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Introduction
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Contributions

High-performance and time-sensitive

applications to co-exist

under strict temporal isolation

Set of SW and HW Techniques:

Hypervisor with coloring & 

code relocation,

PL-side SPM,

Variable TDMA slot size

Hardware IP to prevent

the problem of memory waste

when cache coloring is used

Full-stack implementation

on one of the latest-generation

MPSoC
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Background
3-Phase Task Execution Model
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Pipelining and Memory Bus Scheduling
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Chosen Platform

Xilinx Ultrascale+ ZCU102

CPU units 4x A53 1.2 Ghz, 2x R5 600 Mhz

A53 Memories 32KB private I/D caches, 1MB LLC

R5 Memories 32KB private I/D caches, 128KB TCM

PS-PL interfaces 2x HPM, 1x LPD (PS→ PL)
2x HPC, 4x HP (PL→ PS)

Memories DDR 4GB 64-bit (PS), OCM 256KB (PS)
DDR 512MB 16-bit (PL), BRAM 3MB (PL)
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Design Space Exploration

 MPSoCs allow many possible designs
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Address Translator
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Designs Evaluation

 We performed an experimental evaluation to evaluate 
the created designs. We used:

 Two benchmarks from San Diego Visual Benchmark 
Suite (SD-VBS) – disparity and mser

 Bandwidth benchmark (BW) to stress the memory 
subsystem

 Main memory (DRAM in PS) and SPM (BRAM in PL)

 PS-DRAM is faster than PL-DRAM

 DMA on the PS-side

 DMA on the PS-side is also faster than PL-side DMA

 Predictability for mixed criticality applications
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Designs Evaluation

 We consider the following execution scenarios:

Scenario Experiment Accessed

Memory
Coloring PS-PL

Interface
Contention Type

LCY-SOLO Solo PS DRAM No Not used None

LCY-STRESS Contention PS DRAM No Not used 3x BW

OUR-SOLO Solo SPM Yes Dedicated None

OUR-MID Contention SPM Yes Shared 1x BW from low-crit.
1x BW from mid-crit.
1x BW from high-crit.

OUR-HIGH Contention SPM Yes Dedicated 1x BW from low-crit.
2x BW from mid-crit.
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Results for mser
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Mser: LCY-SOLO vs. OUR-HIGH
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DMA Evaluation

 DMA transfer time

 Different data sizes

 1000 repetitions

 AVG, STD, WCET

 Programming overhead
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DMA Evaluation

 STD within range [0.057, 0.1]

 Programming overhead: 3.89 us

 Programming overhead vs. small data size transfers

 Model behaves well as long as task execution times 
are longer than the time required to reload an SPM 
partition
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Case study

 Videos frames captured from a camera are processed 
in a high-criticality domain

 Disparity: obtains relative positions of objects

 Useful for cruise control, pedestrian tracking, and 
collision control

 Demonstrate how the system behaves in a realistic 
setup and show the limits in terms of achievable hard 
real-time guarantees
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Case study

 Two image sizes

 64x48 (9.1KB) and 128x64 (22KB)

 Limitations on the SPM size and benchmark

 Images from the KITTI vision benchmark suite dataset

 Code size

 Disparity 64x48: 349KB

 Disparity 128x64: 745KB

 Erika RTOS: 294KB

 Four out of the five scenarios previously described 



Case study: Disparity
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Case study: Disparity
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Summary and Future Work

Multiple criticality domains on MPSoCs

Software techniques (isolation, cache 
coloring, code/data relocation)

Hardware techniques (SPM, dedicated PS-
PL interfaces, address translator IP)

Full-stack system implementation

Security

Compiler 

Integration

Schedulability

Analysis
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Thank you!


