
Some industrial applications I’ve been
involved in

David Monniaux

CNRS / VERIMAG

July 11, 2019

VERIMAG is a joint research unit of CNRS, a national research organization,
Université Grenoble Alpes and Grenoble-INP (school of engineering).

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 1 / 37

Me

Co-head of PACSS group at VERIMAG (public research laboratory)

PACSS = safety and security

▶ decision procedures
▶ assisted proofs
▶ certified compilation
▶ attacker models
▶ concolic execution
▶ abstract interpretation, convex polyhedra etc.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 2 / 37

Astrée

Contents

Astrée

CompCert

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 3 / 37

Astrée

Astrée

(Involvement: 2001–2007)

Automatic static analysis tool for inferring invariants and proving
▶ absence of undefined behaviors / runtime errors
▶ assertions

Input: C source
Outputs: warnings, optionally invariants of the execution

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 4 / 37

Astrée

Undefined behaviors in C

MISRA-C 2004, Rule 1.2 (required): No reliance shall be placed on
undefined or unspecified behaviour.

Undefined behaviors include:
▶ Array access out of bounds
▶ Bad pointers
▶ Signed arithmetic overflow
▶ Arithmetic conversion overflows
▶ …

In general these are undecidable properties.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 5 / 37

Astrée

Arbitrary properties

int *p = NULL, x;
if (stuff()) p = &x;
*p = 5;

int count = 0;
while(true) {

if (stuff()) {
count++;

} else {
count = 0;

}
}

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 6 / 37

Astrée

Arbitrary properties

int *p = NULL, x;
if (stuff()) p = &x;
*p = 5;

int count = 0;
while(true) {
if (stuff()) {

count++;
} else {
count = 0;

}
}

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 6 / 37

Astrée

Undecidable?

“There is no algorithm that, given the source code of a program with
unbounded memory, can say whether it terminates or not.”
(see in theoretical model by Turing and others)

MISRA-C 2012 now flags properties as “undecidable” or not.
Distinguish hard properties from properties checkable on program
syntax.

Take-home message: no static analysis tool can flag exactly
undefined behaviors in a C program. It must have at least one of:
▶ false positives: warnings about nonexistent problems
▶ false negatives: missing existent problems

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 7 / 37

Astrée

Interval analysis

int x, y, z;
assume(x >= 0 && x <= 1000);
assume(y >= 0 && y <= 1000);
z = x+y;

Proves that 0 ≤ x+ y ≤ 2000 and thus cannot overflow.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 8 / 37

Astrée

Interval analysis may be imprecise

int x, y, z;
assume(x >= 0 && x <= 1);
y = 1-x;
z = 1000/(x+y);

x ∈ [0, 1], y ∈ [0, 1], x+ y ∈ [0, 2]
flags possible division by zero!

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 9 / 37

Astrée

Loops

int x = 0;
while(true) {
x++;
if (x==1000) x=0;

}

Depending how it’s done: 0 ≤ x ≤ 1000 at head of loop, 0 ≤ x only…

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 10 / 37

Astrée

Relations

int x = 0, y;
assume(0 <= y && y <= 1);
while (test()) {

x++;
y++;

}
z = y-x;

Interval analysis: cannot prove z ∈ [0, 1]
Relational analyses (convex polyhedra, “octagons”: z ∈ [0, 1])

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 11 / 37

Astrée

Second-order filter

yn = α0xn + α1xn−1 + α2xn−2 + β1yn−1 + β2yn−2

Cannot be bounded by interval analysis
▶ enclose (yn, yn−1) in an ellipsoid?
▶ or approaches based on Z-transform

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 12 / 37

Astrée

Pointers

For every pointer, track to what it may point.
This can be hard!

int x = 0, y = 0;
int *p = stuff() ? &x : &y;
(*p) ++;
(*p) --;
assert(x==0);
assert(y==0);

Depending how it’s done, we can prove the assertions…or not.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 13 / 37

Astrée

Summary

▶ Automatically infer properties on program variables
▶ These properties hold initially are stable by induction (“if true

at loop iteration n then true at iteration n+ 1)
▶ Thus they are true at every iteration.
▶ Can prove properties, or give information (e.g. ranges or

relationships or alias relations)
▶ A lot of variation on cost and precision of approaches.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 14 / 37

Astrée

Counters for WCET

while(c1)

if(c2)

analyse

(pagai)b3

b5

β+ γ ≤ α+ 10

b0

b1

b4

b6

false

true

false
true

true
false

x = 0

if(x<10)

x++

b2 γ = x

0 ≤ γ ≤ α

0 ≤ β ≤ α

b6

x++

true
if(c2)

false

b4

b5

b3

true
false

if(x<10)

true

while(c1)
falseb1

α=β=γ=0

x = 0
b0

α++

β++

γ++

b2

counters

add

(At VERIMAG: done by Raymond, Maïza, Parent-Vigouroux et al.
with PAGAI;
also experiments for WCET using SMT; ask me about it!)David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 15 / 37

Astrée

Tools

Astrée
Designed for safety-critical fly-by-wire avionics systems
e.g. A340, A380
http://www.astree.ens.fr/
https://www.absint.com/astree/index.htm

