Validating static WCET analysis:
a method and its application

Weli-Tsun Sun IRT Saint Exupéry
Eric Jenn IRT Saint Exupeéry, second by Thales AVS.
Hugues Cassé IRIT, Université de Toulouse

09/07/2019 @ WCET 2019, Stuttgart, Germany

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

®
@ SAINT Ex<urreEeE—=r

3

The Project CAPHCA

An IRT team, funded with ANR

© IRT AESE 2015 — All right reserved Confidential and proprietary document.

WCET (Worst-Case Execution Time)

Why do we need to care about the worst-case?

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

Why WCET?

d Know the worst, still schedule-able, then schedule-able for all cases.

(J No bad surprises for time-critical parts.

] Safety, and to be Sure.

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

How to get WCET?

] Static approaches and measurement approaches.

1 Add some flavours of statistics.
(1 Approaches are good, but we need to be Sure.

(d Who performs the analysis/measurements?
= Human
= Program

(d Who wrote the programs?
= Human
= Compiler, code-gen

J Who wrote the compiler......?
= Human......

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

LWV One of the problems of being human

(] Human makes mistakes.

1 For WCET analysis, sometimes HW info needed:
= Looking into device drivers so you know all the details (takes a lot of time)
= Little bird whispering next to your ears (takes too much imagination)
= Existing models provided by vendors (takes some luck)
= Data-sheet (mostly accessible, detailed.......too detailed, 5000+ pages)

J Common pitfall and possible remedy
= WYPMNBWYG

(J Need to find a way to detect the mistake
= Comparisons

What you program may not be what you get

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

Checking the WCET tool

To make sure we are on the right track

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

DSV |Ve need to make sure the estimated WCET is trust-worthy

J WCET estimation from WCET tool.

(] Need to check WCET tool to make sure:

= |tis constructed correctly

= |ts implementation satisfies the theory-to-implement, e.g. abstract interpretation
1 Our case:

= WOCET tool to check — OTAWA
= From IRIT, University of Toulouse
= (Open source

= Support ARM, RISC-V, PowerPC, Kalray MPPA, and our interested target: Infineon TriCore
[Infineon TriCore is one of our target because:
= Three CPUs
= Targeted for automobile
= Powerful co-processors and peripherals
= Good candidate for REAL case-study, not just toy examples
= |nterference analysis

= Many other tools support it, make a good case for tool-chain integration

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

What does OTAWA do?

(J OTAWA takes the program binary as the input

1 Provides WCET (in CPU cycles)

Bi”aWJ I OTAWA [Is) WCETJ

© IRT AESE 2015 — All right reserved Confidential and proprietary document.

OTAWA is a huge framework of many years work

(1 OTAWA is sophisticate

Binary | WCET |

X Constraint ILp ILP solver

IHardware info | Puilding Crejion invocation

OTAWA l
G.enerate an.d

Binary J-I Decode the > CreateBCBFSGs and Immp| Static analyses)| solve the ILP mm) | WCET \
* °

binary ® o ’ ’ * formula
v R e T T I
Identify Create CFGs Detect Caller Value/ Prog/Data Branch
Instructions & BBs loops relations address cache prediction Flow facts

analysis analysis

© IRT AESE 2015 — All right reserved Confidential and proprietary document. 10

To support a new architecture by OTAWA

1 To support a new architecture by OTAWA
= To be able to decode the binary
= To have static analyses available (program cache analysis, data cache analysis, ...)

X Constraint ILp ILP solver

IHardware info | Puilding Crejion invocation

OTAWA l
@ ®
Generate and

Binary J-I Decode the > CreateBCBFSGs and Immp| Static analyses)| solve the ILP mm) | WCET \
* [

binary ® o ’ ’ * formula
v R e T T I
Identify Create CFGs Detect Caller Value/ Prog/Data Branch
Instructions & BBs loops relations address cache prediction Flow facts

analysis analysis

© IRT AESE 2019 — All right reserved Confidential and proprietary document. 11

: -EA.N;;FERH Analyses are platform independent and can be configured

[1] Hugues Cassé, Florian Birée, and Pascal Sainrat. Multi-architecture
value analysis for machine code. In 13th International Workshop on

D Analyses in OTAWA dare made Worst-Case Execution Time Analysis, pages pp—42, 2013.
= Platform independent, so developer can focus on the analysis itself
= Each instruction is presented by a sequence of semantic instructions [1]

