A Bandwidth Reservation
Mechanism for AXI-Based
Hardware Accelerators on FPGAs

Marco Pagani, Enrico Rossi, Alessandro Biondi,
Mauro Marinoni, Giuseppe Lipari, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy
Université de Lille, Lille, France

?gtig .RlStAL

. Centre de Recherche en Informatique
Real-Time Systems Laboratory Signal et Au t SR ol ke

Background

Background

e Heterogeneous platforms are popular to meet computational
requirements while overcoming scaling and energy issues.

e System-on-a-chip (SoC) platforms including an FPGA are
extensible systems:

o Allow offloading computational activities from CPUs to
HW accelerators deployed on the FPGA fabric.

HW-Accelerator

CPU | CPU
C@b Cache

AXI DRAM
BUS CPU | CPU Memory

A
A 4

A
Y

HW-Accelerator

52

FPGA

A
A 4

A
Y

A
Y

Memory controller

DMA / bus mastering accelerators

e This work considers HW accelerators performing the same

computational activity (e.g. processing a frame) at each run.
Hence, they are referred to as HW-tasks.

e High-performance HW accelerators implement bus mastering
/ DMA to directly access data in the system memory;

Corner Detector
HW-Task

52

Fetch from Write back
memory to memory

Memory

Why FPGA-based acceleration for real-time systems?

Pros

Cons

Very predictable clock-level behavior;

Possibility to explicitly control the behaviour of the
accelerators;

High-performance on SIMD / Dataflow operations;

Can be swapped at run-time using partial reconfiguration.

Developing HW accelerators for FPGAs requires specific
knowledge that is typically not part of the background of
SW programmers.

o Even modern tools like high-level synthesis are not so
straightforward to use.

Less libraries and SW stacks are available with respect to
other platforms (e.g., GPUs).

BUS contention problem

e To support multiple HW-tasks, an AXI Interconnect is required
for arbitrating transactions arbitration.

o FPGA to Processing System (PS) AXI ports provide a direct
path to reach the DRAM memory controller.

HW-Task

52

M

HW-Task

&

M

Y

HW-Task

52

A 4

FPGA
-PS

Inter-
connect

FPGA

A 4

S

A 4

Inter-
face

PS
AXI
Inter-
connect

Cache

GP Core

GP Core

GP Core

GP Core

Yy

PS

DRAM controller

A 4

DRAM
Memory

BUS contention problem

e To support multiple HW-tasks, an AXI Interconnect is required
for arbitrating transactions arbitration.

o FPGA to Processing System (PS) AXI ports provide a direct
path to reach the DRAM memory controller.

e To enable a sound timing analysis of HW-tasks on FPGA, it is
crucial to pay attention at how bus transaction are managed.

HW-Task
(Q,(\) GP Core
M > S FPGA
| -PS AP; GP Core
HW-Task inter- || ©ache .
(Q‘(\) M ==g M S connect ore DRAM
Memory
Inter GP Core
) Inter
HW-Task
conhect face _
(Q‘(\) M S | | DRAM controller -
FPGA PS

BUS contention problem

e Stock Interconnects implement Round Robin arbitration.

o Designed for throughput.

o Difficult to explicitly control the response times of HW-Tasks
(e.g., priority-based arbitration is deprecated in Xilinx platforms).

o No protection form misbehaving HW-tasks.

HW-Task

52

M

HW-Task

&

M

FPGA
-PS

HW-Task

Inter-
connect

52

S

Inter-
face

FPGA

PS

DRAM controller

A 4

DRAM
Memory

Other issues with HW-tasks: heterogeneous sources

e In practice, HW-tasks may come from different sources:
o Some HW-Tasks may be designed with HLS
m Implicit configuration of bus transactions;
o Some others may be closed-source (no access to HDL code).

e Even if we assume that no HW-tasks can misbehave, it may be
difficult to control the bus bandwidth demanded by each HW-Task
at integration time.

HW-Task
(HLS)

M " S FPGA

HW-Task
(RTL) M

------ > DRAM
Memory

v
wn

<
v
)}

Inter-
Inter-
HW-Task connect

(Closed) face
S

<

FPGA

Other issues with HW-tasks: address space protection

e Due to the AXI master interface, HW-Tasks may access the whole
physical memory without any restriction (including OS kernel mem).

e This poses serious threats to system safety.

