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Abstract

Static priority schemes have the disadvantage that
processor utilisations less than 100% must be tolerated if
a system is to be guaranteed off-line. By comparison
earliest deadline scheduling can theoretically utilise all of
a processors capacity, allhough in Lo, g™
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(Euromicro Workshop on Real-Time Systems, 1993)
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CoMPARING WITH FP AND EDF
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IS DUAL PRIORITY SCHEDULING OPTIMAL?

bt S
priorities be Townd

N~
The answer to the first takes the form of a conjecture: -
v

N Mg
Conjecture C1 T 206 T Tee

For any task set with total utilisation less than or Total Utilisation 100% ! ) g
equal to 100% there exists a dual priority LCM 240 J

assignment that will meet all deadlines.
Analysis of this conjecture in given in section 4. Table 2: Task Set E2

With no task having a second phase, the system is not

Conjecture 1 (Burns and Wellings, 1993)

Dual priority scheduling is optimal for implicit deadline
periodic tasks.

(Sadly not)
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WHY WAS THIS A DIFFICULT CONJECTURE?

Disproving the conjecture

Find a task set that is

e feasible (U < 1), and

® not dual priority schedulable.

But in practice...

e Almost all task sets are schedulable

¢ Evaluating the schedulability can be very costly

Schedulability test

For every configuration (setting of 7ri1, 7r,-2, 0;), simulate the
hyper-period until a deadline miss.

r
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How MANY CONFIGURATIONS ARE THERE?

e All priority levels are unique

= A total of (2n)! permutations

® Phase change points (J;) are integer

= Atotal of [[L_, (pi + 1) combinations

Atask set T = {7,...,7,} has
(2n)! x H(Pi +1)
i=1

distinct configurations.
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A COUNTEREXAMPLE

Not dual priority schedulable

€; bi
mo| oY hyper-period: 16 390 597
|19 2 utilization: ~ 0.9999971
73 | 9 | 151
Ty | 14 | 197

n
#configurations = (2n)! x [[(pi+1) = 728082432000
i=1

Simulating the full hyper-period for all configurations
would take hundreds of years on my computer.




THE SAVING GRACE

Most configurations lead to a deadline miss very early.




THE SAVING GRACE

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than
0.00019 %

of the hyper-period is simulated on average.




THE SAVING GRACE

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than
0.00019 %

of the hyper-period is simulated on average.

Simulation time is ~ 2.5 days on an office computer.
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RECOGNIZING THE NEEDLE: RM+RM

#configurations = (N x T (pi+ 1)

Definition: RM+RM

A dual priority configuration is called RM+RM if
phase 1 priorities (7}) are RM
phase 2 priorities (72) are RM

max; {72} < min{n}}

Conjecture 2 (George et al., 2014)

RM+RM is an optimal choice of priorities.

J

(Sadly not, even considering only point Fl above)
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RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (M X H:’xl)
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Conjecture 3 (Fautrel et al., 2018)

FDMS always finds optimal phase change points. ]

(Sadly not)



RECOGNIZING THE NEEDLE

A simple schedulability analysis strategy

Try RM+RM priorities with FDMS

If not successful, check configurations exhaustively

Doing K is much faster than H, and works most of the time.
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An ad hoc search space

® 4 tasks

* Utilization € [0.99999, 1]
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* [T, pi < 35000000
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WHERE IS MY HAYSTACK?

An ad hoc search space

® 4 tasks

* [I, pi < 35000000

* Utilization € [0.99999, 1]

® Periods chosen from the first 100 primes

Random task sets were tested from this search space until an
unschedulable one was found. This is the breakdown:

# task sets | % of explored search space
Schedulable with RM+RM using FDMS 129 823 ~ 99.67%
Schedulable with other configurations 431 ~ 0.33%

Unschedulable

1

~ 0.0008%

13
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SO DUAL PRIORITY SCHEDULING IS NO GOOD?

It took 26 years and evaluating millions of task sets to find
a single unschedulable one.

But perhaps it behaves worse for larger task sets.

To fully exploit the apparent near-optimality we need effi-
cient tests and methods for finding the right parameters.
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OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

In PSPACE, no lower bounds known

Open problem 2 |

If yes, can we efficiently find it?

Open problem 3 |

Can we efficiently evaluate a given configuration?

In PSPACE, weakly NP-hard

Simulation only works for periodic tasks (George et al., 2014) .
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OPEN PROBLEMS

Open problem 4

What is the utilization bound?

Must be in the interval [In(2), 1)

Open problem 5

Is k-priority scheduling optimal for some constant k?

It is for n-priority scheduling, where n = || (Pathan, 2015)

Open problem 6

What about rational phase change points?

Can’t be brute forced!

16
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WHAT IF NOT ALL PRIORITIES ARE UNIQUE?

Precondition

We need to define the tie-breaking rule.

But most of them don’t make sense!

Bad news )

The number of priority orderings with ties are counted by
the Fubini numbers, growing faster than the factorials.

. J

’_m )

The same counterexample remains unchedulable if prior-
ities can be shared and FIFO or LIFO is used for ties.

. J

(Not in the paper) ;
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VThank you!
o

JQuestions?