= eg.
) settl, 3
addrl, r2, 3 add r1, r2, t1

[This is done before analyses

OTAWA

N ; e] . Generate and
ecode the ‘ reate CFGs an I# Static analyses |~ solve the ILP

. L
Binary J-l binary o sem. Instruction formula mm) | WCET \
[repres,entation

Identify v ¢
Instructions Value/ Prog/Data
address cache Branch
prediction

© IRT AESE 2019 — All right reserved Confidential and proprietary document. ana |ySIS ana IySIS 12

Analyses are platform independent and can be configured

J We want to check
= The binary decoding and semantic instructions
= The static analyses

OTAWA

Decode the Create CFGs and Generate and
‘ | Static analyses | solve the ILP

? binary ‘

BBs
' ' formula
Binary J‘l sem. Instruction ' WCET \
I repres,entation

Identify v ¢
Instructions Value/ Prog/Data
address cache Branch
prediction

© IRT AESE 2019 — All right reserved Confidential and proprietary document. ana |ySIS ana IySIS 13

Validation of the ISA model for the
instruction decoding

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

1 The ISA is described in NMP format [2]

J Normally processor has user-manual for ISA [3]
MOVDI[c], D[b] (RR)

31 2827 2019181715615 1211 87 0

c 1FH - - b - 0BH

D[c] = DIbl;

=W The binary decoding

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A
structural processor modeling language for retargetable compilation and asip
design. In Processor Description Languages, pages 65—-93. Elsevier, 2008.

[3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).

(@)
op mov_reg (c:reg_d, b:reg_d)
image = format ("%4b %8b XXXX %4b XXXX %8b",c.image ,0x1F,b.image ,0x0B) Processor
syntax = format("mov %s,%s",c.syntax,b.syntax) ISS model
action = { ¢ = b; } _| generator e.g. ISA
=-- e.q. NMP format
_———" GLISS2 - image
- - syntax
== - actions
OTAWA | = =~ a)
Generate and
Decgde the Create CFGs and Static analyses <olve the ILP
binary BBs : R |
Binary sem. Instruction ormula WCET
representation
Identify
Instructions Value/ Prog/Data
address cache Branch
prediction

© IRT AESE 2019 — All right reserved Confidential and proprietary document. ana lySI 8 “ naly5|s

15

LW The binary decoding

[2] Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nml: A
structural processor modeling language for retargetable compilation and asip

D The ISA iS dESCfibEd in N M P format [2] design. In Processor Description Languages, pages 65-93. Elsevier, 2008.

[3] TriCore™ TriCore™ V1.6 Microcontrollers User Manual (Volume 2).
J Normally processor has user-manual for ISA [3]
MOVDI[c], D[b] (RR)

31 2827 2019181715615 1211 87 0

' 1FH - - b . 0BH

D[c] = DIbl;

op mov_reg (c:reg_d, b:reg_d)
image = format ("%4b %8b XXXX %4b XXXX %8b",c.image ,0x1F,b.image ,0x0B)

syntax = format ("mov %s,%s",c.syntax,b.syntax)
action = { ¢ = b; }
CH

 The description of ISA is captured manually — can be prone to human error{— Processor

° generator e.g. ISA
 The GLISS2 can not found problems like wrong op code value ~ ___----- g, || e

inations . _.o-===mTTTT g

(] 815 OPCODE-OPERAND combinations S

Generate and
Decode the Create CFGs and Staticanalyses olve the ILP
— binary BB« sem. Instruction formula /
Binary WCET
representatior

© IRT AESE 2019 — All right reserved Confidential and proprietary document. 16

Checking the instruction decoding / interpretation

] Official ISS from Infineon: TSIM

(J OTAWA is able to generated ISS from NMP files
= Describing ISA
= Use to decode instructions in OTAWA
= First step to support a new architecture
(d Compare the “processor state” between TSIM and OTAWA-ISS
= Register values
= Memory accesses

Binary +
stimuli

(@ D
Processor
Real model
ISS
processor Generated e.g. ISA
or official ISS <4 —| generator |« NMP format
ISS e.g. GLISS2 - image
- syntax
- actions
C.)

Compare
Outputs & outputs Outputs &

traces and traces traces

© IRT AESE 2015 — All right reserved Confidential and proprietary document.

17

(] 815 combinations of Instructions + operands

203 (25%) were covered.

~200,000,000 instructions were executed in 36 applications including twlRTee and dual-
eMotor use cases.

~20% of OTAWA’s TriCore instruction of decoding were corrected.

