## End-to-end deadlines over dynamic topologies

Victor Millnert, Enrico Bini, Johan Eker

ECRTS'19







victor@control.lth.se











[https://www.gillware.com/wp-content/uploads/2015/08/die-cut-stickers.png] [https://compass.ie/wordpress/media/Cloud-computing-infographic.png] [https://www.pollux.com.br/index/wp-content/uploads/2018/02/sensorização.jpg]



# Modeling of the network flows **A network** $\mathcal{G} = \{\mathcal{V}, \mathcal{F}\}$



A network  $\mathscr{G} = \{\mathscr{V}, \mathscr{F}\}\$ A set of nodes  $\mathscr{V}$  (covered on next slide)



A network  $\mathscr{G} = \{\mathscr{V}, \mathscr{F}\}\$ A set of nodes  $\mathscr{V}$  (covered on next slide) A set of flows  $\mathscr{F}$ 



- A network  $\mathscr{G} = \{\mathscr{V}, \mathscr{F}\}$ A set of nodes  $\mathscr{V}$  (covered on next slide) A set of flows  $\mathscr{F}$ 
  - follow a specific path:  $p_j = \{p_j(1), p_j(2), \dots, p_j(\ell_j)\}$



### A network $\mathscr{G} = \{\mathscr{V}, \mathscr{F}\}\$ A set of nodes $\mathscr{V}$ (covered on next slide) A set of flows $\mathscr{F}$

- follow a specific path:  $p_j = \{p_j(1), p_j(2), \dots, p_j(\ell_j)\}$
- end-to-end response-time:  $\mathscr{R}_{i}(t)$



## A network $\mathscr{G} = \{\mathscr{V}, \mathscr{F}\}$ A set of nodes $\mathscr{V}$ (covered on next slide) A set of flows $\mathscr{F}$

- follow a specific path:  $p_j = \{p_j(1), p_j(2), \dots, p_j(\ell_j)\}$
- end-to-end response-time:  $\mathscr{R}_{i}(t)$
- end-to-end deadline:  $\mathcal{D}_j$



## A network $\mathscr{G} = \{\mathscr{V}, \mathscr{F}\}$ A set of nodes $\mathscr{V}$ (covered on next slide) A set of flows $\mathscr{F}$

• follow a specific path:  $p_j = \{p_j(1), p_j(2), \dots, p_j(\ell_j)\}$ 

3

2

 $\mathcal{F} = \{1, 2, 3\}$ 

 $p_2 = \{1, 3, 5\}$ 

2

5

3

3

2

- end-to-end response-time:  $\mathscr{R}_{i}(t)$
- end-to-end deadline:  $\mathcal{D}_j$

#### Goal:

The goal of the work is to ensure that the end-to-end response-time of every flow is less then their end-to-end deadline:

 $\forall t \geq 0, \, \forall j \in \mathcal{F}, \quad \mathcal{R}_j(t) \leq \mathcal{D}_j.$ 







### A set of nodes ${\mathscr V}$

• node response-time:  $R_i(t)$ 



## A set of nodes ${\mathscr V}$

- node response-time:  $R_i(t)$
- node deadline:  $D_i(t)$



## A set of nodes ${\mathscr V}$

- node response-time:  $R_i(t)$
- node deadline:  $D_i(t)$

### **Definition of response-time** $R_i(t)$ :

The time it takes a packet entering node  $i \in \mathcal{V}$  at time *t* to be processed.



## A set of nodes ${\mathscr V}$

- node response-time:  $R_i(t)$
- node deadline:  $D_i(t)$

### **Definition of response-time** $R_i(t)$ :

The time it takes a packet entering node  $i \in \mathcal{V}$  at time *t* to be processed.



 $\mathcal{V} = \{1, 2, 3, 4, 5\}$ 

#### **Comments on response-time:**

## A set of nodes ${\mathscr V}$

- node response-time:  $R_i(t)$
- node deadline:  $D_i(t)$

### **Definition of response-time** $R_i(t)$ :

The time it takes a packet entering node  $i \in \mathcal{V}$  at time *t* to be processed.

#### **Comments on response-time:**

Accounts for all possible delay within the node.
E.g., computation time, queueing delay, etc...



## A set of nodes ${\mathscr V}$

- node response-time:  $R_i(t)$
- node deadline:  $D_i(t)$

### **Definition of response-time** $R_i(t)$ :

The time it takes a packet entering node  $i \in \mathcal{V}$  at time *t* to be processed.

#### **Comments on response-time:**

- Accounts for all possible delay within the node.
  - E.g., computation time, queueing delay, etc...
- All packets are treated the same, regardless of which flow it belongs to.



