisions Timings
Control flow Cycles at which a misprediction happens

Commit Address, commit cycle

11/22

Experimental evaluation on the MINOTAuR processor

• Tried our workflow on the TACLe benchmark suite and CoreMark.
• Took 2 days to generate all traces from the processor
• Validated our model against the benchmarks in ~1h

• Found several issues.
• After fixing the model, the simulator generates the same commit trace as the
processor.

12/22

First issue, related to data dependencies

WaW and RaW data dependencies are handled differently

• In the model: ∀i < j .dep(i, j)⇒ c.stg(j) wS co
• I.e. if there is a data dependency between instructions i and j, it will be resolved
when the older instruction has completed its execution.

• True for RaW hazards, not for WaW hazards: writes must be committed before
reusing a register.

• Fix:

∀j < i . (depWaW(i, j)⇒ c.stg(j) AS co)
∧ (depRaW(i, j)⇒ ((opc(j) = csr ∧ c.stg(j) AS co) ∨ (c.stg(j) wS co)))

13/22

Second issue, related to the load unit

The LU stalls for one cycle after a cache miss

• In the model:

s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s)
∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j))))

• Fix: create a special case for the LU, taking the cache hit into account.

s = lu ∧ ((¬∃j . c.stg(j) = lu)

∨ (∃j . c.stg(j) = lu ∧ c.ready(j) ∧ c.free(c.nstg(j)) ∧ dchit(j)))

14/22

Third issue, related to CSRs

CSR do not prevent arithmetic instructions to be issued

c.stg(i) = is⇒ (opc(i) /∈ {load, store, atomic}⇒ ¬c.pending(i, csr))

∧ (opc(i) ∈ {mul, div}⇒ ¬c.pending(i, div)) ∧ (∀j < i .dep(i, j))

15/22

(Semi-)automatic generation of timing simulators

• Going from predicate logic to a reasonably fast programming language
manually (eg. C++) is also error-prone and time consuming.

• We designed a special-purpose description language to encode predicate
logic.

• Syntax close to OCaml and to the predicate logic used.
• Functional (predicates used do not mutate anything).
• Compiled to C++.

16/22

Simulator generation workflow overview

bit-accurate
cycle-accurate

Verilog simulator
commit

reads to Dcache
writes to Dcache
reads to Icache

divisions
branch mispred.

model
simulator commit

generator
of model
simulators

description of
the formal model

Verilog description
of the processor

identical?

Verification workflow

Simulator generation

17/22

Formal processor model description language

• Implements enough constructs to implement MINOTAuR’s model.
• Data types (integers, lists, tuples, user-defined enumerations).
• Partial orders on user-defined enumerations.
• User-defined functions and recursive functions.
• Types are inferred by the compiler.
• Sufficient for MINOTAuR (and SIC).

18/22

Example

set stage = | Pre | IF | ID | IS | ALU | LSU | CO | Post
order stage as s = Pre < IF < ID < IS < {ALU, LSU} < CO < Post

let ready(opc, limit c, i, pwrong) =
(stg(c, i) <> Pre /\ !pending(opc, c, i, Branch) /\ pwrong)
\/ (cnt(c, i) = 0 /\ isnext(c, stg(c, i), i) /\

(stg(c, i) = IS ->
(opc[i] in {Mul, Div} -> !pending(opc, c, i, Div))
/\ (forall j in c, (j < i -> !dep(opc, c, i, j))))

/\ (stg(c, i) = LSU ->
(opc[i] in {Store, Atomic} /\ !pending(opc, c, i, Atomic))
\/ (opc[i] = Load /\ !pending(opc, c, i, Atomic))))

19/22

Compilation to C++

// forall j in c, stg(c, j) = s -> j < i
bool tmp0 {true};
for (unsigned int j {0}; j < c.size(); ++j)

tmp0 = tmp0 && (j < i || !(stg(c, j) == s));

// exists j in c, stg(c, j) = s -> j < i
bool tmp1 {false};
for (unsigned int j {0}; j < c.size(); ++j)

tmp1 = tmp1 || (j < i || !(stg(c, j) == s));

// #{j in c | stg(c, j) = s -> j < i}
unsigned int tmp2 {0};
for (unsigned int j {0}; j < c.size(); ++j) {

if (j < i || !(stg(c, j) == s))
++tmp2;

}

• In our language,
everything is an
expression (not the
case in C++).

• Bounds for limited
lists, provided by the
caller.

20/22

Integration with the simulation infrastructure

Building blocks are provided

• Trace readers, using lazy-loading if traces do not fit into working memory.
• Template for the cycle() function.

• It must be able to compute bounds for traces.

21/22

Conclusion

• We introduced a workflow to validate processor timing models
• Uses actual execution traces (obtained eg. using a cycle-accurate simulator)
• Replays instruction traces and compares the result and commit trace
• Developed a description language to simplify the transcription process

• Applied it on an existing, timing-predictable processor (MINOTAuR)
• Found and fixed several issues in the model
• Our model now conforms to the actual MINOTAuR core, at least on the
benchmarks we used

• Future work
• Automatic Coq generation
• More complex models (OoO)

22/22

Thank you!

A. Gruin, T. Carle, H. Cassé, and C. Rochange. Speculative execution and timing predictability in an
open source RISC-V core. In IEEE Real-Time Systems Symposium (RTSS), 2021.

S. Hahn and J. Reineke. Design and analysis of SIC: A provably timing-predictable pipelined
processor core. In IEEE Real-Time Systems Symposium (RTSS), 2018.

M. Platzer and P. Puschner. Vicuna: A timing-predictable RISC-V vector coprocessor for scalable
parallel computation. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021), 2021.

	Introduction
	Contributions
	Validation workflow
	Evaluation
	Issues found

	Generation of timing simulators
	Conclusion
	References

