
© H.Kopetz 2023

Design Principles for Reducing the Complexity of

Safety-Critical Embedded Systems

H.Kopetz
July 2023

© H.Kopetz 2023

What are the Trends that shape our Field?
• Hardware Performance is still increasing (3.5 nm Technology).
• Automation of Safety Critical Processes is getting widespread

(e.g. Autonomous Vehicles, Robotics, Energy Distribution, etc.).

• Wide use of AI for object perception and categorization leads to large
control systems with millions of lines of code.
• Mind-boggling Complexity prevails and hinders human understanding

and explainability—can we trust the machine?

• An Intrusion into a safety-critical system is an issue.

It is the objective of this talk to elaborate on the principles that help
in the design of these large autonomous control systems.

© H.Kopetz 2023

Outline

• Introduction -- Some Terminology
• The Challenge of Design
• Autonomous Driving (AD)
• Safety Assurance (SA) Subsystem
• Byzantine Faults
• A Solution to the Challenge
• Conclusion

© H.Kopetz 2023

An Embedded (Sub) System
is a human-made artefact that
• has a purpose and is a whole that is encapsulated by a physical or

virtual skin that separates the system from its environment.
• The purpose of the system is achieved by the service (intended

behavior) of the system to its environment, based on the results of
an internal model of the environment.
• A system has interfaces in the skin that observe the environment

(sensors that provide the input data for the internal model) and act
on the environment (actuators).
• From the system point of view, the perceived environment of a

system consists of those entities that are observable or can be
controlled via the interfaces of the system.

Software per se does not qualify as a system—it has no temporal properties.

© H.Kopetz 2023

Model of a System

System
(with an internal

Model of the
Environment)

Input Interface
(Sensor)

Output Interface
(Actuator)

Environment Skin

System boundaries imply responsibilities

© H.Kopetz 2023

Decomposable versus Monolithic System
In the embedded domain, a large system is called decomposable if it can
be partitioned into a small number of identifiable self-contained
subsystems, the parts (composed of software and hardware), that
interact solely via simple message-based interfaces.
A message-based interface is simple if
• the information items conveyed by the messages are well defined in the

domains of data, context and time—time-triggered messages help!
• the messages can be observed by an independent monitor.
• there are no unintended emergent effects caused by the message

interactions.
If a system is not decomposable, it is called a monolithic system.

© H.Kopetz 2023

Decomposable versus Monolithic System

Subsystem
(Part)

flow of simple messages control flow

© H.Kopetz 2023

Decomposition improves the Goal Clarity

• Goal Clarity refers to the “the extent to which the outcome goals and
objectives of a job are clearly stated and well defined“ 1) .
• Goal Clarity improves the motivation and productivity of a project

team and the quality of the product.

• A decomposition of a system into nearly independent subsystems—
the result of a proper architectural design— establishes goal clarity
for every subsystem, since every subsystem has
• a well-defined purpose
• precisely specified interfaces

1) Sawyer, J.E. Goal and Process Clarity: Specification of Multiple Constructs of Role Ambiguity and a Structural
Equation Model of Their Antecedents and Consequences. Journal of Applied Psychology 1992, Vol.77. No. 2,
p. 134.

© H.Kopetz 2023

A Subsystem (Part) is a Fault-Containment Unit (FCU)

A hardware-software subsystem is a fault-containment unit (FCU),
if it has a clear purpose, is self-contained (hardware plus software)
within its skin, interacts with its environment exclusively by
simple messages, and if the direct impact of any fault effects
the operation of this subsystem only.

The service of an FCU can be impacted by the following faults:
• permanent hardware fault (e.g. failing transistor, design, etc.)
• transient hardware fault (SEU-single event upset, power outage, etc.)
• specification fault (e.g., incomplete specification of edge cases)
• programming fault
• input fault
• an intrusion.

FCUs must fail independently.

© H.Kopetz 2023

Semi-autonomous vs Fully-autonomous Embedded Systems

Semi-autonomous System
• Provides the specified service

by a primary control system
under nominal conditions.
• The nominal conditions are

part of the specification.
• Requires human intervention

to detect and mitigate off-
nominal conditions.

Fully-autonomous System
• Provides the specified service

under nominal conditions and a
safe exit under off-nominal
conditions.
• Requires an independent Safety

Assurance (SA) Subsystem to
handle the behavior under off-
nominal conditions.

