
31st Euromicro Conference on Real-Time Systems (ECRTS’19)
July 12, 2019

Generating and Exploiting Deep Learning Variants
to Increase Heterogeneous Resource Utilization

in the NVIDIA Xavier
Roger Pujol†¶, Hamid Tabani†, Leonidas Kosmidis†,

Enrico Mezzetti†, Jaume Abella†, Francisco J. Cazorla†

www.bsc.es

¶†

Deep-Learning (DL) based algorithms

• Heavily used in critical systems in areas like
robotics & autonomous driving (AD)

– Vision (object detection and tracking)
– Trajectory Prediction
– …

2

https://www.rdmag.com/article/2018/01/rise-autonomous-
vehicles-planning-deployment-not-just-development

• Benefits
– Higher-accuracy than traditional algorithms
– Some problems only solvable with DL approaches

• Challenges
– Unprecedented performance demands in critical systems
– Tens of tera operations per second!

https://www.rdmag.com/article/2018/01/rise-autonomous-vehicles-planning-deployment-not-just-development

GPUs

• GPUs are at the forefront of the computing solutions for DL
– They are already under evaluation by OEMs/TIER1

• Modern GPUs
– Offer a powerful set of accelerating computing elements (CEs)
– Offer massive and flexible computation capacity

3https://en.wikichip.org/w/images/thumb/d/da/nvidia_xavie
r_die_shot_%28annotated%29.png/900px-
nvidia_xavier_die_shot_%28annotated%29.png

• NVIDIA AGX Xavier SoC
– CPU
– GPU Regular cores (GPUrc)
– GPU Tensor Cores (GPUtc)
– NVIDIAL Deep-Learning Accelerator (NVDLA)

https://en.wikichip.org/w/images/thumb/d/da/nvidia_xavier_die_shot_(annotated).png/900px-nvidia_xavier_die_shot_(annotated).png

Modern GPU – Modern DL Libraries Mismatch

• Modern SoC offer a variety of CEs
– CPUs, GPUrc, GPUtc, …

• DL libraries
– Used in many modules  several instances run in parallel
– Mostly exploit a single CE (GPUrc)

• Huge loss of performance capacity and flexibility!

4

• Our view
– The ability to run DL-based variants, each using different CEs …

– Improves timing and throughput

– Pays off the extra effort required to implement those different variants

Our work

• Analysis
– Active DNN instances during execution of Apollo AD software

• Develop DNN Variants
– Running DNN variants on different CEs of NVIDIA Xavier (CPU, GPU, DLA)

• Timing Characterization
– In-depth analysis of the different variants of DL libraries

• Scheduling multiple DNN instances
– Modelling a multicore cyclic executive scheduler as a LP problem

5

Outline

• Motivation

• Background: Apollo and Xavier

• Analysis on the number of active DNN instances

• Timing Characterization

• Scheduling multiple DNN instances

• Conclusion
6

Introduction to the Apollo AD framework

Apollo \1

• One of the most sophisticated open-source projects
implementing an entire AD software stack

8

• M0. Speech recognizer processes the voice-based
commands and transmit them to the control unit

• M1. Perception identifies the surrounding area around the
autonomous car

– M1 .d The detection submodule is in charge of detecting
obstacles and objects from different sensors

– M1.f fusion takes the results of all detected objects from
different sensors and combines them by a sensor fusion
algorithm

– M1.t Tracker follows the detected objects and matches them
with the previously detected objects

• M2. The Planning plans the spatio-temporal trajectory for
the vehicle to take

Apollo \2

• One of the most sophisticated open-source projects
implementing an entire AD software stack

9

• M3. Localization leverages information received from
different input sensors to estimate vehicle position

• M4. The Map provides ad-hoc structured information
regarding the roads

• M5. Prediction anticipates the future motion trajectories
of perceived obstacles/objects

• M6. Control generates control commands such as
accelerating/braking and steering

• M7. CAN Bus passes all the control commands to the
vehicle hardware

CEs in the Jetson Xavier

1. CPU cores
– 8x Carmel ARMv8.2 processors
– 4 clusters, each with 2 cores

2. GPU regular cores
– 512 regular cores, 8 SMs
– Volta Architecture

10

3. GPU tensor cores
– 64 Tensor cores, 8 cores per SM
– To accelerate large matrix operations

4. NVDLA
– NVIDIA Deep Learning Accelerators
– Specialized for deep learning acceleration

Analysis on the number of active DNN instances

DNN/RNN active instances

• We used real traces from an AD car running Apollo
• Observations:

– DNN/RNN have different durations and periods
– In Apollo, up to 7 DNN/RNN instances are run concurrently

• Small DNNs, such as the speech DNN, has small duration and short periods

• Other DNN/RNNs have longer durations and longer periods

12

DNN/RNN active instances: Projection

• More input sensors
– Increase in the number of sensors toward fully AD (level 5)
– Today, AD cars employ several heterogenous sensors

• More sophisticated algorithms
– To increase the accuracy, larger and more complex DNNs/RNNs are designed
– DNNs are using more and more layers to improve the accuracy

• More functionalities
– In-cabin features such as gesture control, driver-monitoring systems, etc.

