
ePAPI: Performance Application Programming

Interface for embedded platforms

Jeremy Giesen§¶, Enrico Mezzetti§, Jaume Abella§,

Enrique Fernández†, Francisco J. Cazorla§

19th International Workshop on Worst-Case Execution Time Analysis - July 9, 2019

www.bsc.es

¶§ †

COTS Multicore processors

• Heavily used in critical systems
– Even the most conservative system domains

• Features
– Multiple level caches, clusters of cores,

hardware accelerators, FPGAs, …

• Pros
– Cover the increasingly computational

requirements of advanced software
functionalities
• E.g. Autonomous Driving, in automotive

2

• Cons
– They hamper the effectiveness of consolidated WCET analysis approaches

Event Monitors: At the Heart of Predictability

• HW support has been proposed to improve predictability

– Those solutions have not been fully adopted by industry yet for cost reasons

– Yet some techniques have hit the silicon: cache partitioning

• SW support for chips with limited HW support for predictability

– Goal:

• Control contention among tasks to different shared resources.

– How? Via the operating system/hypervisor

• Monitors task’s activities using the available PMCs and

• Suspends or restrains tasks’ execution when their assigned budget is exhausted.

3

Event Monitors: At the Heart of Predictability

• HW support has been proposed to improve predictability

– Those solutions have not been fully adopted by industry yet for cost reasons

– Yet some techniques have hit the silicon: cache partitioning

• SW support for chips with limited HW support for predictability

– Goal:

• Control contention among tasks to different shared resources.

– How? Via the operating system/hypervisor

• Monitors task’s activities using the available PMCs and

• Suspends or restrains tasks’ execution when their assigned budget is exhausted.

4

Event monitors,
and the SW-visible counter to access them (PMCs),

are at the heart of SW solutions for time predictability

Mastering Diversity

• Structured approach to use PMCs for platform analysis
– Helps mastering complex PMUs (hundreds of event monitors)

• abstract away from the low-level hardware details

• guarantee a correct manipulation of the registers

– Masters diverse PMC support inter- and intra-platform

• In this respect, a standardization effort in the high-performance
and mainstream domains to configure and use monitoring
counters
– Kernel-level tools (perf)

– Shared common libraries

• Performance Application Programming Interface (PAPI)

5

Mastering Diversity

• Structured approach to use PMCs for platform analysis
– Helps mastering complex PMUs (hundreds of event monitors)

• abstract away from the low-level hardware details

• guarantee a correct manipulation of the registers

– Masters diverse PMC support inter- and intra-platform

• Standardization effort in the high-performance domain to
configure and use monitoring counters
– kernel-level tools (perf)

– Shared common libraries

• Performance Application Programming Interface (PAPI)

6

No equivalent solution is currently available for
embedded reference platforms and RTOSes

Our work

• First step towards filling this gap

– Address the implementation of an abstract PMC library to collect in a
platform-independent way relevant events

– To which extent PAPI could be used for fine-grained platform time analysis?

• More specifically:

– Assess PAPI compatibility with PMC support on AURIX ™ TC297

• Reference platform in the automotive domain

– Define, implement and validate ePAPI a functionally-equivalent, low-
overhead port of PAPI to the referenced platform

7

Outline

• Motivation

• Introduction to PAPI

• Porting PAPI to an embedded platform
– The reference platform with emphasis on event monitors

– Selection and mapping of PAPI events

• ePAPI
– Implementation

– Validation

• Conclusions and Future Work

8

Introduction to PAPI

Performance Application Programming Interface

• Cross-platform library with supporting utilities for application profiling
– De-facto standard for mainstream and HPC COTS hardware platform

– Monitors collect statistic on the occurrence of specific hardware events

– Two-layered approach enables sharing the same interface across platforms

• User-level standardized API
– Unified interface across families of processors

– For coarse-grained and fine-grained profiling

• Machine-dependent part
– Enables configuration and collection of PMC data

– ISA and platform specific

– Partial interface compliance is admissible

High-level API

Low-level API

Performance Monitoring Counters (PMCs)

Operating System support

ISA and Machine-dependent layer

PAPI portable layer

Platform-dependent layers

10

Porting PAPI to an embedded platform

Infineon AURIX TC 297 ED

• TriCore TC1.6 P
– Private instr and data caches
– Private instr and data scratchpads
– Superscalar

• Integer, Load/Store and Loop pipelines

– Not exactly the same config though
• One core operates in lockstep mode
• One cores equips smaller local memories

• SRI Cross Bar Interconnect
– Shared PMU (Program Memory Unit)

• DFlash and 4 PFlash SRI interfaces

– Shared LMU (Local Memory Unit)
• Relatively small shared RAM

• System Peripheral Bus
– Supports DMA and HSSL transactions

12

TC 297 Debug Support

• Each TC1.6 P features a relatively small PMU (Perfomance Monitoring Unit)
– 5 PMC registers per core

– Two dedicated registers for cycle (CCNT) and instruction (ICNT) counters

– Three multiplexed registers (M1CNT, M2CNT, and M3CNT)

• Multiplexed PMCs can be configured to track one of the hardware events supported by the PMU

13

Event Description

IP_DISPATCH_STALL Incremented each cycle the Integer dispatch unit is stalled for whatever reason.

LS_DISPATCH_STALL Incremented each cycle the Load-Store dispatch (LSU) unit is stalled for whatever reason.

LP_DISPATCH_STALL Incremented each cycle the Loop dispatch unit is stalled for whatever reason.

MULTI_ISSUE Incremented each cycle when more than one instruction is issued.

PCACHE_HIT
Incremented each time the fetch unit is (NOT) found in the program cache.

PCACHE_MISS

DCACHE_HIT Incremented each time the target of a cached request from the Load-Store unit is found in the data cache.

