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WCET (Worst-Case Execution Time)

Why do we need to care about the worst-case?
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Why WCET?

❑ Know the worst, still schedule-able, then schedule-able for all cases.

❑ No bad surprises for time-critical parts.

❑ Safety, and to be Sure.
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How to get WCET?

❑ Static approaches and measurement approaches.

❑ Add some flavours of statistics.

❑ Approaches are good, but we need to be Sure.

❑ Who performs the analysis/measurements?
▪ Human
▪ Program

❑ Who wrote the programs?
▪ Human
▪ Compiler, code-gen

❑ Who wrote the compiler……?
▪ Human……
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One of  the problems of being human

❑ Human makes mistakes.

❑ For WCET analysis, sometimes HW info needed:
▪ Looking into device drivers so you know all the details (takes a lot of time)
▪ Little bird whispering next to your ears (takes too much imagination)
▪ Existing models provided by vendors (takes some luck)
▪ Data-sheet (mostly accessible, detailed…….too detailed, 5000+ pages)

❑ Common pitfall and possible remedy
▪ WYPMNBWYG

❑ Need to find a way to detect the mistake
▪ Comparisons

What you program may not be what you get



Checking the WCET tool

To make sure we are on the right track
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We need to make sure the estimated WCET is trust-worthy

❑ WCET estimation from WCET tool.
❑ Need to check WCET tool to make sure:
▪ It is constructed correctly
▪ Its implementation satisfies the theory-to-implement, e.g. abstract interpretation

❑ Our case:
▪ WCET tool to check – OTAWA
▪ From IRIT, University of Toulouse
▪ Open source
▪ Support ARM, RISC-V, PowerPC, Kalray MPPA, and our interested target: Infineon TriCore

❑ Infineon TriCore is one of our target because:
▪ Three CPUs
▪ Targeted for automobile
▪ Powerful co-processors and peripherals
▪ Good candidate for REAL case-study, not just toy examples
▪ Interference analysis
▪ Many other tools support it, make a good case for tool-chain integration
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What does OTAWA do?

❑ OTAWA takes the program binary as the input

❑ Provides WCET (in CPU cycles)

OTAWABinary WCET
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❑ OTAWA is sophisticate
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OTAWA is a huge framework of many years work
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To support a new architecture by OTAWA

❑ To support a new architecture by OTAWA
▪ To be able to decode the binary
▪ To have static analyses available (program cache analysis, data cache analysis, …)
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Analyses are platform independent and can be configured

❑ Analyses in OTAWA are made
▪ Platform independent, so developer can focus on the analysis itself
▪ Each instruction is presented by a sequence of semantic instructions [1]
▪ e.g. 

❑ This is done before analyses

set t1, 3
add r1, r2, t1 

add r1, r2, 3
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value analysis for machine code. In 13th International Workshop on 

Worst-Case Execution Time Analysis, pages pp–42, 2013.
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Analyses are platform independent and can be configured

❑ We want to check
▪ The binary decoding and semantic instructions
▪ The static analyses
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Validation of the ISA model for the 
instruction decoding
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The binary decoding

❑ The ISA is described in NMP format [2]
❑ Normally processor has user-manual for ISA [3]

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A 

structural processor modeling language for retargetable compilation and asip

design. In Processor Description Languages, pages 65–93. Elsevier, 2008.

[3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).
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The binary decoding

❑ The ISA is described in NMP format [2]
❑ Normally processor has user-manual for ISA [3]

❑ The description of ISA is captured manually – can be prone to human error!
❑ The GLISS2 can not found problems like wrong op code value
❑ 815 OPCODE-OPERAND combinations

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A 

structural processor modeling language for retargetable compilation and asip

design. In Processor Description Languages, pages 65–93. Elsevier, 2008.

[3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).
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Checking the instruction decoding / interpretation

❑ Official ISS from Infineon: TSIM
❑ OTAWA is able to generated ISS from NMP files
▪ Describing ISA
▪ Use to decode instructions in OTAWA
▪ First step to support a new architecture

❑ Compare the “processor state” between TSIM and OTAWA-ISS
▪ Register values
▪ Memory accesses
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Some results

❑ 815 combinations of Instructions + operands
▪ 203 (25%) were covered.
▪ ~200,000,000 instructions were executed in 36 applications including twIRTee and dual-

eMotor use cases.
▪ ~20% of OTAWA’s TriCore instruction of decoding were corrected.
▪ Mostly human error when writing the NMP file.



Validation of static analyses and 
semantic instruction mappings
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Validate the static analyses

❑ Similarly we check for other analyses in OTAWA
❑ For example abstract interpretation in value analysis
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Capturing the semantics of the instructions

❑ Extended the previous crafted ISA-NMP

Extended
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Abstract state: covers the concrete state

❑ Checks for two things:
▪ If the value/address analysis is correctly implemented
▪ If the semantic instruction is correctly implemented for TriCore

Step 1

R1 = 3

Step 2

R1 = {3}

Step 3

R1 = {3, 4, 5}

Step 4

{3} belongs to {3,4, 5} so 

the abstract state is sound
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Some results

❑ Correct some operations in the abstraction
▪ Validation of the tool is also important to have sound results

❑ Some aspects were not taken into account in the previous TriCore implementation
▪ So far, we are contributing significantly for the TriCore support in OTAWA
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Overall validation procedures



Future works
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Next steps

❑ Finish what we did
▪ Complete support of TriCore for OTAWA

❑ Linkage to other our works
▪ Already have support for RISC-V
▪ Extended to support FlexPRET

❑ Possible track
▪ Generate semantic instructions from the ISA descriptions



Questions?
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