
Victor Millnert, Enrico Bini, Johan Eker

End-to-end deadlines over
dynamic topologies

victor@control.lth.se

ECRTS’19

Cloud + IoT + Industry = True?

Cloud + IoT + Industry = True?

Cloud + IoT + Industry = True?

+

Cloud + IoT + Industry = True?

+ +

Cloud + IoT + Industry = True?

[https://www.pollux.com.br/index/wp-content/uploads/2018/02/sensorização.jpg]
[https://compass.ie/wordpress/media/Cloud-computing-infographic.png]

+ +

1

3

4

7

8

5
6 9

2
10

=

[https://www.gillware.com/wp-content/uploads/2015/08/die-cut-stickers.png]

https://www.pollux.com.br/index/wp-content/uploads/2018/02/sensoriza%C3%A7%C3%A3o.jpg
https://compass.ie/wordpress/media/Cloud-computing-infographic.png
http://www.diyar.online/wp-content/uploads/2017/02/data-in-the-cloud.jpeg

Modeling of the network flows

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}
A set of nodes (covered on next slide)𝒱

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}
A set of nodes (covered on next slide)𝒱
A set of flows ℱ

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}
A set of nodes (covered on next slide)𝒱
A set of flows ℱ

• follow a specific path: pj = {pj(1), pj(2), … , pj(ℓj)}

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}
A set of nodes (covered on next slide)𝒱
A set of flows ℱ

• follow a specific path: pj = {pj(1), pj(2), … , pj(ℓj)}
• end-to-end response-time: ℛj(t)

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}
A set of nodes (covered on next slide)𝒱
A set of flows ℱ

• follow a specific path: pj = {pj(1), pj(2), … , pj(ℓj)}
• end-to-end response-time: ℛj(t)
• end-to-end deadline: 𝒟j

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}
 ℱ = {1, 2, 3}

Modeling of the network flows
A network 𝒢 = {𝒱, ℱ}
A set of nodes (covered on next slide)𝒱
A set of flows ℱ

• follow a specific path: pj = {pj(1), pj(2), … , pj(ℓj)}
• end-to-end response-time: ℛj(t)
• end-to-end deadline: 𝒟j

1

1

2 4

3

2

5

31 2 3

 p2 = {1, 3, 5}

Goal:
The goal of the work is to ensure that the
end-to-end response-time of every flow
is less then their end-to-end deadline:
 ∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j . ℱ = {1, 2, 3}

Modeling of the nodes

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

Definition of response-time � :
The time it takes a packet entering
node at time to be processed.

Ri(t)

i ∈ 𝒱 t 1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

Definition of response-time � :
The time it takes a packet entering
node at time to be processed.

Ri(t)

i ∈ 𝒱 t

Comments on response-time:

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

Definition of response-time � :
The time it takes a packet entering
node at time to be processed.

Ri(t)

i ∈ 𝒱 t

Comments on response-time:
• Accounts for all possible delay within the node.

• E.g., computation time, queueing delay, etc…

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

Definition of response-time � :
The time it takes a packet entering
node at time to be processed.

Ri(t)

i ∈ 𝒱 t

Comments on response-time:
• Accounts for all possible delay within the node.

• E.g., computation time, queueing delay, etc…
• All packets are treated the same, regardless of

which flow it belongs to.

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Modeling of the nodes
A set of nodes 𝒱
• node response-time: Ri(t)
• node deadline: Di(t)

Definition of response-time � :
The time it takes a packet entering
node at time to be processed.

Ri(t)

i ∈ 𝒱 t

Comments on response-time:
• Accounts for all possible delay within the node.

• E.g., computation time, queueing delay, etc…
• All packets are treated the same, regardless of

which flow it belongs to.
• We do not focus on how this is computed!

1

1

2 4

3

2

5

31 2 3

 𝒱 = {1, 2, 3, 4, 5}

Response-time control

1

1

2 4

3

2

5

31 2 3

Response-time control

Assumption (response-time control):
We assume that every node can
guarantee that its response-time is less
than its node deadline :

i ∈ 𝒱
Ri(t)

Di(t)
∀t ≥ 0, ∀i ∈ 𝒱, Ri(t) ≤ Di(t) .

1

1

2 4

3

2

5

31 2 3

Response-time control

Assumption (response-time control):
We assume that every node can
guarantee that its response-time is less
than its node deadline :

i ∈ 𝒱
Ri(t)

Di(t)
∀t ≥ 0, ∀i ∈ 𝒱, Ri(t) ≤ Di(t) .

