
TimeWeaver:

A Tool for Hybrid Worst-Case

Execution Time Analysis

Daniel Kästner, Markus Pister, Simon Wegener, Christian Ferdinand

AbsInt Angewandte Informatik GmbH

This work was funded by the German Federal Ministry for
Education and Research (BMBF) within the project ARAMiS II with
the funding ID 01IS16025B, and within the project EMPHASE with
the funding ID 16EMO0183. The responsibility for the content
remains with the authors.

2

3

Introduction

Real-Time Systems

▪ Controllers in planes, cars, plants, … are expected
to finish their tasks within reliable time bounds.

▪ Timing analysis must be performed.

4

Automotive: ISO-26262

5

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Criticality levels:

A (lowest)

to

D (highest)

Two Levels of Timing Analysis

▪ Code level

▪ Single process, task, ISR

▪ Focus on

▪ Control flow

▪ Processor architecture
with pipelines and caches

▪ WCET

▪ System level

▪ Multiple functions or tasks

▪ Focus on

▪ Integration and scheduling

▪ End-to-end timing

▪ Worst-Case Response Time
(WCRT)

of preemptions

ii

ihpj j

i
jii TD

T

R
CCR =

+=

)(

Fixed-point problem

Response time

Core execution time = WCET

Interference

6

Execution Time Variablility

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

1990: 68020 2001: MPC755

Up to a factor of 100 between best-case and worst-case!

7

Singlecore

8

8

Multicore with Resource Conflicts

9

9

The Timing Problem

10

The Timing Problem

End-to-end measurements usually do

not cover the worst case!

11

The Timing Problem

Static WCET analysis may produce unsatisfactory

results for unpredictable architectures

12

Hybrid WCET Analysis

▪ Combines static analysis and hardware measurements

▪ Computes WCET estimate based on

▪ Execution times from traces and

▪ Static value & worst-case path analysis

▪ Observed interferences are automatically taken into account

13

14

Traces

Probe Effect

▪ Caveat: probe effect!
Measurements distorted by effects of code instrumentation

Use non-intrusive hardware support of modern processors

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

15

Real-Time Trace Formats
▪ Nexus IEEE-ISTO 5001 program trace (at least class 2)*

▪ PowerPC NXP Qorivva, QorIQ P- and T-series, e.g.
MPC55xx/MPC56xx/MPC57xx, P204x/P30xx/P40xx/P50xx

▪ CoreSight - Embedded Trace Macrocell (ETM)
instruction trace

▪ ARMv7/v8, e.g., Cortex-A53, Cortex-R5F

▪ Multi-Core Debug Solution (MCDS) Program Traces

▪ Infineon TriCore AURIX platform

▪ Infineon C16x/XC2000 platform

(*) class 1 correspond to JTAG debugger -- class 4 to real-time instruction traces

16

Nexus Traces

▪ Trace segments, separated by trace events

▪ Contents of trace message for a trace event:

▪ Time stamp + Address + Content of Branch-History-Buffer (BHB)

▪ One trace event

▪ for each indirect branch

▪ when the BHB is full

 Not for every branch exists a timestamp

17

+056 TCODE =1D PT - IBHSM F- ADDR = F1F4 HIST =2 TS =8847

+064 TCODE =21 PT - PTCM EVCODE =A TS =88 F1

+072 TCODE =1C PT - IBHM U- ADDR =03 DC HIST =1 TS =8 D62

+080 TCODE =21 PT - PTCM EVCODE =A TS =8 E2F

+088 TCODE =21 PT - PTCM EVCODE =A TS =8 FBA

+096 TCODE =21 PT - PTCM EVCODE =A TS =9105

TimeWeaver with Infineon DAS

18

19

TimeWeaver

TimeWeaver

20

▪ Main input:

▪ Fully linked executables

▪ Timed traces

▪ Location of the code under analysis (entry point)

▪ Further semantical information (optional):

▪ Targets of computed calls

▪ Loop bounds

▪ Values of registers and memory cells

▪ …

TimeWeaver

21

Decoding

22

Computed Calls

▪ Unresolved computed call warnings in the Value Analysis stage indicate
unresolved dynamic function pointer calls.

