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What are the Trends that shape our Field?
• Hardware Performance is  still increasing  (3.5 nm Technology).
• Automation of Safety Critical Processes is getting widespread

(e.g. Autonomous Vehicles, Robotics, Energy Distribution, etc.).

• Wide use  of AI for object perception and categorization leads to large 
control systems with millions of lines of code.
• Mind-boggling Complexity prevails and hinders human understanding 

and explainability—can we trust the machine? 

• An Intrusion into a safety-critical system is an issue.

It is the objective of this talk to elaborate on the principles that help 
in the design of these large autonomous control systems.
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An Embedded (Sub) System
is a human-made artefact that
• has a purpose and is a whole that is encapsulated by  a physical or 

virtual skin that separates the system from its environment.  
• The purpose of the system is achieved by the service (intended 

behavior) of the system to its environment, based on the results of 
an internal model of the environment.
• A system has interfaces in the skin that observe the environment 

(sensors that provide the input data for the internal model) and act 
on the environment (actuators).
• From the system point of view, the perceived environment of a 

system consists of those entities that are observable or can be 
controlled via  the interfaces of the system.

Software per se does not qualify as a system—it has no temporal properties. 
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Model of a System

System
(with an internal

Model of the
Environment)

Input Interface
(Sensor)

Output Interface
(Actuator)

Environment Skin

System boundaries imply responsibilities
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Decomposable versus Monolithic System
In the embedded domain, a large system is called decomposable if it can 
be partitioned  into  a small number of identifiable self-contained 
subsystems, the parts (composed of software and hardware),  that 
interact solely via simple message-based interfaces.
A message-based interface is simple if
• the information items conveyed by the messages are well defined in the 

domains of data, context and time—time-triggered messages help!
• the messages can be observed by an independent monitor.
• there are no unintended emergent effects caused by the message 

interactions.
If a system is not decomposable, it is called a monolithic system.
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Decomposable versus       Monolithic System

Subsystem
(Part)

flow of simple messages control flow
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Decomposition improves the Goal Clarity

• Goal Clarity refers to the “the extent to which the outcome goals and 
objectives of a job are clearly stated and well defined“ 1) .
• Goal Clarity improves the motivation and productivity of a project 

team and the quality of the product.

• A decomposition of a system into nearly independent subsystems—
the result of a proper architectural design— establishes goal clarity 
for every subsystem, since  every subsystem has
• a well-defined purpose
• precisely specified interfaces

1) Sawyer, J.E. Goal and Process Clarity: Specification of Multiple Constructs of Role Ambiguity and a Structural 
Equation Model  of Their Antecedents and Consequences. Journal of Applied  Psychology 1992, Vol.77. No. 2, 
p. 134.
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A Subsystem (Part) is a Fault-Containment Unit (FCU)

A hardware-software subsystem is a fault-containment unit (FCU), 
if it has a clear purpose, is self-contained (hardware plus software)
within its skin, interacts with its environment exclusively by
simple  messages, and if the direct  impact of any fault effects
the operation of this subsystem only.

The service of an FCU can be impacted by the following faults:
• permanent hardware fault (e.g. failing transistor, design, etc.)
• transient  hardware fault (SEU-single event upset, power outage, etc.)
• specification fault (e.g., incomplete specification of edge cases)
• programming fault 
• input fault
• an intrusion.

FCUs must fail independently.
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Semi-autonomous vs Fully-autonomous Embedded Systems

Semi-autonomous System
• Provides the specified service

by a primary control system 
under nominal conditions.
• The nominal conditions are 

part of the specification.
• Requires  human intervention 

to detect and mitigate off-
nominal conditions.

Fully-autonomous System
• Provides the specified service

under nominal conditions and a 
safe exit under off-nominal 
conditions.
• Requires an independent Safety 

Assurance (SA) Subsystem to 
handle the  behavior under  off-
nominal conditions.

