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Goal:
The goal of the work is to ensure that the 
end-to-end response-time of every flow 
is less then their end-to-end deadline: 
 ∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j .  ℱ = {1, 2, 3}
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Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

Definition of response-time � :
The time it takes a packet entering 
node   at time   to be processed.

Ri(t)

i ∈ 𝒱 t

Comments on response-time:
• Accounts for all possible delay within the node.

• E.g., computation time, queueing delay, etc…
• All packets are treated the same, regardless of 

which flow it belongs to.
• We do not focus on how this is computed!
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Response-time control

Assumption (response-time control): 
We assume that every node   can 
guarantee that its response-time   is less 
than its node deadline  : 

 

i ∈ 𝒱
Ri(t)

Di(t)
∀t ≥ 0, ∀i ∈ 𝒱, Ri(t) ≤ Di(t) .
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2. Allow flows to be able to join the network.
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The goal:
1. Guarantee that the flows meet their end-to-end deadlines: 

 . 
2. Allow flows to be able to join the network.

∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j

What’s the goal here?

Control knobs:
1. Control the deadlines   of the nodes. 
2. Control when new flows can join.

Di(t)



Why is this difficult?

2-node example:

Assume a simple system with 
two nodes and two flows: 

End-to-end deadline:   

Let’s assume that node 2 wishes 
to change its node deadline 
from 5 to 1 because of a new 
flow joining the system. 
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D2(t1) = 5 → D2(t2) = 1
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The general case
Theorem in the paper:
If the rate-of-change of the node deadlines is limited by  : 

 , 
and if the node deadlines always remain within the safe space: 

 , 
where the safe space   is given by:  

 , 

then no end-to-end deadlines will be missed:
� .

α
∀t ≥ 0, ∀i ∈ 𝒱, | ·Di(t) | ≤ α

∀t ≥ 0, ∀i ∈ 𝒱, Di(t) ∈ 𝔻(𝒢)
𝔻(𝒢)

𝔻(𝒢) = {Di ∈ ℝ+ : ∀j ∈ ℱ,
ℓj

∑
i=1

(1 + α)ℓj−iDpj(i) ≤ 𝒟j}

∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j

•  : the i-th node on path j 
•   : length of path j 
•   : the network 
•   : set of flows in the network 

pj(i)
ℓj
𝒢
ℱ
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What about a flow joining?

New flow   new end-to-end deadline ⇒

request  
to join

Okay  
to join

Oops!
The space of feasible node deadlines changed 
when we admitted the new flow! 
=> we are now outside the safe space



What can we do then?

What was the problem?
We left the safe space … 
=> cannot guarantee that the 
end-to-end deadlines will be met

Solution:
Only admit the new flow when 
you are in the new safe region 
 .𝔻(𝒢+)
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Here it is safe to  
add the new flow
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Conclusions
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• Movement needs space 
• Never leave your safe space

Also in the paper:
• How to allow nodes to leave 
• Simulation results 
• Protocols for:  
• controlling node deadlines 
• admitting new flows 
• allowing nodes to leave

Future work:
• How to enforce  Ri(t) ≤ Di(t)
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Waiting time for flows…
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How does it affect QoS?
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