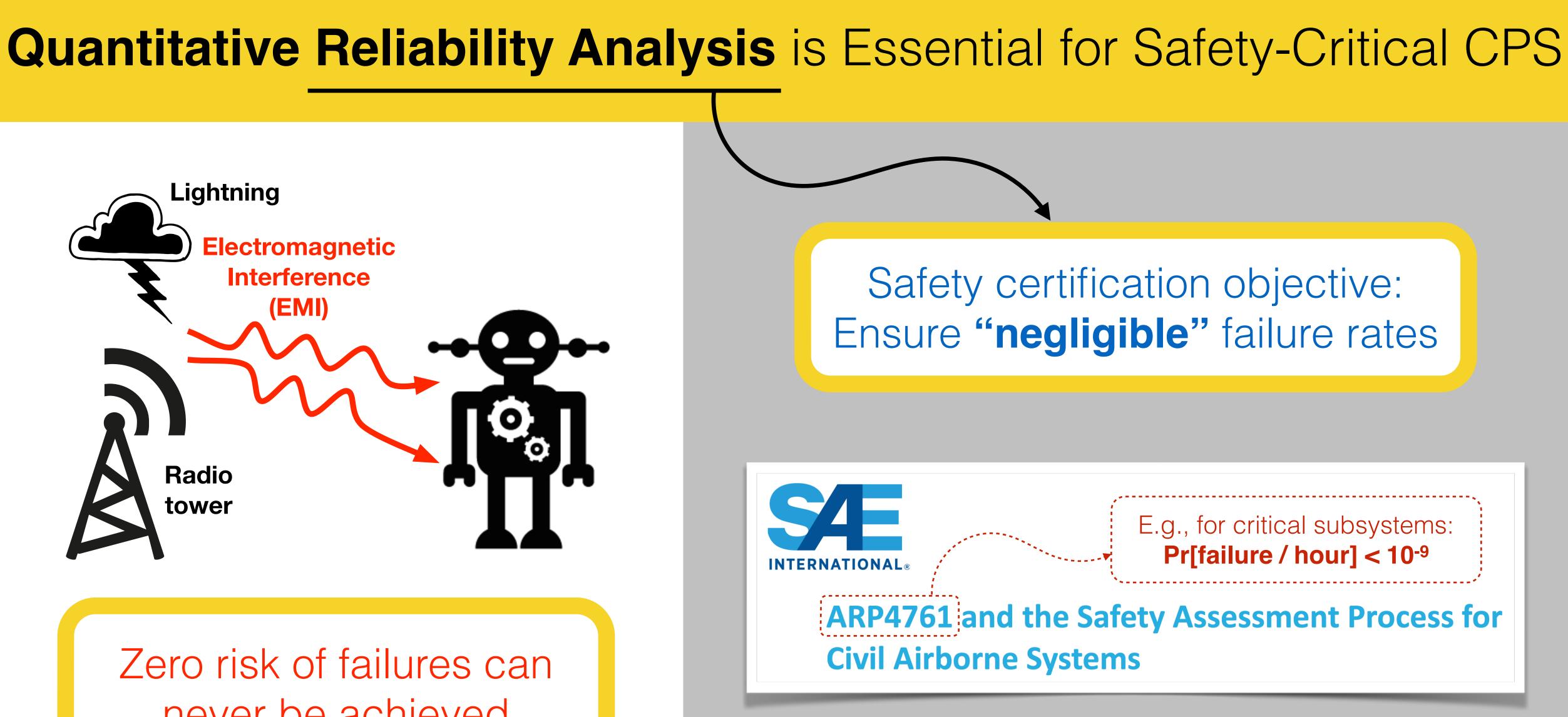

From Iteration to System Failure Characterizing the FITness of Periodic Weakly-Hard Systems

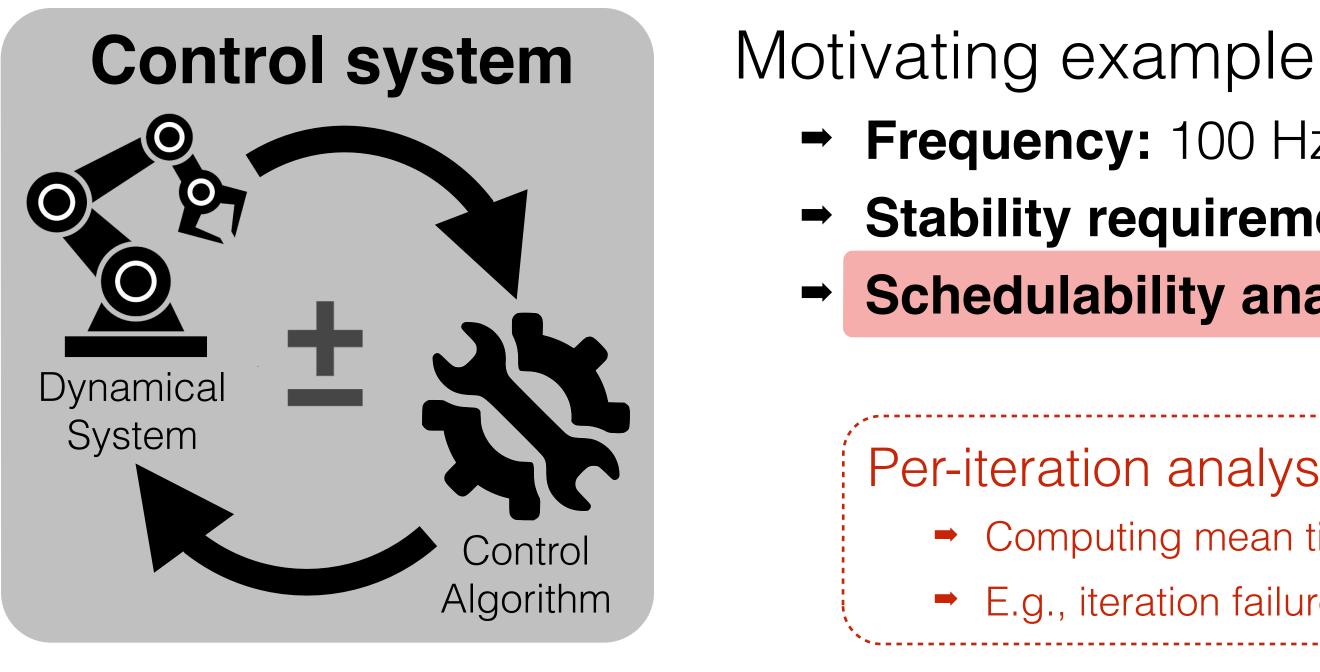
Arpan Gujarati*, Mitra Nasri[#], Rupak Majumdar*, and Björn B. Brandenburg* *MPI-SWS (Germany), #TU Delft (Netherlands)

> MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS



Zero risk of failures can never be achieved

Arpan Gujarati (MPI-SWS)



How to Analyse the Reliability of **Temporally Robust Systems?**

Explicitly accounting for the stability requirements Not trivial anymore! Yields more accurate failure rates E.g., iteration failure probability of 10^{-10} and stability requirement \mapsto **1.08 x 10⁻¹⁵ failures / hours**

- → **Frequency:** 100 Hz (10 ms time period) **Stability requirement:** 3 out of 4 iterations execute on time **Schedulability analyses:** $Pr[single iteration delayed] \le 10^{-10}$
 - Per-iteration analyses yield pessimistic failure rates
 - Computing mean time to first failed iteration ignores stability requirements
 - E.g., iteration failure probability of $10^{-10} \rightarrow 36,000 \times 10^{-9}$ failures / hours

9 orders of magnitude!

This work

How to Analyse the Reliability of **Temporally Robust Systems?**

Objectives

Generic

Complex robustness requirements

Accurate (ideally, exact)

Minimize pessimism in the final system reliability

Scalable

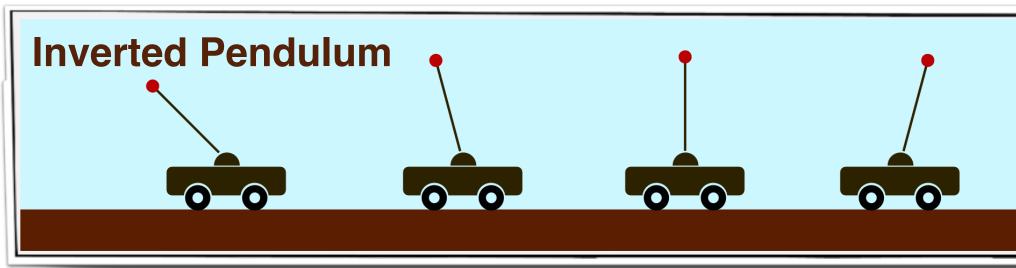
Asymptotic requirements with large parameter values

Proposed Techniques

PMC (Probabilistic Model Checking) Exact, very generic, but slow

Mart (uses martingale theory) Exact, less generic, but slightly faster

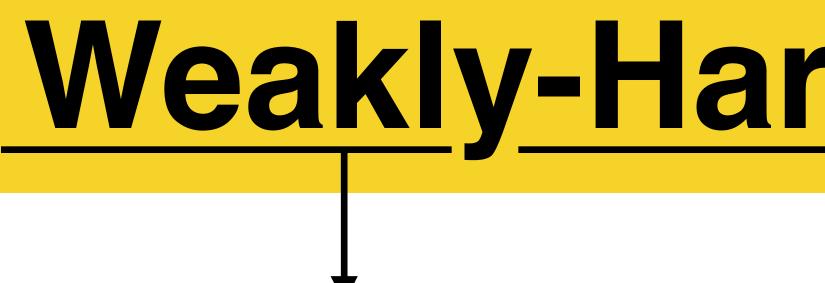
SAp (Sound **Ap**proximation) Not exact, least generic, but highly scalable



Background & System Model

Arpan Gujarati (MPI-SWS)

Asymptotic Properties


Specification: Mass 0.5 kg, length 0.20 m, period 10 ms **Design:** Current iteration is skipped \mapsto Use previous iteration parameters Asymptotically stable with at least 76.51% successful iterations*

Doesn't specify if the system can handle a burst of skipped iterations What if the first 50 iterations are skipped? No feedback for 0.5 second

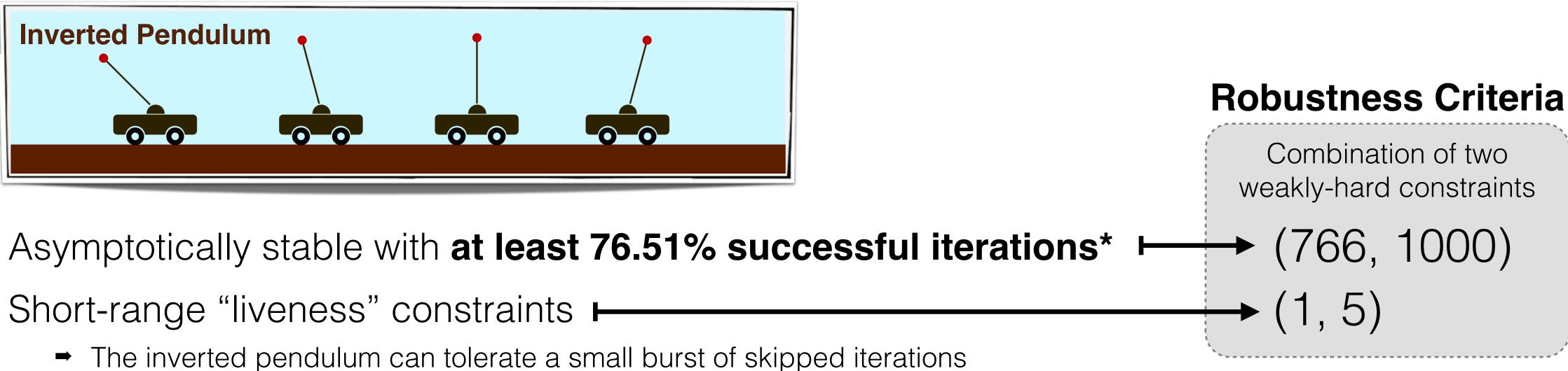
* Majumdar et al. "Performance-aware scheduler synthesis for control systems." EMSOFT, Taipei (2011)

Concretize asymptotic properties using finite window sizes

If each iteration is labeled either as a Success or a Failure

Temporal robustness as per (2, 3) constraint

Bernat et al. "Weakly hard real-time systems." IEEE Transactions on Computers, 50(4):308–321 (2001).