Requirement:   The safety (probability of a catastrophic event during 
the lifetime of the system) of a fully autonomous embedded system
should be better than the safety of a semi-autonomous system.



©    H.Kopetz 2023

Functions of the Safety Assurance Subsystem (SA)

The safety assurance (SA) subsystem must bring the controlled 
object to a safe state in case  a critical event has occurred that 
caused an off-nominal condition.
The SA mitigates the effects of a failure!
Functions of the SA (realized by the human driver at level 2):
• Detection Function: Detect an off-nominal condition.
• Decision Function:  Decide to deactivate the faulty subsystem 

and activate a fallback subsystem.
• Fallback Function: Bring the controlled object to a safe state.
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What are    Off-Nominal Conditions? 
Nominal Condition
The specified design  assumptions

—The Specifications—
about the  system in its operational 
environment hold.
(ODD—operational design domain)

Off-Nominal Condition                
Some of the specified design 
assumptions concerning the nominal 
conditions about the system  or its 
environment are violated as the 
consequence of a critical event.

The dependability of a perfect system is limited by the assumption coverage.

Assumption coverage:  Probability that the assumptions that are 
made in the design and about the operation of a system hold 

during the expected lifetime of the system.
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Nominal condition versus  Off-Nominal condition 

Nominal
Condition

Off-Nominal
Condition
handled

by the SA

critical event
occurrence

Normal Operation

Critical Event Handling by a Safety Assurance  (SA) subsystem  brings
the controlled object to a safe state.

Critical State
of the controlled object
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At the Start  .  .  .

At the start of the design of a new safety-critical technical 
system, the following questions should be answered:
• What is the purpose of the envisioned system?
• What is the demanded dependability of a safety-critical 

embedded system?
• What are the relevant economic constraints?
• What are the relevant technical constraints?
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The Challenge in the Design of a Large Safety-Critical System

Find an understandable decomposition of a large safety-critical 
fully autonomous ultra-dependable embedded system

—e.g. a system for Autonomous Driving (AD)—
into independent Fault-Containment Units (FCU) that

interact by simple messages only and where
a single failure in anyone of its complex

FCUs does not cause an accident.



©    H.Kopetz 2023

Example:  Autonomous Driving  (AD)

Purpose: A car with a fully-autonomous driving (AD) system must 

transport its passengers safely from a defined start to the selected 

destination.

AD systems have the following characteristics:

• The safety of an AD system must be significantly better than that 

achieved by a human driver—safety is a tail event.
• An AD system is complex: more than ten million lines of code.

• An AD system must handle nominal and off-nominal conditions and 

must mitigate its own faults.

Up to now, more than 100 billion dollars have been spent on AD.
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Required Safety of an Autonomous Driving (AD) System:

In Austria there are about 5 Million vehicles on the road.  If we assume 
that every vehicle travels for 200 hours/year with a speed of 60 km/hour, 
then every vehicle travels 12 000 km/year
In Austria, every year there are about
• 35000 reported traffic accidents, i.e. one accident/150 vehicles or 1,8 Mio km
• 500 traffic fatalities, i.e. one fatality/10 000 vehicles  (Relation 1:70)
If  we mandate that an autonomous car should be many times better than a human 
driver, then an autonomous car must not be involved in
• a traffic accident for  1 000 000  hours or  60 000 000  km driven
• a traffic fatality for  10 000 000  hours or  600 000 000  km driven.

