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Deep-Learning (DL) based algorithms

• Heavily used in critical systems in areas like 
robotics & autonomous driving (AD)

– Vision (object detection and tracking)
– Trajectory Prediction
– … 
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https://www.rdmag.com/article/2018/01/rise-autonomous-
vehicles-planning-deployment-not-just-development

• Benefits
– Higher-accuracy than traditional algorithms
– Some problems only solvable with DL approaches

• Challenges
– Unprecedented performance demands in critical systems
– Tens of tera operations per second!

https://www.rdmag.com/article/2018/01/rise-autonomous-vehicles-planning-deployment-not-just-development


GPUs

• GPUs are at the forefront of the computing solutions for DL 
– They are already under evaluation by OEMs/TIER1 

• Modern GPUs 
– Offer a powerful set of accelerating computing elements (CEs)
– Offer massive and flexible computation capacity

3https://en.wikichip.org/w/images/thumb/d/da/nvidia_xavie
r_die_shot_%28annotated%29.png/900px-
nvidia_xavier_die_shot_%28annotated%29.png

• NVIDIA AGX Xavier SoC
– CPU
– GPU Regular cores (GPUrc)
– GPU Tensor Cores (GPUtc)
– NVIDIAL Deep-Learning Accelerator (NVDLA)

https://en.wikichip.org/w/images/thumb/d/da/nvidia_xavier_die_shot_(annotated).png/900px-nvidia_xavier_die_shot_(annotated).png


Modern GPU – Modern DL Libraries Mismatch

• Modern SoC offer a variety of CEs 
– CPUs, GPUrc, GPUtc, …

• DL libraries
– Used in many modules  several instances run in parallel
– Mostly exploit a single CE (GPUrc)

• Huge loss of performance capacity and flexibility!
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• Our view
– The ability to run DL-based variants, each using different CEs …

– Improves timing and throughput 

– Pays off the extra effort required to implement those different variants



Our work

• Analysis
– Active DNN instances during execution of Apollo AD software

• Develop DNN Variants
– Running DNN variants on different CEs of NVIDIA Xavier (CPU, GPU, DLA)

• Timing Characterization
– In-depth analysis of the different variants of DL libraries

• Scheduling multiple DNN instances
– Modelling a multicore cyclic executive scheduler as a LP problem 
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Outline

• Motivation

• Background: Apollo and Xavier

• Analysis on the number of active DNN instances

• Timing Characterization

• Scheduling multiple DNN instances

• Conclusion
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Introduction to the Apollo AD framework



Apollo \1

• One of the most sophisticated open-source projects 
implementing an entire AD software stack
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• M0. Speech recognizer processes the voice-based 
commands and transmit them to the control unit

• M1. Perception identifies the surrounding area around the 
autonomous car 

– M1 .d The detection submodule is in charge of detecting     
obstacles and objects from different sensors

– M1.f fusion takes the results of all detected objects from 
different sensors and combines them by a sensor fusion 
algorithm

– M1.t Tracker follows the detected objects and matches them 
with the previously detected objects

• M2. The Planning plans the spatio-temporal trajectory for 
the vehicle to take



Apollo \2

• One of the most sophisticated open-source projects 
implementing an entire AD software stack
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• M3. Localization leverages information received from 
different input sensors to estimate vehicle position 

• M4. The Map provides ad-hoc structured information 
regarding the roads 

• M5. Prediction anticipates the future motion trajectories 
of perceived obstacles/objects 

• M6. Control generates control commands such as 
accelerating/braking and steering

• M7. CAN Bus passes all the control commands to the 
vehicle hardware



CEs in the Jetson Xavier

1. CPU cores
– 8x Carmel ARMv8.2 processors
– 4 clusters, each with 2 cores 

2. GPU regular cores
– 512 regular cores, 8 SMs
– Volta Architecture
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3. GPU tensor cores
– 64 Tensor cores, 8 cores per SM
– To accelerate large matrix operations

