DuAaL PrioRITY SCHEDULING IS NOT OPTIMAL

PoNTUs EXBERG
Urpsara UNIVERSITY

ECRTS 2019
STUTTGART, GERMANY

DUAL PRIORITY SCHEDULING?

DUAL PRIORITY SCHEDULING?

DUAL PRIORITY ASSIGNMENT:
A Practical Method for Increasing Processor Utilisation

A. Burns and A.J. Wellings

Department of Computer Science
University of York, UK

Abstract

Static priority schemes have the disadvantage that
processor utilisations less than 100% must be tolerated if
a system is to be guaranteed off-line. By comparison
earliest deadline scheduling can theoretically utilise all of
a processors capacity, allhough in Lo, g™
overheads ngnazmr/‘

N

U =

™M=
SO

1

Test (1) converges, approxxmalely, Y, ON. .11tligas o Y -
leuc of 0,§9 fn;_lame/*na—

(Euromicro Workshop on Real-Time Systems, 1993)

How DOES IT WORK?

¢ Implicit deadline periodic tasks

® Single preemptive processor

How DOES IT WORK?

¢ Implicit deadline periodic tasks

® Single preemptive processor

Configurations

For each task 7; = (e, pi), assign
® aphase change point ¢; € {0,..., p;}

® two priority levels: 7} and 77

How DOES IT WORK?

¢ Implicit deadline periodic tasks

® Single preemptive processor

Configurations

For each task 7; = (e, pi), assign
® aphase change point ¢; € {0,..., p;}

® two priority levels: 7} and 77

.

T

‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\:

i ——

How DOES IT WORK?

¢ Implicit deadline periodic tasks

® Single preemptive processor

Configurations

For each task 7; = (e, pi), assign
® aphase change point ¢; € {0,..., p;}

® two priority levels: 7} and 77

‘\\\\‘T\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
\<—6i—>\

e—— pPi —~

|

How DOES IT WORK?

¢ Implicit deadline periodic tasks

® Single preemptive processor

Configurations

For each task 7; = (e, pi), assign
® aphase change point ¢; € {0,..., p;}

® two priority levels: 7} and 77

1 1

1 } 2 1 § 2 1 §

i 1T T : T T : T T
T T

‘\\\\‘T
\<—6i—>\

e—— pPi —~

CoMPARING WITH FP AND EDF

FP: Uy Uy
‘ T T T ‘ T T ‘ T T ‘ T T ‘ T :
1 1
. 1 1
Dual prio: I eI
L L -
‘ T T T T Ll

Y

CoMPARING WITH FP AND EDF

FP: T T

1 1
Dual prio: T i} : 72 T i} :
‘ T T T

A 4

Y

suboptimal

optimal

CoMPARING WITH FP AND EDF

FP: T U suboptimal

L I T T >

1 1
Dual prio: T 7ri1] 7ri2 T 7ri1 i 7ri2 T
‘ T T T

A 4

optimal

Y

IS DUAL PRIORITY SCHEDULING OPTIMAL?

bt S
priorities be Townd

N~
The answer to the first takes the form of a conjecture: -
v

N Mg
Conjecture C1 T 206 T Tee

For any task set with total utilisation less than or Total Utilisation 100% !) g
equal to 100% there exists a dual priority LCM 240 J

assignment that will meet all deadlines.
Analysis of this conjecture in given in section 4. Table 2: Task Set E2

With no task having a second phase, the system is not

Conjecture 1 (Burns and Wellings, 1993)

Dual priority scheduling is optimal for implicit deadline
periodic tasks.

(Sadly not)

WHY WAS THIS A DIFFICULT CONJECTURE?

WHY WAS THIS A DIFFICULT CONJECTURE?

Disproving the conjecture

Find a task set that is
e feasible (U < 1), and
® not dual priority schedulable.

WHY WAS THIS A DIFFICULT CONJECTURE?

Disproving the conjecture

Find a task set that is

e feasible (U < 1), and

® not dual priority schedulable.

WHY WAS THIS A DIFFICULT CONJECTURE?

Disproving the conjecture

Find a task set that is

e feasible (U < 1), and

® not dual priority schedulable.

But in practice...

e Almost all task sets are schedulable

¢ Evaluating the schedulability can be very costly

WHY WAS THIS A DIFFICULT CONJECTURE?

Disproving the conjecture

Find a task set that is

e feasible (U < 1), and

® not dual priority schedulable.

But in practice...

e Almost all task sets are schedulable

¢ Evaluating the schedulability can be very costly

Schedulability test

For every configuration (setting of 7ri1, 7r,-2, 0;), simulate the
hyper-period until a deadline miss.

r

How MANY CONFIGURATIONS ARE THERE?

e All priority levels are unique

= A total of (2n)! permutations

® Phase change points (J;) are integer

= Atotal of [[L_, (pi + 1) combinations

How MANY CONFIGURATIONS ARE THERE?

e All priority levels are unique

= A total of (2n)! permutations

® Phase change points (J;) are integer

= Atotal of [[L_, (pi + 1) combinations

Atask set T = {7,...,7,} has
(2n)! x H(Pi +1)
i=1

distinct configurations.

