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Background



Background

e Heterogeneous platforms are popular to meet computational
requirements while overcoming scaling and energy issues.

e System-on-a-chip (SoC) platforms including an FPGA are
extensible systems:

o Allow offloading computational activities from CPUs to
HW accelerators deployed on the FPGA fabric.
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DMA / bus mastering accelerators

e This work considers HW accelerators performing the same

computational activity (e.g. processing a frame) at each run.
Hence, they are referred to as HW-tasks.

e High-performance HW accelerators implement bus mastering
/ DMA to directly access data in the system memory;
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Why FPGA-based acceleration for real-time systems?

Pros

Cons

Very predictable clock-level behavior;

Possibility to explicitly control the behaviour of the
accelerators;

High-performance on SIMD / Dataflow operations;

Can be swapped at run-time using partial reconfiguration.

Developing HW accelerators for FPGAs requires specific
knowledge that is typically not part of the background of
SW programmers.

o Even modern tools like high-level synthesis are not so
straightforward to use.

Less libraries and SW stacks are available with respect to
other platforms (e.g., GPUs).




BUS contention problem

e To support multiple HW-tasks, an AXI Interconnect is required
for arbitrating transactions arbitration.

o FPGA to Processing System (PS) AXI ports provide a direct
path to reach the DRAM memory controller.
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BUS contention problem

e To support multiple HW-tasks, an AXI Interconnect is required
for arbitrating transactions arbitration.

o FPGA to Processing System (PS) AXI ports provide a direct
path to reach the DRAM memory controller.

e To enable a sound timing analysis of HW-tasks on FPGA, it is
crucial to pay attention at how bus transaction are managed.
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BUS contention problem

e Stock Interconnects implement Round Robin arbitration.

o Designed for throughput.

o Difficult to explicitly control the response times of HW-Tasks
(e.g., priority-based arbitration is deprecated in Xilinx platforms).

o No protection form misbehaving HW-tasks.
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Other issues with HW-tasks: heterogeneous sources

e In practice, HW-tasks may come from different sources:
o Some HW-Tasks may be designed with HLS
m Implicit configuration of bus transactions;
o Some others may be closed-source (no access to HDL code).

e Even if we assume that no HW-tasks can misbehave, it may be
difficult to control the bus bandwidth demanded by each HW-Task
at integration time.
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Other issues with HW-tasks: address space protection

e Due to the AXI master interface, HW-Tasks may access the whole
physical memory without any restriction (including OS kernel mem).

e This poses serious threats to system safety.
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Other issues with HW-tasks: address space protection

e Due to the AXI master interface, HW-Tasks may access the whole
physical memory without any restriction (including OS kernel mem).

e This poses serious threats to system safety.
o What if a faulty/bugged HW-Task skews OS/proc mem?
o A malicious HW-Task could be purposely designed to do so!

o A protection/containerization mechanism could be useful.
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The AXI Budgeting Unit (ABU)



Contribution of this work: the AXI Budgeting Unit (ABU)

e The ABU restores the system predictability by regulating the
BUS bandwidth contention.

o Provides a BUS bandwidth reservation mechanism for
HW-tasks on FPGA;

o Supervises BUS transactions for accesses control.

o Ensures temporal and spatial isolation for HW-tasks.
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The ABU is a supervision mechanism for HW-tasks

e Provides a confined environment allowing for a safe integration of
first- and third-party HW-Tasks.

o Allows to explicitly control the bus bandwidth reserved to
each HW-Task;

o Shields the system from possible misbehaving HW-Tasks.
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How does it work? Internals

e The ABU monitors all AXI channels (in parallel):

o Checks and compares the address of transactions;

o Senses and counts transactions;

e AXI channels are routed through decoupler blocks that
can stop the HW-task from issuing transactions.
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How does it work? Temporal isolation

e Each ABU has a budget b,
o [Each transaction passing on the AXI link consumes a budget unit.

o The budget is periodically replenished to the maximum value BZ.
every P clock cycles.

e When the budget reaches zero, the HW-Task is interdicted from issuing
transactions (disconnecting the handshake signals valid/ready).
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How does it work? Spatial isolation

e Each ABU allows specifying up to 8 address segments.
o Each segment is defined by a base address and a size;
o The ABU monitors the transactions issued by the HW-Task.

e Ifthe HW-Task issues a transaction outside of the 8 segments, the
ABU blocks the HW-Task and notifies the processor (interrupt).
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Overheads and Resource consumption

e The ABU does not introduce any additional latency.

o Temporal overhead free (no additional delay).
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Overheads and Resource consumption

e The ABU does not introduce any additional latency.
o Temporal overhead free (no additional delay).

e Key observation: the budget replenishment period can be
arbitrarily small (a few clock cycles) without particular penalties

o Differently from software reservation servers!
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Overheads and Resource consumption

e The ABU does not introduce any additional latency.
o Temporal overhead free (no additional delay).

e Key observation: the budget replenishment period can be
arbitrarily small (a few clock cycles) without particular penalties

o Differently from software reservation servers!
e Low FPGA resource consumption.

o Described in VHDL: ABUs can be integrated into any design.