4. NVDLA
– NVIDIA Deep Learning Accelerators
– Specialized for deep learning acceleration



Analysis on the number of active DNN instances



DNN/RNN active instances

• We used real traces from an AD car running Apollo
• Observations:

– DNN/RNN have different durations and periods
– In Apollo, up to 7 DNN/RNN instances are run concurrently

• Small DNNs, such as the speech DNN, has small duration and short periods

• Other DNN/RNNs have longer durations and longer periods
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DNN/RNN active instances: Projection

• More input sensors
– Increase in the number of sensors toward fully AD (level 5)
– Today, AD cars employ several heterogenous sensors

• More sophisticated algorithms
– To increase the accuracy, larger and more complex DNNs/RNNs are designed 
– DNNs are using more and more layers to improve the accuracy

• More functionalities
– In-cabin features such as gesture control, driver-monitoring systems, etc.

• Conclusion
– All the aforementioned items will be translated into more computation power and more 

deep learning instances
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Generating DNN Variants



Specialized per-CE Libraries

• We used optimized libraries to implement the software for 
each particular CE.

1. CPU
– We used OpenMP for all the functions running on the CPU cores

2. GPU Regular Cores
– The baseline GPU implementation uses regular cores to run the kernels

3. GPU Tensor Cores
– We have adapted the GPU code to exploit tensor cores

4. NVDLA
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Example: GPU Tensor Core Implementation

• Set the Math mode
• Some preconditions

– Multiples of 4
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Timing Characterization



The Experiments

• Exec time for each DNN/RNN variant for different CEs
– CPU Cores (2, 4, 6 cores), GPU RC (4, 8 SMs), GPU TC (4, 8 SMs), NVDLA (1,2)

– 2 cores are always reserved for managing OS tasks and GPU/NVDLA tasks
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Timing Results for Different Apollo Neural Networks /1

• Performance improves by 
increasing the number of 
CPU cores
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Timing Results for Different Apollo Neural Networks /1

• Performance improves by 
increasing the number of 
CPU cores

• Tensor cores are NOT
always providing better 
performance
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Timing Results for Different Apollo Neural Networks /1

• Performance improves by 
increasing the number of 
CPU cores

• Tensor cores are NOT
always providing better 
performance

• NVDLA provides the best 
performance for these 
Apollo modules 
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Timing Results for Different Apollo Neural Networks /2
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• NVDLA provides worse 
performance in comparison 
to GPU for small modules 
such as Speech (due to 
initialization overhead)



Scheduling multiple DNN instances



Exploiting Diversity to Increase Schedulability

• Platforms supporting diverse CE configurations
– Applications timing behaviour largely varies on CE they are mapped to

– Overall mapping strategy is fundamental for schedulability

• Multiple DNN instances supporting AD functions in Apollo 
– Instances can be modelled as (relatively independent) recurrent applications

• Frame rate depending on the frequency at which inputs need to be elaborated

– Periodic task set to be scheduled on a set of unrelated processors 
• System supporting 𝑘𝑘 CE configurations 𝒞𝒞𝒞 ≔ 𝑐𝑐𝑐𝑐1,⋯ , 𝑐𝑐𝑐𝑐𝑘𝑘
• 𝜏𝜏𝑖𝑖 ≔ 𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑖𝑖 = 𝑝𝑝𝑖𝑖 ,𝐶𝐶𝑖𝑖
• 𝐶𝐶𝑖𝑖 = 𝑐𝑐𝑖𝑖,1,⋯ , 𝑐𝑐𝑖𝑖,𝑘𝑘 𝑐𝑐𝑖𝑖,𝑗𝑗 denoting execution time bound of 𝜏𝜏𝑖𝑖 on configuration 𝑐𝑐𝑐𝑐𝑗𝑗 ∈ 𝒞𝒞𝒞
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Modeling Schedulability of Multiple RNN/DNN with LP

• Cyclic-executive static scheduling
– Still a preferred solution in several embedded real-time domains
– DNN/RNN modelled as a set of recurrent activities 
– Mapping strategy that allows all DNNs to complete within their frame