A COUNTEREXAMPLE

Not dual priority schedulable

€j Di
mo| oY hyper-period: 16 390 597
™ |13 29 utilization: ~ 0.9999971
T3 9 | 151
T4 | 14 | 197

A COUNTEREXAMPLE

Not dual priority schedulable

€j Di
mo| oY hyper-period: 16 390 597
™ |13 29 utilization: ~ 0.9999971
T3 9 | 151
T4 | 14 | 197

n
#configurations = (2n)! x [[(pi+1) = 728082432000
i=1

A COUNTEREXAMPLE

Not dual priority schedulable

€; bi
mo| oY hyper-period: 16 390 597
|19 2 utilization: ~ 0.9999971
73 | 9 | 151
Ty | 14 | 197

n
#configurations = (2n)! x [[(pi+1) = 728082432000
i=1

Simulating the full hyper-period for all configurations
would take hundreds of years on my computer.

THE SAVING GRACE

Most configurations lead to a deadline miss very early.

THE SAVING GRACE

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than
0.00019 %

of the hyper-period is simulated on average.

THE SAVING GRACE

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than
0.00019 %

of the hyper-period is simulated on average.

Simulation time is ~ 2.5 days on an office computer.

RECOGNIZING THE NEEDLE: RM+RM

#configurations = (2n)! x [[L,(pi+1)

10

RECOGNIZING THE NEEDLE: RM+RM

#configurations = (M x [T (pi+1)

10

RECOGNIZING THE NEEDLE: RM+RM

#configurations = (N x T (pi+ 1)

Definition: RM+RM

A dual priority configuration is called RM+RM if
phase 1 priorities (7}) are RM
phase 2 priorities (72) are RM

max; {72} < min{n}}

10

RECOGNIZING THE NEEDLE: RM+RM

#configurations = (N x T (pi+ 1)

Definition: RM+RM

A dual priority configuration is called RM+RM if
phase 1 priorities (7}) are RM
phase 2 priorities (72) are RM

max; {72} < min{n}}

Conjecture 2 (George et al., 2014)

RM+RM is an optimal choice of priorities.

J

(Sadly not, even considering only point Fl above)

10

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (N < T (pi+ 1)

11

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (N X H:’xl)

11

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrrr 1 11 1t

>
L L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrrr 1 11 1t

>
L L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrr 1T rrrrrr|rrrrrrrrrrrrrrrrrrrrrrrrrrr

>
L L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrr 1T rrrrrr|rrrrrrrrrrrrrrrrrrrrrrrrrrr

>
L L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrr 1T rrrrrr|rrrrrrrrrrrrrrrrrrrrrrrrrrr

1 1 1 1 >
L L L L I B L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrr 1T rrrrrr|rrrrrrrrrrrrrrrrrrrrrrrrrrr

L L L L I B L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)

#configurations = (M X H:’Ml)

rrrr 1rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

L L L L I B L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (M X H:’Ml)

A

rrrr 1rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1 1 1 1 >
L L L L I B L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
:I :I :I >

rrrr 1rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1 1 1 1 >
L L L L I B L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
S| | |

rrrr 1rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1 1 1 1 >
L L L L I B L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
S| | |

rrrr 1rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1 1 1 1 1 >
L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
S| | | |

rrrr 1rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1 1 1 1 1 >
L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
S| | | |

rrrr lrtrrrrrrrrrrrrrrrrryrrrrrrrrrrrrrrrrr

1 1 1 1 1 >
L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
| |

rrrr lrtrrrrrrrrrrrrrrrrryrrrrrrrrrrrrrrrrr

1 1 1 1 1 >
L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
| |

L L L L L L L B L L I L B LB

1 1 1 1 1 >
L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (Mx ?Xl)
S| | | |

L L L L L L L B L L I L B LB

L L L I L) L B

RECOGNIZING THE NEEDLE: FDMS (FAUTREL ET AL., 2018)
#configurations = (M X H:’xl)
:T :I :T :I s

| L L L I LN L L L L L B L BRI

——
- ==
- - >
- = >

—

1.

.
- = >
- >
- = >

——

y

I I N B

| L L L O L L B B

Conjecture 3 (Fautrel et al., 2018)

FDMS always finds optimal phase change points.]

(Sadly not)

RECOGNIZING THE NEEDLE

A simple schedulability analysis strategy

Try RM+RM priorities with FDMS

If not successful, check configurations exhaustively

Doing K is much faster than H, and works most of the time.

