
PREM-based Optimal Task Segmentation
Under Fixed Priority Scheduling

Presented by: Giovani Gracioli

Authors: Muhammad R. Soliman

Rodolfo Pellizzoni

1

Outline

▪ Introduction

▪ Task Model

▪ Schedulability Analysis

▪ Task Set Segmentation

▪ Program Segmentation

▪ Evaluation

▪ Conclusion and Future Work

2

Introduction: MPSoC / PREM

3

PE 0 PE 1

Multi-Processor System-on-Chip

PE 2

Introduction: MPSoC / PREM

3

PE 0 PE 1

Main Memory

Multi-Processor System-on-Chip

Memory Controller

PE 2

Introduction: MPSoC / PREM

3

PE 0 PE 1

Main Memory

Multi-Processor System-on-Chip

Memory Controller

PE 2

Contention Arbitration

Introduction: MPSoC / PREM

3

PE 0 PE 1

Main Memory

Multi-Processor System-on-Chip

Memory Controller

PE 2

Contention Arbitration

PRedictable Execution Model

Introduction: PREM (3-Phase Model)

4

PE 0 PE 1 PE 2

SPM SPM SPM

Main Memory

DMA

Introduction: PREM (3-Phase Model)

4

↓↑
PE 0 PE 1 PE 2

SPM SPM SPM

Main Memory

DMA

Introduction: PREM (3-Phase Model)

4

↓↑

Load the required code and data to SPM↑

PE 0 PE 1 PE 2

SPM SPM SPM

Main Memory

DMA

Introduction: PREM (3-Phase Model)

4

↓↑

Load the required code and data to SPM

Execute the task directly from SPM

↑

PE 0 PE 1 PE 2

SPM SPM SPM

Main Memory

DMA

Introduction: PREM (3-Phase Model)

4

↓↑

Load the required code and data to SPM

Execute the task directly from SPM

Write-back the modified data

↑

↓

PE 0 PE 1 PE 2

SPM SPM SPM

Main Memory

DMA

Introduction: PREM (3-Phase Model)

4

↓↑

Load the required code and data to SPM

Execute the task directly from SPM

Write-back the modified data

↑

↓

PE 0 PE 1 PE 2

SPM SPM SPM

Main Memory

A single memory phase is executed at any
one time in the system.

DMA

Introduction: PREM (3-Phase Model)

5

Task Under
Analysis

Other Tasks

DMA

Introduction: PREM (3-Phase Model)

5

Task Under
Analysis

Other Tasks

DMA

Introduction: PREM (3-Phase Model)

5

Task Under
Analysis

Other Tasks

DMA

SPM

Introduction: PREM (3-Phase Model)

6

τ1

τ2

DMA

Introduction: PREM (3-Phase Model)

6

τ1

τ2

DMA

Introduction: PREM (3-Phase Model)

6

τ1

τ2

DMA

• Segmentation:
• Large code / data footprint → do not fit in SPM.
• Data accesses are input-dependent → only known at run-time

Introduction: PREM (3-Phase Model)

6

τ1

τ2

DMA

• Segmentation:
• Large code / data footprint → do not fit in SPM.
• Data accesses are input-dependent → only known at run-time

Introduction: Processor / Memory Schedule

7

PE 0 PE 1

SPM SPM

Main Memory

DMA

Introduction: Processor / Memory Schedule

7

PE 0 PE 1

SPM SPM

Main Memory

DMA

Partitioned,
Fixed priority,

Sporadic
Tasks

Introduction: Processor / Memory Schedule

7

PE 0 PE 1

SPM SPM

Main Memory

DMA

TDMA

0 1 0 1 0

Partitioned,
Fixed priority,

Sporadic
Tasks

Introduction: Processor / Memory Schedule

7

PE 0 PE 1

SPM SPM

Main Memory

DMA

TDMA

0 1 0 1 0

Load OR unload
one SPM
partition

Partitioned,
Fixed priority,

Sporadic
Tasks

Task Model

8

• Sequential, conditional PREM tasks
• Non-preemptive segment execution
• Each task has a period Ti and a deadline Di <= Ti

• Fixed memory time ∆ to load/unload each segment
• For a TDMA slot σ and M processors: ∆ = (M+1)* σ

Task Model: DAG Representation

9

s0

s1

s3

s2

s5

s4 s7

s6

𝐺 = (𝑆, 𝐸)

Task Model: DAG Representation

9

s0

s1

s3

s2

s5

s4 s7

s6

𝐺 = (𝑆, 𝐸)