Requirement: The safety (probability of a catastrophic event during
the lifetime of the system) of a fully autonomous embedded system
should be better than the safety of a semi-autonomous system.

© H.Kopetz 2023

Functions of the Safety Assurance Subsystem (SA)

The safety assurance (SA) subsystem must bring the controlled
object to a safe state in case a critical event has occurred that
caused an off-nominal condition.
The SA mitigates the effects of a failure!
Functions of the SA (realized by the human driver at level 2):
• Detection Function: Detect an off-nominal condition.
• Decision Function: Decide to deactivate the faulty subsystem

and activate a fallback subsystem.
• Fallback Function: Bring the controlled object to a safe state.

© H.Kopetz 2023

What are Off-Nominal Conditions?
Nominal Condition
The specified design assumptions

—The Specifications—
about the system in its operational
environment hold.
(ODD—operational design domain)

Off-Nominal Condition
Some of the specified design
assumptions concerning the nominal
conditions about the system or its
environment are violated as the
consequence of a critical event.

The dependability of a perfect system is limited by the assumption coverage.

Assumption coverage: Probability that the assumptions that are
made in the design and about the operation of a system hold

during the expected lifetime of the system.

© H.Kopetz 2023

Nominal condition versus Off-Nominal condition

Nominal
Condition

Off-Nominal
Condition
handled

by the SA

critical event
occurrence

Normal Operation

Critical Event Handling by a Safety Assurance (SA) subsystem brings
the controlled object to a safe state.

Critical State
of the controlled object

© H.Kopetz 2023

At the Start . . .

At the start of the design of a new safety-critical technical
system, the following questions should be answered:
• What is the purpose of the envisioned system?
• What is the demanded dependability of a safety-critical

embedded system?
• What are the relevant economic constraints?
• What are the relevant technical constraints?

© H.Kopetz 2023

The Challenge in the Design of a Large Safety-Critical System

Find an understandable decomposition of a large safety-critical
fully autonomous ultra-dependable embedded system

—e.g. a system for Autonomous Driving (AD)—
into independent Fault-Containment Units (FCU) that

interact by simple messages only and where
a single failure in anyone of its complex

FCUs does not cause an accident.

© H.Kopetz 2023

Example: Autonomous Driving (AD)

Purpose: A car with a fully-autonomous driving (AD) system must

transport its passengers safely from a defined start to the selected

destination.

AD systems have the following characteristics:

• The safety of an AD system must be significantly better than that

achieved by a human driver—safety is a tail event.
• An AD system is complex: more than ten million lines of code.

• An AD system must handle nominal and off-nominal conditions and

must mitigate its own faults.

Up to now, more than 100 billion dollars have been spent on AD.

© H.Kopetz 2023

Required Safety of an Autonomous Driving (AD) System:

In Austria there are about 5 Million vehicles on the road. If we assume
that every vehicle travels for 200 hours/year with a speed of 60 km/hour,
then every vehicle travels 12 000 km/year
In Austria, every year there are about
• 35000 reported traffic accidents, i.e. one accident/150 vehicles or 1,8 Mio km
• 500 traffic fatalities, i.e. one fatality/10 000 vehicles (Relation 1:70)
If we mandate that an autonomous car should be many times better than a human
driver, then an autonomous car must not be involved in
• a traffic accident for 1 000 000 hours or 60 000 000 km driven
• a traffic fatality for 10 000 000 hours or 600 000 000 km driven.

This brings us into the domain of ultra-dependable systems.

© H.Kopetz 2023

Ultra-dependable systems are different . . .
Most dependability engineers that are working on the design and validation
of complex ultra-high dependable embedded systems would agree that there
is strong experimental evidence that it is impossible to overcome the
constraints that are summed up in the following four impossibility results:
(i) It is impossible to find all design faults in a large monolithic hardware/

software system that contains millions of lines of software code.
(ii) It is impossible to avoid a single event upset (SEU) in non-redundant

hardware during on interval of 1 000 000 hours (i.e. 100 years).
(iii) It is impossible to establish the ultra-high dependability of a large

monolithic system by testing and simulation.
(iv) It is impossible to precisely specify all edge cases that can be encountered

during 1 000 000 hours of operation of a fielded large ultra-dependable
system.

© H.Kopetz 2023

AD Systems are complex: the two Facets of Complexity
Complexity is a property of a scenario that is primarily used to denote
the mental difficulty of understanding a scenario by a human —
complexity generally increases with perceived size.
(i) Object Complexity: Complexity as a Property of a Scenario. A

scenario consisting of many different parts with many peculiar
uncontrolled interactions is considered complex.

