| Timeeavér:
A Tool for Hybrid Worst-Case

Execution Time Analysis

— [

Daniel Kastner, Markus Pister, Simon Wegener, Christian Ferdinand
Absint Angewandte Informatik GmbH

\ i




DEVELOPMENT PROCESSES | TOOLS | PLATFORMS
FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

This work was funded by the German Federal Ministry for
Education and Research (BMBF) within the project ARAMIS II with
the funding ID 011S16025B, and within the project EMPHASE with

the funding ID 16EMO0183. The responsibility for the content
remains with the authors.

GEFORDERT VOM

% Bundesministerium
flir Bildung

und Forschung

€l Absint



Introduction

ﬁ Absint



P Real-Time Systems .

= Controllers in planes, cars, plants, ... are expected
to finish their tasks within reliable time bounds.

= Timing analysis must be performed.

ﬁ Absint



Automotive: I1S0O-26262

Table 1 — Topics to be covered by modelling and coding guidelines
_ ASIL
Topics | L
A B c D Criticality levels:
1a |Enforcement of low complexity +r ++ ++ ++ A (lowest)
1b  |Use of language subsets® ++ ++ ++ ++ g)(highest)

b The objectives of method 1b are

— Exclusion of ambiguously defined language constructs which might be interpreted differently by different modellers,
programmers, code generators or compilers.

— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions
or identical naming of local and global variables.

— Exclusion of language constructs which might result in unhandled run-time errors.

7.4.17 An upper estimation of required resources for the embedded software shall be made, including:
a) the execution time;

b) the storage space; and

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2011.

€l Absint



Two Levels of Timing Analysis

= Code level
= Single process, task, ISR
= Focus on

= Control flow

= Processor architecture
with pipelines and caches

= WCET

= System level
= Multiple functions or tasks

= Focus on
= Integration and scheduling
= End-to-end timing
= Worst-Case Response Time
(WCRT)

uuuuuuuuuu

<0xB000077c>

Fixed-point problem

v v
R=C+ > cj[qs D,

/, jehp(i) j
Response time /[\ l

# of preemptions
Core execution time = WCET

I
—

T
Interference

€l Absint



Execution Time Variablility

LOAD
LOAD
ADD

000000000000000000000000

r2, _a E
rl, Db =
r3,r2,rl =

/

1990: 68020

Execution Time (Clock Cycles)

B
emowe

Up to a factor of 100 between best-case and worst- case' /;f«

N\

2001: MPC755

Execution Time (Clock Cycles)

/ i
/
// /
/

B
o
//’
_—

e ﬁ Absl i



Singlecore

Shared Memory

ﬁﬁ



@
Multicore with Resource Conflicts

Shared Memory




probability

The Timing Problem

Upper Bound
L ]

WCET

10

€l Absint



* The Timing Problem

probability
A

Upper Bound
L ]

Measurement
[ ]

BCET WCET

|

End-to-end measurements usually do
not cover the worst case!

11

execution
time

ﬁ Absint



probability
A

BCET

The Timing Problem

Upper Bound
L ]

Measurement
[ ]

WCET

|

12

execution
time

Static WCET analysis may produce unsatisfactory
results for unpredictable architectures

€l Absint



13

Hybrid WCET Analysis

= Combines static analysis and hardware measurements

= Computes WCET estimate based on
= Execution times from traces and
= Static value & worst-case path analysis

= QObserved interferences are automatically taken into account

€l Absint



Traces

ﬁ Absint



15

Probe Effect

= Caveat: probe effect!
Measurements distorted by effects of code instrumentation

NOTE 3  If instrumented code is used to determine the degree of coverage, it can be necessary to show that the
instrumentation has no effect on the test results. This can be done by repeating the tests with non-instrumented code.

9.4.6 The test environment for software unit testing shall correspond as closely as possible to the target
environment. If the software unit testing is not carried out in the target environment, the differences in the
source and object code, and the differences between the test environment and the target environment, shall
be analysed in order to specify additional tests in the target environment during the subsequent test phases.

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2011.

— Use non-intrusive hardware support of modern processors

€l Absint



16

P
Real-Time Trace Formats

= Nexus IEEE-ISTO 5001 program trace (at least class 2)*

= PowerPC NXP Qorivva, QorIQ P- and T-series, e.q.
MPC55xx/MPC56xx/MPC57xx, P204x/P30xx/P40xx/P50xx

= CoreSight - Embedded Trace Macrocell (ETM)
Instruction trace

= ARMv7/v8, e.qg., Cortex-A53, Cortex-R5F

= Multi-Core Debug Solution (MCDS) Program Traces
= Infineon TriCore AURIX platform
= Infineon C16x/XC2000 platform

(*) class 1 correspond to JTAG debugger -- class 4 to real-time instruction traces

€l Absint



17

Nexus Traces

= Trace segments, separated by trace events

= Contents of trace message for a trace event:
= Time stamp + Address + Content of Branch-History-Buffer (BHB)

