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Introduction



Real-Time Systems

▪ Controllers in planes, cars, plants, … are expected 
to finish their tasks within reliable time bounds.

▪ Timing analysis must be performed. 
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Automotive: ISO-26262
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Excerpt from: 

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Criticality levels: 

A (lowest) 

to

D (highest)



Two Levels of Timing Analysis

▪ Code level

▪ Single process, task, ISR

▪ Focus on

▪ Control flow

▪ Processor architecture
with pipelines and caches

▪ WCET

▪ System level

▪ Multiple functions or tasks

▪ Focus on

▪ Integration and scheduling

▪ End-to-end timing

▪ Worst-Case Response Time
(WCRT)
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Fixed-point problem

Response time

Core execution time = WCET

Interference
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Execution Time Variablility

LOAD     r2, _a

LOAD     r1, _b

ADD      r3,r2,r1

1990: 68020 2001: MPC755

Up to a factor of 100 between best-case and worst-case!
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Singlecore
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Multicore with Resource Conflicts
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The Timing Problem
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The Timing Problem

End-to-end measurements usually do 

not cover the worst case!
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The Timing Problem

Static WCET analysis may produce unsatisfactory

results for unpredictable architectures
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Hybrid WCET Analysis

▪ Combines static analysis and hardware measurements

▪ Computes WCET estimate based on

▪ Execution times from traces and 

▪ Static value & worst-case path analysis

▪ Observed interferences are automatically taken into account 
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Traces



Probe Effect

▪ Caveat: probe effect! 
Measurements distorted by effects of code instrumentation

Use non-intrusive hardware support of modern processors

Excerpt from: 

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.
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Real-Time Trace Formats
▪ Nexus IEEE-ISTO 5001 program trace (at least class 2)*

▪ PowerPC NXP Qorivva, QorIQ P- and T-series, e.g.
MPC55xx/MPC56xx/MPC57xx, P204x/P30xx/P40xx/P50xx

▪ CoreSight - Embedded Trace Macrocell (ETM) 
instruction trace

▪ ARMv7/v8, e.g., Cortex-A53, Cortex-R5F

▪ Multi-Core Debug Solution (MCDS) Program Traces

▪ Infineon TriCore AURIX platform

▪ Infineon C16x/XC2000 platform

(*) class 1 correspond to JTAG debugger -- class 4 to real-time instruction traces 
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Nexus Traces

▪ Trace segments, separated by trace events

▪ Contents of trace message for a trace event:

▪ Time stamp + Address + Content of Branch-History-Buffer (BHB)

▪ One trace event

▪ for each indirect branch

▪ when the BHB is full

 Not for every branch exists a timestamp
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+056 TCODE =1D PT - IBHSM F- ADDR = F1F4 HIST =2 TS =8847

+064 TCODE =21 PT - PTCM EVCODE =A TS =88 F1

+072 TCODE =1C PT - IBHM U- ADDR =03 DC HIST =1 TS =8 D62

+080 TCODE =21 PT - PTCM EVCODE =A TS =8 E2F

+088 TCODE =21 PT - PTCM EVCODE =A TS =8 FBA

+096 TCODE =21 PT - PTCM EVCODE =A TS =9105



TimeWeaver with Infineon DAS

18



19

TimeWeaver



TimeWeaver
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▪ Main input:

▪ Fully linked executables

▪ Timed traces

▪ Location of the code under analysis (entry point)

▪ Further semantical information (optional):

▪ Targets of computed calls

▪ Loop bounds

▪ Values of registers and memory cells

▪ …



TimeWeaver
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Decoding
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Computed Calls

▪ Unresolved computed call warnings in the Value Analysis stage indicate 
unresolved dynamic function pointer calls.