(ii) Cognitive Complexity: Complexity as a Relation between a Scenario
and an Observer. An expert that has a highly developed
conceptual landscape of a domain can consider a scenario as
simple that is complex to a novice. (e.g. Elo rating of chess).

In general, a high object complexity leads to a high
cognitive complexity.

© H.Kopetz 2023

Three Design Principles for Complexity Reduction

The following three design principles, that must be applied iteratively, help
to reduce the complexity of a system and lead to a multilevel hierarchy:
(i) Partitioning (Divide and Conquer): Decompose the system into self-

contained subsystems with well-defined interfaces among the
subsystems such that each subsystem can be developed independently.

(ii) Abstraction: Find a high level conceptualization (a reduced
representation) that supports the achievement of the purpose. In case
of a safety-critical system the first-level subsystems should be few Fault-
Containment Units that interact by the exchange of simple messages.

(iii) Segmentation: Segment the behavior in the temporal domain between
communication and processing. Interactions among subsystems are only
allowed to occur at the beginning and the end of a frame..

Top down

Bottom up

© H.Kopetz 2023

SAE Driving Automation (DA) Levels according to J3016

semi-
autonomous

fully-
autono-
mous,
requires
an SA

© H.Kopetz 2023

Safety Assurance Subsystem: L2 versus L4

dd

Input

Mechanics

Driver SA

Out

Out

L2 System

Input

Mechanics

Out

Out

Computer SA

L2 System

© H.Kopetz 2023

Critical Events in AD (Leads to an Disengagement of an L2 System)

Internal Events—failure events within the vehicle.

• Software specification error (wrong nominal conditions).

• Programming error (e.g. Heisenbugà bit flip).

• Not specified computer hardware failure (e.g. SEU à bit flip).

• Not specified failure of a mechanical part of the car.

External Events—unspecified events outside the vehicle.

• Not recognized ODD exit (e.g., snowfall, ice, road condition)

• Traffic participants behave outside the specification (e.g. children)

• Intrusion

• and many more (e.g. suicide driver).

Distinguish between the cause of failure and the effect of a failure!—
first mitigate the effect and later eliminate the cause.

© H.Kopetz 2023

First Try: Computerized SA System replaces the Human Driver

dd

Input

Mechanics

Driver SA

Out

Out

L2 System

Input

Mechanics

Out

Out

Computer SA

L2 System

© H.Kopetz 2023

First Try: Two Fault-Containment Units (FCUs)

L2* System
Driving Function

SP SP SP SP SP SP

Computerized
SA System

Detection Function
Decision Function
Fallback Function

© H.Kopetz 2023

First Try: Two Fault-Containment Units (FCUs)

L2* System
Driving Function

SP SP SP SP SP SP

Computerized
SA System

Detection Function
Decision Function
Fallback Function

This is not a good idea!
If the computerized
SA System is faulty, then
this faulty system can take
control of the vehicle and
cause an accident.

© H.Kopetz 2023

Failure Modes of a Fault Containment Unit (FCU)

A fault-containment unit (FCU) interacts with its environment
solely by the output of timed messages. It can exhibit one of the following
three external failure modes due to a fault:

• fail silent: The faulty FCU detects all faults internally and does not
deliver any message. Assumption Coverage: < 1

• fail consistent: In case of a fault, the FCU sends the same message
to all its partners. Assumption Coverage: < 1

• fail Byzantine: No assumptions about the messages of a failing FCU
(e.g. a security incident, when the faulty FCU deceives its monitor).

Assumption Coverage = 1

© H.Kopetz 2023

An Example for Byzantine Behavior

System
(with an internal

Model of the
Environment)

Input Interface Output Interface:
incorrect output

Environment
Skin

Monitor interface:
correct output

© H.Kopetz 2023

Number of FCUs for Fault Tolerance

Number of FCUs needed to tolerate a single faulty FCU:

• fail silent FCUs Assumption Coverage: < 1

• fail consistent FCUs Assumption Coverage: < 1

• fail Byzantine FCUs Assumption Coverage = 1

FCUs must fail independently.

© H.Kopetz 2023

The Byzantine Fault-Model covers Intrusions

• If an intruder is successful and gets full control of a system,
then he can produce any kind of inconsistent behavior. This is
exactly the definition of a Byzantine fault.