DCACHE_MISS_CLEAN Incremented each time the target of a cached request from the Load-Store unit is not found in the data cache & hence
a bus fetch is initiated with no dirty cache line eviction/write-back of a dirty line.DCACHE_MISS_DIRTY

TOTAL_BRANCH Incremented each cycle a branch instruction is in a branch resolution stage of the pipeline.

PMEM_STALL Incremented each cycle the FU is requesting an instruction and the imem is stalled

DMEM_STALL Incremented each cycle the LSU is requesting a data operation and the dmem is stalled

TC 297 Debug Support

• Supported hardware events
– Only 12 hardware events can be tracked through the multiplexed counters

– The Counter Control Register (CCTRL) can be configured to select the event
to be tracked

• The CCTRL register is configured via assembly language

• Only 3 events at a time (summing up to the 2 static CCNT and ICNT)

– Not all combinations are allowed

14

CCTRL bits M1CNT M2CNT M3CNT

000 IP_DISPATCH_STALL LS_DISPATCH_STALL LP_DISPATCH_STALL

001 PCACHE_HIT PCACHE_MISS MULTI_ISSUE

010 DCACHE_HIT DCACHE_MISS_CLEAN DCACHE_MISS_DIRTY

011 TOTAL_BRANCH PMEM_STALL DMEM_STALL

Selection and mapping of PAPI events

• PAPI specification includes 100+ preset events
– However, actual implementations typically support a subset

• Porting to the TC 297 is not an exception
– Events inherently unsupported

• E.g., 30+ events related to L2 and L3 caches

– Events voluntarily discarded

• We focused on events we considered relevant for the embedded domain
(timing and energy, multicore contention, average performance analyses)

• PAPI_RES_STL – Cycles stalled on any resource.

• Supported events
– 15 events of which 9 are PAPI preset events and 6 are native events

– Event mapping straightforward except for some cases

• Some preset events can be mapped to the combination of more than one PMC

• In few cases the TC 297 PMU could only provide an over-approximation of the PAPI event

15

ePAPI Implementation and Validation

ePAPI Implementation

• Full PAPI specification includes 70+ functions
– We restricted to functions in reason of the hardware-software configuration

(TC 297, bare-metal setting)

• Current ePAPI support
– Almost all (7 out of 10) functions defined by PAPI high-level interface

• Related to component selection and high-level FPU statistics

– A small subset (17 out of 66) of PAPI low-level interface

• Focus on CPU performance

• Lack of platform support for Floating-Point Unit (FPU) events

• No operating system support

• No standard output

17

PAPI vs ePAPI signatures equivalence

18

ePAPI validation

• ePAPI implementation needs to be assessed on
– Accuracy of PMCs on the target platform

• Pre-requisite for verification and validation

– Equivalence of functional behavior

• ePAPI functions shall meet the software specification from PAPI documentation

– Limited overhead of ePAPI functions

• Library calls are also required to incur small overhead on PMC values

• Baseline for assessment
– We built on top of PMClib [6] a low-level, zero-overhead PMC library

19
[6] E. Díaz et al. “Modelling multicore contention on the AURIX TC27x” DAC 2018

ePAPI validation

• Accuracy of PMCs
– We exploited small ad-hoc benchmarks that cause a known amount

of events to be triggered for each traceable event

• Equivalence of functional behavior
– Functional testing campaign on both high- and low-level functions

• Limited overhead of ePAPI functions
– Generic infrastructure of PAPI (ePAPI) high-level interface cannot have zero

impact on PMCs

• It necessarily requires more instructions to be executed

– Impact must be reasonably low and more importantly bounded

20

PMClib vs ePAPI plain and accumulated PMC reads

21

• Low overhead in all cases
– Very few additional event counts

– Only observed differences were on
the number of instructions and
cycles,

• In most cases no overhead
on specific event counts

• Reduction of probe effects
– Counters are enabled and disabled

to guarantee that the measured
events belong to the program under
analysis

• Results are constant
– After running several times the

benchmarks, the overheads kept
constant

– Even for a similar platform of the
same family, the TC275.

Conclusions

Considerations

• Analyzing PAPI interface and target support
– Identified some limitations and desirable characteristics

• From the PAPI perspective
– PAPI Preset events are necessarily generic

• Mostly designed to collect performance metrics for optimization purposes

– Relevant events from the embedded domain perspective are only supported as native events
– Not having those events in the cross-platform interface partially defeats the benefits of having a

standardized interface

• From the AURIX™ TC297 perspective
– We suffered from the limited PMC support available, compared to the support available in

conventional processors and more advanced embedded targets
• This was indeed the main cause for discarding PAPI functionalities from the porting

– PMC support in the TC297 does not allow to characterize contention effects with satisfactory
precision as stall events cannot be associated to the different target in the SRI

• E.g., PMEM_STALL event is counting stalls cycles suffered when fetching code from any PFlash interface, the LMU or
even non-local scratchpads

23

Conclusions and next steps

• We investigated on a standardized performance monitoring
interface for embedded targets
– Considered the general-purpose PAPI specification

– Assessed it against the available PMC support in the AURIX TC 297

– Developed and validated ePAPI
• Functionally-equivalent and low-overhead implementation of PAPI for the TC 297

• Future directions
– Extend ePAPI TC 297 to support to RTOS events

• Compatible Erika RTOS

– Port ePAPI to different platform

– Make the implementation available to the community

24

ePAPI: Performance Application Programming

Interface for embedded platforms

Jeremy Giesen§¶, Enrico Mezzetti§, Jaume Abella§,

Enrique Fernández†, Francisco J. Cazorla§

19th International Workshop on Worst-Case Execution Time Analysis - July 9, 2019

www.bsc.es

¶§ †