𝑡𝑠 = 5

𝑡𝑠 = 9

𝑡𝑠 = 6

𝑡𝑠 = 11

𝑡𝑠 = 12

𝑡𝑠 = 4 𝑡𝑠 = 5

𝑡𝑠 = 2

Task Model: DAG Representation

9

s0

s1

s3

s2

s5

s4 s7

s6

𝐺 = (𝑆, 𝐸)

𝑡𝑠 = 5

𝑡𝑠 = 9

𝑡𝑠 = 6

𝑡𝑠 = 11

𝑡𝑠 = 12

𝑡𝑠 = 4 𝑡𝑠 = 5

𝑡𝑠 = 2
𝑙 = 5

𝑙 = 9

𝑙 = 6

𝑙 = 5 𝑙 = 5

𝑙 = 5𝑙 = 12

𝑙 = 11

𝑙 = max(𝑡𝑠, ∆= 5)

sbegin send

Task Model: Paths

10

p s1 s2 𝐼 = 2 𝐿 = 20 𝑒𝑛𝑑 = 11

s0

s1

s3

s2

s5

s4 s7

s6

𝑙 = 5

𝑙 = 9

𝑙 = 6

𝑙 = 5 𝑙 = 5

𝑙 = 5𝑙 = 12

𝑙 = 11

Task Model: Paths

10

P s0 s1 s2 s7

P’ s0 s7

P’’ s0 s7

s3

s3

s4

s5 s6

𝐼 = 4 𝐿 = 30 𝑒𝑛𝑑 = 5

𝐼 = 4 𝐿 = 28 𝑒𝑛𝑑 = 5

𝐼 = 5 𝐿 = 26 𝑒𝑛𝑑 = 5

s0

s1

s3

s2

s5

s4 s7

s6

𝑙 = 5

𝑙 = 9

𝑙 = 6

𝑙 = 5 𝑙 = 5

𝑙 = 5𝑙 = 12

𝑙 = 11

Task Model: Path/DAG Domination

11

𝑃′ ⪰ 𝑃 𝑃′. 𝐼 ≥ 𝑃. 𝐼 𝑃′. 𝐿 ≥ 𝑃. 𝐿 𝑃′. 𝑒𝑛𝑑 ≤ 𝑃. 𝑒𝑛𝑑& &

• If neither 𝑃′ ⪰ 𝑃 nor 𝑃 ⪰ 𝑃′, 𝑃′ and 𝑃 are incomparable.
• A DAG can be characterized by its dominating maximal paths G.C

which replaces the concept of WCET for sequential programs.
• If it is possible to choose between two paths, a dominated path is

(better) than the dominating path.

Task Model: Path/DAG Domination

11

𝑃′ ⪰ 𝑃 𝑃′. 𝐼 ≥ 𝑃. 𝐼 𝑃′. 𝐿 ≥ 𝑃. 𝐿 𝑃′. 𝑒𝑛𝑑 ≤ 𝑃. 𝑒𝑛𝑑& &

• If neither 𝑃′ ⪰ 𝑃 nor 𝑃 ⪰ 𝑃′, 𝑃′ and 𝑃 are incomparable.
• A DAG can be characterized by its dominating maximal paths G.C

which replaces the concept of WCET for sequential programs.
• If it is possible to choose between two paths, a dominated path is

(better) than the dominating path.

𝐺′ ⪰ 𝐺 𝑃′ ⪰ 𝑃∀𝑃 ∈ 𝐺, ∃𝑃′ ∈ 𝐺′:

• If neither 𝐺′ ⪰ 𝐺 nor 𝐺 ⪰ 𝐺′, 𝐺′ and 𝐺 are incomparable.
• If it is possible to choose between two DAGs, a dominated path is

(better) than the dominating path.

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

τ1

τ2

τ3

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

τ1

τ2

τ3

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

τ1

τ2

τ3

𝑅3(𝑃)

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃))

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

𝑅3(𝑃) ≤ 𝐷3 − 𝑃. 𝑒𝑛𝑑

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

𝑅3(𝑃) ≤ 𝐷3 − 𝑃. 𝑒𝑛𝑑∀𝑃 ∈ 𝐺3. 𝐶:

Schedulability Analysis

12

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

𝑅3(𝑃) ≤ 𝐷3 − 𝑃. 𝑒𝑛𝑑∀𝑃 ∈ 𝐺3. 𝐶:

• 𝑅3(𝑃) depends on 𝑙3
𝑙𝑚𝑎𝑥 parameter only from lower priority tasks

• If the higher priority interference is known and the task is segmented,
a maximum length 𝑙𝑚𝑎𝑥 can be forced on the lower priority tasks to
preserve the schedulability of the task.