Weakly-Hard* Constraints

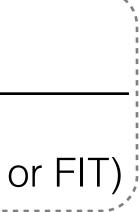
- (m, k) constraint: At least m out of every k consecutive iterations must be Successful

Temporal Robustness Criteria

Combination of different weakly-hard constraints

- \rightarrow (m, k) = Each k consecutive iterations, at least m successes needed
- \rightarrow $\langle m, k \rangle$ = Each k consecutive iterations, at least m consecutive successes needed
- \rightarrow $\langle m \rangle$ = m consecutive failures should never happen

Problem Statement

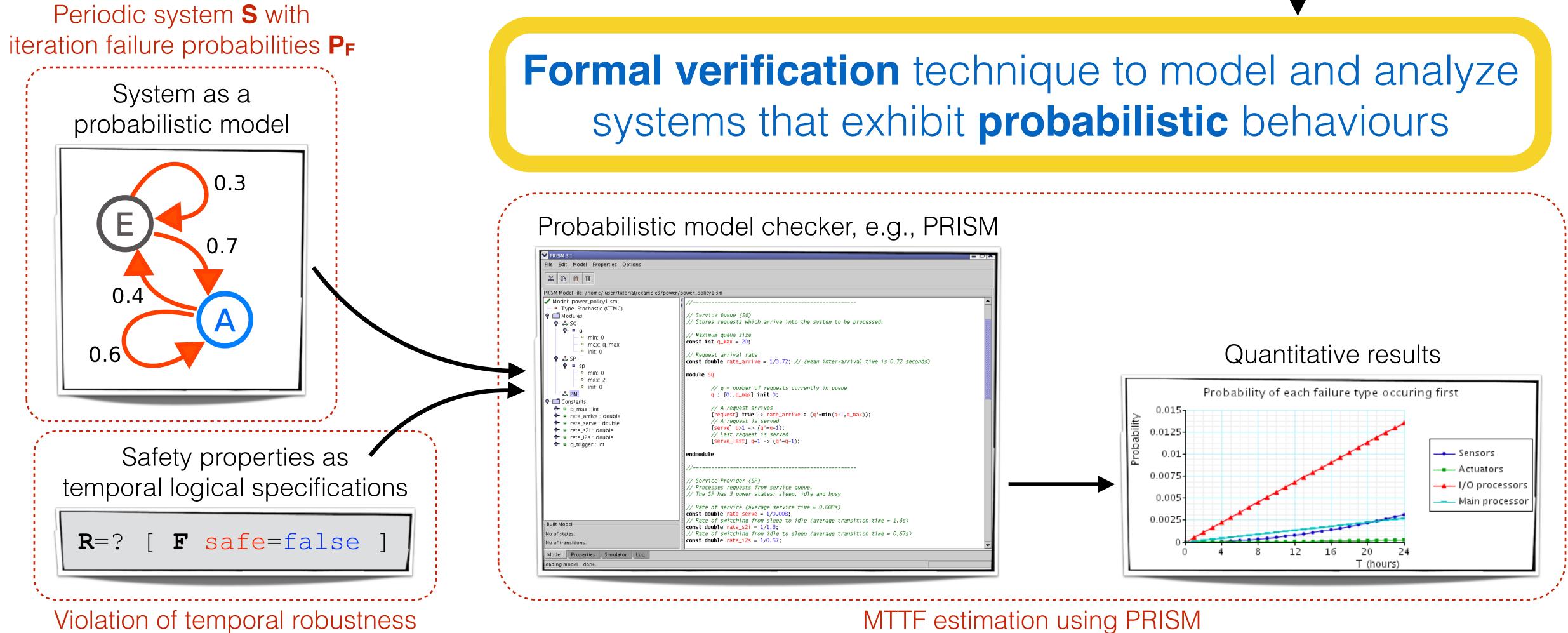

Given periodic system S, time period T, iteration failure probability $\mathbf{P}_{\mathbf{F}}$, and the temporal robustness criteria ...

Lower-bound the Mean Time To Failure (MTTF) of S

MTTF = Expected time to 1^{st} temporal robustness violation $= \sum \left(nT \times Pr[1^{st} \text{ violation in the } n^{th} \text{ iteration}] \right)$ (e.g., failures/hour or FIT)