Resource type | 4 ABUs consumption
LUT 2023 / 53200 (3.80 %)
FF 2045 / 106400 (1.92 %)
DSP 0/140 (0 %)

BRAM 0/220 (0 %)

Resource for four ABUs consumption on the Zyng-7020.
20



Bandwidth-driven analysis



FPGA dataflow accelerators

Real-world HW-tasks are very different from software tasks!

e Hardware activities implemented using programmable logic;
e Internal control logic is typically based on state machines;

e Clock-level regular and predictable patterns of BUS transactions.

Name .
™ slot_0 ;| RDATA
™ slot_0: WDATA
®™siot_1 :| RDATA
™ slot_1 ;| WDATA

Name t ‘ 396 397 EEE |sss 200 901 202 203 |s04 |ses
™ slot_0: RDATA | 5.. 1cldfdca 5523986b 11373652 55de6943 273274d1 4738d01eb 49fo6cds 1b9ee39a 671b5eaf Sccaz2des
N|s|ot_o :| WDATA | 0. 6f47343b 5d0cad0s 75f11bag 30fca223 7aadoze7 6f326dd2 60513d50 22cde3sf 2649b096 16822193
™ slot_1: RDATA | 7.. sefaffdb 13leS9dea 23656023 319e7256 29a764d4 deblfcs2 316524fd 3bae039c 0dbe4233 ledbdcbb
™ slot_1:| WDATA | ©. . 004cdcdc 00000000 00303030 00lclclc 00000000 00505050 00646464 ooffffff 00203030 007f7F7f

Execution trace of a FIR and Sobel HW-tasks on the Zyng-7020
(Screenshot from Xilinx Vivado 2017.4)
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Bandwidth-driven analysis

Analyzing the BUS contention experienced by HW-tasks is
simpler than analyzing the memory contention experienced
by SW-tasks on multicores

e HW-Tasks can be treated as parallel computational activities that
fluidly contend the bandwidth supplied by the AXI BUS.

e AXI sink modules on FPGAs typically return transactions in order.

o On many SoC FPGA platforms each port of the FPGA-PS
interface return AXI transactions in order;

o On-fabric AXI BRAMs memories return transactions in order.
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Model of an AXI system

o Asetof nperiodic HW-Tasks I'= {7, ..., 7 }.
o 7. is characterized by: a bandwidth demand Dl. ;
o A number of per-job transactions Nl ;
o and a period T ;
o Asetofn ABUsA=1{4,,...,4 };
o Al. is characterized by a budget B and a period P,
e Aslave sink.S;
o Characterized by a supply S (E.g., FPGA-PS ports or BRAM mem).
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Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
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Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:
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Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:
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Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:

o When a HW-Task terminates, the spare bandwidth can be
“reclaimed” by other HW-Tasks;
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Bandwidth-driven response-time analysis

e The BUS bandwidth is “elastically” shared between HW-Tasks;
e An example without the ABUs:

o When a HW-Task terminates, the spare bandwidth can be
“reclaimed” by other HW-Tasks;

o HW-tasks may be unable to fully utilize the bus bandwidth when
they reach their maximum bandwidth demand.
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Analysis issues

e A Bandwidth-driven response-time analysis for HW-tasks cannot
be accomplished by leveraging classical techniques used for
periodic real-time tasks;

o Critical instant of a HW-task may not occur when it is
synchronously released together with all other HW-tasks.
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Analysis issues: critical instant

e (Consider the following example: D,
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Analysis issues: critical instant

e (Consider the following example: D,
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Bandwidth-driven response-time analysis

e The ABUs can be leveraged to improve predictability and help
bounding HW-tasks’ response times.

o Under the assumption that P, « min {T }, ABUs act as fluid
bandwidth regulators.

m e.g., 128 FPGA clock cycles (1.28 ps) vs 10 milliseconds;
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Bandwidth-driven response-time analysis

e The ABUs can be leveraged to improve predictability and help
bounding HW-tasks’ response times.

o Under the assumption that P, « min {T }, ABUs act as fluid
bandwidth regulators.

