
A Bandwidth Reservation
Mechanism for AXI-Based
Hardware Accelerators on FPGAs
Marco Pagani, Enrico Rossi, Alessandro Biondi,
Mauro Marinoni, Giuseppe Lipari, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy
Université de Lille, Lille, France

1

Background

2

Background

● Heterogeneous platforms are popular to meet computational
requirements while overcoming scaling and energy issues.

● System-on-a-chip (SoC) platforms including an FPGA are
extensible systems:

○ Allow offloading computational activities from CPUs to
HW accelerators deployed on the FPGA fabric.

FPGA

AXI
BUS

DRAM
Memory

Memory controller

Cache

CPU
HW-Accelerator

HW-Accelerator

CPU

CPU CPU

3

DMA / bus mastering accelerators

● This work considers HW accelerators performing the same
computational activity (e.g. processing a frame) at each run.
Hence, they are referred to as HW-tasks.

● High-performance HW accelerators implement bus mastering
/ DMA to directly access data in the system memory;

Corner Detector
HW-Task

Memory

4

Fetch from
memory

Write back
to memory

Why FPGA-based acceleration for real-time systems?

5

● Very predictable clock-level behavior;

● Possibility to explicitly control the behaviour of the
accelerators;

● High-performance on SIMD / Dataflow operations;

● Can be swapped at run-time using partial reconfiguration.

Pros

● Developing HW accelerators for FPGAs requires specific
knowledge that is typically not part of the background of
SW programmers.

○ Even modern tools like high-level synthesis are not so
straightforward to use.

● Less libraries and SW stacks are available with respect to
other platforms (e.g., GPUs).

Cons

BUS contention problem

6

PSFPGA

DRAM
Memory

DRAM controller

Cache

PS
AXI

Inter-
connect

FPGA
-PS

Inter-
face

S

HW-Task

M

HW-Task

M

HW-Task

M

AXI

Inter-
connect

S

S

S

M

GP Core

GP Core

GP Core

GP Core

● To support multiple HW-tasks, an AXI Interconnect is required
for arbitrating transactions arbitration.

○ FPGA to Processing System (PS) AXI ports provide a direct
path to reach the DRAM memory controller.

BUS contention problem

7

PSFPGA

DRAM
Memory

DRAM controller

Cache

PS
AXI

Inter-
connect

FPGA
-PS

Inter-
face

S

HW-Task

M

HW-Task

M

HW-Task

M

AXI

Inter-
connect

S

S

S

M

GP Core

GP Core

GP Core

GP Core

● To support multiple HW-tasks, an AXI Interconnect is required
for arbitrating transactions arbitration.

○ FPGA to Processing System (PS) AXI ports provide a direct
path to reach the DRAM memory controller.

● To enable a sound timing analysis of HW-tasks on FPGA, it is
crucial to pay attention at how bus transaction are managed.

BUS contention problem

● Stock Interconnects implement Round Robin arbitration.

○ Designed for throughput.

○ Difficult to explicitly control the response times of HW-Tasks
(e.g., priority-based arbitration is deprecated in Xilinx platforms).

○ No protection form misbehaving HW-tasks.

PSFPGA

DRAM
Memory

DRAM controller

Cache

PS
AXI

Inter-
connect

FPGA
-PS

Inter-
face

S

AXI

Inter-
connect

S

S

S

M

GP Core

GP Core

GP Core

GP Core

8

HW-Task

M

HW-Task

M

HW-Task

M

Other issues with HW-tasks: heterogeneous sources

● In practice, HW-tasks may come from different sources:

○ Some HW-Tasks may be designed with HLS

■ Implicit configuration of bus transactions;

○ Some others may be closed-source (no access to HDL code).

● Even if we assume that no HW-tasks can misbehave, it may be
difficult to control the bus bandwidth demanded by each HW-Task
at integration time.