• Conclusion
– All the aforementioned items will be translated into more computation power and more

deep learning instances

13

Generating DNN Variants

Specialized per-CE Libraries

• We used optimized libraries to implement the software for
each particular CE.

1. CPU
– We used OpenMP for all the functions running on the CPU cores

2. GPU Regular Cores
– The baseline GPU implementation uses regular cores to run the kernels

3. GPU Tensor Cores
– We have adapted the GPU code to exploit tensor cores

4. NVDLA
15

Example: GPU Tensor Core Implementation

• Set the Math mode
• Some preconditions

– Multiples of 4

16

Timing Characterization

The Experiments

• Exec time for each DNN/RNN variant for different CEs
– CPU Cores (2, 4, 6 cores), GPU RC (4, 8 SMs), GPU TC (4, 8 SMs), NVDLA (1,2)

– 2 cores are always reserved for managing OS tasks and GPU/NVDLA tasks

18

Timing Results for Different Apollo Neural Networks /1

• Performance improves by
increasing the number of
CPU cores

19

Timing Results for Different Apollo Neural Networks /1

• Performance improves by
increasing the number of
CPU cores

• Tensor cores are NOT
always providing better
performance

20

Timing Results for Different Apollo Neural Networks /1

• Performance improves by
increasing the number of
CPU cores

• Tensor cores are NOT
always providing better
performance

• NVDLA provides the best
performance for these
Apollo modules

21

Timing Results for Different Apollo Neural Networks /2

22

• NVDLA provides worse
performance in comparison
to GPU for small modules
such as Speech (due to
initialization overhead)

Scheduling multiple DNN instances

Exploiting Diversity to Increase Schedulability

• Platforms supporting diverse CE configurations
– Applications timing behaviour largely varies on CE they are mapped to

– Overall mapping strategy is fundamental for schedulability

• Multiple DNN instances supporting AD functions in Apollo
– Instances can be modelled as (relatively independent) recurrent applications

• Frame rate depending on the frequency at which inputs need to be elaborated

– Periodic task set to be scheduled on a set of unrelated processors
• System supporting 𝑘𝑘 CE configurations 𝒞𝒞𝒞 ≔ 𝑐𝑐𝑐𝑐1,⋯ , 𝑐𝑐𝑐𝑐𝑘𝑘
• 𝜏𝜏𝑖𝑖 ≔ 𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑖𝑖 = 𝑝𝑝𝑖𝑖 ,𝐶𝐶𝑖𝑖
• 𝐶𝐶𝑖𝑖 = 𝑐𝑐𝑖𝑖,1,⋯ , 𝑐𝑐𝑖𝑖,𝑘𝑘 𝑐𝑐𝑖𝑖,𝑗𝑗 denoting execution time bound of 𝜏𝜏𝑖𝑖 on configuration 𝑐𝑐𝑐𝑐𝑗𝑗 ∈ 𝒞𝒞𝒞

24

Modeling Schedulability of Multiple RNN/DNN with LP

• Cyclic-executive static scheduling
– Still a preferred solution in several embedded real-time domains
– DNN/RNN modelled as a set of recurrent activities
– Mapping strategy that allows all DNNs to complete within their frame

• Linear Programming model
– 0/1 optimization (minimization) problem for the total system utilization
– Failing to find a solution means the taskset is not schedulable
– Other optimization criteria may be enforced (with weights)

25

LP Formulation

• Instantiation to the Xavier SoC

• Boolean decision variables
– Γ × 𝒞𝒞𝒞 B 𝜏𝜏𝑖𝑖 ∈ Γ 𝑐𝑐𝑐𝑐𝑗𝑗 ∈ 𝒞𝒞𝒞 representing whether 𝜏𝜏𝑖𝑖 is mapped to 𝑐𝑐𝑐𝑐𝑗𝑗

• Objective function
– min ∑𝜏𝜏𝑖𝑖∈𝛤𝛤,𝑐𝑐𝑐𝑐𝑗𝑗∈𝒞𝒞𝒞 𝐵𝐵 𝜏𝜏𝑖𝑖 𝑐𝑐𝑐𝑐𝑗𝑗 × 𝑈𝑈 𝜏𝜏𝑖𝑖 𝑐𝑐𝑐𝑐𝑗𝑗

• Constraints
– Γ constraints to ensure tasks are only mapped to one 𝑐𝑐𝑐𝑐
– Γ constraints to ensure tasks will meet their deadlines
– 𝒞𝒞𝒞 constraints to avoid >100% utilization on each 𝑐𝑐𝑐𝑐
– Constraints also handle inter-correlations between 𝑐𝑐𝑐𝑐s

• Number of constraints depends on supported TLP

26

𝒞𝒞𝒞𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖𝑐𝑐𝑋𝑋 ≔ 𝐶𝐶𝐶𝐶𝑈𝑈,𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑇𝑇𝑅𝑅 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑇𝑇𝑅𝑅−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Experimental objectives and setup