• Linear Programming model
– 0/1 optimization (minimization) problem for the total system utilization
– Failing to find a solution means the taskset is not schedulable
– Other optimization criteria may be enforced (with weights)
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LP Formulation

• Instantiation to the Xavier SoC

• Boolean decision variables
– Γ × 𝒞𝒞𝒞 B 𝜏𝜏𝑖𝑖 ∈ Γ 𝑐𝑐𝑐𝑐𝑗𝑗 ∈ 𝒞𝒞𝒞 representing whether 𝜏𝜏𝑖𝑖 is mapped to 𝑐𝑐𝑐𝑐𝑗𝑗

• Objective function
– min ∑𝜏𝜏𝑖𝑖∈𝛤𝛤,𝑐𝑐𝑐𝑐𝑗𝑗∈𝒞𝒞𝒞 𝐵𝐵 𝜏𝜏𝑖𝑖 𝑐𝑐𝑐𝑐𝑗𝑗 × 𝑈𝑈 𝜏𝜏𝑖𝑖 𝑐𝑐𝑐𝑐𝑗𝑗

• Constraints
– Γ constraints to ensure tasks are only mapped to one 𝑐𝑐𝑐𝑐
– Γ constraints to ensure tasks will meet their deadlines
– 𝒞𝒞𝒞 constraints to avoid >100% utilization on each 𝑐𝑐𝑐𝑐
– Constraints also handle inter-correlations between 𝑐𝑐𝑐𝑐s 

• Number of constraints depends on supported TLP
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𝒞𝒞𝒞𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖𝑐𝑐𝑋𝑋 ≔ 𝐶𝐶𝐶𝐶𝑈𝑈,𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑇𝑇𝑅𝑅 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑇𝑇𝑅𝑅−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Experimental objectives and setup

• Show diverse DNN/RNN implementations allow flexible use of CE
– Confirm how this can be leveraged to sustain the schedulability of systems otherwise 

not schedulable
• Evaluate increase in ratio of schedulable tasksets

• Scenario-based evaluation supporting different and flexible use of CE   
– 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐺𝐺𝐶𝐶𝑈𝑈T𝑅𝑅�𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅|𝐶𝐶𝐶𝐶𝑈𝑈 , 𝐺𝐺𝐶𝐶𝑈𝑈T𝑅𝑅�𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅|𝐶𝐶𝐶𝐶𝑈𝑈 , 𝐺𝐺𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅|𝐶𝐶𝐶𝐶𝑈𝑈

• Synthetic task sets generation
– For each CE scenario we generated 16,000 synthetic task sets under different overall 

utilization thresholds 
• Generated by randomly selecting several instances of the diverse DNN/RNN types 

• Utilizations derived from the RNN/DNN timing characterization
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Improved Schedulability with Diverse DNN Variants
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•

• Flexible NVDLA provides better performance
– Using 2 NVDLA instances as a cluster does not exploit full parallelism 

• Enabling GPU largely improves over NVDLA alone
– DNN/RNNs can be successfully offloaded onto GPU 
– Some DNN are not taking benefit of NVDLA

• Averaging number of instances in between 12 and 49

•

• Flexible Tensor Cores improves significantly
– Using 8 SMs provides small relative improvement over using just 4

• GPU Regular cores can still improve over Tensor
– Tensor cores are over-specialized
– Sometimes counter-productive

• CPUs bring relatively marginal improvement
• Averaging number of instances in between 10 and 14
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Conclusions



Conclusions

• AD system requires multiple DNN/RNN instances 
– Supported by powerful accelerating CE in modern platforms

• CEs can be exploited to meet performance requirements
– DNN/RNN need to be tailored to run on multiple CEs
– Flexible use of CEs allows to successfully support the execution of more instances

• Supporting different DNN/RNN variants is an enabler for exploiting 
the diversity of modern accelerators

• In this work
– Focused on Jetson AGX Xavier as representative AD platform
– Implemented different variants of the Apollo DNN/RNN to execute on multiple CE 
– Implemented a LP model of a static scheduler to show how tailoring AD functions to 

different CEs allows to successfully sustain otherwise non-schedulable workloads
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