FPGA

DRAM
Memory

FPGA
-PS

Inter-
face

S

HW-Task
(HLS)

M

HW-Task
(RTL)

M

AXI

Inter-
connect

S

HW-Task
(Closed)

M

S

S

M

9

FPGA

Other issues with HW-tasks: address space protection

● Due to the AXI master interface, HW-Tasks may access the whole
physical memory without any restriction (including OS kernel mem).

● This poses serious threats to system safety.

Phy. address space

Kernel memory

DRAM
Memory

FPGA
-PS

Inter-
face

S

HW-Task
(HLS)

M

HW-Task
(RTL)

M

AXI

Inter-
connect

S

S

S

M

HW-Task
(Closed)

M

10

FPGA

Other issues with HW-tasks: address space protection

● Due to the AXI master interface, HW-Tasks may access the whole
physical memory without any restriction (including OS kernel mem).

● This poses serious threats to system safety.

○ What if a faulty/bugged HW-Task skews OS/proc mem?

○ A malicious HW-Task could be purposely designed to do so!

○ A protection/containerization mechanism could be useful.

Phy. address space

Kernel memory

DRAM
Memory

FPGA
-PS

Inter-
face

S

HW-Task
(HLS)

M

HW-Task
(RTL)

M

AXI

Inter-
connect

S

S

S

M

HW-Task
(Faulty!)

M

11

The AXI Budgeting Unit (ABU)

12

Contribution of this work: the AXI Budgeting Unit (ABU)

HW-Task

AXI
BUS

ABU

● The ABU restores the system predictability by regulating the
BUS bandwidth contention.

○ Provides a BUS bandwidth reservation mechanism for
HW-tasks on FPGA;

○ Supervises BUS transactions for accesses control.

○ Ensures temporal and spatial isolation for HW-tasks.

13

The ABU is a supervision mechanism for HW-tasks

FPGA

AXI

Inter-
connect

● Provides a confined environment allowing for a safe integration of
first- and third-party HW-Tasks.

○ Allows to explicitly control the bus bandwidth reserved to
each HW-Task;

○ Shields the system from possible misbehaving HW-Tasks.

S

S

S

M

ABU

S M

ABU

S M

ABU

S M

FPGA
-PS

Inter-
face

S DRAM
Memory

14

HW-Task
(HLS)

M

HW-Task
(RTL)

M

HW-Task
(Closed)

M

How does it work? Internals

15

● The ABU monitors all AXI channels (in parallel):

○ Checks and compares the address of transactions;

○ Senses and counts transactions;

● AXI channels are routed through decoupler blocks that
can stop the HW-task from issuing transactions.

HW-Task

M

Interconnect
/ Sink

S

Write address channel
Read address channel

Write data channel
Read data channel

Budget and
period

registers

Transaction
Counter

Decouplers

EMEM
Buffers
bases

registers

Buffers
offsets

registers

Read
address

comparator

Write
address

comparator

How does it work? Temporal isolation

● Each ABU has a budget bi

○ Each transaction passing on the AXI link consumes a budget unit.

○ The budget is periodically replenished to the maximum value Bi
every P clock cycles.

● When the budget reaches zero, the HW-Task is interdicted from issuing
transactions (disconnecting the handshake signals valid/ready).

AXI slave

S

ABU

S M

Tr.

bi

0 2PP t

t

16

HW-Task

M

How does it work? Spatial isolation

● Each ABU allows specifying up to 8 address segments.

○ Each segment is defined by a base address and a size;

○ The ABU monitors the transactions issued by the HW-Task.

● If the HW-Task issues a transaction outside of the 8 segments, the
ABU blocks the HW-Task and notifies the processor (interrupt).

Phy. address space

R0

R1

R7

17

AXI slave

S

ABU

S M

HW-Task

M

Overheads and Resource consumption

18

● The ABU does not introduce any additional latency.

○ Temporal overhead free (no additional delay).

Overheads and Resource consumption

19

● The ABU does not introduce any additional latency.