▪ Unresolved computed call can be resolved by an user annotation to
enable a complete call graph. Example:
instruction "task_1ms_CAN" -> computed(1)
{"handle_warning_msg", "handle_info_msg", "handle_progress_msg";}

▪ Unresolved computed calls can also be resolved using call target
information from trace data:

23

Loop Analysis

24

Loop Bounds

▪ TimeWeaver uses information from two different sources:

▪ Analyzed bounds:
▪ Statically computed by value analysis safe upper bound

▪ Adjustable via user annotations

▪ Traced bounds:
▪ Max iteration count observed from traces

▪ …to compute effective loop bounds

▪ corresponding to

▪ The analyzed bound 𝑏𝑎𝑚𝑖𝑛, 𝑏𝑎𝑚𝑎𝑥 (if finite and applicable)

▪ Otherwise equal to traced bound 𝑏𝑡𝑚𝑖𝑛, 𝑏𝑡𝑚𝑎𝑥

▪ Optionally prefer traced bound (not default):
𝑏𝑎𝑚𝑖𝑛, 𝑏𝑎𝑚𝑎𝑥 ∩ 𝑏𝑡𝑚𝑖𝑛, 𝑏𝑡𝑚𝑎𝑥

▪ Used in the path analysis (ILP)

▪ Loop scaling:
upscale measured times for loop body to analyzed bound

25

Loop Scaling

26

▪ Example:

▪ F.L1 (call context G1 -> F): 4 iterations

▪ F.L1 (call context G2 -> F): 5 iterations

▪ F.L1 (call context G3 -> F): 7 iterations

▪ Traces: [4..5] iterations

▪ Analyzed bound: [0..7] iterations

Scaled bound: [0..7] iterations

Intersected bound: [4..5] iterations

Loop Scaling Conflicts

27

▪ Scaling is not applicable if

▪ there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

▪ the loop is virtually unrolled* more often than the loop
body occurs in the trace (unroll loop scaling conflict)

* The first k loop iterations are distinguished

from all other loop iterations during analysis.

Loop Scaling Conflicts

28

▪ Scaling is not applicable if

▪ there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

▪ the loop is virtually unrolled* more often than the loop
body occurs in the trace (unroll loop scaling conflict)

Either trace the worst-case iteration count or
insert custom trace points to ensure that each
traced path through the loop contains a trace
point inside the loop body

Loop Scaling Conflicts

29

▪ Scaling is not applicable if

▪ there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

▪ the loop is virtually unrolled* more often than the loop
body occurs in the trace (unroll loop scaling conflict)

Either trace the worst-case iteration count or
adjust virtual unrolling settings

Trace Analysis

30

Trace Analysis

▪ Trace graph: super-graph over all input traces
▪ Nodes: trace points (addresses of trace events)

▪ Edges: trace segments; edge costs: execution time from traces

▪ Trace segments are context-sensitive
▪ A trace segment represents (context-sensitive) CFG edges

▪ Multiple trace graph edges between two trace points

▪ Connecting trace to input binary
▪ Trace event/trace point → point in the control-flow graph (CFG)

▪ Trace segment → program path between trace points, annotated with costs

31

Path Analysis

33

WCET Estimate Extrapolation

34

Reporting/Visualization

35

Reporting

▪ Worst-case execution time estimate

▪ computed longest path based on observed trace segment times

▪ Time variance of each trace segment over all traces

▪ Coverage for all trace segments

▪ Memory access information on longest path

▪ Per loop:

▪ maximum possible iteration count (analyzed bounds) and

▪ maximum observed iteration count (traced bounds)

36

Visualization

37

▪ Worst-Case path
information marked by
red (halo) edges

▪ Code snippets not
covered in trace info
marked by a red border

in CFG in call graph

40

Conclusion

Conclusion

▪ Static WCET analysis (e.g. aiT WCET Analyzer) provides WCET
guarantees on timing-predictable processors.

▪ Non-intrusive hybrid WCET analysis (e.g. TimeWeaver)

▪ Combines static analysis and non-intrusive
hardware measurements

▪ Computes a WCET estimate based on

▪ Execution times from instruction tracing and

▪ static value & worst-case path analysis

▪ Results enable timing debugging:

▪ Time variance of each snippet over all traces

▪ Path coverage for all snippets

▪ Memory access information on longest path

▪ Low setup costs

▪ Suitable for many modern high-end processors
with limited timing predictability

41

42