Task Set Segmentation

13

Set lmax = ∞

Task Set Segmentation

13

Iterate over tasks from
higher to lower priority

Set lmax = ∞

Task Set Segmentation

13

Iterate over tasks from
higher to lower priority

Segment the task using lmax
Set lmax = ∞

Task Set Segmentation

13

Iterate over tasks from
higher to lower priority

Segment the task using lmax

Compute lmax for the next task

Set lmax = ∞

Task Set Segmentation

13

Iterate over tasks from
higher to lower priority

Segment the task using lmax

Compute lmax for the next task

Return Failure

Set lmax = ∞

lmax ≤ 0

Continue

YesNo

Task Set Segmentation

13

Iterate over tasks from
higher to lower priority

Segment the task using lmax

Compute lmax for the next task

Return Failure

Return Success

Set lmax = ∞

lmax ≤ 0

Continue

YesNo

Task Set Segmentation

13

Iterate over tasks from
higher to lower priority

Segment the task using lmax

Compute lmax for the next task

Return Failure

Return Success

Set lmax = ∞

lmax ≤ 0

Continue

YesNo

• The paper proves that this algorithm results in an optimal task set
segmentation that optimizes the schedulability.

• The program segmentation algorithm must preserve the optimality of
the system by generating a set of DAGs that contains the best
(dominated) DAGs from all the possible DAGs of the program.

Program Segmentation: Structure (main)

14

Region-based tree program structure

Program Segmentation: Structure (main)

14

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1
Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r5

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r5

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r4

r5

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r4

r5

r0

r1 r2 r3 r4

r5

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (main)

14

main() {

X1;

for(…){

X2;

}

f(…);

X3;

}

r0

r1

r2

r3

r4

r5

r0

r1 r2 r3 r4

r5

Region-based tree program structure

Sub-graph with single entry and single exit

Program Segmentation: Structure (f)

15

f() {

Y1;

if(..)

for(…)

Y2;

else

Y3;

Y4;

}

r0
f

r1
f

r2
f

r3
f

r4
f

r5
f

r6
f

r0
f

r1
f r2

f r3
f

r4
f r5

f

r6
f

Program Segmentation: Loop Transformations

16

Program Segmentation: Loop Transformations

16

Program Segmentation: Loop Transformations

16

r2 r2
p r2

m r2
s

r5 r5 r5 r5

N kp
ksN-kp-ks

Program Segmentation: Loop Transformations

16

r2 r2
p r2

m r2
s

r5 r5 r5 r5

N kp
ksN-kp-ks

r4
f

r6
f

re
f

r6
f

rlast
f

r6
f

rt
f

Nf

Mf kf
last

kf

Program Segmentation: Final Trees

17

r0

r1 r3 r4

r0
f

r1
f r2

f r3
f

r5
f

r2
p r2

m r2
s

r5 r5 r5

kp
ksN-kp-ks

re
f

r6
f

rlast
f

r6
f

rt
f

Mf

kf
last

kf

r4
f

f(..)

Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Code + Data → SPM

Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Code + Data → SPM Segment length < lmax

Program Segmentation: Valid Segmentation

18

Assign each region or a sequence of regions to a segment

Code + Data → SPM Segment length < lmax Regions

Program Segmentation: Segmented Tree (1)

19

• A tree where each node is a segment path.
• It is obtained by substituting region sequences with a set of paths.
• A segmented tree generates a set of DAGs where each DAG is constructed by

taking one path out of each path set.

Program Segmentation: Segmented Tree (2)

20

r0

r1 r3 r4r2
p r2

m r2
s

f(..)

r1
f r2

f r3
f

r5
f

rlast
f

rt
f

r4
f

12

Program Segmentation: Segmented Tree (2)

20

r0

r1 r3 r4r2
p r2

m r2
s

f(..)

r1
f r2

f r3
f

r5
f

rlast
f

rt
f

r4
f

𝑙 = 28 𝑙 = 35

12

Program Segmentation: Segmented Tree (2)

20

r0

r1 r3 r4r2
p r2

m r2
s

f(..)

r1
f r2

f r3
f

r5
f

rlast
f

rt
f

r4
f

𝑙 = 28 𝑙 = 35

𝑙 = 23

12

Program Segmentation: Segmented Tree (2)

20

r0

r1 r3 r4r2
p r2

m r2
s

f(..)

r1
f r2

f r3
f

r5
f

rlast
f

rt
f

r4
f

𝑙 = 28 𝑙 = 35

𝑙 = 23

𝑙 = 35 𝑙 = 35 𝑙 = 23

𝑙 = 23𝑙 = 32 𝑙 = 32

12

13

Program Segmentation: Segmented Tree (2)