m e.g., 128 FPGA clock cycles (1.28 ps) vs 10 milliseconds;

m As the ABUs do not introduce extra latencies, there is no
particular penalty in using a small period Pl.;

o All ABUs are synchronized (same clock).
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Bandwidth-driven response-time analysis

e As long as the ABU budgets are guaranteed:

o Each ABU offers to the corresponding HW-Task 7.a virtual
bandwidth supply of Bi/ Pl. irrespectively of the behaviour of
the other HW-Tasks.

o As the ABU periods can be small, there’s no relevant benefit in
selecting heterogeneous periods, hence P, = P

T M ~ S | Virtual Supply B]/P

T M | S| \Virtual Supply B,/ P

T M = S| Virtual Supply Bn/P
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Bandwidth-driven response-time analysis

e Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:
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Bandwidth-driven response-time analysis

e Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

Assign to each HW-task 7. the minimum budget 5 to
complete within its deadline.

m Easy, for each 7. assign B. such that:

N;-P

B; = ==
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Bandwidth-driven response-time analysis

e Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

Assign to each HW-task 7. the minimum budget 5 to
complete within its deadline.

m Easy, for each 7. assign B. such that:

N;-P
1;

B; =

Check that system (Interconnect and Sink) can provide to
each HW-Task’s enough bandwidth to exhaust all ABUs

budgets {Bl.} within the period P.
m It’s necessary to perform a bandwidth-driven analysis
within the scheduling window of one ABU period /0, P/.

m Schedulability can be tested using an iterative
procedure.
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Analysis with ABUs

e The schedulability test procedure “unrolls” the execution of the
HW-Tasks just within one ABU period.

o Check if the Sink can provide to each HW-Task’s enough
bandwidth to exhaust all ABUs budgets {Bi} within the period P.
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Experimental results
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Experimental evaluation

e [he ABU has been experimentally evaluated on real platforms
such as the Zynq-7020 (and Zynq-7010) using realistic workload.

o HW-Tasks from Xilinx IP library, HLS-generated workload, etc.
e Objectives of the experimental evaluation:
1) Show that the ABU works on a real hardware;

2) Show that the proposed analysis is experimentally tight.

ZYBO board (Zyng-7010) PYNQ board (Zyng-7020)
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Experimental evaluation: bandwidth reservation

e (Goal: test the effectiveness of the reservation mechanism.
e Setup: four DMA-like HW-tasks with different demand rates:
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Experimental evaluation: bandwidth reservation

e (Goal: test the effectiveness of the reservation mechanism.
e Setup: four DMA-like HW-tasks with different demand rates:

o Swap one or more DMA-like HW-tasks with a more demanding
version to simulate a misbehaving HW-Task.

Under g\tN/Tl?(Sk 1
analysis e M
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Experimental evaluation: bandwidth reservation

e Effect of the misbehaving HW-tasks on the HW-task under analysis.

m Without ABU reservation m With ABU reservation

No HW-task
misb.

1 HW-task misb.

2 HW-tasks misb.

0 2 4 6

Longest-observed response time of HW-task under analysis (ms)
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Experimental evaluation: bandwidth reservation

e Effect of the misbehaving HW-tasks on the HW-task under analysis.

~
Traffic shaping
(at the expenses
of other HW-tasks)
/

m Without ABU reservation m With ABU reservat

No HW-task
misb.

1 HW-task misb.

2 HW-tasks misb.

0 2 4 6

Longest-observed response time of HW-task under analysis (ms)
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Experimental evaluation: case study

e (Goal: test the analysis using realistic HW-tasks with different
budget configurations.

e Setup: one FIR (filter) HW-task, one Sobel (image filter) HW-task, and
2 DMA-like HW-tasks.
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Experimental evaluation: case study

more bandwidth to Sobel and FIR.
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More budget configurations in the paper... 47



Experimental evaluation: case study

Configuration 1: Configuration 2:
more bandwidth to Sobel and FIR. more bandwidth to DMA-1 and DMA-2.

\

DMA- DMA-

(B=64) 008 (B=128) Sol_oel has _not a
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DMA-2 &1 DMA-2
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iR [T RGeS
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More budget configurations in the paper... 48



Conclusions

e The ABU is a hardware-based reservation mechanism for the
AMBA AXI bus aimed at isolating hardware accelerators
implemented on FPGAs.

e Leveraging the ABU, a set of HW-tasks can be analyzed using the
proposed response-time in the bandwidth domain.

e The ABU has been implemented and validated on the Xilinx
Zynq-7020 and Zynq-7010 platforms to demonstrate its practical
applicability.
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