12

WHERE IS MY HAYSTACK?

13

WHERE IS MY HAYSTACK?

An ad hoc search space

® 4 tasks

* Utilization € [0.99999, 1]

® Periods chosen from the first 100 primes
* [T, pi < 35000000

13

WHERE IS MY HAYSTACK?

An ad hoc search space

® 4 tasks

* [I, pi < 35000000

* Utilization € [0.99999, 1]

® Periods chosen from the first 100 primes

Random task sets were tested from this search space until an
unschedulable one was found. This is the breakdown:

task sets | % of explored search space
Schedulable with RM+RM using FDMS 129 823 ~ 99.67%
Schedulable with other configurations 431 ~ 0.33%

Unschedulable

1

~ 0.0008%

13

SO DUAL PRIORITY SCHEDULING IS NO GOOD?

14

SO DUAL PRIORITY SCHEDULING IS NO GOOD?

It took 26 years and evaluating millions of task sets to find
a single unschedulable one.

14

SO DUAL PRIORITY SCHEDULING IS NO GOOD?

It took 26 years and evaluating millions of task sets to find
a single unschedulable one.

But perhaps it behaves worse for larger task sets.

14

SO DUAL PRIORITY SCHEDULING IS NO GOOD?

It took 26 years and evaluating millions of task sets to find
a single unschedulable one.

But perhaps it behaves worse for larger task sets.

To fully exploit the apparent near-optimality we need effi-
cient tests and methods for finding the right parameters.

14

OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

15

OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

In PSPACE, no lower bounds known

15

OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

In PSPACE, no lower bounds known

Open problem 2

If yes, can we efficiently find it?

15

OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

In PSPACE, no lower bounds known

Open problem 2

If yes, can we efficiently find it?

Open problem 3

Can we efficiently evaluate a given configuration?

15

OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

In PSPACE, no lower bounds known

Open problem 2

If yes, can we efficiently find it?

Open problem 3

Can we efficiently evaluate a given configuration?

In PSPACE, weakly NP-hard

15

OPEN PROBLEMS

Open problem 1

Can we efficiently determine if there exists a schedulable
configuration?

In PSPACE, no lower bounds known

Open problem 2 |

If yes, can we efficiently find it?

Open problem 3 |

Can we efficiently evaluate a given configuration?

In PSPACE, weakly NP-hard

Simulation only works for periodic tasks (George et al., 2014) .

OPEN PROBLEMS

Open problem 4

What is the utilization bound?

16

OPEN PROBLEMS

Open problem 4

What is the utilization bound?

Must be in the interval [In(2), 1)

16

OPEN PROBLEMS

Open problem 4

What is the utilization bound?

Must be in the interval [In(2), 1)

Open problem 5

Is k-priority scheduling optimal for some constant k?

16

OPEN PROBLEMS

Open problem 4

What is the utilization bound?

Must be in the interval [In(2), 1)

Open problem 5

Is k-priority scheduling optimal for some constant k?

It is for n-priority scheduling, where n = || (Pathan, 2015)

16

OPEN PROBLEMS

Open problem 4

What is the utilization bound?

Must be in the interval [In(2), 1)

Open problem 5

Is k-priority scheduling optimal for some constant k?

It is for n-priority scheduling, where n = || (Pathan, 2015)

Open problem 6

What about rational phase change points?

16

OPEN PROBLEMS

Open problem 4

What is the utilization bound?

Must be in the interval [In(2), 1)

Open problem 5

Is k-priority scheduling optimal for some constant k?

It is for n-priority scheduling, where n = || (Pathan, 2015)

Open problem 6

What about rational phase change points?

Can’t be brute forced!

16

WHAT IF NOT ALL PRIORITIES ARE UNIQUE?

Precondition

We need to define the tie-breaking rule.

17

WHAT IF NOT ALL PRIORITIES ARE UNIQUE?

Precondition

We need to define the tie-breaking rule.

But most of them don’t make sense!

17

WHAT IF NOT ALL PRIORITIES ARE UNIQUE?

Precondition

We need to define the tie-breaking rule.

But most of them don’t make sense!

Bad news

The number of priority orderings with ties are counted by
the Fubini numbers, growing faster than the factorials.

17

WHAT IF NOT ALL PRIORITIES ARE UNIQUE?

Precondition

We need to define the tie-breaking rule.

But most of them don’t make sense!

Bad news)

The number of priority orderings with ties are counted by
the Fubini numbers, growing faster than the factorials.

. J

’_m)

The same counterexample remains unchedulable if prior-
ities can be shared and FIFO or LIFO is used for ties.

. J

(Not in the paper) ;

SPECIAL THANKS TO

Martina Maggio

Joél Goossens

Artifact evaluators

18

VThank you!
o

JQuestions?