+056 TCODE =1D PT - IBHSM F- ADDR = F1F4 HIST =2 TS =8847
+064 TCODE =21 PT - PTCM EVCODE =A TS =88 F1l

+072 TCODE =1C PT IBHM U- ADDR =03 DC HIST =1 TS =8 D62
+080 TCODE =21 PT PTCM EVCODE =A TS =8 E2F

+088 TCODE =21 PT PTCM EVCODE =A TS =8 FBA

+096 TCODE =21 PT PTCM EVCODE =A TS =9105

= (One trace event
= for each indirect branch
= when the BHB is full

— Not for every branch exists a timestamp

€l Absint



J— — 18
— @

TlmeWeaver with Infineon DAS

~——

=

€l Absint



TimeWeaver

19

ﬁ Absint



20

TimeWeaver

= Main input:
= Fully linked executables
= Timed traces
= Location of the code under analysis (entry point)

= Further semantical information (optional):
= Targets of computed calls

= Loop bounds
= Values of registers and memory cells

€l Absint



g
—
e

—

Absint




'y 22
Decoding -

Decoding Phase

CFG

Reconstruction

Loop
Transformation




Zs

Computed Calls

Unresolved computed call warnings in the Value Analysis stage indicate
unresolved dynamic function pointer calls.

|=/ Errors, wamings and info Latest log QG »

. TimeWeaver - task_10ms_dhry__timeweaver [interactive] (0 Errors, 1 Warning): Finished on 2018-02-02 at 1.
» % Control Flow Reconstruction
¥ .. Value Analysis
« ¥ #3082: Losing precision since there is an unresolved computed call ("task_1ms_CAN" -> computed(1)).
Assuming a balanced stack effect and no violation of calling conventions for unresolved call.
Annotation hint:
ais2 { instruction "task_1ms_CAN" -> computed(1) { calls: <targets=; } }
In file c:\users\huembert\absint\scenarios\tricore\09_scenarios\scenarios_a3.c:125, at 0xc0001184 (task_1ms_CAN)
» Value analyzer statistics (max-length=inf, default-unroll=4, normal mode - interactive):

Unresolved computed call can be resolved by an user annotation to

enable a complete call graph. Example:
instruction "task_1ms_CAN" -> computed(1)
{"handle_warning _msg", "handle_info_msg", "handle_progress _msg";}

Unresolved computed calls can also be resolved using call target
information from trace data: ......

V| Enable trace-iterative decoding

€l Absint



Loop Analysis

)

Loop/Value Analysis




25

Loop Bounds

= TimeWeaver uses information from two different sources:

= Analyzed bounds:
= Statically computed by value analysis = safe upper bound
= Adjustable via user annotations

= Traced bounds:
= Max iteration count observed from traces
= .to compute effective loop bounds
= corresponding to
= The analyzed bound [p*™in, pamax| (if finite and applicable)

= Otherwise equal to traced bound [p'™", btmax]

= Optionally prefer traced bound (not default):
[bamm bamax] N [btmm btmax]

= Used in the path analysis (ILP)
= Loop scaling:
upscale measured times for loop body to analyzed bound

€l Absint



26

Loop Scaling

= Example:
= F.L1 (call context G1 -> F): 4 iterations
= F.L1 (call context G2 -> F): 5 iterations
= F.L1 (call context G3 -> F): 7 iterations
= Traces: [4..5] iterations
= Analyzed bound: [0..7] iterations

—Scaled bound: [0..7] iterations
—Intersected bound: [4..5] iterations

€l Absint



27

Loop Scaling Conflicts

= Scaling is not applicable if

= there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

= the loop is virtually unrolled* more often than the loop
body occurs in the trace (unroll loop scaling conflict)

* The first k loop iterations are distinguished
from all other loop iterations during analysis.

€l Absint



28

Loop Scaling Conflicts

= Scaling is not applicable if

= there exists at least one path through the loop body
without a trace point (event loop scaling conflict) or

—FEither trace the worst-case iteration count or
insert custom trace points to ensure that each
traced path through the loop contains a trace
point inside the loop body

€l Absint



29

Loop Scaling Conflicts

= Scaling is not applicable if

= the loop is virtually unrolled* more often than the loop

—Eit

pody occurs in the trace (unroll loop scaling conflict)
ner trace the worst-case iteration count or

adj

ust virtual unrolling settings

€l Absint



Trace Analysis

)

Loop/Value Analysis




31

Trace Analysis

= Trace graph: super-graph over all input traces
= Nodes: trace points (addresses of trace events)
= Edges: trace segments; edge costs: execution time from traces

= Trace segments are context-sensitive
= A trace segment represents (context-sensitive) CFG edges
= Multiple trace graph edges between two trace points

= Connecting trace to input binary
= Trace event/trace point — point in the control-flow graph (CFG)
= Trace segment — program path between trace points, annotated with costs

€l Absint






. \

~— WCET Estimate Extrapolation .

max segment time

max segment time

ﬁ Absint

34



35

o
Reporting/Visualization .