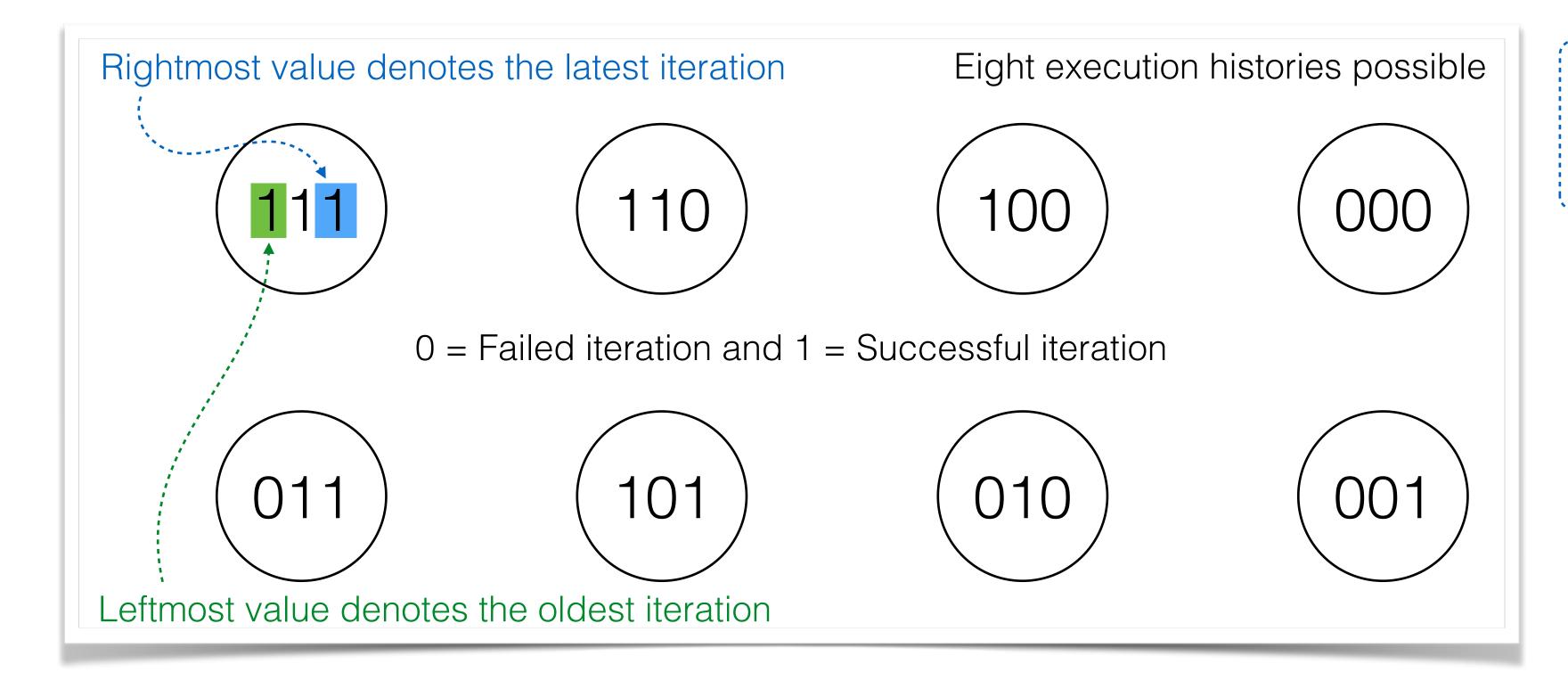
Assumption: $\mathbf{P}_{\mathbf{F}}$ is independently and identically distributed (IID)^{1, 2}

¹ Broster et al. "Timing Analysis of Real-Time Communication Under Electromagnetic Interference." Real Time Systems Journal (2005) ² Gujarati et al. "Quantifying the Resiliency of Fail-Operational Real-Time Networked Control Systems." ECRTS, Barcelona (2018)


Probabilistic Model Checking (PMC) Exact, very generic, but slow

Arpan Gujarati (MPI-SWS)

MTTF Estimation using PMC


MTTF estimation using PRISM

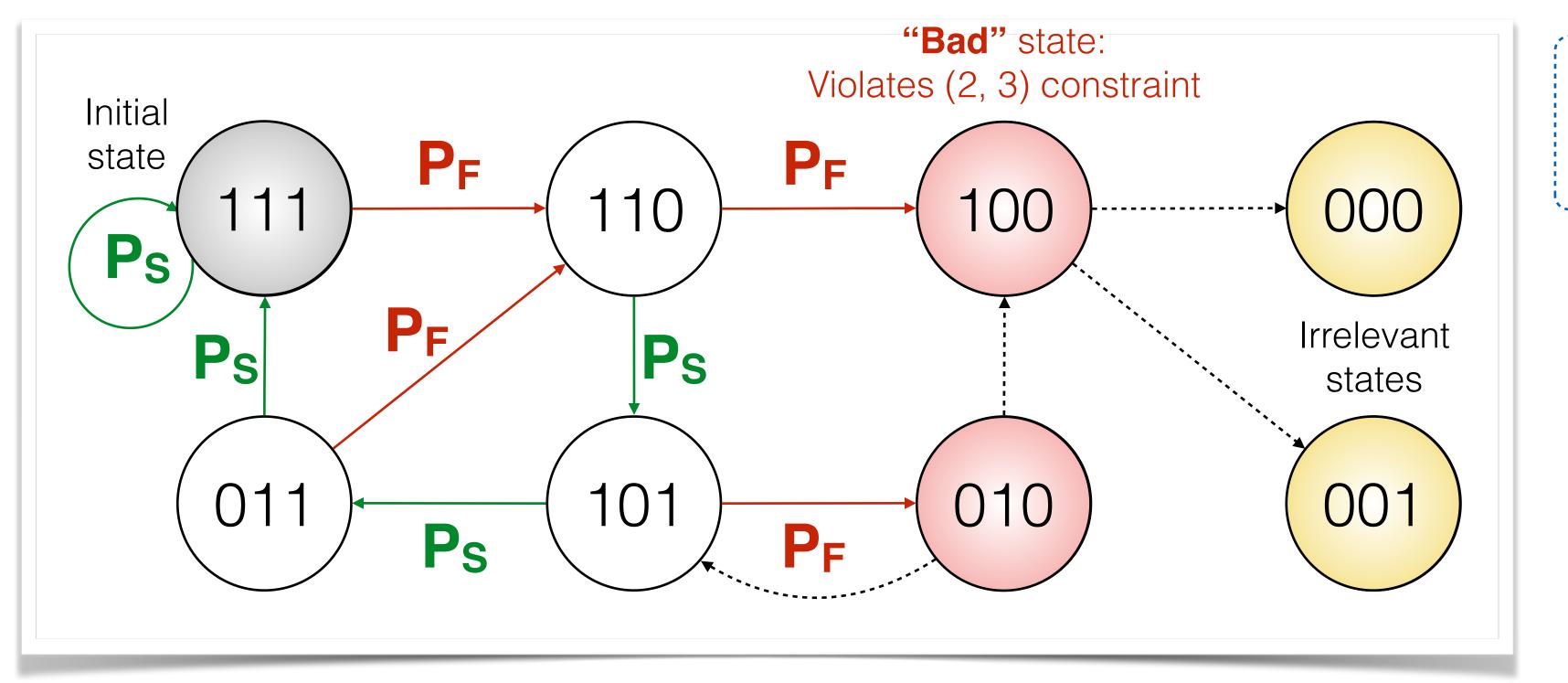
Modeling Weakly-Hard Constraints

Weakly-hard constraints depend on a finite-sized history

E.g., (m, k) constraint depends on the k latest iterations

Connect all possible execution histories via transition probabilities P_F and 1 - P_F