/Phy. address space\ HW-Task
(HLS)

FPGA
AXI -PS

<
v
wn

HW-Task
(RTL) M

------ > DRAM
Memory

Y
w

<
v
)]

Inter-
Inter-
HW-Task connect

(Closed) S face

Kernel memory

N ") | cron

<

10

Other issues with HW-tasks: address space protection

e Due to the AXI master interface, HW-Tasks may access the whole
physical memory without any restriction (including OS kernel mem).

e This poses serious threats to system safety.
o What if a faulty/bugged HW-Task skews OS/proc mem?
o A malicious HW-Task could be purposely designed to do so!

o A protection/containerization mechanism could be useful.

/Phy. address space\ HW-Task
(HLS)

ME—{s FPGA
AXI -PS

HW-Task

RTL
RTL o L_s M

Inter-
Inter-
HW-Ta'sk connect face
Kernel memory \ (Faulty!) m S

FPGA

------ > DRAM
Memory

Y
w

\J

11

The AXI Budgeting Unit (ABU)

Contribution of this work: the AXI Budgeting Unit (ABU)

e The ABU restores the system predictability by regulating the
BUS bandwidth contention.

o Provides a BUS bandwidth reservation mechanism for
HW-tasks on FPGA;

o Supervises BUS transactions for accesses control.

o Ensures temporal and spatial isolation for HW-tasks.

HW-Task

52

AXI
BUS

13

The ABU is a supervision mechanism for HW-tasks

e Provides a confined environment allowing for a safe integration of
first- and third-party HW-Tasks.

o Allows to explicitly control the bus bandwidth reserved to
each HW-Task;

o Shields the system from possible misbehaving HW-Tasks.

HW-Task
(HLS)

S | ax FPGA
-PS

HW-Task
(RTL)

MH>~S | ----- > DRAM
S Memory

Inter-

connect Inter-

face

HW-Task
(Closed)

S

FPGA

14

How does it work? Internals

e The ABU monitors all AXI channels (in parallel):

o Checks and compares the address of transactions;

o Senses and counts transactions;

e AXI channels are routed through decoupler blocks that
can stop the HW-task from issuing transactions.

Write address channel

Read address channel

Write data channel

Read data channel

HW-Task

Yy v

Transaction
Counter

Budget and
period
registers

Decouplers S
Y Y A
Read Write
address | address Intgrconnect
comparator [| comparator / Sink
A A

Buffers Buffers

bases offsets EMEM
registers registers M

15

How does it work? Temporal isolation

e Each ABU has a budget b,
o [Each transaction passing on the AXI link consumes a budget unit.

o The budget is periodically replenished to the maximum value BZ.
every P clock cycles.

e When the budget reaches zero, the HW-Task is interdicted from issuing
transactions (disconnecting the handshake signals valid/ready).

4 R
dImmIN .

HW-Task AXI slave
&= [v s
16

How does it work? Spatial isolation

e Each ABU allows specifying up to 8 address segments.
o Each segment is defined by a base address and a size;
o The ABU monitors the transactions issued by the HW-Task.

e Ifthe HW-Task issues a transaction outside of the 8 segments, the
ABU blocks the HW-Task and notifies the processor (interrupt).

/Phy. address space\

R7

R1

HW-Task AXI slave

Y

S

17

Overheads and Resource consumption

e The ABU does not introduce any additional latency.

o Temporal overhead free (no additional delay).

18

Overheads and Resource consumption

e The ABU does not introduce any additional latency.
o Temporal overhead free (no additional delay).

e Key observation: the budget replenishment period can be
arbitrarily small (a few clock cycles) without particular penalties

o Differently from software reservation servers!

19

Overheads and Resource consumption

e The ABU does not introduce any additional latency.
o Temporal overhead free (no additional delay).

e Key observation: the budget replenishment period can be
arbitrarily small (a few clock cycles) without particular penalties

o Differently from software reservation servers!
e Low FPGA resource consumption.

o Described in VHDL: ABUs can be integrated into any design.

