
Validating static WCET analysis:

a method and its application

Wei-Tsun Sun IRT Saint Exupéry

Eric Jenn IRT Saint Exupéry, second by Thales AVS.

Hugues Cassé IRIT, Universitéde Toulouse

09/07/2019 @ WCET 2019, Stuttgart, Germany

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

Fast

Predictable

The Project CAPHCA
An IRT team, funded with ANR

Fast

Predictable

© IRT AESE 2015 – All right reserved Confidential and proprietary document.

WCET (Worst-Case Execution Time)

Why do we need to care about the worst-case?

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

4© IRT AESE 2019 – All right reserved Confidential and proprietary document.

Why WCET?

❑ Know the worst, still schedule-able, then schedule-able for all cases.

❑ No bad surprises for time-critical parts.

❑ Safety, and to be Sure.

5© IRT AESE 2019 – All right reserved Confidential and proprietary document.

How to get WCET?

❑ Static approaches and measurement approaches.

❑ Add some flavours of statistics.

❑ Approaches are good, but we need to be Sure.

❑ Who performs the analysis/measurements?
▪ Human
▪ Program

❑ Who wrote the programs?
▪ Human
▪ Compiler, code-gen

❑ Who wrote the compiler……?
▪ Human……

6© IRT AESE 2019 – All right reserved Confidential and proprietary document.

One of the problems of being human

❑ Human makes mistakes.

❑ For WCET analysis, sometimes HW info needed:
▪ Looking into device drivers so you know all the details (takes a lot of time)
▪ Little bird whispering next to your ears (takes too much imagination)
▪ Existing models provided by vendors (takes some luck)
▪ Data-sheet (mostly accessible, detailed…….too detailed, 5000+ pages)

❑ Common pitfall and possible remedy
▪ WYPMNBWYG

❑ Need to find a way to detect the mistake
▪ Comparisons

What you program may not be what you get

Checking the WCET tool

To make sure we are on the right track

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

8© IRT AESE 2019 – All right reserved Confidential and proprietary document.

We need to make sure the estimated WCET is trust-worthy

❑ WCET estimation from WCET tool.
❑ Need to check WCET tool to make sure:
▪ It is constructed correctly
▪ Its implementation satisfies the theory-to-implement, e.g. abstract interpretation

❑ Our case:
▪ WCET tool to check – OTAWA
▪ From IRIT, University of Toulouse
▪ Open source
▪ Support ARM, RISC-V, PowerPC, Kalray MPPA, and our interested target: Infineon TriCore

❑ Infineon TriCore is one of our target because:
▪ Three CPUs
▪ Targeted for automobile
▪ Powerful co-processors and peripherals
▪ Good candidate for REAL case-study, not just toy examples
▪ Interference analysis
▪ Many other tools support it, make a good case for tool-chain integration

9© IRT AESE 2015 – All right reserved Confidential and proprietary document.

What does OTAWA do?

❑ OTAWA takes the program binary as the input

❑ Provides WCET (in CPU cycles)

OTAWABinary WCET

10

❑ OTAWA is sophisticate

© IRT AESE 2015 – All right reserved Confidential and proprietary document.

OTAWA is a huge framework of many years work

Create CFGs and
BBs

Decode the
binary

Static analyses

Generate and
solve the ILP

formula

Binary WCET

Flow facts

Hardware info

OTAWA

Identify
Instructions

Create CFGs
& BBs

Detect
loops

Caller
relations

Value/
address
analysis

Prog/Data
cache

analysis

Branch
prediction

Constraint
building

ILP
creation

ILP solver
invocation

11© IRT AESE 2019 – All right reserved Confidential and proprietary document.

To support a new architecture by OTAWA

❑ To support a new architecture by OTAWA
▪ To be able to decode the binary
▪ To have static analyses available (program cache analysis, data cache analysis, …)

Create CFGs and
BBs

Decode the
binary

Static analyses

Generate and
solve the ILP

formula

Binary WCET

Flow facts

Hardware info

OTAWA

Identify
Instructions

Create CFGs
& BBs

Detect
loops

Caller
relations

Value/
address
analysis

Prog/Data
cache

analysis

Branch
prediction

Constraint
building

ILP
creation

ILP solver
invocation

12© IRT AESE 2019 – All right reserved Confidential and proprietary document.