Ways to enforce � :
• Brown-out control [18].
• Scaling of processing capacity [7].

Ri(t) ≤ Di(t)
1

1

2 4

3

2

5

31 2 3

Response-time control

Assumption (response-time control):
We assume that every node can
guarantee that its response-time is less
than its node deadline :

i ∈ 𝒱
Ri(t)

Di(t)
∀t ≥ 0, ∀i ∈ 𝒱, Ri(t) ≤ Di(t) .

Ways to enforce � :
• Brown-out control [18].
• Scaling of processing capacity [7].

Ri(t) ≤ Di(t)

XX:22 End-to-end deadlines over dynamic topologies

18 Tommi Nylander, Marcus Thelander Andrén, Karl-Erik Årzén, and Martina Maggio. Cloud
application predictability through integrated load-balancing and service time control. In 2018

IEEE International Conference on Autonomic Computing (ICAC), pages 51–60. IEEE, 2018.
19 Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif

Merchant, and Kenneth Salem. Adaptive control of virtualized resources in utility computing
environments. In ACM SIGOPS Operating Systems Review, volume 41, pages 289–302. ACM,
2007.

20 José Carlos Palencia and Michael González Harbour. Schedulability analysis for tasks with
static and dynamic o�sets. In Proceedings of the 19th IEEE Real-Time Systems Symposium,
pages 26–37, December 1998.

21 Rodolfo Pellizzoni and Giuseppe Lipari. Holistic analysis of asynchronous real-time transactions
with earliest deadline scheduling. Journal of Computer and System Sciences, 73(2):186–206,
March 2007. doi:10.1016/j.jcss.2006.04.002.

22 Nicola Serreli, Giuseppe Lipari, and Enrico Bini. The demand bound function interface of
distributed sporadic pipelines of tasks scheduled by edf. In Proceedings of the 22nd Euromicro

Conference on Real-Time Systems, pages 187–196, July 2010. doi:10.1109/ECRTS.2010.17.
23 Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling

hard real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The

2000 IEEE International Symposium on, volume 4, pages 101–104. IEEE, 2000.
24 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time

systems. Microprocessing and Microprogramming, 50:117–134, April 1994.
25 Thiemo Voigt and Per Gunningberg. Adaptive resource-based web server admission control.

In ISCC, 2002.
26 Qi Zhu, Haibo Zeng, Wei Zheng, Marco Di Natale, and Alberto Sangiovanni-Vincentelli.

Optimization of task allocation and priority assignment in hard real-time distributed systems.
ACM Transactions on Embedded Computing Systems, 11(4):85:1–85:30, January 2013. doi:
10.1145/2362336.2362352.

V. Millnert and J. Eker and E. Bini XX:21

References

1 Mohammad Ashjaei, Saad Mubeen, Moris Behnam, Luis Almeida, and Thomas Nolte. End-
to-end resource reservations in distributed embedded systems. In 22nd IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages
1–11, August 2016.

2 Marco Di Natale and John A. Stankovic. Dynamic end-to-end guarantees in distributed real
time systems. In Proceedings of the 15th IEEE Real-Time Systems Symposium, pages 215–227,
December 1994.

3 Neha Gandhi, Dawn M Tilbury, Yixin Diao, J Hellerstein, and Sujay Parekh. Mimo control of
an apache web server: Modeling and controller design. In American Control Conference, 2002.

Proceedings of the 2002, volume 6, pages 4922–4927. IEEE, 2002.
4 Ricardo Garibay-Martínez, Geo�rey Nelissen, Luis Lino Ferreira, and Luis Miguel Pinho.

Task partitioning and priority assignment for distributed hard real-time systems. Journal of

Computer and System Sciences, 81(8):1542–1555, 2015.
5 Richard Gerber, Seongsoo Hong, and Manas Saksena. Guaranteeing real-time requirements with

resource-based calibration of periodic processes. IEEE Transaction on Software Engineering,
21(7):579–592, July 1995.

6 Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. A framework for modu-
lar analysis and exploration of heterogeneous embedded systems. Real-Time Systems,
33(1):101–137, Jul 2006. URL: https://doi.org/10.1007/s11241-006-6884-x, doi:10.
1007/s11241-006-6884-x.