Resource type | 4 ABUs consumption
LUT 2023 / 53200 (3.80 %)
FF 2045 / 106400 (1.92 %)
DSP 0/140 (0 %)

BRAM 0/220 (0 %)

Resource for four ABUs consumption on the Zyng-7020.
20

Bandwidth-driven analysis

FPGA dataflow accelerators

Real-world HW-tasks are very different from software tasks!

e Hardware activities implemented using programmable logic;
e Internal control logic is typically based on state machines;

e Clock-level regular and predictable patterns of BUS transactions.

Name .
™ slot_0 ;| RDATA
™ slot_0: WDATA
®™siot_1 :| RDATA
™ slot_1 ;| WDATA

Name t ‘ 396 397 EEE |sss 200 901 202 203 |s04 |ses
™ slot_0: RDATA | 5.. 1cldfdca 5523986b 11373652 55de6943 273274d1 4738d01eb 49fo6cds 1b9ee39a 671b5eaf Sccaz2des
N|s|ot_o :| WDATA | 0. 6f47343b 5d0cad0s 75f11bag 30fca223 7aadoze7 6f326dd2 60513d50 22cde3sf 2649b096 16822193
™ slot_1: RDATA | 7.. sefaffdb 13leS9dea 23656023 319e7256 29a764d4 deblfcs2 316524fd 3bae039c 0dbe4233 ledbdcbb
™ slot_1:| WDATA | ©. . 004cdcdc 00000000 00303030 00lclclc 00000000 00505050 00646464 ooffffff 00203030 007f7F7f

Execution trace of a FIR and Sobel HW-tasks on the Zyng-7020
(Screenshot from Xilinx Vivado 2017.4)

22

Bandwidth-driven analysis

Analyzing the BUS contention experienced by HW-tasks is
simpler than analyzing the memory contention experienced
by SW-tasks on multicores

e HW-Tasks can be treated as parallel computational activities that
fluidly contend the bandwidth supplied by the AXI BUS.

e AXI sink modules on FPGAs typically return transactions in order.

o On many SoC FPGA platforms each port of the FPGA-PS
interface return AXI transactions in order;

o On-fabric AXI BRAMs memories return transactions in order.

HW-Task A R
5o | B
HW-Task B

52

23

Model of an AXI system

o Asetof nperiodic HW-Tasks I'= {7, ..., 7 }.
o 7. is characterized by: a bandwidth demand Dl. ;
o A number of per-job transactions Nl ;
o and a period T ;
o Asetofn ABUsA=1{4,,...,4 };
o Al. is characterized by a budget B and a period P,
e Aslave sink.S;
o Characterized by a supply S (E.g., FPGA-PS ports or BRAM mem).

Y
w

AXI
Inter- | M
connect

Y
w

Y
wn

Sink

24

Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;

25

Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:

D/S| N 7 |
T, 4/6| 6 TzT
z, 4/6| 18 z, [
Ug 4/6| 34 | -
=
E ...
3
S |
S
AQ

0 time 26

Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:

D/S| N g

7, 4/6| 6 I —

7, 4/6| 18 A —

7, 4/6| 34| -
=
E ...
3
S | B
N
Q

0 time 27

Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:

o When a HW-Task terminates, the spare bandwidth can be
“reclaimed” by other HW-Tasks;

D./S| N, oo
T, 4/6| 6 EN
T, 4/6| 18 7, I
2 4/6| 34 | -
<
E ...
<
T | bR
S
AQ

0 time 28

Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:

o When a HW-Task terminates, the spare bandwidth can be
“reclaimed” by other HW-Tasks;

o HW-tasks may be unable to fully utilize the bus bandwidth when
they reach their maximum bandwidth demand.

D/S| N, g
7, 4/6| 6 U
7, 4/6| 18 7, |
& 4/6| 34 | . -

0 time 29

Analysis issues

e A Bandwidth-driven response-time analysis for HW-tasks cannot
be accomplished by leveraging classical techniques used for
periodic real-time tasks;

o Critical instant of a HW-task may not occur when it is
synchronously released together with all other HW-tasks.