• If a system is designed to mitigate a single Byzantine fault in any
one of its subsystems, then the system will also handle any
single intrusion.

• An intrusion in a (single) fault-tolerant system is only successful,
if two different subsystems are compromised at the same time.
Design diversity implies the need for intrusion diversity.

Security and Safety are thus two sides of the same coin.

© H.Kopetz 2023

Do we have to assume a Byzantine Fault of an FCU?

• Digital Computer have the ugly property that small changes in structure
can lead to catastrophic changes in behavior (e.g. a bit flip in a computer
program can have unpredictable consequences).

• ISO 26262, requires in Section 7.4.3.1 an inductive analysis to determine
the effects of a hardware fault—at what level is this doable?

• What are the worst-case consequences of a single bit flip (caused by an SEU
in Hardware or a Heisenbug in the Software) for the service of an FCU?

If we assume only non-Byzantine Failures of an FCU, then intrusions
are not covered and the assumption coverage is less than one.

Look at the 2003 paper by Kevin Driscoll!

© H.Kopetz 2023

Mitigating a Byzantine Failure:

In order to mitigate a single Byzantine failure we need

• four subsystems that are FCUs

• Byzantine Agreement Protocols among the four subsystems to mitigate
the failure of one of the subsystems.

If none of the four subsystems can be trusted (assumed to be correct),
then the Byzantine Agreement Protocols are expensive with respect to
number of message exchanges and required time.

If one of the subsystems is assumed to be correct (simple enough to be
free of a software error and executed on fault-tolerant hardware) then
the speed and the complexity of the Byzantine Agreement Protocols
can be substantially reduced.
See the paper by Lamport (1982) : The Byzantine Generals Problem.

© H.Kopetz 2023

M-System
Monitor
System

L2*-System
for Nominal
Conditions

F-System
for Off-Nominal

Conditions

D-System
Decision
System

Sensors of the M-SystemSensors of the L2*-System Sensors of the F-System

Fault-Tolerant
Actuator

SPSP: Sensor
Preprocessing

SA System for
Safety Assurance

SP SP SP SP SP SP SP SP

One Solution: Four FCUs, one of them is correct!

D system is correct, because it
is simple (free of design errors),

executed on fault-tolerant hardware.

One
Complex FCU

can fail

© H.Kopetz 2023

L2*-System: The Computer Controlled Driving Subsystem—complex

Purpose: To autonomously control the vehicle under nominal conditions
(Basically an extended SAE Level 2 System).

Interfaces: Periodic Transmission of the Setpoints for Acceleration (Braking)
and Steering to the D-System and the planned Trajectory to the M-
System. (A Trajectory is a sequence of timed waypoints.)

Assumptions: Vehicle o.k., ODD o.k, All drivers adhere to highway code, etc.

Addition to Current L2 Systems: Run time error detection — e.g., Detection
of cases that are Out of Distribution (OOD) of the ML network.

Possible Failure Modes: Byzantine
Estimated MTTF: 1000 operational hours

© H.Kopetz 2023

F-System: Fallback Subsystem—complex
Purpose: To bring the vehicle from the current state to a safe state.

Interfaces: Periodic Transmission of the Setpoints for Acceleration

(Braking) and Steering to the D-System and a life-sign to the M-System.

Assumptions: Vehicle not o.k., ODD violated, Drivers may not observe

the traffic code, etc.

Possible Failure Modes: Byzantine

Estimated Failure Rate on Demand: 1 Failure in 200 demands.

The F-System must be able to properly handle a scenario that has not
been encountered up to now. The logic of the F-System must support
knowledge-based reasoning and transfer learning.

© H.Kopetz 2023

M-System: Monitoring Subsystem—complex

Purpose:
• Detect an unsafe trajectory of the L2*-System,
• Check if the F-System is o.k and if nominal conditions prevail.

A fail positive failure of the M-System is critical.

Interfaces: Reception of the planned trajectory from the L2*-System.
Periodic Transmission of safety assessment of the trajectory to the
D-System and the state of the F-System to the L2*-Sysem.

Assumptions: Sensors and Computer o.k.

Possible Failure Modes: Byzantine

Estimated MTTF: 1000 operational hours

© H.Kopetz 2023

D-System: Fault Tolerant Decision Subsystem—simple

Purpose: To decide which setpoints are handed to the actuators.
Interfaces: Periodic Reception of the Setpoints from the the L2*-

System and the F-System and the safety assessment from the
M-System. Periodic Transmission of the received setpoints from
the L2* system to the M-System.