## A set of nodes ${\mathscr V}$

- node response-time:  $R_i(t)$
- node deadline:  $D_i(t)$

### **Definition of response-time** $R_i(t)$ :

The time it takes a packet entering node  $i \in \mathcal{V}$  at time *t* to be processed.

#### **Comments on response-time:**

- Accounts for all possible delay within the node.
  - E.g., computation time, queueing delay, etc...
- All packets are treated the same, regardless of which flow it belongs to.
- We do not focus on how this is computed!





#### **Assumption (response-time control):**

We assume that every node  $i \in \mathcal{V}$  can guarantee that its response-time  $R_i(t)$  is less than its node deadline  $D_i(t)$ :

 $\forall t \ge 0, \, \forall i \in \mathcal{V}, \quad R_i(t) \le D_i(t) \,.$ 



#### **Assumption (response-time control):**

We assume that every node  $i \in \mathcal{V}$  can guarantee that its response-time  $R_i(t)$  is less than its node deadline  $D_i(t)$ :

 $\forall t \ge 0, \, \forall i \in \mathcal{V}, \quad R_i(t) \le D_i(t) \,.$ 



Ways to enforce  $R_i(t) \leq D_i(t)$ :

- Brown-out control [18].
- Scaling of processing capacity [7].

#### **Assumption (response-time control):**

We assume that every node  $i \in \mathcal{V}$  can guarantee that its response-time  $R_i(t)$  is less than its node deadline  $D_i(t)$ :

 $\forall t \geq 0, \, \forall i \in \mathcal{V}, \quad R_i(t) \leq D_i(t) \, .$ 

Ways to enforce  $R_i(t) \leq D_i(t)$ :

- Brown-out control [18].
- Scaling of processing capacity [7].
- 18 Tommi Nylander, Marcus Thelander Andrén, Karl-Erik Årzén, and Martina Maggio. Cloud application predictability through integrated load-balancing and service time control. In 2018 IEEE International Conference on Autonomic Computing (ICAC), pages 51–60. IEEE, 2018.
- 7 Dan Henriksson, Ying Lu, and Tarek Abdelzaher. Improved prediction for web server delay control. In *Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference* on, pages 61–68. IEEE, 2004.

# What's the goal here?

### The goal:

1. Guarantee that the flows meet their end-to-end deadlines:  $\forall t \ge 0, \forall j \in \mathcal{F}, \quad \mathcal{R}_j(t) \le \mathcal{D}_j.$ 

2. Allow flows to be able to join the network.

# What's the goal here?

### The goal:

1. Guarantee that the flows meet their end-to-end deadlines:  $\forall t \ge 0, \forall j \in \mathcal{F}, \quad \mathcal{R}_j(t) \le \mathcal{D}_j.$ 

2. Allow flows to be able to join the network.

### **Control knobs:**

1. Control the deadlines  $D_i(t)$  of the nodes.

2. Control when new flows can join.

#### 2-node example:

Assume a simple system with two nodes and two flows:

End-to-end deadline:  $\mathcal{D}_1 = 6$ .

2

Let's assume that node 2 wishes to change its node deadline from 5 to 1 because of a new flow joining the system.

$$D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$$

#### 2-node example:

Assume a simple system with two nodes and two flows:

End-to-end deadline:  $\mathcal{D}_1 = 6$ .

Let's assume that node 2 wishes to change its node deadline from 5 to 1 because of a new flow joining the system.

$$D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$$

#### How should we choose $D_1(t)$ ?

#### 2-node example:

Assume a simple system with two nodes and two flows:

End-to-end deadline:  $\mathcal{D}_1 = 6$ .

Let's assume that node 2 wishes to change its node deadline from 5 to 1 because of a new flow joining the system.

$$D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$$

How should we choose  $D_1(t)$ ?

A naive approach:  $\forall t \ge 0, \quad D_1(t) + D_2(t) \le \mathcal{D}_1$ 

#### 2-node example:

Assume a simple system with two nodes and two flows:

End-to-end deadline:  $\mathcal{D}_1 = 6$ .

Let's assume that node 2 wishes to change its node deadline from 5 to 1 because of a new flow joining the system.

$$D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$$

How should we choose  $D_1(t)$ ?

A naive approach:  $\forall t \ge 0, \quad D_1(t) + D_2(t) \le \mathcal{D}_1$ Gives us:  $D_1(t_1) = 1 \rightarrow D_1(t_2) = 5$ 

#### 2-node example:

Assume a simple system with two nodes and two flows:

End-to-end deadline:  $\mathcal{D}_1 = 6$ .