20

r0

r1 r3 r4r2
p r2

m r2
s

f(..)

r1
f r2

f r3
f

r5
f

rlast
f

rt
f

r4
f

𝑙 = 28 𝑙 = 35
𝑙 = 23

𝑙 = 25

𝑙 = 23

𝑙 = 23

𝑙 = 35 𝑙 = 35 𝑙 = 23

𝑙 = 23𝑙 = 32 𝑙 = 32

12

13

Program Segmentation: Segmented Tree (3)

21

r0

r3

r2
f

r4
f

𝑙 = 28 𝑙 = 35 𝑙 = 23

𝑙 = 25

𝑙 = 23

𝑙 = 23

𝑙 = 35 𝑙 = 35 𝑙 = 23

𝑙 = 23𝑙 = 32 𝑙 = 32

12

13

𝑙 = 28 𝑙 = 35 𝑙 = 23 𝑙 = 23 𝑙 = 25 𝑙 = 23

𝑙 = 23𝑙 = 32 𝑙 = 32

13

𝑙 = 28 𝑙 = 35 𝑙 = 23 𝑙 = 23 𝑙 = 25 𝑙 = 23

𝑙 = 35 𝑙 = 35 𝑙 = 23

12

Program Segmentation: Algorithms (1)

22

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

Program Segmentation: Algorithms (1)

22

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

Minimize P.L

Program Segmentation: Algorithms (1)

22

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

Minimize P.L Maximize P.end

Program Segmentation: Algorithms (1)

22

Minimize P.L Maximize P.end Minimize P.I

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

Program Segmentation: Algorithms (1)

22

Minimize P.L Maximize P.end Minimize P.I

Based on path domination → keep dominated paths

Lower
Priority

τ1 > τ2 > τ3

DMA

𝑙3
𝑙𝑚𝑎𝑥

τ1

τ2

τ3

𝑅3(𝑃) 𝑃. 𝐿 − 𝑃. 𝑒𝑛𝑑 𝐼𝑛𝑡𝑒𝑟3(𝑅3(𝑃)) (𝑃. 𝐼 + 1) ∗ 𝑙3
𝑙𝑚𝑎𝑥

Program Segmentation: Algorithms (2)

23

• The segmentation algorithms generates the possible paths for the segmented
tree based on the constraints.

• The generated paths are filtered using path domination to eliminate the
dominating (worse) paths.

• The DAGs generated from the segmented tree are filtered using the DAG
domination to keep the dominated (better) DAGs.

• Pruning conditions are used to avoid enumerating all the DAGs which is very
time consuming due to the parameterized split/tile transformations.

Evaluation (1)

24

• The segmentation framework is implemented using LLVM compiler.
• Simple MIPS processor model: 5-stage pipeline, no branch prediction.
• Vary the SPM size between 4 kB to 512 kB exponentially.
• Multiple benchmarks from different suites.
• Test for system utilization between 0.2 – 0.95.
• For each system utilization → 100 task set, 5-15 tasks / task set.
• Results reported in terms of system schedulability.

Evaluation (2)

25

Optimal

Length Footprint Compilation

lmax
SPM size RegionsProposed

Evaluation (2)

25

Ideal

Optimal

Length Footprint Compilation

lmax None None

lmax
SPM size RegionsProposed

Evaluation (2)

25

Ideal

Optimal

Heuristic

Length Footprint Compilation

lmax None None

lmax
SPM size Regions

RegionsSPM sizeFixed lmax

Proposed

Evaluation (2)

25

Ideal

Optimal

Heuristic

Greedy

Length Footprint Compilation

lmax None None

lmax
SPM size Regions

Regions

Regions

SPM size

SPM size

Fixed lmax

None

Proposed

Evaluation (3)

26

Conclusion & Future Work

27

• The paper proposes a segmentation framework based on LLVM compiler to
automatically generate PREM-compatible code for sequential programs
running on a general purpose processor.

• An optimal task set segmentation algorithm is derived under fixed-priority
scheduling for fixed-size DMA time.

• The evaluation shows that the proposed algorithm outperforms both greedy
and heuristic algorithms.

• The framework can be extended to other PREM-based scheduling schemes.
• The framework can also consider other task and platform models, especially

parallel tasks.

28

For questions, please contact the authors:

mrefaat@uwaterloo.ca
rpellizz@uwaterloo.ca

Thank you

mailto:mrefaat@uwaterloo.ca
mailto:rpellizz@uwaterloo.ca