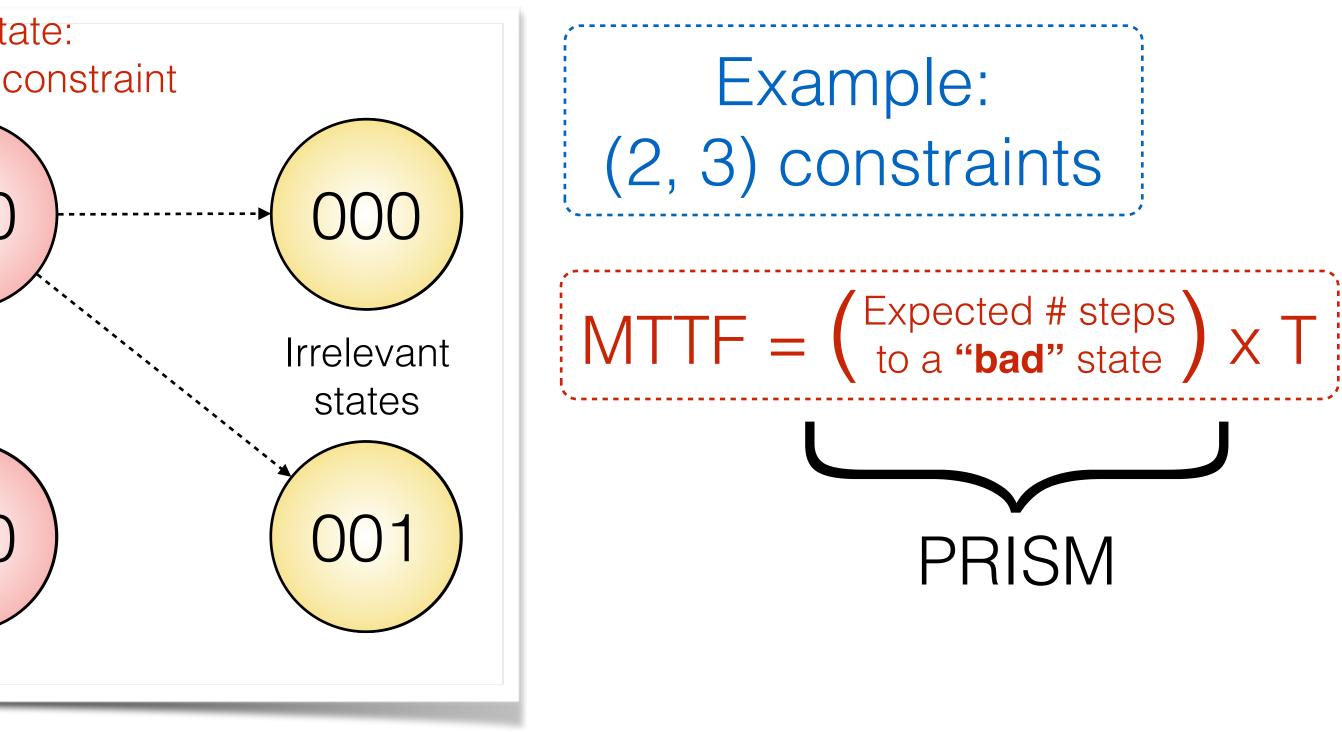
Key idea


Example: (2, 3) constraints

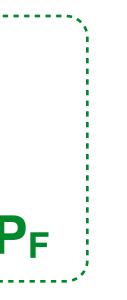
Modeling Weakly-Hard Constraints

Weakly-hard constraints depend on a finite-sized history Key idea → E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F

Example: (2, 3) constraints



Modeling Weakly-Hard Constraints


Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations

"Bad" state: Violates (2, 3) constraint Initial state PF PF 10 00 Ps PF Ps 010 PF Ps

- Connect all possible execution histories via transition probabilities P_F and 1 P_F

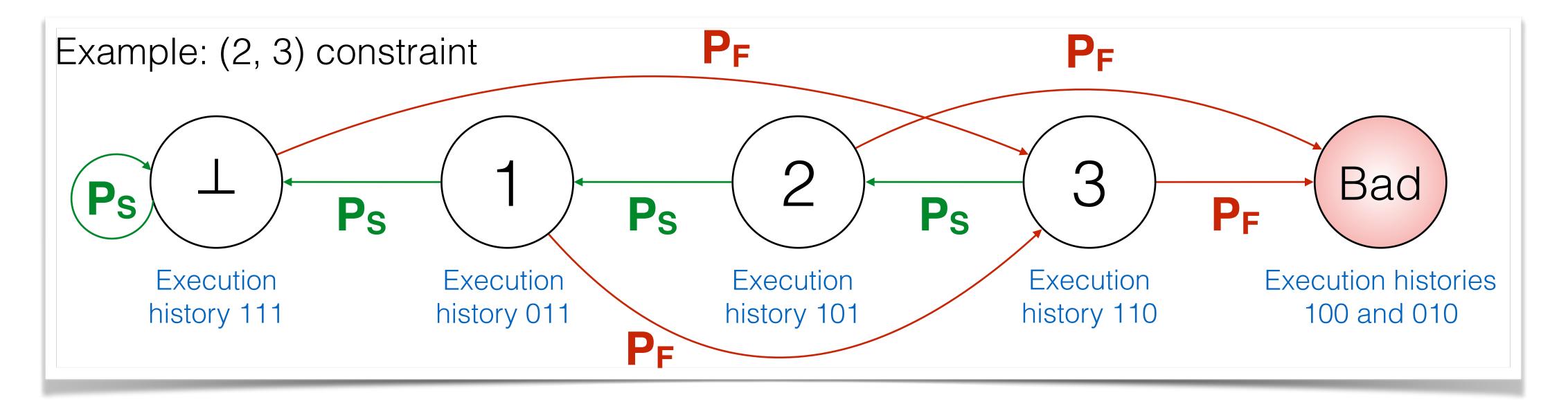
	24																								?
	23																							?	?
	22																						?	?	?
	21																					?	?	?	?
	20			D	_	D	N /														?	?	?	?	?
	19			Ρ	=	Ρ														?	?	?	?	?	?
	18																		?	?	?	?	?	?	?
	17																	?	?	?	?	?	?	?	?
	16																?	?	?	?	?	?	?	?	?
	15															?	?	?	?	?	?	?	?	?	?
	14														?	?	?	?	?	?	?	?	?	?	?
	13													?	?	?	?	?	?	?	?	?	?	?	?
	12												?	?	?	?	?	?	?	?	?	?	?	?	?
	11											?	?	?	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	9									Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
n	1	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25


Arpan Gujarati (MPI-SWS)

m

k

Does PMC Scale with k?