7 Dan Henriksson, Ying Lu, and Tarek Abdelzaher. Improved prediction for web server delay
control. In Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference

on, pages 61–68. IEEE, 2004.
8 Shengyan Hong, Thidapat Chantem, and Xiaobo Sharon Hu. Local-deadline assignment

for distributed real-time systems. IEEE Transactions on Computers, 64(7):1983–1997, 2015.
doi:10.1109/TC.2014.2349494.

9 Romain Jacob, Marco Zimmerling, Pengcheng Huang, Jan Beutel, and Lothar Thiele. End-
to-end real-time guarantees in wireless cyber-physical systems. In Proceedings 2016 IEEE

Real-Time Systems Symposium. RTSS 2016, pages 167–178. IEEE, 2016.
10 Praveen Jayachandran and Tarek Abdelzaher. Delay composition algebra: A reduction-based

schedulability algebra for distributed real-time systems. In Proceedings of the 29th IEEE

Real-Time Systems Symposium, pages 259–269, December 2008. doi:10.1109/RTSS.2008.38.
11 Shengbing Jiang. A decoupled scheduling approach for distributed real-time embedded

automotive systems. In Proceedings of the 12th IEEE Real-Time and Embedded Technology

and Applications Symposium, pages 191–198, 2006.
12 Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez.

Brownout: Building more robust cloud applications. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, pages 700–711. ACM, 2014.
13 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: a theory of deterministic queuing

systems for the internet, volume 2050 of Lecture Notes in Computer Science. Springer, 2001.
14 José L. Lorente, Giuseppe Lipari, and Enrico Bini. A hierarchical scheduling model for

component-based real-time systems. In Proc. of the 20th International Parallel and Distributed

Processing Symp., April 2006.
15 Dana Marinca, Pascale Minet, and Laurent George. Analysis of deadline assignment methods

in distributed real-time systems. Computer Communications, 27(15):1412–1423, 2004.
16 Victor Millnert, Johan Eker, and Enrico Bini. Dynamic control of NFV forwarding graphs

with end-to-end deadline constraints. In IEEE International Conference on Communications,
pages 1–7. IEEE, 2017.

17 Victor Millnert, Johan Eker, and Enrico Bini. Achieving predictable and low end-to-end
latency for a network of smart services. In IEEE GLOBECOM 2018, 2018.

ECRTS 2019

1

1

2 4

3

2

5

31 2 3

The goal:
1. Guarantee that the flows meet their end-to-end deadlines:

 .
2. Allow flows to be able to join the network.

∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j

What’s the goal here?

The goal:
1. Guarantee that the flows meet their end-to-end deadlines:

 .
2. Allow flows to be able to join the network.

∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j

What’s the goal here?

Control knobs:
1. Control the deadlines of the nodes.
2. Control when new flows can join.

Di(t)

Why is this difficult?

2-node example:

Assume a simple system with
two nodes and two flows:

End-to-end deadline:

Let’s assume that node 2 wishes
to change its node deadline
from 5 to 1 because of a new
flow joining the system.

𝒟1 = 6.

D2(t1) = 5 → D2(t2) = 1

11 21

Why is this difficult?

2-node example:

Assume a simple system with
two nodes and two flows:

End-to-end deadline:

Let’s assume that node 2 wishes
to change its node deadline
from 5 to 1 because of a new
flow joining the system.

𝒟1 = 6.

D2(t1) = 5 → D2(t2) = 1

How should we choose � ?D1(t)

11 21

Why is this difficult?

2-node example:

Assume a simple system with
two nodes and two flows:

End-to-end deadline:

Let’s assume that node 2 wishes
to change its node deadline
from 5 to 1 because of a new
flow joining the system.

𝒟1 = 6.

D2(t1) = 5 → D2(t2) = 1

A naive approach:
∀t ≥ 0, D1(t) + D2(t) ≤ 𝒟1

How should we choose � ?D1(t)

11 21

Why is this difficult?

2-node example:

Assume a simple system with
two nodes and two flows:

End-to-end deadline:

Let’s assume that node 2 wishes
to change its node deadline
from 5 to 1 because of a new
flow joining the system.

𝒟1 = 6.

D2(t1) = 5 → D2(t2) = 1

A naive approach:
∀t ≥ 0, D1(t) + D2(t) ≤ 𝒟1

Gives us:
D1(t1) = 1 → D1(t2) = 5

How should we choose � ?D1(t)

11 21

Why is this difficult?