Frama-C value analysis
https://frama-c.com/value.html

PAGAI
(research prototype)
https:
//gricad-gitlab.univ-grenoble-alpes.fr/pagai/pagai

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 16 / 37

http://www.astree.ens.fr/
https://www.absint.com/astree/index.htm
https://frama-c.com/value.html
https://gricad-gitlab.univ-grenoble-alpes.fr/pagai/pagai
https://gricad-gitlab.univ-grenoble-alpes.fr/pagai/pagai

Astrée

Tools

Astrée
Designed for safety-critical fly-by-wire avionics systems
e.g. A340, A380
http://www.astree.ens.fr/
https://www.absint.com/astree/index.htm

Frama-C value analysis
https://frama-c.com/value.html

PAGAI
(research prototype)
https:
//gricad-gitlab.univ-grenoble-alpes.fr/pagai/pagai

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 16 / 37

http://www.astree.ens.fr/
https://www.absint.com/astree/index.htm
https://frama-c.com/value.html
https://gricad-gitlab.univ-grenoble-alpes.fr/pagai/pagai
https://gricad-gitlab.univ-grenoble-alpes.fr/pagai/pagai

Astrée

A remark on precision

Some tools advertise 98% precision
Meaning: out of 100 possible “undefined behaviour” warnings they
prove 98% not to occur (GREEN)

200,000-LOC source code⇒ 4,000 warnings (ORANGE)

Astrée aimed at 0 or few warnings
Astrée aimed at a specific domain (safety-critical control
applications) and their classes of invariants.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 17 / 37

Astrée

A remark on precision

Some tools advertise 98% precision
Meaning: out of 100 possible “undefined behaviour” warnings they
prove 98% not to occur (GREEN)

200,000-LOC source code⇒ 4,000 warnings (ORANGE)

Astrée aimed at 0 or few warnings
Astrée aimed at a specific domain (safety-critical control
applications) and their classes of invariants.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 17 / 37

Astrée

Industrialization lessons learned on Astrée

High precision
Off the shelf tools will give poor precision — need tayloring
Researchers need the actual code to be analyzed or at least highly
representative examples (same constructs, same kind of invariants).
Perhaps hear feedback on difficult-to-analyze constructs.

Scope
Eventually you end up supporting a very large subset of C. Code is
seldom fully in a “reasonable” subset (e.g. “no pointer arithmetic”).

Don’t give up
“Static analysis does not work”
Many tools
Many approaches

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 18 / 37

CompCert

Contents

Astrée

CompCert

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 19 / 37

CompCert

Choosing an embedded processor
For speed?

▶ out-of-order superscalar
▶ fast clock
▶ multicore

For reliability?

▶ slow
▶ simple control

For predictability? (WCET)

▶ simple, predictable cache
▶ in-order core

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 20 / 37

CompCert

Choosing an embedded processor
For speed?

▶ out-of-order superscalar
▶ fast clock
▶ multicore

For reliability?

▶ slow
▶ simple control

For predictability? (WCET)

▶ simple, predictable cache
▶ in-order core

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 20 / 37

CompCert

Choosing an embedded processor
For speed?

▶ out-of-order superscalar
▶ fast clock
▶ multicore

For reliability?

▶ slow
▶ simple control

For predictability? (WCET)

▶ simple, predictable cache
▶ in-order core

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 20 / 37

CompCert

Choosing a compiler

For speed?

▶ agressive optimizations
▶ the resulting code does not resemble the source

For qualification?

▶ assembly code follows C (side-by-side comparison, same C
block always compiled the same)

▶ slow code

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 21 / 37

CompCert

Choosing a compiler

For speed?

▶ agressive optimizations
▶ the resulting code does not resemble the source

For qualification?

▶ assembly code follows C (side-by-side comparison, same C
block always compiled the same)

▶ slow code

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 21 / 37

CompCert

To summarize

For performance

▶ high performance out-of-order core
▶ agressive optimizations in compiler

For qualification

▶ predictable core
▶ no optimizations
▶ assembly/object code “visually” matches the source

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 22 / 37

CompCert

CompCert

(Xavier Leroy et al.)

Mathematically defined semantics
▶ for source program
▶ for target code (assembly)

Proof that the semantics is preserved.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 23 / 37

CompCert

Example of how it works

Inside instruction selection: simplification of or-immediate:
Nondetfunction orimm (n1: int) (e2: expr) B
if Int.eq n1 Int.zero then e2
else if Int.eq n1 Int.mone then Eop (Ointconst Int.mone) Enil
else match e2 with

| Eop (Ointconst n2) Enil ⇒ Eop (Ointconst (Int.or n1 n2)) Enil
| Eop (Oorimm n2) (t2:::Enil) ⇒ Eop (Oorimm (Int.or n1 n2)) (t2:::Enil)
| Eop Onot (t2:::Enil) ⇒ Eop (Oornimm n1) (t2:::Enil)
| _ ⇒ Eop (Oorimm n1) (e2:::Enil)

end

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 24 / 37

CompCert

Theorems

Simple, local proofs of soundness:
Theorem eval_orimm:
∀ n, unary_constructor_sound (orimm n) (fun x ⇒ Val.or x (Vint n))

Proof

“Even after simplifications, || still means “or”!”

