REAL-TIME SYSTEMS ENGINEERING @ BOSCH FROM RESEARCH TO INDUSTRY AND BACK

THOMAS KROPF PRESIDENT CORPORATE RESEARCH & ADVANCE DEVELOPMENT

Real-Time Systems Engineering @ Bosch Bosch Product Portfolio

Bosch is a leading provider of Real-Time Cyber Physical Systems

Ocorporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Bosch's World-wide R&D Presence

Bosch Research and development Corporate Research & BCAI

Bosch is one of the leading technology companies

Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Bosch Corporate Research

► Asia-Pacific 115 associates

Smart Spraying

Automatic Emergency Brake

Master Electrification by Virtual Product Engineering

eBike System Design

Trustworthy Computing

Ultra Short Pulse Laser

Research that matters !

Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Modelling vs. Reality Models are ind

 $\ln 2 \approx 69,3\%$

Liu & Layland, Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment, 1973

- Models are indispensable for increasing design efficiency (front loading)
- "All models are wrong, but some are useful" (George Box, 1976)
- A "useful model" for classical µC-based products such as engine management and ABS:
 - WCET with Rate-Monotonic Scheduling
- ► Why? Because it is "close enough" !
 - HW platform simple enough to derive tight WCET
 - Execution times rather static with cyclic triggering
 - Sporadic workloads can be approximated

It depends on the engineering task if a model is useful

5 Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Increasing Complexity of ECU Hardware

Increasing demand of computing power

Mastering the heterogeneous system era is the new challenge

Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch What is the main problem?

- ► WCET is one of the central abstractions in real-time research
- ► The main idea of WCET is to abstract away the underlying HW
- WCET abstraction is not adequate for heterogeneous system era
 - Dynamic interference channels are dominating factors and are not reflected (e.g. from accelerators or other cores⁽²⁾)
 - Modern workloads are not static but vary heavily depending on operation condition (e.g. video)
 - More dynamic shared resources like caches 1, DRAM 3
- New abstractions or more detailed models needed: we are facing a new HW/SW co-design problem

Heterogeneous µP hardware breaks WCET abstraction

Corporate Research

Real-Time Systems Engineering @ Bosch Current Bosch Research Approaches

- Mechanisms bounding memory interference
 - Idea: enforce max memory access budget per time interval and per core/task
 - Inspired by real-time research: MemGuard¹

- Abstract performance modeling & analysis of hardware-software systems
 - Established inside Bosch for µC-based systems
 - Research extending it to upcoming µP-based systems at Bosch
 - Also prominent in your community see WATERS challenges provided by Bosch

Need prediction as well as design for predictability

Corporate Research | 2019-06-22 1) MemGuard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms - H. Yun et al., University of Illinois at Urbana-Champaign

Real-Time Systems Engineering @ Bosch Automotive Engineering Projects Reality

Dealing with incomplete information is key

O Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Centralized E/E Architectu

Centralization shifts integration effort from network to the ECU

10 M/NEE | 2019-05-03

Real-Time Systems Engineering @ Bosch Consequences of a Centralized E/E Architecture

- Integration challenges
 - ► Multi-supplier
 - Mixed criticality (safety, security, timing)
- Can only be handled efficiently
 - ► if system parts can be tested in isolation
 - ▶ if local changes do not have global impact
- Current Hypervisors:
 - Spatial isolation
 - Temporal isolation
 - No solution for bounding memory contention
 - Inefficient scheduling

Compositionality is key for development efficiency

1 Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Automotive E/E Architecture Goes Connected

Static Priority Preemptive

- And it is even worse ! SOTA¹ requires integration to be feasible after SOP²
- Resources (computation, communication, memory, etc.) must be provisioned in a compositional manner
- Real-time guarantees of existing applications must not be broken when adding new applications to the system
- Scheduling mechanisms in most commercially available OSes and hypervisors are not sufficient
 - TDMA: static resource provisioning w/o flexibility
 - Static priorities: no task isolation, no notion of QoS

Compositionality is key to master future automotive systems

12 Corporate Research | 2019-06-22

1: Software Over The Air 2: Start of Production

Safety-critical real-time cause-effect chains beyond vehicle boundary

1.3 Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch IT like SW Construction Principles Entering Automotive

- To cater for the flexibility needed for new applications IT software technology is entering automotive systems
 - High-flexibility, scalability, powerful abstractions, dynamic runtime adaptation **BUT** little control over real-time behavior
- Applications tightly interacting with physical world will still be based on embedded technology (e.g. ABS, engine management)
 - Resource efficiency, timing predictability, low latency
 BUT little flexibility, statically compiled
- A successful automotive SW platform must combine technologies from both worlds while ensuring real-time predictability
 - ► Of course, this has a huge impact on "model usefulness"
 - Richer models from dataflow community have a good fit
 - Can they be combined with real-time models?

Real-time models need to reflect convergence of embedded and IT

14 Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Application Domain with Similar Characteristics: Robotics

- ► Same construction principles as we are facing in automotive
- µP-based HW platforms
 - Same memory contention effects
- POSIX-based operating system (often Linux)
 - Richer scheduling, larger kernel overheads
- ► Robotic Operating System (ROS) as middleware
 - Service-orientation, marshalling, call-back queuing
- ▶ ... little to learn in terms of real-time
 - Real-time often neglected in Robotics
 - ► Real-time problems are solved taking more powerful controller...
 - ... or by tweaking/optimizing manually

Same challenges ... little to learn ... yet

1.5 Corporate Research | 2019-06-22

Real-Time Systems Engineering @ Bosch Current Bosch Research Approaches

- ► ROS2 on resource-constrained µCs
 - RTOS, DDS-XRCE, predictable execution

https://microros.github.io/

- Response time analysis for ROS2
 - Bounding latencies of cause-effect chains in ROS2 framework
 - Revisiting ROS2 design choices from real-time perspective
 - Joint paper by Bosch/MPI/Pisa presented after lunch

- Real-time guarantees with QNX
 - QNX is one of the candidate operating systems for vehicle computers
 - Adaptive partitioning scheduling (APS) in QNX provides secure partitions with guaranteed CPU time
 - Unfortunately APS exhibits scheduling anomalies

Bosch research leverages synergies between robotics and automotive

Real-Time Systems Engineering @ Bosch Real-time Experts are Rare – Engineers are Many

Results need to be applicable for non-experts

17 Corporate Research | 2019-06-22 <u>https://www.cse.wustl.edu/~cdgill/ngoscps2019/presentations/NGOSCPS2019 Brandenburg.pdf</u> by Björn Brandenburg, MPI for SW Systems, Kaiserslautern © Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

There are many challenges ahead. Solve them together with us.

THANK YOU

Bosci Parkhaus

BOSCH