Mostly human error when writing the NMP file.

Binary +
stimuli

(@ D
Processor
Real model
ISS
processor Generated e.g. ISA
or official ISS € —| generator NMP format
ISS e.g. GLISS2 - image
- syntax
- actions

Outputs &
traces

© IRT AESE 2015 — All right reserved Confidential and proprietary document.

Compare
outputs
and traces

Qutputs &
traces

T M Some results

SAINT =< e

18

Validation of static analyses and
semantic instruction mappings

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

=21

=R WU \/alidate the static analyses

J Similarly we check for other analyses in OTAWA
(1 For example abstract interpretation in value analysis

OTAWA
Decode th C CEGs and Generate and
seodetne reate LFGs an Static analyses <olve the ILP
binary BBs _ ‘ I
Binary J em. Instruction ormula WCET
repres’entation

Identify r lJ

Instructions Value/ Prog/Data
address cache

analysis analysi

Branch
s prediction

© IRT AESE 2015 — All right reserved Confidential and proprietary document. 20

(] Extended the previous crafted ISA-NMP

op mov_reg (c:reg_d, b:reg_d)

image = format ("%4b %8b XXXX %4b XXXX %8b",c.image ,0x1F,b.image ,0x0B)

syntax = format ("mov %s,%s",c.syntax,b.syntax)
action { c=b>; }

Extended

extend mov_reg
sem = { SET(D(c.i), D(b.i)); }

OTAWA

Decode the
binary

Binary

Create CFGs and
BBs

fa) [a)
NMP NMP
- kinds semantic
- targets instructions
>
IRG
y
GLISS2
ya
7’
Ve
7’
Ve
e
7
7’
7/
7

Static analyses

K

Identify
Instructions

© IRT AESE 2015 — All right reserved Confidential and proprietary document.

em. Instruction
representation

Generate and
solve the ILP
formula

"

Value/ Prog/Data
address cache
analysis

Branch
analysis prediction

WIS Capturing the semantics of the instructions

NMP

- image
- syntax

a actions

GLISS2

WCET

21

LWV /\bstract state: covers the concrete state

1 Checks for two things:

= |f the value/address analysis is correctly implemented
= |f the semantic instruction is correctly implemented for TriCore

: (@)
' | Address and Micro- :

Real processor ! value architecture | Processor

or ISS (official : analysis analyses i model

or generated) i !
. Static WCET Analysis

Concrete/
actual
states

Abstract M

states

{3} belongs to {3,4, 5} so
© IRT AESE 2015 — All right reserved Confidential and proprietary document. the abStraCt state Is Sound 22

R1 = {3, 4, 5}

" e

e NV Some results

1 Correct some operations in the abstraction
= Validation of the tool is also important to have sound results

(1 Some aspects were not taken into account in the previous TriCore implementation
= So far, we are contributing significantly for the TriCore support in OTAWA

Binary +
stimuli

..............

' | Address and Micro- ! p
Real processor i value architecture <— rocedsslor
or IS5 (official : analysis analyses) mode
or generated) : ' g

Static WCET Analysis

Step 2
R1 = {3}

Abstraction H Comparison

Step 4
{3} belongs to {3,4, 5} so

Concrete/
actual
states

Abstract Step 3

states

R1 = {3, 4, 5}

the abstract state is sound

© IRT AESE 2015 — All right reserved Confidential and proprietary document. 23

-

R4

= 1
SAINT E<u/—/mr e

- >

Overall validation procedures

NMP
semantic
instructions

- image
- syntax
- actions

g)

____________________________________ =)

GLISS2

- kinds
- targets

GLISS2

Compare
outputs
and traces

Semantic Address and Other micro-
instruction value architecture
translator analysis analyses

OTAWA

Abstract
state on
BBs

Concrete
state on
BBs

Comparison

Verification of the abstract states Verification of the processor model

© IRT AESE 2015 — All right reserved Confidential and proprietary document. 24

==V
J >
SAINT Exu/rmramr

- >

Future works

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

Next steps

M Finish what we did
= Complete support of TriCore for OTAWA

1 Linkage to other our works
= Already have support for RISC-V
= Extended to support FlexPRET

 Possible track
= Generate semantic instructions from the ISA descriptions

© IRT AESE 2015 — All right reserved Confidential and proprietary document. 26

hod

—_T

SAINT Er<urreEeE/=~

>

Questions?

© IRT AESE 2019 — All right reserved Confidential and proprietary document.