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 25 / 37

CompCert

More involved theorems

Theorem match_state_codestate:
∀ mbs abs s fb sp bb c ms m,
(∀ ef args res, MB.exit bb <> Some (MBbuiltin ef args res)) →
(MB.body bb <> nil ∨ MB.exit bb <> None) →
mbs = (Machblock.State s fb sp (bb::c) ms m) →
match_states mbs abs →
∃ cs fb f tbb tc ep,

match_codestate fb mbs cs ∧ match_asmstate fb cs abs
∧ Genv.find_funct_ptr ge fb = Some (Internal f)
∧ transl_blocks f (bb::c) ep = OK (tbb::tc)
∧ body tbb = pbody1 cs++pbody2 cs
∧ exit tbb = pctl cs
∧ cur cs = Some tbb ∧ rem cs = tc
∧ pstate cs = abs

“Given the mapping of the stack, the assembly code generated has
the same semantics as that of the last intermediate representation.”

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 26 / 37

CompCert

Main theorem

Theorem transf_c_program_correct:
∀ p tp,
transf_c_program p = OK tp →
backward_simulation (Csem.semantics p) (Asm.semantics tp)

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 27 / 37

CompCert

Scientific challenge

The compiler designer must have a very clear idea of
▶ all semantics
▶ all invariants
▶ all properties of intermediate representations

to write the proofs!

Some simplification: do not prove the transformation, prove a
checker verifying the transformation.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 28 / 37

CompCert

In practice

Just like gcc or clang.
e.g. compiling the GNU Linear Programming Toolkit
cd glpk-4.65
CC=”ccomp␣-fall” ./configure --disable-reentrant --disable-shared
make
make install

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 29 / 37

CompCert

Current involvement

Joint work with Cyril Six & Sylvain Boulmé

MPPA3
▶ Development of a backend for the Kalray MPPA3 (K1C core).
▶ Optimized VLIW instruction scheduling.

Secure processor

▶ Development of a backend for a processor with secure features
(control flow integrity, encryption of code…)

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 30 / 37

CompCert

Focus: local scheduling

Each CPU instruction i is a task, results available after Li cycles

Each instruction uses a vector vi of resources (LSU, ALU…), sum of
resources of instructions at same cycle ≤ B

Need to respect dependencies:
▶ compute/load a result before it’s needed
▶ don’t overwrite results before they’re read

Solve local scheduling problems, reduce makespan

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 31 / 37

CompCert

A remark on WCET: if-conversion

if (f) {
x = a*b;

} else {
x = a+b;

}
...

mulw $r3 = $r1, $r2
addw $r4 = $r1, $r2
ld $r16 = 8[$r12] # (following)

;;
cmoved.weqz $r0? $r3 = $r4

Less branching = better for WCET

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 32 / 37

CompCert

Performance

binary_search fill

binary_search search

bitsli
ced-aes

bitsli
ced-tea

complex_mat

float_m
at

float_m
at v2

glibc_qsort
heapsort idea ntt

quicksort
sha-256 lift

Heptagon-radiotrans

Lustre
v4-heater

Lustre
v6-convertib

le

xor_and_mat
0%

20%

40%

60%

80%

100%
fastest

ccomp
gcc o3
gcc o2
gcc o1
gcc o0

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 33 / 37

CompCert

Performance indications

On Kalray K1c:
Our CompCert usually
▶ 2 to 17 times faster than gcc -O0
▶ 20% to 30% slower than gcc -O3, sometimes faster
▶ faster than gcc -O1

Highly dependent on the kind of code (thus the kind of
optimizations we miss).

Recall gcc -O2 etc. lose traceability between source and object code
and cannot be qualified for certain applications.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 34 / 37

CompCert

Future

We need your input!

▶ High-level optimizations? (e.g. loop rescheduling, software
pipelining?)

▶ Direct compilation for high-level languages? (e.g. Scade)
▶ Semantics for concurrency? OpenMP?
▶ Alias analysis and related optimizations
▶ Exotic targets?
▶ Help for WCET?

Need to be driven by examples.

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 35 / 37

CompCert

Lessons

Need proper documentation
Need optimized code generation for a new core? Give the
documentation and a simulator.

Push-button?
CompCert, for the end user, is just like any other compiler.
Nearly full C99 support (no variable length arrays, no complex, no
Duff’s device)
A lot of code contains non-portable constructs (GNUisms etc.)

Difference with proving no undefined behaviors
Analysis: 98% green: 2% possible undefined behavior, bad
Compiling: 98% optimizations activated, very good

(NB: Absint’s CompCert connected to aIT)

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 36 / 37

CompCert

Questions ?

http://www-verimag.imag.fr/~monniaux/

▶ static analysis
▶ decision procedures, concolic execution
▶ certified compilation

David Monniaux (CNRS / VERIMAG) Some industrial applications I’ve been involved in July 11, 2019 37 / 37

http://www-verimag.imag.fr/~monniaux/

	Astrée
	CompCert