○ Temporal overhead free (no additional delay).

● Key observation: the budget replenishment period can be
arbitrarily small (a few clock cycles) without particular penalties

○ Differently from software reservation servers!

Overheads and Resource consumption

20

● The ABU does not introduce any additional latency.

○ Temporal overhead free (no additional delay).

● Key observation: the budget replenishment period can be
arbitrarily small (a few clock cycles) without particular penalties

○ Differently from software reservation servers!

● Low FPGA resource consumption.

○ Described in VHDL: ABUs can be integrated into any design.

Resource type 4 ABUs consumption

LUT 2023 / 53200 (3.80 %)

FF 2045 / 106400 (1.92 %)

DSP 0 / 140 (0 %)

BRAM 0 / 220 (0 %)

Resource for four ABUs consumption on the Zynq-7020.

Bandwidth-driven analysis

21

FPGA dataflow accelerators

● Hardware activities implemented using programmable logic;

● Internal control logic is typically based on state machines;

● Clock-level regular and predictable patterns of BUS transactions.

Real-world HW-tasks are very different from software tasks!

22

Execution trace of a FIR and Sobel HW-tasks on the Zynq-7020
(Screenshot from Xilinx Vivado 2017.4)

Bandwidth-driven analysis

● HW-Tasks can be treated as parallel computational activities that
fluidly contend the bandwidth supplied by the AXI BUS.

● AXI sink modules on FPGAs typically return transactions in order.

○ On many SoC FPGA platforms each port of the FPGA-PS
interface return AXI transactions in order;

○ On-fabric AXI BRAMs memories return transactions in order.

Analyzing the BUS contention experienced by HW-tasks is
simpler than analyzing the memory contention experienced

by SW-tasks on multicores

HW-Task A

23

HW-Task B

Model of an AXI system

● A set of n periodic HW-Tasks Γ = {τ1, … , τn}.
○ τi is characterized by: a bandwidth demand Di ;
○ A number of per-job transactions Ni ;

○ and a period Ti ;
● A set of n ABUs A = {A1, … , An};

○ Ai is characterized by a budget Bi and a period Pi
● A slave sink S;

○ Characterized by a supply S (E.g., FPGA-PS ports or BRAM mem).

τ1 M

AXI
Inter-

connect

S

S

S

SinkSM

A1S M

τ2 M A2S M

τn M AnS M 24

Bandwidth-driven response-time analysis

● The BUS bandwidth is “elastically” shared between HW-Tasks;

25

Bandwidth-driven response-time analysis

0 26

τ1

τ2

τ3

Di / S Ni

τ1 4 / 6 6
τ2 4 / 6 18
τ3 4 / 6 34

Ba
nd

w
id

th

● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

time

Bandwidth-driven response-time analysis

0 27

τ1

τ2

τ3

Di / S Ni

τ1 4 / 6 6
τ2 4 / 6 18
τ3 4 / 6 34

Ba
nd

w
id

th

● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

time

Bandwidth-driven response-time analysis

● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

○ When a HW-Task terminates, the spare bandwidth can be
“reclaimed” by other HW-Tasks;

0 28

τ1

τ2

τ3

Di / S Ni

τ1 4 / 6 6
τ2 4 / 6 18
τ3 4 / 6 34

Ba
nd

w
id

th

time

Bandwidth-driven response-time analysis

● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

○ When a HW-Task terminates, the spare bandwidth can be
“reclaimed” by other HW-Tasks;

○ HW-tasks may be unable to fully utilize the bus bandwidth when
they reach their maximum bandwidth demand.

0 29

τ1

τ2

τ3

Di / S Ni

τ1 4 / 6 6
τ2 4 / 6 18
τ3 4 / 6 34

Ba
nd

w
id

th

time

Analysis issues

● A Bandwidth-driven response-time analysis for HW-tasks cannot
be accomplished by leveraging classical techniques used for
periodic real-time tasks;

○ Critical instant of a HW-task may not occur when it is
synchronously released together with all other HW-tasks.