This brings us into the domain of ultra-dependable systems.
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Ultra-dependable systems are different . . .
Most dependability engineers that are working  on the design and  validation 
of complex ultra-high dependable embedded systems would agree that there 
is strong experimental evidence that it is impossible to overcome the 
constraints that are summed up in the following four impossibility results:
(i) It is impossible to find all design faults in a large monolithic hardware/

software system that contains millions of lines of software code. 
(ii) It is impossible to avoid  a single event  upset (SEU) in non-redundant 

hardware during on interval of 1 000 000 hours  (i.e. 100 years).
(iii) It is impossible to establish the ultra-high dependability of a large 

monolithic system by testing and simulation.
(iv) It is impossible to precisely specify all edge cases that can be encountered 

during 1 000 000  hours of operation of a fielded large ultra-dependable 
system.
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AD Systems are complex: the two Facets of Complexity
Complexity is a property of a scenario that is primarily used to denote 
the mental difficulty of understanding a scenario by a human —
complexity generally increases with perceived size.
(i) Object Complexity: Complexity as a Property of a Scenario. A 

scenario consisting of many different parts with many peculiar 
uncontrolled interactions is considered complex.

(ii) Cognitive Complexity: Complexity as a Relation between a Scenario 
and an Observer.   An expert that has a highly developed 
conceptual landscape of a domain can consider a scenario as 
simple that is complex to a novice. (e.g.  Elo rating of chess).  

In general, a high object complexity leads to a high 
cognitive complexity.
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Three Design Principles for Complexity Reduction

The following three design principles, that must be applied iteratively, help 
to reduce the complexity  of a system and lead to a multilevel hierarchy:
(i) Partitioning (Divide and Conquer): Decompose the system into self-

contained  subsystems with well-defined interfaces among the  
subsystems such that each subsystem can be developed independently. 

(ii) Abstraction: Find a high level conceptualization (a reduced 
representation) that supports the achievement of the purpose. In case 
of a safety-critical system the first-level subsystems should  be few Fault-
Containment Units that interact by the exchange of simple messages.

(iii) Segmentation: Segment the behavior in the temporal domain between 
communication and processing. Interactions among subsystems are only 
allowed to occur at the beginning and the end of a frame.. 

Top down

Bottom up
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SAE Driving Automation (DA) Levels according to J3016

semi-
autonomous

fully-
autono-
mous, 
requires
an SA
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Safety Assurance Subsystem:   L2  versus L4 
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Computer  SA

L2 System
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Critical Events in AD (Leads to an Disengagement of an L2 System)

Internal Events—failure events within the vehicle. 

• Software specification error (wrong nominal  conditions). 

• Programming error (e.g. Heisenbugà bit flip).

• Not specified computer hardware failure (e.g. SEU à bit flip).

• Not specified failure of a mechanical part of the car.

External Events—unspecified events outside the vehicle.

• Not recognized ODD  exit   (e.g.,  snowfall, ice, road condition)

• Traffic participants behave outside the specification (e.g. children)

• Intrusion

• and many more ( e.g. suicide driver).

Distinguish between the cause of failure and the effect of a failure!—
first mitigate the effect and later eliminate the cause.
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First Try:  Computerized SA System replaces the Human Driver
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First Try:  Two Fault-Containment Units (FCUs)

L2* System
Driving Function

SP SP SP SP SP SP

Computerized
SA System

Detection Function
Decision Function
Fallback Function
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First Try:  Two Fault-Containment Units (FCUs)

L2* System
Driving Function

SP SP SP SP SP SP

Computerized
SA System

Detection Function
Decision Function
Fallback Function

This is not a good idea!
If the computerized
SA System is faulty, then 
this faulty system can take
control of the vehicle and
cause an accident.
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Failure Modes of a Fault Containment Unit (FCU)

A fault-containment unit (FCU) interacts with its environment 
solely by the output of timed messages.  It can exhibit one of the following
three external failure modes due to a fault:

• fail silent:   The faulty FCU detects all faults internally and does not 
deliver any message. Assumption Coverage:  < 1

• fail consistent:    In case of a fault, the FCU sends the same message
to all its partners. Assumption Coverage:  < 1    

• fail Byzantine:   No assumptions about the messages of a failing FCU
(e.g. a security incident, when the faulty FCU deceives its monitor).   