PMC times out after 1 hour for each k > 11

Optimizing for the **Common Case k - m « k**

Store **positions of all failed iterations**, instead of the entire history

ECRTS 2019

Does the Optimized PMC Scale with k?

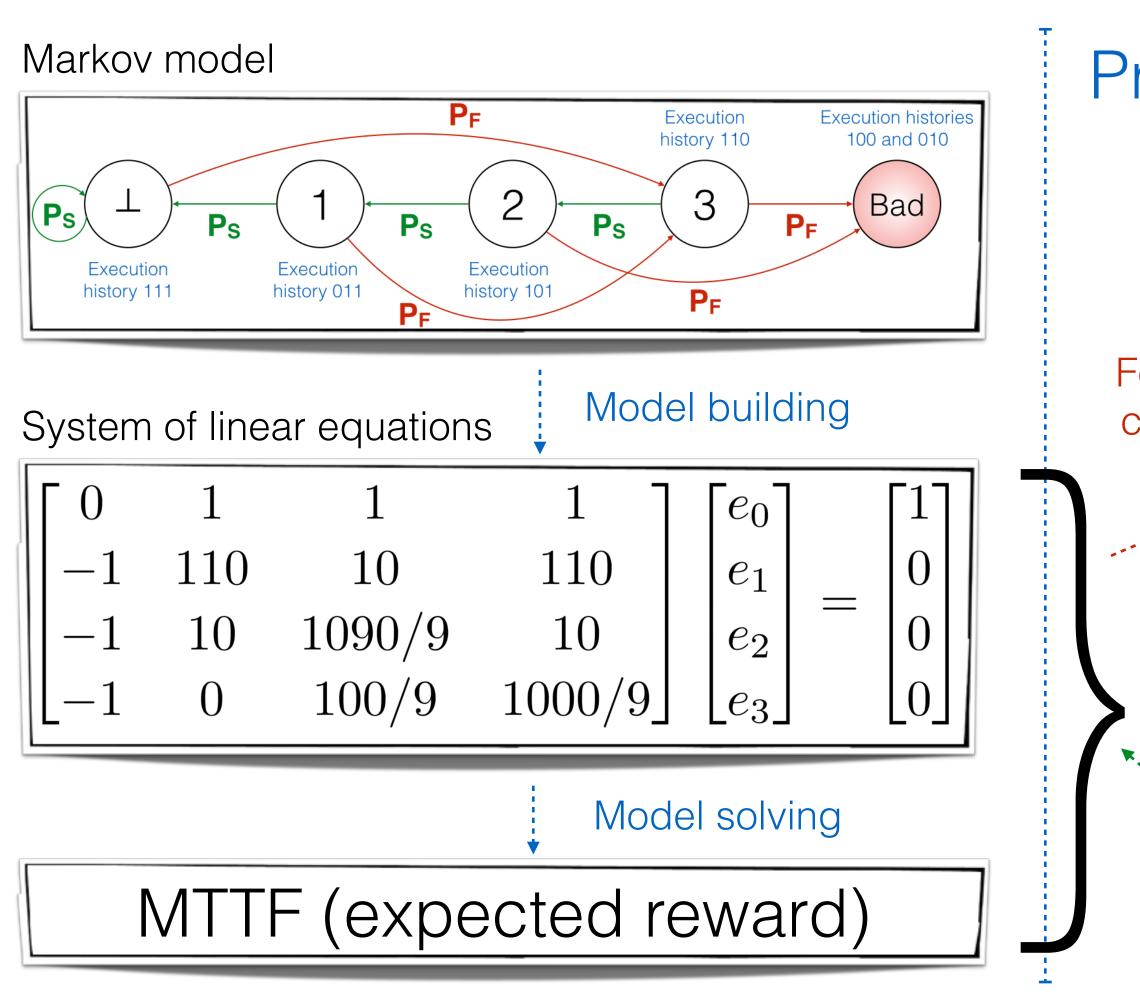
	24																								Ρ
	23																							Ρ	Ρ
	22																						Ρ	Ρ	?
	21																					Ρ	Ρ	?	?
	20			D	=	D	Ν /														Ρ	Ρ	?	?	?
	19			Γ	_	F	IVI													Ρ	Ρ	?	?	?	?
	18																		Ρ	Ρ	?	?	?	?	?
	17																	Ρ	Ρ	?	?	?	?	?	?
	16																Ρ	Ρ	?	?	?	?	?	?	?
	15															Ρ	Ρ	?	?	?	?	?	?	?	?
	14														Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?
	13													Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?
	12												Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?
	11											Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?
	9									P	Р	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	3		_	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?
↑	2	_	Р	P	Р	Р	Р	Р	P	P	P	Р	Р	Р	Р	Ρ	P	P	Ρ	Ρ	Ρ	Ρ	Р	P	Ρ
m	1	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	P	P	Р	P	Р	P	P	Р	P	P
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

·----

PMC scales for large k if $m \ll k \text{ or } k - m \ll k$

Scalability still a problem for the general case


The Martingale Approach (Mart) Exact, less generic, but slightly faster

Arpan Gujarati (MPI-SWS)