30

Analysis issues: critical instant

e (Consider the following example: D,

| =
-~

) 3/6| 24 11
(2} 3/6| 30 15

T | T [.
2] 2 : -
z, 5 : X
- ot
ol SEEEENEEENES S— R AN e
3 3
§ §
Q Qq
0 3 7 9 11 13 t 2 0 3 7 9 1112 t
Synchronous release. 7, Is released 2 time units earlier.

31

Analysis issues: critical instant

e (Consider the following example: D,

| =
-~

if 7, is released 2 time units earlier

. . T
7, response time increases! 2 3/6) 24|

T 3/6| 30 15

Tl -
‘L'2 .
‘L'3 -
- ot
ol SEEEENEEENES S— R AN e
3 3
§ §
Q Qq
0 3 7 9 11 13 t 2 0 3 7 9 1112 t
Synchronous release. 7, Is released 2 time units earlier.

32

Bandwidth-driven response-time analysis

e The ABUs can be leveraged to improve predictability and help
bounding HW-tasks’ response times.

o Under the assumption that P, « min {T }, ABUs act as fluid
bandwidth regulators.

m e.g., 128 FPGA clock cycles (1.28 ps) vs 10 milliseconds;

Tl M » S
T M > S AXI
2 Inter- | M * S | Sink
connect
Tn M S
33

Bandwidth-driven response-time analysis

e The ABUs can be leveraged to improve predictability and help
bounding HW-tasks’ response times.

o Under the assumption that P, « min {T }, ABUs act as fluid
bandwidth regulators.

m e.g., 128 FPGA clock cycles (1.28 ps) vs 10 milliseconds;

m As the ABUs do not introduce extra latencies, there is no
particular penalty in using a small period Pl.;

o All ABUs are synchronized (same clock).

Tl M » S
T M > S AXI
2 Inter- | M * S | Sink
connect
Tn M S
34

Bandwidth-driven response-time analysis

e As long as the ABU budgets are guaranteed:

o Each ABU offers to the corresponding HW-Task 7.a virtual
bandwidth supply of Bi/ Pl. irrespectively of the behaviour of
the other HW-Tasks.

o As the ABU periods can be small, there’s no relevant benefit in
selecting heterogeneous periods, hence P, = P

T M ~ S | Virtual Supply B]/P

T M | S| \Virtual Supply B,/ P

T M = S| Virtual Supply Bn/P

35

Bandwidth-driven response-time analysis

e Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

36

Bandwidth-driven response-time analysis

e Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

Assign to each HW-task 7. the minimum budget 5 to
complete within its deadline.

m Easy, for each 7. assign B. such that:

N;-P

B; = ==

37

Bandwidth-driven response-time analysis

e Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

Assign to each HW-task 7. the minimum budget 5 to
complete within its deadline.

m Easy, for each 7. assign B. such that:

N;-P
1;

B; =

Check that system (Interconnect and Sink) can provide to
each HW-Task’s enough bandwidth to exhaust all ABUs

budgets {Bl.} within the period P.
m It’s necessary to perform a bandwidth-driven analysis
within the scheduling window of one ABU period /0, P/.

m Schedulability can be tested using an iterative
procedure.

38

Analysis with ABUs

e The schedulability test procedure “unrolls” the execution of the
HW-Tasks just within one ABU period.

o Check if the Sink can provide to each HW-Task’s enough
bandwidth to exhaust all ABUs budgets {Bi} within the period P.

T-A4,(4/7)

|

|

\ |

T,-4, (5/7) | |
|

T,-A4,(4/7)

1,4, (1/7)

Feasible

'
|

oy
||

I~

N

Experimental results

40

Experimental evaluation

e [he ABU has been experimentally evaluated on real platforms
such as the Zynq-7020 (and Zynq-7010) using realistic workload.

o HW-Tasks from Xilinx IP library, HLS-generated workload, etc.
e Objectives of the experimental evaluation:
1) Show that the ABU works on a real hardware;

2) Show that the proposed analysis is experimentally tight.