Assumption Coverage  = 1
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An Example for Byzantine Behavior

System
(with an internal

Model of the
Environment)

Input Interface Output Interface:
incorrect output

Environment
Skin

Monitor interface:
correct output
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Number of FCUs for Fault Tolerance

Number of FCUs needed to tolerate a single faulty FCU:

• fail silent FCUs                                    Assumption Coverage:  < 1

• fail consistent FCUs                            Assumption Coverage:  < 1

• fail Byzantine FCUs                              Assumption Coverage  = 1

FCUs must fail independently.
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The Byzantine Fault-Model covers Intrusions

• If an intruder is successful and gets full control of a system, 
then he can produce any kind of inconsistent behavior.  This is 
exactly the definition of a Byzantine fault.

• If a system is designed to mitigate a single Byzantine fault in any 
one of its  subsystems, then the system will also  handle any 
single intrusion.

• An intrusion in a (single) fault-tolerant system is only successful, 
if two different subsystems are compromised at the same time. 
Design diversity implies the need for intrusion diversity.

Security and Safety are thus two sides of the same coin. 
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Do we have to assume a Byzantine Fault of an FCU?

• Digital Computer  have the ugly property that small changes in structure 
can lead to catastrophic changes in behavior  (e.g. a bit flip in a computer 
program can have unpredictable consequences).

• ISO 26262, requires in Section  7.4.3.1 an  inductive analysis to determine 
the effects of a hardware fault—at what level is this doable?  

• What are the worst-case consequences of a single bit flip (caused by an SEU 
in Hardware or a Heisenbug in the Software) for the service of an FCU?

If we assume only  non-Byzantine Failures of an FCU, then intrusions 
are not covered and the assumption coverage is less than one. 

Look at the 2003 paper by Kevin Driscoll!
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Mitigating a Byzantine Failure:

In order to mitigate a single Byzantine failure we need 

• four subsystems that are  FCUs 

• Byzantine Agreement Protocols among the four subsystems to mitigate 
the failure of one of the subsystems.

If none of the four subsystems can be trusted (assumed to be correct), 
then the Byzantine Agreement Protocols are expensive with respect to 
number of message exchanges and required time.

If one of the subsystems is assumed to be correct (simple enough to be 
free of a software error and executed on fault-tolerant hardware) then 
the speed and the complexity of the Byzantine Agreement Protocols 
can be substantially reduced.
See the paper by Lamport (1982) : The Byzantine Generals Problem. 
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M-System
Monitor 
System

L2*-System
for Nominal
Conditions

F-System 
for Off-Nominal

Conditions

D-System
Decision
System

Sensors of the M-SystemSensors of the  L2*-System Sensors of the F-System

Fault-Tolerant
Actuator

SPSP: Sensor
Preprocessing

SA System for 
Safety Assurance

SP SP SP SP SP SP SP SP

One Solution:  Four FCUs, one of them is correct! 

D system is correct, because it
is  simple (free of design errors), 

executed on fault-tolerant hardware.

One 
Complex FCU

can fail
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L2*-System: The Computer Controlled Driving Subsystem—complex

Purpose:  To autonomously control the vehicle under nominal  conditions 
(Basically an extended SAE Level 2 System).

Interfaces: Periodic Transmission of the Setpoints for Acceleration (Braking) 
and Steering to the D-System and the planned Trajectory to the M-
System. (A Trajectory is a sequence of timed waypoints.)

Assumptions:  Vehicle o.k., ODD o.k, All drivers adhere to highway code, etc.

Addition to Current L2 Systems: Run time error detection — e.g., Detection 
of cases that are Out of Distribution (OOD) of the ML network. 

Possible Failure Modes:  Byzantine
Estimated MTTF:   1000 operational hours
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F-System:  Fallback Subsystem—complex
Purpose:  To bring the vehicle from the current state to a safe state.

Interfaces: Periodic Transmission of the Setpoints for Acceleration 

(Braking) and Steering to the D-System and a life-sign to the M-System.