Let's assume that node 2 wishes to change its node deadline from 5 to 1 because of a new flow joining the system.

$$D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$$

How should we choose  $D_1(t)$ ?

A naive approach:  $\forall t \ge 0, \quad D_1(t) + D_2(t) \le \mathcal{D}_1$ Gives us:  $D_1(t_1) = 1 \quad \rightarrow \quad D_1(t_2) = 5$ 

Change them linearly from  $t_1 \rightarrow t_2$   $D_1(t_1) = 1 \rightarrow D_1(t_2) = 5$  $D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$ 

## Does it work?

Change them linearly:  $D_1(t_1) = 1 \rightarrow D_1(t_2) = 5$   $D_2(t_1) = 5 \rightarrow D_2(t_2) = 1$  $\forall t \ge 0, \quad D_1(t) + D_2(t) = \mathcal{D}_1 \ (=6)$ 

## Does it work?

#### **Change them linearly:**

 $D_{1}(t_{1}) = 1 \rightarrow D_{1}(t_{2}) = 5$   $D_{2}(t_{1}) = 5 \rightarrow D_{2}(t_{2}) = 1$  $\forall t \ge 0, \quad D_{1}(t) + D_{2}(t) = \mathcal{D}_{1} \ (=6)$ 

#### Let's be evil and assume:

The largest possible response-time:

 $\forall t \ge 0, \quad R_i(t) = D_i(t).$


#### Let's be evil and assume:

The largest possible response-time:

 $\forall t \ge 0, \quad R_i(t) = D_i(t).$ 





#### Let's be evil and assume:

The largest possible response-time:

 $\forall t \ge 0, \quad R_i(t) = D_i(t).$ 

















### Solution:

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

#### **Example:** $\alpha = 1$

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

Example:  $\alpha = 1$ 

 $\forall t \geq 0, \quad 2D_1(t) + D_2(t) \leq \mathcal{D}_1$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

#### **Example:** $\alpha = 1$

 $\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$ 

With the requirement of

 $D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

#### **Example:** $\alpha = 1$

$$\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$$

With the requirement of

$$D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$$

We get

$$D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$$

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

#### **Example:** $\alpha = 1$

$$\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$$

With the requirement of

$$D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$$

We get

$$D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$$

**Example:**  $\alpha = 0.5$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

#### **Example:** $\alpha = 1$

$$\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$$

With the requirement of

$$D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$$

We get

$$D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$$

**Example:**  $\alpha = 0.5$  $\forall t \ge 0, \quad 1.5D_1(t) + D_2(t) \le \mathcal{D}_1$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathcal{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathcal{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathcal{D}_1$ 

#### **Example:** $\alpha = 1$

 $\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$ 

With the requirement of

$$D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$$

We get

 $D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$ 

**Example:**  $\alpha = 0.5$   $\forall t \ge 0, \quad 1.5D_1(t) + D_2(t) \le \mathcal{D}_1$ With the requirement of  $D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$ 

## Solution:

It must hold that:  $\forall t \ge 0, \quad D_1(t) + D_2(t + D_1(t)) \le \mathscr{D}_1$ Which is guaranteed if:  $\forall t \ge 0, \quad (1 + \alpha)D_1(t) + D_2(t) \le \mathscr{D}_1$ and if  $\forall t \ge 0, \quad |\dot{D}_i(t)| \le \alpha \in [0, 1]$ because then  $D_1(t) + D_2(t + D_1(t)) \le D_1(t) + D_2(t) + \alpha D_1(t) \le \mathscr{D}_1$ 

#### **Example:** $\alpha = 1$

$$\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$$

With the requirement of

$$D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$$

We get

$$D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$$

Example:  $\alpha = 0.5$   $\forall t \ge 0, \quad 1.5D_1(t) + D_2(t) \le \mathcal{D}_1$ With the requirement of  $D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$ We get  $D_1(t_1) = \frac{10}{3} \rightarrow D_1(t_2) = \frac{2}{3}$ 

# $\begin{aligned} \forall t \geq 0, \quad (1 + \alpha)D_1(t) + D_2(t) \leq \mathcal{D}_1 \\ \forall t \geq 0, \, \forall i \in \mathcal{V}, \quad |\dot{D}_i(t)| \leq \alpha \in [0, 1] \end{aligned}$

**Example:**  $\alpha = 1$  $\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$ With the requirement of  $D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$ We get  $D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$  $-D_1(t) - D_2(t)$  $\square \mathbb{D}_1(t)$  - - - packet 6  $(\mathrm{ms})$ 4 time  $\mathbf{2}$ 0 2 6 8 10 4 120  $t_1$  $t_2 \tau_1 + \mathcal{D}_1$ time (ms)

