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Background

● Heterogeneous platforms are popular to meet computational 
requirements while overcoming scaling and energy issues.

● System-on-a-chip (SoC) platforms including an FPGA are 
extensible systems:

○ Allow offloading computational activities from CPUs to
HW accelerators deployed on the FPGA fabric.
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DMA / bus mastering accelerators

● This work considers HW accelerators performing the same 
computational activity (e.g. processing a frame) at each run. 
Hence, they are referred to as HW-tasks.

● High-performance HW accelerators implement bus mastering 
/ DMA to directly access data in the system memory;
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Why FPGA-based acceleration for real-time systems?
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● Very predictable clock-level behavior;

● Possibility to explicitly control the behaviour of the 
accelerators;

● High-performance on SIMD / Dataflow operations;

● Can be swapped at run-time using partial reconfiguration.

Pros

● Developing HW accelerators for FPGAs requires specific 
knowledge that is typically not part of the background of 
SW programmers.

○ Even modern tools like high-level synthesis are not so 
straightforward to use.

● Less libraries and SW stacks are available with respect to 
other platforms (e.g., GPUs).

Cons



BUS contention problem
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● To support multiple HW-tasks, an AXI Interconnect is required 
for arbitrating transactions arbitration.

○ FPGA to Processing System (PS) AXI ports provide a direct 
path to reach the DRAM memory controller.



BUS contention problem
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● To support multiple HW-tasks, an AXI Interconnect is required 
for arbitrating transactions arbitration.

○ FPGA to Processing System (PS) AXI ports provide a direct 
path to reach the DRAM memory controller.

● To enable a sound timing analysis of HW-tasks on FPGA, it is 
crucial to pay attention at how bus transaction are managed.



BUS contention problem

● Stock Interconnects implement Round Robin arbitration.

○ Designed for throughput.

○ Difficult to explicitly control the response times of HW-Tasks 
(e.g., priority-based arbitration is deprecated in Xilinx platforms).

○ No protection form misbehaving HW-tasks.
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Other issues with HW-tasks: heterogeneous sources

● In practice, HW-tasks may come from different sources:

○ Some HW-Tasks may be designed with HLS

■ Implicit configuration of bus transactions;

○ Some others may be closed-source (no access to HDL code).

● Even if we assume that no HW-tasks can misbehave, it may be 
difficult to control the bus bandwidth demanded by each HW-Task 
at integration time.
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FPGA

Other issues with HW-tasks: address space protection

● Due to the AXI master interface, HW-Tasks may access the whole 
physical memory without any restriction (including OS kernel mem).

● This poses serious threats to system safety.
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FPGA

Other issues with HW-tasks: address space protection

● Due to the AXI master interface, HW-Tasks may access the whole 
physical memory without any restriction (including OS kernel mem).

● This poses serious threats to system safety.

○ What if a faulty/bugged HW-Task skews OS/proc mem? 

○ A malicious HW-Task could be purposely designed to do so!

○ A protection/containerization mechanism could be useful.
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The AXI Budgeting Unit (ABU)
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Contribution of this work: the AXI Budgeting Unit (ABU)

HW-Task

AXI
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● The ABU restores the system predictability by regulating the 
BUS bandwidth contention.

○ Provides a BUS bandwidth reservation mechanism for 
HW-tasks on FPGA;

○ Supervises BUS transactions for accesses control.

○ Ensures temporal and spatial isolation for HW-tasks.
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The ABU is a supervision mechanism for HW-tasks

FPGA
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● Provides a confined environment allowing for a safe integration of 
first- and third-party HW-Tasks.

○ Allows to explicitly control the bus bandwidth reserved to 
each HW-Task;

○ Shields the system from possible misbehaving HW-Tasks.
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How does it work? Internals
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● The ABU monitors all AXI channels (in parallel):

○ Checks and compares the address of transactions;

○ Senses and counts transactions;

● AXI channels are routed through decoupler blocks that 
can stop the HW-task from issuing transactions.
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How does it work? Temporal isolation

● Each ABU has a budget bi

○ Each transaction passing on the AXI link consumes a budget unit.

○ The budget is periodically replenished to the maximum value Bi 
every P clock cycles.

● When the budget reaches zero, the HW-Task is interdicted from issuing 
transactions (disconnecting the handshake signals valid/ready).

AXI slave

S

ABU

S M

Tr.

bi

0 2PP t

t

16

HW-Task

M



How does it work? Spatial isolation

● Each ABU allows specifying up to 8 address segments.