2-node example:

Assume a simple system with
two nodes and two flows:

End-to-end deadline:

Let’s assume that node 2 wishes
to change its node deadline
from 5 to 1 because of a new
flow joining the system.

𝒟1 = 6.

D2(t1) = 5 → D2(t2) = 1

A naive approach:
∀t ≥ 0, D1(t) + D2(t) ≤ 𝒟1

Gives us:
D1(t1) = 1 → D1(t2) = 5

Change them linearly from
t1 → t2
D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1

How should we choose � ?D1(t)

11 21

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!
The packet took 10 ms to pass through the chain!

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!
The packet took 10 ms to pass through the chain!
=> end-to-end deadline missed!!!!!!

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!
The packet took 10 ms to pass through the chain!
=> end-to-end deadline missed!!!!!!

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!
The packet took 10 ms to pass through the chain!
=> end-to-end deadline missed!!!!!!

ℛ1(τ1) ≠ D1(τ1) + D2(τ1)

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!
The packet took 10 ms to pass through the chain!
=> end-to-end deadline missed!!!!!!

ℛ1(τ1) ≠ D1(τ1) + D2(τ1)
ℛ1(τ1) = D1(τ1) + D2(τ1 + D1(τ1)) = 10 (> 6 = 𝒟1)

Does it work?
Change them linearly:

D1(t1) = 1 → D1(t2) = 5
D2(t1) = 5 → D2(t2) = 1
∀t ≥ 0, D1(t) + D2(t) = 𝒟1 (= 6)

0 2 4 6 8 10 12
0

2

4

6

⌧1 t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)
D2(t)
packet

Let’s be evil and assume:
The largest possible
response-time:
 .∀t ≥ 0, Ri(t) = Di(t)

a packet enters
node 1 at t = τ1

Oops!!!!!
The packet took 10 ms to pass through the chain!
=> end-to-end deadline missed!!!!!!

ℛ1(τ1) ≠ D1(τ1) + D2(τ1)
ℛ1(τ1) = D1(τ1) + D2(τ1 + D1(τ1)) = 10 (> 6 = 𝒟1)

Movement needs space!

Movement needs space!
Solution:

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5
We get
D1(t1) = 2.5 → D1(t2) = 0.5

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5
We get
D1(t1) = 2.5 → D1(t2) = 0.5

Example: α = 0.5

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5
We get
D1(t1) = 2.5 → D1(t2) = 0.5

Example: α = 0.5
∀t ≥ 0, 1.5D1(t) + D2(t) ≤ 𝒟1

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5
We get
D1(t1) = 2.5 → D1(t2) = 0.5

Example: α = 0.5
∀t ≥ 0, 1.5D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5

Movement needs space!
Solution:
It must hold that:
∀t ≥ 0, D1(t) + D2(t + D1(t)) ≤ 𝒟1
Which is guaranteed if:
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
and if
∀t ≥ 0, | ·Di(t) | ≤ α ∈ [0, 1]
because then
 D1(t) + D2(t + D1(t)) ≤ D1(t) + D2(t) + αD1(t) ≤ 𝒟1

Example: α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5
We get
D1(t1) = 2.5 → D1(t2) = 0.5

Example: α = 0.5
∀t ≥ 0, 1.5D1(t) + D2(t) ≤ 𝒟1
With the requirement of
D2(t1) = 1 → D2(t2) = 5
We get

D1(t1) =
10
3

→ D1(t2) =
2
3

Example: �

With the requirement of

We get

α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1

D2(t1) = 1 → D2(t2) = 5

D1(t1) = 2.5 → D1(t2) = 0.5

0 2 4 6 8 10 12
0

2

4

6

t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)
D1(t) packet

�
�
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
∀t ≥ 0, ∀i ∈ 𝒱, | ·Di(t) | ≤ α ∈ [0, 1]

Example: �

With the requirement of

We get

α = 1
∀t ≥ 0, 2D1(t) + D2(t) ≤ 𝒟1

D2(t1) = 1 → D2(t2) = 5

D1(t1) = 2.5 → D1(t2) = 0.5

0 2 4 6 8 10 12
0

2

4

6

t1 t2 ⌧1 +D1

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)
D1(t) packet

0 2 4 6 8 10 12
0

2

4

6

t1 t1 +D1 tt

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)
D1(t) packet

�
�
∀t ≥ 0, (1 + α)D1(t) + D2(t) ≤ 𝒟1
∀t ≥ 0, ∀i ∈ 𝒱, | ·Di(t) | ≤ α ∈ [0, 1]