# $\begin{aligned} \forall t \geq 0, \quad (1+\alpha)D_1(t) + D_2(t) \leq \mathcal{D}_1 \\ \forall t \geq 0, \, \forall i \in \mathcal{V}, \quad |\dot{D}_i(t)| \leq \alpha \in [0,1] \end{aligned}$

**Example:**  $\alpha = 1$  $\forall t \ge 0, \quad 2D_1(t) + D_2(t) \le \mathcal{D}_1$ With the requirement of  $D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$ We get  $D_1(t_1) = 2.5 \rightarrow D_1(t_2) = 0.5$  $-D_1(t) - D_2(t)$  $\mathbb{D}\mathbb{D}_1(t)$  - - - packet 6 (ms)4 time  $\mathbf{2}$ 0 8 6 102 4 12()  $t_1$  $t_2 \tau_1 + \mathcal{D}_1$ time (ms)

Example:  $\alpha = 0.5$  $\forall t \ge 0, \quad 1.5D_1(t) + D_2(t) \le \mathcal{D}_1$ With the requirement of  $D_2(t_1) = 1 \rightarrow D_2(t_2) = 5$ We get  $D_1(t_1) = \frac{10}{3} \rightarrow D_1(t_2) = \frac{2}{3}$  $D_1(t) \longrightarrow D_2(t)$  $\square \mathbb{D}_1(t)$  - - - packet 6 (ms)4 time 20 2 8 6 104 12()  $t_1$  $t_1 + \mathcal{D}_1 \quad t_t$ time (ms)

# The general case

#### Theorem in the paper: If the rate-of-change of the node deadlines is limited by $\alpha$ : $\forall t \geq 0, \forall i \in \mathcal{V}, \quad |\dot{D}_i(t)| \leq \alpha,$ and if the node deadlines always remain within the safe space: $\forall t \geq 0, \forall i \in \mathcal{V}, \quad D_i(t) \in \mathbb{D}(\mathcal{G}),$ where the safe space $\mathbb{D}(\mathcal{G})$ is given by: $\mathbb{D}(\mathscr{G}) = \{ D_i \in \mathbb{R}^+ : \forall j \in \mathscr{F}, \sum (1+\alpha)^{\ell_j - i} D_{p_i(i)} \le \mathscr{D}_j \},\$ i=1then no end-to-end deadlines will be missed: $\forall t \ge 0, \, \forall j \in \mathcal{F}, \quad \mathcal{R}_{i}(t) \le \mathcal{D}_{i}.$

- $p_j(i)$ : the i-th node on path j
- $\ell_i$ : length of path j
- ${\mathscr G}$  : the network
- $\mathcal{F}$  : set of flows in the network

# What about a flow joining?

New flow  $\Rightarrow$  new end-to-end deadline



# What about a flow joining?

#### **Oops!**

The space of feasible node deadlines changed when we admitted the new flow!

#### => we are now outside the safe space



# What can we do then?

#### What was the problem?

We left the safe space ... => cannot guarantee that the end-to-end deadlines will be met

#### Solution:

Only admit the new flow when you are in the new safe region  $\mathbb{D}(\mathcal{G}^+)$ .

# What can we do then?

#### What was the problem?

We left the safe space ... => cannot guarantee that the end-to-end deadlines will be met

#### Solution:

Only admit the new flow when you are in the new safe region  $\mathbb{D}(\mathcal{G}^+)$ .



# What can we do then?

#### What was the problem?

We left the safe space ... => cannot guarantee that the end-to-end deadlines will be met

#### Solution:

Only admit the new flow when you are in the new safe region  $\mathbb{D}(\mathcal{G}^+)$ .



## Conclusions

#### **Take-away message:**

- Movement needs space
- Never leave your safe space

# Conclusions

### **Take-away message:**

- Movement needs space
- Never leave your safe space

## Also in the paper:

- How to allow nodes to leave
- Simulation results
- Protocols for:
  - controlling node deadlines
  - admitting new flows
  - allowing nodes to leave

# Conclusions

### **Take-away message:**

- Movement needs space
- Never leave your safe space

## Also in the paper:

- How to allow nodes to leave
- Simulation results
- Protocols for:
  - controlling node deadlines
  - admitting new flows
  - allowing nodes to leave

## Future work:

• How to enforce  $R_i(t) \leq D_i(t)$ 

# Thank you!



Victor Millnert victor@control.lth.se



## Waiting time for flows...


## How does it affect QoS?