ECRTS 2019

Exact Model Checking Slows Down PRISM

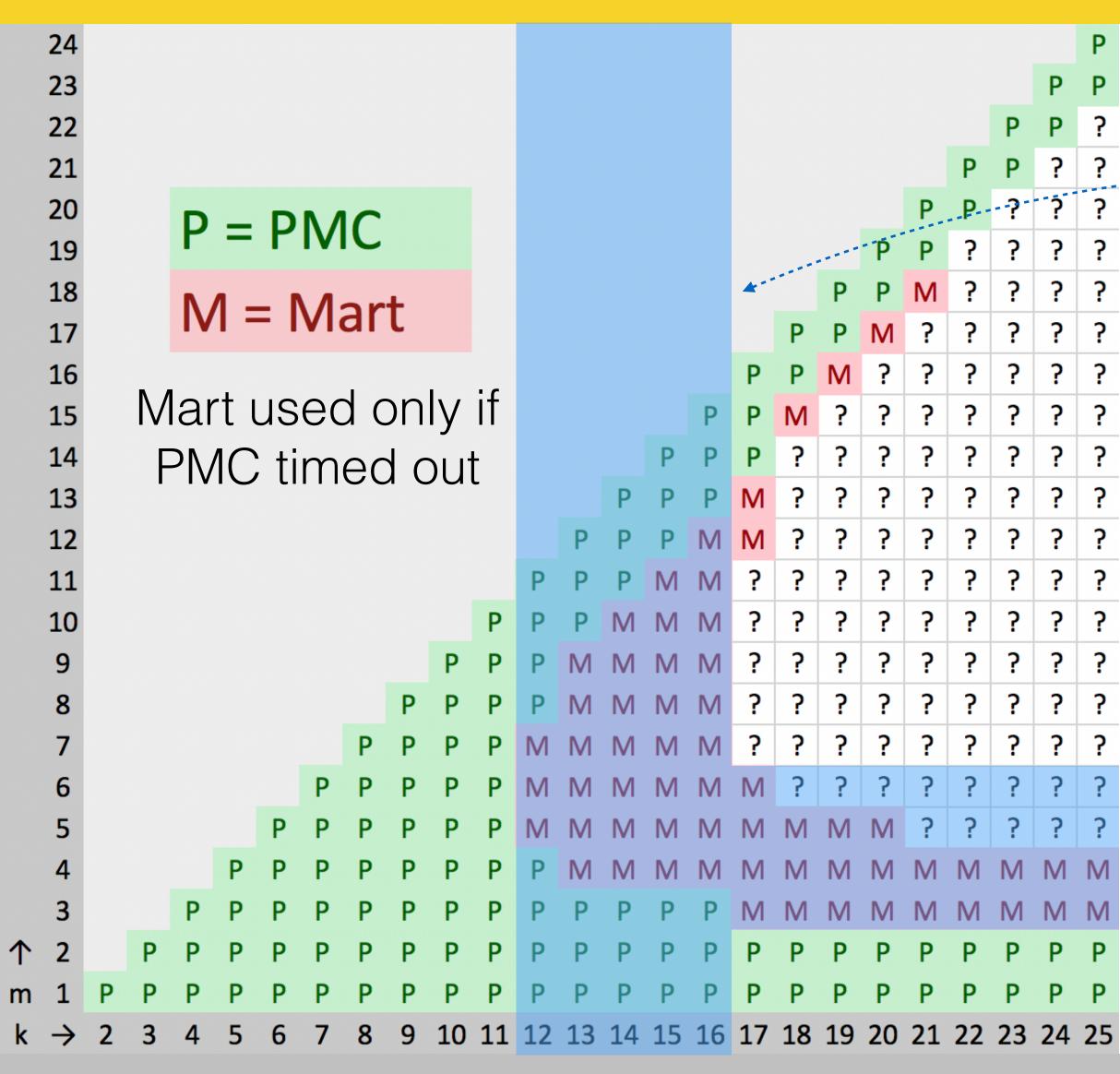
* Li. "A Martingale Approach to the Study of Occurrence of Sequence Patterns in Repeated Experiments." The Annals of Probability 8.6 (1980):1171–1176.

Probabilistic model checking (PRISM under the hood)

For error-free computation

PRISM must be configured with exact model checking (i.e., no floating points)

Using martingale theory*


- Linear equations obtained directly
- Bypass PRISM, use highly-scalable BLAS/ LAPACK libraries, with very high precision

