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Task Model
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• Sequential, conditional PREM tasks
• Non-preemptive segment execution
• Each task has a period Ti and a deadline Di <= Ti

• Fixed memory time ∆ to load/unload each segment
• For a TDMA slot σ and M processors: ∆ = (M+1)* σ
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𝑅3(𝑃) ≤ 𝐷3 − 𝑃. 𝑒𝑛𝑑∀𝑃 ∈ 𝐺3. 𝐶:

• 𝑅3(𝑃) depends on 𝑙3
𝑙𝑚𝑎𝑥 parameter only from lower priority tasks

• If the higher priority interference is known and the task is segmented, 
a maximum length 𝑙𝑚𝑎𝑥 can be forced on the lower priority tasks to 
preserve the schedulability of the task.  
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Iterate over tasks from 
higher to lower priority

Segment the task using lmax
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Continue
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• The paper proves that this algorithm results in an optimal task set 
segmentation that optimizes the schedulability.

• The program segmentation algorithm must preserve the optimality of 
the system by generating a set of DAGs that contains the best 
(dominated) DAGs from all the possible DAGs of the program.



Program Segmentation: Structure (main)

14

Region-based tree program structure



Program Segmentation: Structure (main)

14

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1
Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r5

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r5

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r4

r5

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r4

r5

r0

r1 r2 r3 r4

r5

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r4

r5

r0

r1 r2 r3 r4

r5

Region-based tree program structure

Sub-graph with single entry and single exit



Program Segmentation: Structure (f)

15

f() {

Y1;

if(..)    

for(…)

Y2;

else

Y3;

Y4;

}

r0
f

r1
f

r2
f

r3
f

r4
f

r5
f

r6
f

r0
f

r1
f r2

f r3
f

r4
f r5

f

r6
f



Program Segmentation: Loop Transformations

16



Program Segmentation: Loop Transformations

16



Program Segmentation: Loop Transformations

16

r2 r2
p r2

m r2
s

r5 r5 r5 r5

N kp
ksN-kp-ks



Program Segmentation: Loop Transformations

16

r2 r2
p r2

m r2
s

r5 r5 r5 r5

N kp
ksN-kp-ks

r4
f

r6
f

re
f

r6
f

rlast
f

r6
f

rt
f

Nf

Mf kf
last

kf



Program Segmentation: Final Trees

17

r0

r1 r3 r4

r0
f

r1
f r2

f r3
f

r5
f

r2
p r2

m r2
s

r5 r5 r5

kp
ksN-kp-ks

re
f

r6
f

rlast
f

r6
f

rt
f

Mf

kf
last

kf

r4
f

f(..)



Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment



Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Code + Data → SPM



Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Code + Data → SPM Segment length < lmax



Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Code + Data → SPM Segment length < lmax Regions
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• A tree where each node is a segment path.
• It is obtained by substituting region sequences with a set of paths.
• A segmented tree generates a set of DAGs where each DAG is constructed by 

taking one path out of each path set.
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• The segmentation algorithms generates the possible paths for the segmented 
tree based on the constraints.

• The generated paths are filtered using path domination to eliminate the 
dominating (worse) paths.

• The DAGs generated from the segmented tree are filtered using the DAG 
domination to keep the dominated (better) DAGs.

• Pruning conditions are used to avoid enumerating all the DAGs which is very 
time consuming due to the parameterized split/tile transformations. 
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• The segmentation framework is implemented using LLVM compiler.
• Simple MIPS processor model: 5-stage pipeline, no branch prediction.
• Vary the SPM size between 4 kB to 512 kB exponentially.
• Multiple benchmarks from different suites.
• Test for system utilization between 0.2 – 0.95.
• For each system utilization → 100 task set, 5-15 tasks / task set.
• Results reported in terms of system schedulability.
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• The paper proposes a segmentation framework based on LLVM compiler to 
automatically generate PREM-compatible code for sequential programs 
running on a general purpose processor.

• An optimal task set segmentation algorithm is derived under fixed-priority 
scheduling for fixed-size DMA time.

• The evaluation shows that the proposed algorithm outperforms both greedy 
and heuristic algorithms.

• The framework can be extended to other PREM-based scheduling schemes.
• The framework can also consider other task and platform models, especially 

parallel tasks.
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For questions, please contact the authors:

mrefaat@uwaterloo.ca
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