○ Each segment is defined by a base address and a size;

○ The ABU monitors the transactions issued by the HW-Task.

● If the HW-Task issues a transaction outside of the 8 segments, the 
ABU blocks the HW-Task and notifies the processor (interrupt).
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Overheads and Resource consumption
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● The ABU does not introduce any additional latency.

○ Temporal overhead free (no additional delay).
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● Key observation: the budget replenishment period can be 
arbitrarily small (a few clock cycles) without particular penalties

○ Differently from software reservation servers!



Overheads and Resource consumption
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● The ABU does not introduce any additional latency.

○ Temporal overhead free (no additional delay).

● Key observation: the budget replenishment period can be 
arbitrarily small (a few clock cycles) without particular penalties

○ Differently from software reservation servers!

● Low FPGA resource consumption.

○ Described in VHDL: ABUs can be integrated into any design.

Resource type 4 ABUs consumption

LUT 2023 / 53200 (3.80 %)

FF 2045 / 106400 (1.92 %)

DSP 0 / 140 (0 %)

BRAM 0 / 220 (0 %)

Resource for four ABUs consumption on the Zynq-7020.



Bandwidth-driven analysis
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FPGA dataflow accelerators

● Hardware activities implemented using programmable logic;

● Internal control logic is typically based on state machines;

● Clock-level regular and predictable patterns of BUS transactions.

Real-world HW-tasks are very different from software tasks!

22

Execution trace of a FIR and Sobel HW-tasks on the Zynq-7020
(Screenshot from Xilinx Vivado 2017.4)



Bandwidth-driven analysis

● HW-Tasks can be treated as parallel computational activities that 
fluidly contend the bandwidth supplied by the AXI BUS.

● AXI sink modules on FPGAs typically return transactions in order.

○ On many SoC FPGA platforms each port of the FPGA-PS 
interface return AXI transactions in order;

○ On-fabric AXI BRAMs memories return transactions in order.

Analyzing the BUS contention experienced by HW-tasks is 
simpler than analyzing the memory contention experienced 

by SW-tasks on multicores

HW-Task A

23
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Model of an AXI system

● A set of n periodic HW-Tasks Γ = {τ1, … , τn}.
○ τi is characterized by: a bandwidth demand Di ;
○ A number of per-job transactions Ni ;

○ and a period Ti ;
● A set of n ABUs A = {A1, … , An};

○ Ai is characterized by a budget Bi and a period Pi
● A slave sink S;

○ Characterized by a supply S (E.g., FPGA-PS ports or BRAM mem). 
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Bandwidth-driven response-time analysis

● The BUS bandwidth is “elastically” shared between HW-Tasks;
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Bandwidth-driven response-time analysis
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● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

time



Bandwidth-driven response-time analysis
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● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

time



Bandwidth-driven response-time analysis

● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

○ When a HW-Task terminates, the spare bandwidth can be 
“reclaimed” by other HW-Tasks;
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Bandwidth-driven response-time analysis

● The BUS bandwidth is “elastically” shared between HW-Tasks;

● An example without the ABUs:

○ When a HW-Task terminates, the spare bandwidth can be 
“reclaimed” by other HW-Tasks;

○ HW-tasks may be unable to fully utilize the bus bandwidth when 
they reach their maximum bandwidth demand.
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Analysis issues

● A Bandwidth-driven response-time analysis for HW-tasks cannot 
be accomplished by leveraging classical techniques used for 
periodic real-time tasks;

○ Critical instant of a HW-task may not occur when it is 
synchronously released together with all other HW-tasks.
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Analysis issues: critical instant
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● Consider the following example:
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Synchronous release. τ2 is released 2 time units earlier.

Ba
nd

w
id

th

Ba
nd

w
id

th

11 12



Analysis issues: critical instant
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● Consider the following example:
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Synchronous release. τ2 is released 2 time units earlier.

if τ2 is released 2 time units earlier 
τ3 response time increases!
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Bandwidth-driven response-time analysis

● The ABUs can be leveraged to improve predictability and help 
bounding HW-tasks’ response times.

○ Under the assumption that Pi « min {Ti}, ABUs act as fluid 
bandwidth regulators.

■  e.g., 128 FPGA clock cycles (1.28 µs) vs 10 milliseconds;

τ1 M

AXI
Inter-

connect

S

S

S

SinkSM

A1S M

τ2 M A2S M

τn M AnS M
33



● The ABUs can be leveraged to improve predictability and help 
bounding HW-tasks’ response times.

○ Under the assumption that Pi « min {Ti}, ABUs act as fluid 
bandwidth regulators.