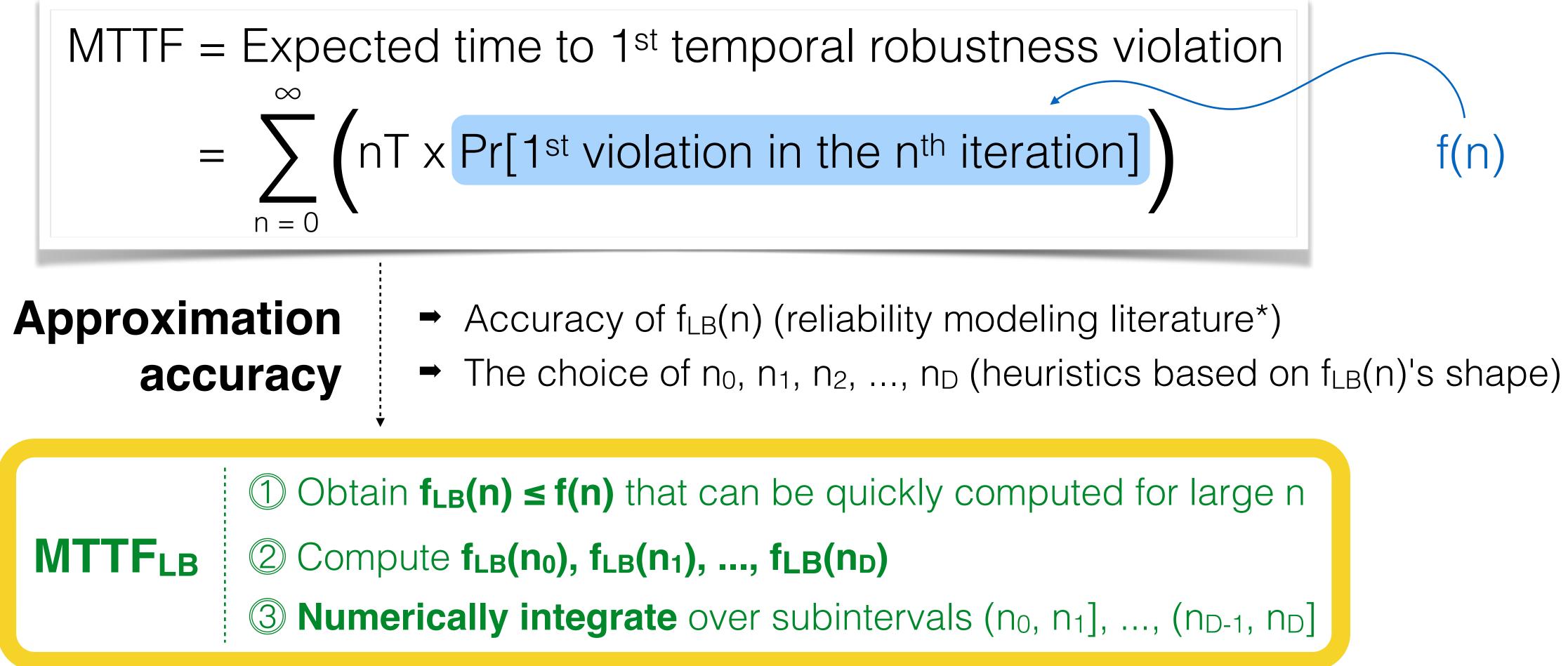
Mart Scales Better than PMC

Arpan Gujarati (MPI-SWS)

Mart helps scale up exact MTTF estimation to **k = 16**

Also, Mart implicitly benefits from small values of m

Scalability still a problem for the general case



Sound Approximation (SAp) Not exact, least generic, but highly scalable

Arpan Gujarati (MPI-SWS)

Sound Approximation (SAp) for Single (m, k) Constraint

* Sfakianakis et al.. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41.3 (1992): 442-447.

SAp is Scalable to Very Large Window Sizes

	24								_	_															Ρ
	23								S	SA	р	US	e		DN	ly	if	b	oth	ן				Ρ	Ρ
	22							F		1C	a	n	1 L	$\Lambda \epsilon$	art	ti	me	ed		lu†			Ρ	Ρ	S
	21									10	0			VIC.								Ρ	Ρ	S	S
	20			Ρ	=	Ρ	M														Ρ	Ρ	S	S	S
	19			•	_	1														Ρ	Ρ	S	S	S	S
	18			\mathbf{N}	1 =	= [M	ar	t									-	Р	Р	Μ	S	S	S	S
	17			•••	•				•								-	P	Р	M	S	S	S	S	S
	16			S	=	S	٩r	2								D	P	P	M	S	S	S	S	S	S
	15			-			٦,								Р	P P	P P	M S	S S	S S	S S	S S	S	S S	S
	14 13													Р	P	P	M	S S							
	12												Р	r D	P	M	M	S	S	S	S	S	S	S	S
	11											Р	P	P	M	M	S	S	S	S	S	S	S	S	S
	10										Р	P	P		M		S	S	S	S	S	S	S	S	S
	9									Р	Ρ	Ρ	Μ	Μ	_	_	S	S	S	S	S	S	S	S	S
	8								Ρ	Р	Ρ	Ρ	М	Μ	Μ	М	S	S	S	S	S	S	S	S	S
	7							Ρ	Ρ	Ρ	Ρ	М	Μ	Μ	Μ	Μ	S	S	S	S	S	S	S	S	S
	6						Ρ	Ρ	Ρ	Ρ	Ρ	М	Μ	Μ	Μ	Μ	Μ	S	S	S	S	S	S	S	S
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S	S
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
↑	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
m	1	Р	Ρ	Р	P	Р	P	Р	Р	Р	Р	Р	Р	Р	P	Р	P	Р	Р	Р	Р	Р	Р	Р	Р
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

SAp comfortably scales for windows of size k = 1000

How Accurate is SAp?

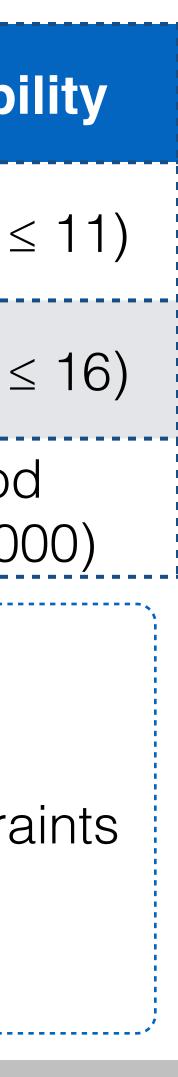
All errors are positive (SAp is proven to under-approximate the exact MTTF)

	11											81.45
	10		Error > 5	50 %							79.25	69.20
	9		${\tt 25~\%} <$	$Error \leq 5$	50 %					76.61	65.85	58.25
	8		$Error \leq 2$	25 %					73.38	62.01	54.73	47.79
	7							69.36	57.75	50.31	44.30	39.06
	6						64.29	52.99	44.91	40.11	35.35	31.43
	5					57.84	47.34	39.12	34.28	31.22	28.13	25.06
	4				49.62	39.96	33.44	28.17	24.82	22.98	21.64	20.28
	3			39.29	30.21	25.73	22.68	20.09	17.80	15.93	14.55	13.63
\uparrow	2		25.91	19.44	15.77	13.60	12.30	11.50	10.98	10.62	10.35	10.13
m	1	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12

Relative errors significant even for small k

Exact analysis needed when feasible

SAp is reasonably accurate


Example: If $MTTF_{exact} = 10^9$ hours, 100% error \rightarrow MTTF_{SAp} = 0.5 x 10⁹ hours

Summary

Approach	Accuracy		Expressiveness								
PMC	Exact	General syste	Poor (k ≤								
Mart	Exact	IID systems	, any weakly-hard constraint	Poor (k ≤							
SAp	Sound approx. $(\leq 100\%)$	IID system	systems, single (m, k) constraint								
	lake SAp more r / multiple weakly- teration failure prot	 More in the paper! PRISM code and Mart example PMC / Mart for (m, k) and (SAp details and soundness More extensive evaluation 	(m) constra s proofs								