Assumptions:  Vehicle not o.k., ODD violated, Drivers may not observe 

the traffic code, etc.

Possible Failure Modes:  Byzantine

Estimated Failure Rate on Demand:   1 Failure in 200 demands.

The F-System must be able to properly handle a scenario that has not 
been encountered up to now. The logic of the F-System must support  
knowledge-based reasoning and transfer learning.
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M-System:  Monitoring Subsystem—complex

Purpose:  
• Detect an unsafe trajectory of the L2*-System, 
• Check if the F-System is o.k and if nominal conditions prevail. 

A fail positive failure of the M-System is critical.

Interfaces: Reception of the planned trajectory from the L2*-System. 
Periodic Transmission of safety assessment of the trajectory  to the 
D-System and the state of the  F-System to the L2*-Sysem.

Assumptions: Sensors and Computer o.k.

Possible Failure Modes:  Byzantine

Estimated MTTF:   1000 operational hours
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D-System: Fault Tolerant Decision Subsystem—simple

Purpose:  To decide which setpoints are handed to the actuators.
Interfaces: Periodic Reception of the Setpoints from the the L2*-

System and the F-System and the safety assessment from the 
M-System. Periodic Transmission of the received setpoints from 
the L2* system to the M-System.

Assumptions: hardware fault-tolerant  and software correct.
Possible Failure Modes:  none
Estimated MTTF:   meets ultra-dependable requirement.
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State Transitions
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L2 Sys
Recovery
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dentFailure

Success
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One Important Assumption:  No Correlated Failures
In this architecture proposal, the  probability of correlated failures of 
FCUs is reduced by:

• Diversity of purpose of the internal models and of the algorithms in 
the three complex subsystems (the L2* system, the M-system and the 
F-system—it is not TMR). 

• Diverse  execution environments (hardware, sensors, operating 
systems, power supply, etc.) of the three complex subsystems.

• Diverse Sensors and physical viewpoints
• Diverse design teams that do not communicate beyond the 

establishment of the common system-level interfaces.

There will always be some correlation due to the same external 
environment.  This correlation must be assessed experimentally.
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M-System
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The Four FCUs form an Open Holonic Hierarchy

D system is correct, because it
is  simple (free of design errors), 

executed on fault-tolerant hardware.

One 
Complex FCU

can fail
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Multi-level Hierarchies
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Multi-level Hierarchies
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Multi-level Hierarchies
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Open Holonic Hierarchies 

Open Holonic Hierarchies are well suited to structure the design of a 
large safety critical embedded system:
• The structure supports the interactions of the level-1 subsystems 

that leads to the emergence of intended new properties.
• The structure support the diversity of implementation to mitigate 

design errors.
• The diversity of observation of the system environment reduces the 

probability of errors in perception.
• The level-1 subsystems are self-contained Fault Containment Units 

with well-defined interfaces at level-1  and no interaction below 
level-1, supporting Goal Clarity. 
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Sketch of a Safety-Case

Safety Goal:  Time to an unmitigated critical event 100 000 hours.
Assumptions, must be justified by experimental evidence:  
• L2* Sys  and the M-Sys fail in a Byzantine failure mode every 1000 hours. 
• F-system fails in one out of 200 demands.
• D-Sys is correct
Safety Argument:  A single Byzantine failure of  or a single intrusion into one
the  three complex systems (L2*-System, M-System, F-System) is mitigated.

System Failure:  If  (L2* fails .or.  M fails) .and. (F fails)
demand/time   x  failure/demand  =  failure/time

System Failure if two complex sub systems fail at about the same time!
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Conclusions

It the domain of fully autonomous large ultra-dependable 
embedded computer applications
• Fault-tolerance with design diversity is absolutely essential
• Open Holonic Hierarchies are well suited to structure the 

design  
• An independent safety assurance  (SA)  subsystem must be 

provided to mitigate off-nominal conditions.
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Thank you—
Any Questions?
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Further Reading  .  .   .
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