30

Analysis issues: critical instant

Di Ni Ti

τ1 3 / 6 6 9
τ2 3 / 6 24 11
τ3 3 / 6 30 15

τ1

τ2

τ3

0-2 3 7 9 t0 t

τ1

τ2

τ3

3 9 11 137

● Consider the following example:

31

Synchronous release. τ2 is released 2 time units earlier.

Ba
nd

w
id

th

Ba
nd

w
id

th

11 12

Analysis issues: critical instant

Di Ni Ti

τ1 3 / 6 6 9
τ2 3 / 6 24 11
τ3 3 / 6 30 15

τ1

τ2

τ3

0-2 3 7 9 t0 t

τ1

τ2

τ3

3 9 11 137

● Consider the following example:

32

Synchronous release. τ2 is released 2 time units earlier.

if τ2 is released 2 time units earlier
τ3 response time increases!

Ba
nd

w
id

th

Ba
nd

w
id

th

11 12

Bandwidth-driven response-time analysis

● The ABUs can be leveraged to improve predictability and help
bounding HW-tasks’ response times.

○ Under the assumption that Pi « min {Ti}, ABUs act as fluid
bandwidth regulators.

■ e.g., 128 FPGA clock cycles (1.28 µs) vs 10 milliseconds;

τ1 M

AXI
Inter-

connect

S

S

S

SinkSM

A1S M

τ2 M A2S M

τn M AnS M
33

● The ABUs can be leveraged to improve predictability and help
bounding HW-tasks’ response times.

○ Under the assumption that Pi « min {Ti}, ABUs act as fluid
bandwidth regulators.

■ e.g., 128 FPGA clock cycles (1.28 µs) vs 10 milliseconds;

■ As the ABUs do not introduce extra latencies, there is no
particular penalty in using a small period Pi ;

○ All ABUs are synchronized (same clock).

Bandwidth-driven response-time analysis

τ1 M

AXI
Inter-

connect

S

S

S

SinkSM

A1S M

τ2 M A2S M

τn M AnS M
34

Virtual Supply Bn / P

Virtual Supply B2 / P

Bandwidth-driven response-time analysis

● As long as the ABU budgets are guaranteed:

○ Each ABU offers to the corresponding HW-Task τi a virtual
bandwidth supply of Bi / Pi irrespectively of the behaviour of
the other HW-Tasks.

○ As the ABU periods can be small, there’s no relevant benefit in
selecting heterogeneous periods, hence Pi = P

τ1 M Virtual Supply B1 / P S

τ2 M S

τn M S

35

Bandwidth-driven response-time analysis

● Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

36

Bandwidth-driven response-time analysis

● Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

○ Assign to each HW-task τi the minimum budget Bi to
complete within its deadline.

■ Easy, for each τi assign Bi such that:

37

1

Bandwidth-driven response-time analysis

● Hence, the problem of analyzing a set of HW-Tasks supervised by
ABUs can be decomposed in two steps:

○ Assign to each HW-task τi the minimum budget Bi to
complete within its deadline.

■ Easy, for each τi assign Bi such that:

○ Check that system (Interconnect and Sink) can provide to
each HW-Task’s enough bandwidth to exhaust all ABUs
budgets { Bi } within the period P.

■ It’s necessary to perform a bandwidth-driven analysis
within the scheduling window of one ABU period [0, P].

■ Schedulability can be tested using an iterative
procedure.

38

1

2

Analysis with ABUs

● The schedulability test procedure “unrolls” the execution of the
HW-Tasks just within one ABU period.
○ Check if the Sink can provide to each HW-Task’s enough

bandwidth to exhaust all ABUs budgets { Bi } within the period P.

