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Modeling of the network flows

A network & = {7, &}

A set of nodes 7 (covered on next siide)

A set of flows &
o follow a specific path: p; = {p(1), p(2), ... ,pj(fj)}
e end-to-end response-time: %j(t)
e end-to-end deadline:

Goal:

The goal of the work is to ensure that the {
lend-to-end response-time of every flow |
lis less then their end-to-end deadline: |

Vi>0,VjeF, RH<D,. |
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Modeling of the nodes

A set of nodes 7/
e node response-time: Ry(¢)
e node deadline: D(?)

Definition of response-time R(7): |

The time it takes a packet entering
inode i € 7 at time ¢ to be processed. |

Comments on response-time:

'Accounts for all possible delay within the node. |
| e E.g., computation time, queueing delay, etc...

le All packets are treated the same, regardless of
i which flow it belongs to. -.

|* We do not focus on how this is computed! |
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| Assumption (response-time control): |

We assume that every node i € 7 can
lguarantee that its response-time R;(?) is less |
ithan its node deadline D,(1):

Vi>0,Vie?, RO<DM. |

,“: e Brown-out control [18].

18 Tommi Nylander, Marcus Thelander Andrén, Karl-Erik Arzén, and Martina Maggio. Cloud
application predictability through integrated load-balancing and service time control. In 2018
IEEE International Conference on Autonomic Computing (ICAC), pages 51-60. IEEE, 2018.

7 Dan Henriksson, Ying Lu, and Tarek Abdelzaher. Improved prediction for web server delay
control. In Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Furomicro Conference
on, pages 61-68. IEEE, 2004.

» Scaling of processing capacity



What's the goal here”

| 1. Guarantee that the flows meet their end-to-end deadlines: |
| Vi>0,VjeF, R()<D; ’

2 Allow ﬂovvs to be able to Jom the network.
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What's the goal here”

| 1. Guarantee that the flows meet their end-to-end deadlines: |
’ Vi>0,VjeF, R <D ’

1 Control the deadllnes D(t) of the nodes. |

2 Control when new flows can join. |
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| | The largest possible
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Vi>0, (1+a)D(#)+ Dyt) LD,
1D(t)| < a€[0,1]

Vie>0,Vie 7,

Example: a = 1

V>0, 2D()+ Dy(t) £ 9,
With the requirement of

D,(t)) =1 — Dy5) =35

We get

D(t) =25 — D) =05

— D1 (t) — D2(%)
1Dy (¢) - - - packet

-) [\ TEN @)
| |

time (ms)

time (ms)

Example: a = 0.5

V>0, 1.5D()+ Dyt) £ D,
With the requirement of

Dy(#) =1 — Dyt) =

We get

D(f)—lo ‘ D(f)—2
I\N*1) = 3 g I\*2) = 3
— D1(t) — Da(?)
1D (¢) - - - packet
6
4 .
2 -
0




T'he general case

Theorem in the paper:
If the rate-of-change of the node deadlines is limited by a:
Vi>0,Vie?, |D]|<a,

and if the node deadlines always remain within the safe space:

Vi>0,Vie7, D) eD(9),
where the safe space D(&) is given by

D(®)={D,eRt : VjeZF Z(Ha)f’ i) S

then no end-to-end deadlines will be mlssed.
Vi>0,VjeF, R()<D.

e pi(i): the i-th node on path |

o L”j - length of path |

e & : the network

o F :set of flows in the network

2},
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What about a flow joining”?

New flow = new end-to-end deadline
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What about a flow joining”?

| Oops!

{ The space of feasible node deadlines changed |
 when we admitted the new flow! i

I => we are now outside the safe space

node deadline

— o~ — e e o e mmmmm = _ | :Dl(g)
T [ |—D1(?)

- - - violation

A

J
| T | T | |
2 4 6 8 10
request Okay
to join to join



What can we do then?

'What was the problem? |
We left the safe space ...

=> cannot guarantee that the :
end-to-end deadiines will be met

{Only admit the new flow when
Fyou are in the new safe region
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'What was the problem? |
We left the safe space ...

|=> cannot guarantee thatthe |
| end-to-end deadiines will be met
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What can we do then?

ﬁSqution: |

1Only admit the new flow when
Fyou are in the new safe region

[ e Ml e _

'What was the problem? |
We left the safe space ...

l=> cannot guarantee that the
lend-to-end deadlines will be met

10 110Dy (9)
D (GT)
— D1 (1)

node deadline

0 2 4 6 8 10 12
time i Here it is safe to
: add the new flow
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Conclusions

Take-away message:
e Movement needs space
e Never leave your safe space

Also in the paper: Future work:
* How to allow nodes to leave e How to enforce R,(r) < D)

e Simulation results

e Protocols for:
e controlling node deadlines
e admitting new flows
e allowing nodes to leave
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quality of service

How does it affect QoS?
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