Analyses are platform independent and can be configured

❑ Analyses in OTAWA are made
▪ Platform independent, so developer can focus on the analysis itself
▪ Each instruction is presented by a sequence of semantic instructions [1]
▪ e.g.

❑ This is done before analyses

set t1, 3
add r1, r2, t1

add r1, r2, 3

Create CFGs and
BBs

Decode the
binary

Static analyses
Generate and
solve the ILP

formulaBinary WCET

OTAWA

Identify
Instructions Value/

address
analysis

Prog/Data
cache

analysis

Branch
prediction

sem. Instruction
representation

[1] Hugues Cassé, Florian Birée, and Pascal Sainrat. Multi-architecture

value analysis for machine code. In 13th International Workshop on

Worst-Case Execution Time Analysis, pages pp–42, 2013.

13© IRT AESE 2019 – All right reserved Confidential and proprietary document.

Analyses are platform independent and can be configured

❑ We want to check
▪ The binary decoding and semantic instructions
▪ The static analyses

Create CFGs and
BBs

Decode the
binary

Static analyses
Generate and
solve the ILP

formulaBinary WCET

OTAWA

Identify
Instructions Value/

address
analysis

Prog/Data
cache

analysis

Branch
prediction

sem. Instruction
representation

Validation of the ISA model for the
instruction decoding

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

15© IRT AESE 2019 – All right reserved Confidential and proprietary document.

The binary decoding

❑ The ISA is described in NMP format [2]
❑ Normally processor has user-manual for ISA [3]

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A

structural processor modeling language for retargetable compilation and asip

design. In Processor Description Languages, pages 65–93. Elsevier, 2008.

[3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).

16© IRT AESE 2019 – All right reserved Confidential and proprietary document.

The binary decoding

❑ The ISA is described in NMP format [2]
❑ Normally processor has user-manual for ISA [3]

❑ The description of ISA is captured manually – can be prone to human error!
❑ The GLISS2 can not found problems like wrong op code value
❑ 815 OPCODE-OPERAND combinations

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A

structural processor modeling language for retargetable compilation and asip

design. In Processor Description Languages, pages 65–93. Elsevier, 2008.

[3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).

17© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Checking the instruction decoding / interpretation

❑ Official ISS from Infineon: TSIM
❑ OTAWA is able to generated ISS from NMP files
▪ Describing ISA
▪ Use to decode instructions in OTAWA
▪ First step to support a new architecture

❑ Compare the “processor state” between TSIM and OTAWA-ISS
▪ Register values
▪ Memory accesses

18© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Some results

❑ 815 combinations of Instructions + operands
▪ 203 (25%) were covered.
▪ ~200,000,000 instructions were executed in 36 applications including twIRTee and dual-

eMotor use cases.
▪ ~20% of OTAWA’s TriCore instruction of decoding were corrected.
▪ Mostly human error when writing the NMP file.

Validation of static analyses and
semantic instruction mappings

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

20© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Validate the static analyses

❑ Similarly we check for other analyses in OTAWA
❑ For example abstract interpretation in value analysis

21© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Capturing the semantics of the instructions

❑ Extended the previous crafted ISA-NMP

Extended

22© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Abstract state: covers the concrete state

❑ Checks for two things:
▪ If the value/address analysis is correctly implemented
▪ If the semantic instruction is correctly implemented for TriCore

Step 1

R1 = 3

Step 2

R1 = {3}

Step 3

R1 = {3, 4, 5}

Step 4

{3} belongs to {3,4, 5} so

the abstract state is sound

23© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Some results

❑ Correct some operations in the abstraction
▪ Validation of the tool is also important to have sound results

❑ Some aspects were not taken into account in the previous TriCore implementation
▪ So far, we are contributing significantly for the TriCore support in OTAWA

24© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Overall validation procedures

Future works

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

26© IRT AESE 2015 – All right reserved Confidential and proprietary document.

Next steps

❑ Finish what we did
▪ Complete support of TriCore for OTAWA

❑ Linkage to other our works
▪ Already have support for RISC-V
▪ Extended to support FlexPRET

❑ Possible track
▪ Generate semantic instructions from the ISA descriptions

Questions?

© IRT AESE 2019 – All right reserved Confidential and proprietary document.