Assumptions: hardware fault-tolerant and software correct.
Possible Failure Modes: none
Estimated MTTF: meets ultra-dependable requirement.

© H.Kopetz 2023

State Transitions

Driver
has

Control

L2* Sys
has

Control
Critical
State

(F-Sys)

Car in
Safe
State

F-Sys
stops

the car

Critical Event
Occurrence, detected by M-System

Driver
takes Control

L2 Sys
Recovery

Acci-
dentFailure

Success

© H.Kopetz 2023

One Important Assumption: No Correlated Failures
In this architecture proposal, the probability of correlated failures of
FCUs is reduced by:

• Diversity of purpose of the internal models and of the algorithms in
the three complex subsystems (the L2* system, the M-system and the
F-system—it is not TMR).

• Diverse execution environments (hardware, sensors, operating
systems, power supply, etc.) of the three complex subsystems.

• Diverse Sensors and physical viewpoints
• Diverse design teams that do not communicate beyond the

establishment of the common system-level interfaces.

There will always be some correlation due to the same external
environment. This correlation must be assessed experimentally.

© H.Kopetz 2023

M-System
Monitor
System

L2*-System
for Nominal
Conditions

F-System
for Off-Nominal

Conditions

D-System
Decision
System

Sensors of the M-SystemSensors of the L2*-System Sensors of the F-System

Fault-Tolerant
Actuator

SPSP: Sensor
Preprocessing

SA System for
Safety Assurance

SP SP SP SP SP SP SP SP

The Four FCUs form an Open Holonic Hierarchy

D system is correct, because it
is simple (free of design errors),

executed on fault-tolerant hardware.

One
Complex FCU

can fail

© H.Kopetz 2023

Multi-level Hierarchies

D

L M F

Formal Hierarchy

Observation of the Environment
Ouput to the Environment

Internal Flow of Information

Level 0

Level 1

Level 2

Fence

© H.Kopetz 2023

Multi-level Hierarchies

D

L M F

D

L M F

Formal Hierarchy Holonic Hierarchy
Observation of the Environment
Ouput to the Environment

Internal Flow of Information

Level 0 Level 0

Level 1 Level 1

Level 2 Level 2

Fence

© H.Kopetz 2023

Multi-level Hierarchies

D

L M F

D

L M F

D

L M F

Formal Hierarchy Holonic Hierarchy Open Holonic Hierarchy
Observation of the Environment
Ouput to the Environment

Internal Flow of Information

Level 0 Level 0

Level 1 Level 1

Level 2 Level 2

Fence

© H.Kopetz 2023

Open Holonic Hierarchies

Open Holonic Hierarchies are well suited to structure the design of a
large safety critical embedded system:
• The structure supports the interactions of the level-1 subsystems

that leads to the emergence of intended new properties.
• The structure support the diversity of implementation to mitigate

design errors.
• The diversity of observation of the system environment reduces the

probability of errors in perception.
• The level-1 subsystems are self-contained Fault Containment Units

with well-defined interfaces at level-1 and no interaction below
level-1, supporting Goal Clarity.

© H.Kopetz 2023

Sketch of a Safety-Case

Safety Goal: Time to an unmitigated critical event 100 000 hours.
Assumptions, must be justified by experimental evidence:
• L2* Sys and the M-Sys fail in a Byzantine failure mode every 1000 hours.
• F-system fails in one out of 200 demands.
• D-Sys is correct
Safety Argument: A single Byzantine failure of or a single intrusion into one
the three complex systems (L2*-System, M-System, F-System) is mitigated.

System Failure: If (L2* fails .or. M fails) .and. (F fails)
demand/time x failure/demand = failure/time

System Failure if two complex sub systems fail at about the same time!

© H.Kopetz 2023

Conclusions

It the domain of fully autonomous large ultra-dependable
embedded computer applications
• Fault-tolerance with design diversity is absolutely essential
• Open Holonic Hierarchies are well suited to structure the

design
• An independent safety assurance (SA) subsystem must be

provided to mitigate off-nominal conditions.

© H.Kopetz 2023

Thank you—
Any Questions?

© H.Kopetz 2023

Further Reading . . .

Published:
March 18

2022

Published:
July 18

2019

