

Validating static WCET analysis: a method and its application

Wei-Tsun Sun Eric Jenn Hugues Cassé IRT Saint Exupéry IRT Saint Exupéry, second by Thales AVS. IRIT, Université de Toulouse

09/07/2019 @ WCET 2019, Stuttgart, Germany

The Project CAPHCA An IRT team, funded with ANR

WCET (Worst-Case Execution Time)

Why do we need to care about the worst-case?

Why WCET?

□ Know the worst, still schedule-able, then schedule-able for all cases.

No bad surprises for time-critical parts.

□ Safety, and to be Sure.

□ Static approaches and measurement approaches.

□ Add some flavours of statistics.

□ Approaches are good, but we need to be Sure.

U Who performs the analysis/measurements?

- Human
- Program

Who wrote the programs?

- Human
- Compiler, code-gen

Who wrote the compiler.....?

Human.....

Human makes mistakes.

Given Service Service

- Looking into device drivers so you know all the details (takes a lot of time)
- Little bird whispering next to your ears (takes too much imagination)
- Existing models provided by vendors (takes some luck)
- Data-sheet (mostly accessible, detailed......too detailed, 5000+ pages)

Common pitfall and possible remedy

WYPMNBWYG

□ Need to find a way to detect the mistake

Comparisons

What you program may not be what you get

Checking the WCET tool

To make sure we are on the right track

WCET estimation from WCET tool.

□ Need to check WCET tool to make sure:

- It is constructed correctly
- Its implementation satisfies the theory-to-implement, e.g. abstract interpretation

Our case:

- WCET tool to check OTAWA
 - From IRIT, University of Toulouse
 - Open source
 - Support ARM, RISC-V, PowerPC, Kalray MPPA, and our interested target: Infineon TriCore

□ Infineon TriCore is one of our target because:

- Three CPUs
- Targeted for automobile
- Powerful co-processors and peripherals
- Good candidate for REAL case-study, not just toy examples
- Interference analysis
- Many other tools support it, make a good case for tool-chain integration

OTAWA takes the program binary as the input

Provides WCET (in CPU cycles)

OTAWA is sophisticate

□ To support a new architecture by OTAWA

- To be able to decode the binary
- To have static analyses available (program cache analysis, data cache analysis, ...)

Analyses in OTAWA are made

[1] Hugues Cassé, Florian Birée, and Pascal Sainrat. Multi-architecture value analysis for machine code. In 13th International Workshop on Worst-Case Execution Time Analysis, pages pp-42, 2013.

- Platform independent, so developer can focus on the analysis itself
- Each instruction is presented by a sequence of *semantic instructions* [1]
 - e.g. set t1, 3 add r1, r2, 3 add r1, r2, t1

This is done before analyses

U We want to check

- The binary decoding and semantic instructions
- The static analyses

Validation of the ISA model for the instruction decoding

The ISA is described in NMP format [2] Normally processor has user-manual for ISA [3]

MOVD[c], D[b] (RR)

EXUPERY

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A structural processor modeling language for retargetable compilation and asip design. In Processor Description Languages, pages 65–93. Elsevier, 2008.
 [3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).

15

The ISA is described in NMP format [2] Normally processor has user-manual for ISA [3]

MOVD[c], D[b] (RR)

exupery

op mov_reg (c:reg_d, b:reg_d)
image = format("%4b %8b XXXX %4b XXXX %8b",c.image,0x1F,b.image,0x0B)
syntax = format("mov %s,%s",c.syntax,b.syntax)
action = { c = b; }

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A structural processor modeling language for retargetable compilation and asip design. In Processor Description Languages, pages 65–93. Elsevier, 2008.
 [3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).

Official ISS from Infineon: TSIM

□ OTAWA is able to generated ISS from NMP files

- Describing ISA
- Use to decode instructions in OTAWA
- First step to support a new architecture

Compare the "processor state" between TSIM and OTAWA-ISS

- Register values
- Memory accesses

315 combinations of Instructions + operands

- 203 (25%) were covered.
- ~200,000,000 instructions were executed in 36 applications including twIRTee and dualeMotor use cases.
- ~20% of OTAWA's TriCore instruction of decoding were corrected.
- Mostly human error when writing the NMP file.

Validation of static analyses and semantic instruction mappings

Similarly we check for other analyses in OTAWA
 For example abstract interpretation in value analysis

Checks for two things:

- If the value/address analysis is correctly implemented
- If the semantic instruction is correctly implemented for TriCore

Correct some operations in the abstraction

Validation of the tool is also important to have sound results

□ Some aspects were not taken into account in the previous TriCore implementation

• So far, we are contributing significantly for the TriCore support in OTAWA

Overall validation procedures

Future works

Finish what we did

Complete support of TriCore for OTAWA

Linkage to other our works

- Already have support for RISC-V
- Extended to support FlexPRET

Possible track

Generate semantic instructions from the ISA descriptions

Questions?