ZYBO board (Zyng-7010) PYNQ board (Zyng-7020)

41

Experimental evaluation: bandwidth reservation

e (Goal: test the effectiveness of the reservation mechanism.
e Setup: four DMA-like HW-tasks with different demand rates:

HW-Task 1
2 tr/clk

Under
analysis

M

FPGA
-PS

HW-Task 2
2 tr/clk

M AXI

Inter- | M ----» DRAM
connect Memory

A 4

HW-Task 3
1 tr/clk

M| Inter-

face

HW-Task 4
2/3 tr/clk

M |

42

Experimental evaluation: bandwidth reservation

e (Goal: test the effectiveness of the reservation mechanism.
e Setup: four DMA-like HW-tasks with different demand rates:

o Swap one or more DMA-like HW-tasks with a more demanding
version to simulate a misbehaving HW-Task.

Under g\tN/Tl?(Sk 1
analysis e M
HW-Task 2 FPPGSA
2 tr/clk -
v AX
Inter- | M > L---» DRAM
connect Memory

M—1s | M

Inter-
face

M—1s |

43

Experimental evaluation: bandwidth reservation

e Effect of the misbehaving HW-tasks on the HW-task under analysis.

m Without ABU reservation m With ABU reservation

No HW-task
misb.

1 HW-task misb.

2 HW-tasks misb.

0 2 4 6

Longest-observed response time of HW-task under analysis (ms)

44

Experimental evaluation: bandwidth reservation

e Effect of the misbehaving HW-tasks on the HW-task under analysis.

~
Traffic shaping
(at the expenses
of other HW-tasks)
/

m Without ABU reservation m With ABU reservat

No HW-task
misb.

1 HW-task misb.

2 HW-tasks misb.

0 2 4 6

Longest-observed response time of HW-task under analysis (ms)

45

Experimental evaluation: case study

e (Goal: test the analysis using realistic HW-tasks with different
budget configurations.

e Setup: one FIR (filter) HW-task, one Sobel (image filter) HW-task, and
2 DMA-like HW-tasks.

HW-Task 1
Sobel
1.9 tr/clk | M

FPGA
-PS

HW-Task 2
FIR
2tr/clk | M|

AXI
Inter- | M ---» DRAM

connect Memory

Y

HW-Task 3
DMA
2tr/clk | M|

Inter-
face

HW-Task 4
DMA
2tr/clkk | M|

46

Experimental evaluation: case study

more bandwidth to Sobel and FIR.

DMA-1
(B=64)

DMA-2
(B=80)

Sobel
(B=160)

FIR
(B=176)

B Longest observed

o
N

Configuration 1:

8.39

6

.m!
>

3.81

4 6 8

10.17
10.49

Response times (ms)

By analysis

DMA-1
(B=128)

DMA-2
(B=144)

Sobel
(B=112)

FIR (B=96)

o

Configuration 2:

more bandwidth to DMA-1 and DMA-2.

6.97
7.8

6.99

2 Z 6 8

Response time (ms)

B Longest observed By analysis

More budget configurations in the paper... 47

Experimental evaluation: case study

Configuration 1: Configuration 2:
more bandwidth to Sobel and FIR. more bandwidth to DMA-1 and DMA-2.

\

DMA- DMA-

(B=64) 008 (B=128) Sol_oel has _not a
strictly uniform
transaction rate

DMA-2 &1 DMA-2

(B=80) 8.39 (B=144) ‘_/

Sobel [N Sobel il
(B=160) 5.46 (B=112) 7.8
iR [T RGeS
(B=176) 3.81 6.99
0 2 4 6 8 10 12 0 2 4 6 8
Response times (ms) Response time (ms)
B Longest observed © By analysis B Longest observed © By analysis

More budget configurations in the paper... 48

Conclusions

e The ABU is a hardware-based reservation mechanism for the
AMBA AXI bus aimed at isolating hardware accelerators
implemented on FPGAs.

e Leveraging the ABU, a set of HW-tasks can be analyzed using the
proposed response-time in the bandwidth domain.

e The ABU has been implemented and validated on the Xilinx
Zynq-7020 and Zynq-7010 platforms to demonstrate its practical
applicability.

HW-Task

52

AXI
BUS

49

Thank you for your attention

marco.pagani@sssup.it

50