• Show diverse DNN/RNN implementations allow flexible use of CE
– Confirm how this can be leveraged to sustain the schedulability of systems otherwise

not schedulable
• Evaluate increase in ratio of schedulable tasksets

• Scenario-based evaluation supporting different and flexible use of CE
– 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐺𝐺𝐶𝐶𝑈𝑈T𝑅𝑅�𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅|𝐶𝐶𝐶𝐶𝑈𝑈 , 𝐺𝐺𝐶𝐶𝑈𝑈T𝑅𝑅�𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅|𝐶𝐶𝐶𝐶𝑈𝑈 , 𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅|𝐶𝐶𝐶𝐶𝑈𝑈

• Synthetic task sets generation
– For each CE scenario we generated 16,000 synthetic task sets under different overall

utilization thresholds
• Generated by randomly selecting several instances of the diverse DNN/RNN types

• Utilizations derived from the RNN/DNN timing characterization

27

Improved Schedulability with Diverse DNN Variants

28

•

• Flexible NVDLA provides better performance
– Using 2 NVDLA instances as a cluster does not exploit full parallelism

• Enabling GPU largely improves over NVDLA alone
– DNN/RNNs can be successfully offloaded onto GPU
– Some DNN are not taking benefit of NVDLA

• Averaging number of instances in between 12 and 49

•

• Flexible Tensor Cores improves significantly
– Using 8 SMs provides small relative improvement over using just 4

• GPU Regular cores can still improve over Tensor
– Tensor cores are over-specialized
– Sometimes counter-productive

• CPUs bring relatively marginal improvement
• Averaging number of instances in between 10 and 14

0

20

40

60

80

100

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

NVDLA_comb NVDLA NVDLA+GPU_TC
NVDLA+GPU_TC_RC NVDLA+GPU+CPU

Fe
as

ib
ili

ty
 R

at
io

 (%
)

Utilization

0

20

40

60

80

100

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

GPU_TC_comb GPU_TC GPU_TC_RC GPU+CPU

Fe
as

ib
ili

ty
 R

at
io

 (%
)

Utilization

Conclusions

Conclusions

• AD system requires multiple DNN/RNN instances
– Supported by powerful accelerating CE in modern platforms

• CEs can be exploited to meet performance requirements
– DNN/RNN need to be tailored to run on multiple CEs
– Flexible use of CEs allows to successfully support the execution of more instances

• Supporting different DNN/RNN variants is an enabler for exploiting
the diversity of modern accelerators

• In this work
– Focused on Jetson AGX Xavier as representative AD platform
– Implemented different variants of the Apollo DNN/RNN to execute on multiple CE
– Implemented a LP model of a static scheduler to show how tailoring AD functions to

different CEs allows to successfully sustain otherwise non-schedulable workloads

30

Acknowledgements

• This work has been partially supported by the Spanish Ministry of Economy and
Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 772773), and the HiPEAC Network of
Excellence. MINECO partially supported Jaume Abella under Ramon y Cajal
postdoctoral fellowship (RYC-2013-14717), Enrico Mezzetti under Juan de la
Cierva-Incorporación postdoctoral fellowship (IJCI-2016-27396), and Leonidas
Kosmidis under Juan de la Cierva-Formación postdoctoral fellowship (FJCI-2017-
34095).

31

31st Euromicro Conference on Real-Time Systems (ECRTS’19)
July 12, 2019

Generating and Exploiting Deep Learning Variants
to Increase Heterogeneous Resource Utilization

in the NVIDIA Xavier
Roger Pujol†¶, Hamid Tabani†, Leonidas Kosmidis†,

Enrico Mezzetti†, Jaume Abella†, Francisco J. Cazorla†

www.bsc.es

¶†

	Generating and Exploiting Deep Learning Variants �to Increase Heterogeneous Resource Utilization in the NVIDIA Xavier
	Deep-Learning (DL) based algorithms
	GPUs
	Modern GPU – Modern DL Libraries Mismatch
	Our work
	Outline
	Slide Number 7
	Apollo \1
	Apollo \2
	CEs in the Jetson Xavier
	Slide Number 11
	DNN/RNN active instances
	DNN/RNN active instances: Projection
	Slide Number 14
	Specialized per-CE Libraries
	Example: GPU Tensor Core Implementation
	Slide Number 17
	The Experiments
	Timing Results for Different Apollo Neural Networks /1
	Timing Results for Different Apollo Neural Networks /1
	Timing Results for Different Apollo Neural Networks /1
	Timing Results for Different Apollo Neural Networks /2
	Slide Number 23
	Exploiting Diversity to Increase Schedulability	
	Modeling Schedulability	of Multiple RNN/DNN with LP
	LP Formulation
	Experimental objectives and setup	
	Improved Schedulability with Diverse DNN Variants
	Slide Number 29
	Conclusions
	Acknowledgements
	Generating and Exploiting Deep Learning Variants �to Increase Heterogeneous Resource Utilization in the NVIDIA Xavier