< WCET Path

Visualization/Reporting Phase

N ~ €l Absint



— Reporting

= Worst-case execution time estimate
= computed longest path based on observed trace segment times
= Time variance of each trace segment over all traces
= Coverage for all trace segments
= Memory access information on longest path
= Per loop:

= maximum possible iteration count (analyzed bounds) and
= maximum observed iteration count (traced bounds)

(& WCET estimate

Fiter: | < | szofszustle
(& WCET estimate (context)

** Loop bounds Id  ~ Segment (Contexts Length Ocourren Skipped Min [cyc Min [us] Max [cyc Max [us] Effective Effective Avg [cycl Avg [us] Dev [cycl Dev [us] Dev [%] E

Variable usage Na <Tatat> wa o2 15 n/al 161822 161822 168455 16B455 168455 168455 164348 164348 2023 2023 123

. Variable usage (context) T 0 Func1(0xf0000d60) -> Proc0.L2(0xf0000654) 2 ] 30 0 1066 1066 1550 1550 1550 1550 1152 1152 125 125 1085

111 Trace Segments Uy, OuAD0O050-> Proct’, Quf000510-> Proch L3 Y1), 0000063 -> Froct.L2T1], BulD0G08S0-> Fonct™ 3 15 0 1066 1066 1466 1466 1466 1466 1152 1152 115 115 998

Trace Coverage Proct.3 Funct 1 3 15 0 1075 1075 1550 1550 1550 1550 1152 1152 135 135 12

= Infeasibility 1 3 15 0 055 1055 1514 15041514 1514 1146 1146 151 151 1318

Sources 2 0x{0000de8) -> Funci 1 3 15 0 1030 1039 1602 1602 1602 1602 1187 11§7 174 174 1454]

3 FUnC2{0xF0000008) > Proch.L}{0x0000568) 1 3 15 0 370 370 825 825 825 825 425 425 10 110 2588

4 FuncZU1(0x000040) > stromp_x{Ixf0D00230) 1 5 15 0 86 83 1201 1291 1291 1281 976 976 152 152 1557

5 FUnNC3{0XFO0DOFA0) > Proce{0xT0000370) 1 3 15 0 06 706 7AD 743 TAD T4 TR TI9 4014 195

6 Proci{0xf0000470) - malloc_x(0xf0000320) 1 1 15 0 6 166 70 770 770 770 401 401 136 136 339

7 Proco{oxf0000480) > malloc_x(0xf0000320) 1 1 15 ] 4 04 156 156 156 156 23 03 43 043 18696
8 Proci{0xf0000490) - strcpy_x(0xf0D0D2e0) 1 1 15 0 E

648 B4 1423 1423 1423 1423 917 917 252 2520 2748

istribution graph for Func2{0x0000de8) -> Funcl {0x0000d60)
18 » - y w000

oi
14 0554

0-> "Proa Fro

. o ° ® .

1023

B Standard deviation B Cycles B Skipped 1B Average cycles

Cumulative frequency:

> 30% |3

ﬁ Absint



isualization

= Worst-Case path
information marked by
red (halo) edges

= Code snippets not
covered in trace info

marked by a red border

Lse
STrUCTaSSIgN*PLeParn, Nextiscoral;

in CFG

-1 t-san
Call memcpy_t

+ Intcarp - 5
MextRecord. IntComp = PLeParln->IntCoap;

WextRecord. FtrComp = PtrParln-=Ftrcoap;
Proc3 (& (NextRecord Percenp)|;

l\
i T

NextRecord. IntCeny
Prac6(PTrParin

Tm
o
=L

]

Sms TASK

/* uses trace_contexts.c routines bs/math */

volatile int signal;
unsigned char bs_math_index;

void task_Sms_bs_math(void) {

if (signal) {

} else {
bs_math_index = 20;

1f (bs_math_index==18) {

S T T

5
SENUPCORD, BHeKtRECOrd.ENURCOID) ;

in call graph

WCET Estimate for Entry task_10ms dhry': 1.802 ms
task_10ms_dhry: 8.94 ps
dhry: 10.93 ps

}

Procd: 0.108 ms

37

£

18 s malloc_x: 13.78 ps

1 |

strepy_x: 0.804 ms Procs: 8.6 s Procd: 12.82 ps

I—I—\ |

@ task_5ms_bs_math:

|

bs: ©.555 ms

[ vec_mpyl: 0 ps ] [mac: 0 us]

€l Absint



Conclusion

40

€ Absint



41

Conclusion

Static WCET analysis (e.g. aiT WCET Analyzer) provides WCET
guarantees on timing-predictable processors.

Non-intrusive hybrid WCET analysis (e.g. TimeWeaver) o woman o

= Combines static analysis and non-intrusive SE—
ey
hardware measurements e

= Computes a WCET estimate based on
= Execution times from instruction tracing and B ————
= static value & worst-case path analysis
= Results enable timing debugging:
= Time variance of each snippet over all traces
= Path coverage for all snippets
= Memory access information on longest path
= Low setup costs

= Suitable for many modern high-end processors
with limited timing predictability

<o
Funct
Fune2
Funcz.L
runc
Proct

Proco.Lt

nnnnn

€l Absint