390 time

τ1- A1 (4 / 7)

τ2- A2 (5 / 7)

τ3- A3 (4 / 7)

Ba
nd

w
id

th
 (7

)

τ4- A4 (1 / 7)

P

B1= 10 B2=25

B3=61
B4= 14

Feasible

Experimental results

40

Experimental evaluation

41

● The ABU has been experimentally evaluated on real platforms
such as the Zynq-7020 (and Zynq-7010) using realistic workload.

○ HW-Tasks from Xilinx IP library, HLS-generated workload, etc.

● Objectives of the experimental evaluation:

1) Show that the ABU works on a real hardware;

2) Show that the proposed analysis is experimentally tight.

ZYBO board (Zynq-7010) PYNQ board (Zynq-7020)

Experimental evaluation: bandwidth reservation

● Goal: test the effectiveness of the reservation mechanism.

● Setup: four DMA-like HW-tasks with different demand rates:

42

DRAM
Memory

FPGA
-PS

Inter-
face

AXI
Inter-

connect

S

S

S

M
HW-Task 3
1 tr/clk

M

HW-Task 2
2 tr/clk

M

HW-Task 1
2 tr/clk

M

HW-Task 4
2/3 tr/clk

M S

Under
analysis

ABU

S M

ABU

S M

ABU

S M

ABU

S M

Experimental evaluation: bandwidth reservation

● Goal: test the effectiveness of the reservation mechanism.

● Setup: four DMA-like HW-tasks with different demand rates:

○ Swap one or more DMA-like HW-tasks with a more demanding
version to simulate a misbehaving HW-Task.

43

DRAM
Memory

FPGA
-PS

Inter-
face

AXI
Inter-

connect

S

S

S

M
HW-Task 3
1 tr/clk

M

HW-Task 2
2 tr/clk

M

HW-Task 1
2 tr/clk

M

HW-Task 4
2/3 tr/clk

M S

HW-Task 3!
2 tr/clk

M

HW-Task 4!
2 tr/clk

M

Under
analysis

ABU

S M

ABU

S M

ABU

S M

ABU

S M

Experimental evaluation: bandwidth reservation

44

● Effect of the misbehaving HW-tasks on the HW-task under analysis.

Experimental evaluation: bandwidth reservation

45

● Effect of the misbehaving HW-tasks on the HW-task under analysis.

Traffic shaping
(at the expenses

of other HW-tasks)

Experimental evaluation: case study

● Goal: test the analysis using realistic HW-tasks with different
budget configurations.

● Setup: one FIR (filter) HW-task, one Sobel (image filter) HW-task, and
2 DMA-like HW-tasks.

46

HW-Task 3
DMA
2 tr/clk M

HW-Task 2
FIR
2 tr/clk M

HW-Task 1
Sobel
1.9 tr/clk M

HW-Task 4
DMA
2 tr/clk M

M

DRAM
Memory

FPGA
-PS

Inter-
face

AXI
Inter-

connect

S

S

S

M

S

ABU

S M

ABU

S M

ABU

S M

ABU

S M

Experimental evaluation: case study

47

Configuration 2:
more bandwidth to DMA-1 and DMA-2.

More budget configurations in the paper...

Configuration 1:
more bandwidth to Sobel and FIR.

Experimental evaluation: case study

48

Configuration 2:
more bandwidth to DMA-1 and DMA-2.

Sobel has not a
strictly uniform
transaction rate

More budget configurations in the paper...

Configuration 1:
more bandwidth to Sobel and FIR.

Conclusions

● The ABU is a hardware-based reservation mechanism for the
AMBA AXI bus aimed at isolating hardware accelerators
implemented on FPGAs.

● Leveraging the ABU, a set of HW-tasks can be analyzed using the
proposed response-time in the bandwidth domain.

● The ABU has been implemented and validated on the Xilinx
Zynq-7020 and Zynq-7010 platforms to demonstrate its practical
applicability.

49

HW-Task

AXI
BUS

ABU

Thank you for your attention

50

marco.pagani@sssup.it