■  e.g., 128 FPGA clock cycles (1.28 µs) vs 10 milliseconds;

■ As the ABUs do not introduce extra latencies, there is no 
particular penalty in using a small period Pi ;

○ All ABUs are synchronized (same clock).

Bandwidth-driven response-time analysis
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Virtual Supply  Bn / P 

Virtual Supply  B2 / P 

Bandwidth-driven response-time analysis

● As long as the ABU budgets are guaranteed:

○ Each ABU offers to the corresponding HW-Task τi a virtual 
bandwidth supply of Bi / Pi irrespectively of the behaviour of 
the other HW-Tasks.

○ As the ABU periods can be small, there’s no relevant benefit in 
selecting heterogeneous periods, hence Pi = P

τ1 M Virtual Supply  B1 / P S

τ2 M S

τn M S
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Bandwidth-driven response-time analysis

● Hence, the problem of analyzing a set of HW-Tasks supervised by 
ABUs can be decomposed in two steps:
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Bandwidth-driven response-time analysis

● Hence, the problem of analyzing a set of HW-Tasks supervised by 
ABUs can be decomposed in two steps:

○ Assign to each HW-task τi the minimum budget Bi to 
complete within its deadline.

■ Easy, for each τi assign Bi such that:
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Bandwidth-driven response-time analysis

● Hence, the problem of analyzing a set of HW-Tasks supervised by 
ABUs can be decomposed in two steps:

○ Assign to each HW-task τi the minimum budget Bi to 
complete within its deadline.

■ Easy, for each τi assign Bi such that:

○ Check that system (Interconnect and Sink) can provide to 
each HW-Task’s enough bandwidth to exhaust all ABUs 
budgets { Bi } within the period P.

■ It’s necessary to perform a bandwidth-driven analysis 
within the scheduling window of one ABU period [0, P].

■ Schedulability can be tested using an iterative 
procedure.

38
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Analysis with ABUs

● The schedulability test procedure “unrolls” the execution of the 
HW-Tasks just within one ABU period.
○ Check if the Sink can provide to each HW-Task’s enough 

bandwidth to exhaust all ABUs budgets { Bi } within the period P.
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Experimental results
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Experimental evaluation
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● The ABU has been experimentally evaluated on real platforms 
such as the Zynq-7020 (and Zynq-7010) using realistic workload.

○ HW-Tasks from Xilinx IP library, HLS-generated workload, etc.

● Objectives of the experimental evaluation:

1) Show that the ABU works on a real hardware;

2) Show that the proposed analysis is experimentally tight.

ZYBO board (Zynq-7010) PYNQ board (Zynq-7020)



Experimental evaluation: bandwidth reservation

● Goal: test the effectiveness of the reservation mechanism.

● Setup: four DMA-like HW-tasks with different demand rates:
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Experimental evaluation: bandwidth reservation

● Goal: test the effectiveness of the reservation mechanism.

● Setup: four DMA-like HW-tasks with different demand rates:

○ Swap one or more DMA-like HW-tasks with a more demanding 
version to simulate a misbehaving HW-Task.
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Experimental evaluation: bandwidth reservation
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● Effect of the misbehaving HW-tasks on the HW-task under analysis.



Experimental evaluation: bandwidth reservation
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● Effect of the misbehaving HW-tasks on the HW-task under analysis.

Traffic shaping
(at the expenses 

of other HW-tasks)



Experimental evaluation: case study 

● Goal: test the analysis using realistic HW-tasks with different 
budget configurations.

● Setup: one FIR (filter) HW-task, one Sobel (image filter) HW-task, and 
2 DMA-like HW-tasks.
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Experimental evaluation: case study
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Configuration 2:
more bandwidth to DMA-1 and DMA-2.

More budget configurations in the paper...

Configuration 1:
more bandwidth to Sobel and FIR.



Experimental evaluation: case study
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Configuration 2:
more bandwidth to DMA-1 and DMA-2.

Sobel has not a 
strictly uniform 
transaction rate

More budget configurations in the paper...

Configuration 1:
more bandwidth to Sobel and FIR.



Conclusions

● The ABU is a hardware-based reservation mechanism for the 
AMBA AXI bus aimed at isolating hardware accelerators 
implemented on FPGAs.

● Leveraging the ABU, a set of HW-tasks can be analyzed using the 
proposed response-time in the bandwidth domain.

● The ABU has been implemented and validated on the Xilinx 
Zynq-7020 and Zynq-7010 platforms to demonstrate its practical 
applicability.
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Thank you for your attention
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