▪ Unresolved computed call can be resolved by an user annotation to 
enable a complete call graph. Example:
instruction "task_1ms_CAN" -> computed(1) 
{"handle_warning_msg", "handle_info_msg", "handle_progress_msg";}

▪ Unresolved computed calls can also be resolved using call target 
information from trace data: 
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Loop Analysis
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Loop Bounds

▪ TimeWeaver uses information from two different sources:

▪ Analyzed bounds: 
▪ Statically computed by value analysis  safe upper bound

▪ Adjustable via user annotations

▪ Traced bounds: 
▪ Max iteration count observed from traces

▪ …to compute effective loop bounds

▪ corresponding to

▪ The analyzed bound 𝑏𝑎𝑚𝑖𝑛, 𝑏𝑎𝑚𝑎𝑥 (if finite and applicable)

▪ Otherwise equal to traced bound 𝑏𝑡𝑚𝑖𝑛, 𝑏𝑡𝑚𝑎𝑥

▪ Optionally prefer traced bound (not default):
𝑏𝑎𝑚𝑖𝑛, 𝑏𝑎𝑚𝑎𝑥 ∩ 𝑏𝑡𝑚𝑖𝑛, 𝑏𝑡𝑚𝑎𝑥

▪ Used in the path analysis (ILP)

▪ Loop scaling: 
upscale measured times for loop body to analyzed bound
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Loop Scaling
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▪ Example:

▪ F.L1 (call context G1 -> F): 4 iterations

▪ F.L1 (call context G2 -> F): 5 iterations

▪ F.L1 (call context G3 -> F): 7 iterations

▪ Traces: [4..5] iterations

▪ Analyzed bound: [0..7] iterations

Scaled bound: [0..7] iterations

Intersected bound: [4..5] iterations



Loop Scaling Conflicts

27

▪ Scaling is not applicable if

▪ there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

▪ the loop is virtually unrolled* more often than the loop 
body occurs in the trace (unroll loop scaling conflict)

* The first k loop iterations are distinguished

from all other loop iterations during analysis.



Loop Scaling Conflicts
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▪ Scaling is not applicable if

▪ there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

▪ the loop is virtually unrolled* more often than the loop 
body occurs in the trace (unroll loop scaling conflict)

Either trace the worst-case iteration count or
insert custom trace points to ensure that each
traced path through the loop contains a trace
point inside the loop body



Loop Scaling Conflicts
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▪ Scaling is not applicable if

▪ there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

▪ the loop is virtually unrolled* more often than the loop 
body occurs in the trace (unroll loop scaling conflict)

Either trace the worst-case iteration count or
adjust virtual unrolling settings



Trace Analysis
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Trace Analysis

▪ Trace graph: super-graph over all input traces
▪ Nodes: trace points (addresses of trace events)

▪ Edges: trace segments; edge costs: execution time from traces 

▪ Trace segments are context-sensitive
▪ A trace segment represents (context-sensitive) CFG edges

▪ Multiple trace graph edges between two trace points

▪ Connecting trace to input binary
▪ Trace event/trace point → point in the control-flow graph (CFG)

▪ Trace segment → program path between trace points, annotated with costs
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Path Analysis
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WCET Estimate Extrapolation
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Reporting/Visualization
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Reporting

▪ Worst-case execution time estimate

▪ computed longest path based on observed trace segment times

▪ Time variance of each trace segment over all traces

▪ Coverage for all trace segments

▪ Memory access information on longest path

▪ Per loop:

▪ maximum possible iteration count (analyzed bounds) and 

▪ maximum observed iteration count (traced bounds)
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Visualization
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▪ Worst-Case path 
information marked by 
red (halo) edges

▪ Code snippets not 
covered in trace info 
marked by a red border 

in CFG in call graph



40

Conclusion



Conclusion

▪ Static WCET analysis (e.g. aiT WCET Analyzer) provides WCET 
guarantees on timing-predictable processors.

▪ Non-intrusive hybrid WCET analysis (e.g. TimeWeaver)

▪ Combines static analysis and non-intrusive 
hardware measurements

▪ Computes a WCET estimate based on

▪ Execution times from instruction tracing and 

▪ static value & worst-case path analysis

▪ Results enable timing debugging:

▪ Time variance of each snippet over all traces 

▪ Path coverage for all snippets

▪ Memory access information on longest path

▪ Low setup costs

▪ Suitable for many modern high-end processors 
with limited timing predictability
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