Example: �

With the requirement of

We get

α = 0.5
∀t ≥ 0, 1.5D1(t) + D2(t) ≤ 𝒟1

D2(t1) = 1 → D2(t2) = 5

D1(t1) =
10
3

→ D1(t2) =
2
3

The general case
Theorem in the paper:
If the rate-of-change of the node deadlines is limited by :

 ,
and if the node deadlines always remain within the safe space:

 ,
where the safe space is given by:

 ,

then no end-to-end deadlines will be missed:
� .

α
∀t ≥ 0, ∀i ∈ 𝒱, | ·Di(t) | ≤ α

∀t ≥ 0, ∀i ∈ 𝒱, Di(t) ∈ 𝔻(𝒢)
𝔻(𝒢)

𝔻(𝒢) = {Di ∈ ℝ+ : ∀j ∈ ℱ,
ℓj

∑
i=1

(1 + α)ℓj−iDpj(i) ≤ 𝒟j}

∀t ≥ 0, ∀j ∈ ℱ, ℛj(t) ≤ 𝒟j

• : the i-th node on path j
• : length of path j
• : the network
• : set of flows in the network

pj(i)
ℓj
𝒢
ℱ

0 2 4 6 8 10
0

5

10

f rq+
j0 fok+

j0

time

n
od

e
d
ea
d
li
n
e D1(G)

D1(t)
violation

What about a flow joining?

New flow new end-to-end deadline ⇒

request
to join

Okay
to join

0 2 4 6 8 10
0

5

10

f rq+
j0 fok+

j0

time

n
od

e
d
ea
d
li
n
e D1(G)

D1(t)
violation

What about a flow joining?

New flow new end-to-end deadline ⇒

request
to join

Okay
to join

Oops!
The space of feasible node deadlines changed
when we admitted the new flow!
=> we are now outside the safe space

What can we do then?

What was the problem?
We left the safe space …
=> cannot guarantee that the
end-to-end deadlines will be met

Solution:
Only admit the new flow when
you are in the new safe region
 .𝔻(𝒢+)

What can we do then?

What was the problem?
We left the safe space …
=> cannot guarantee that the
end-to-end deadlines will be met

0 2 4 6 8 10 12
0

5

10

⇤
f rq+
4 fok+

4

time

n
od

e
d
ea
d
li
n
e D1(G)

D1(G+)
D1(t)

Solution:
Only admit the new flow when
you are in the new safe region
 .𝔻(𝒢+)

What can we do then?

What was the problem?
We left the safe space …
=> cannot guarantee that the
end-to-end deadlines will be met

0 2 4 6 8 10 12
0

5

10

⇤
f rq+
4 fok+

4

time

n
od

e
d
ea
d
li
n
e D1(G)

D1(G+)
D1(t)

Solution:
Only admit the new flow when
you are in the new safe region
 .𝔻(𝒢+)

Here it is safe to
add the new flow

Conclusions

Take-away message:
• Movement needs space
• Never leave your safe space

Conclusions

Take-away message:
• Movement needs space
• Never leave your safe space

Also in the paper:
• How to allow nodes to leave
• Simulation results
• Protocols for:
• controlling node deadlines
• admitting new flows
• allowing nodes to leave

Conclusions

Take-away message:
• Movement needs space
• Never leave your safe space

Also in the paper:
• How to allow nodes to leave
• Simulation results
• Protocols for:
• controlling node deadlines
• admitting new flows
• allowing nodes to leave

Future work:
• How to enforce Ri(t) ≤ Di(t)

victor@control.lth.se
Victor Millnert

Thank you!

Waiting time for flows…

10�3 10�2 10�1 100

100

10�2

10�4

10�6

10�8

alpha

ti
m
e
to

re
ac
h
D

⇤ D = 10 ms

D = 1.0 ms

D = 0.1 ms

How does it affect QoS?

10�3 10�2 10�1 100
0.9980

0.9985

0.9990

0.9995

1.0000

alpha

qu
al
it
y
of

se
rv
ic
e

⇠̄ = 0.05 ⇠̄ = 0.1 ⇠̄ = 0.2 ⇠̄ = 0.4

