

PREPRINTS

17th International Workshop on
Real-Time Networks – RTN 2019

Stuttgart, Germany, July 9, 2019

In conjunction with the 31st ECRTS

https://www.ecrts.org/rtn/

Chairs

Guillermo Rodriguez-Navas
Nokia-Bell Labs

Ramon Serna Oliver
TTTech

https://www.ecrts.org/rtn/

Workshop Program

9:00 Welcome and Workshop Opening

9:15 – 10:30 Keynote Speech

 5G and Real-Time-Networks: A practical example
Matthias Jablonowski, Nokia

10:30 – 11:00 Coffee Break

11:00 – 12:30 Session #1: Dependability and Real-Time

 DynaMO - Dynamically tuning DSME Networks
Harrison Kurunathan, Ricardo Severino, Anis Koubaa and Eduardo Tovar

 A Preliminary Roadmap for Dependability Research in Fog Computing
Zeinab Bakhshi and Guillermo Rodriguez-Navas

 Towards a Dynamic Replication of Messages in a Network with Flexible Real-
Time Guarantees
Alberto Ballesteros, Manuel Barranco, Sergi Arguimbau, Marc Costa and Julián
Proenza

12:30 – 14:00 Lunch

14:00 – 15:30 Session #2: Collaborative Session and Posters

 Real-time Network Management for Commercial Aircrafts
Thibault Delmas, Luigi Iannone, Bruno Monsuez and Jean-Pierre Garcia

 First Analysis of the AVB’s Stream Reservation Protocol in the Context of
TSN
Daniel Bujosa, Drago Čavka, Ines Alvarez and Julian Proenza

15:30 – 16:00 Coffee Break

16:00 – 17:30 Session #3: Scheduling and Routing

 Routing Heuristics for Load-balanced Transmission in TSN-Based Networks
Mubarak Ojewale and Patrick Meumeu Yomsi

 Symphony - Routing Aware Scheduling for DSME Networks
Harrison Kurunathan, Ricardo Severino, Anis Koubaa and Eduardo Tovar

 SlotSwapper: A Schedule Randomization protocol for Real-Time
WirelessHART Networks
Ankita Samaddar, Arvind Easwaran and Rui Tan

17:30 Wrap-up and Workshop Closure

Workshop Chairs

Guillermo Rodriguez-Navas

Nokia-Bell Labs, Israel

Ramon Serna Oliver

TTTech, Austria

Program Committee

Ahlem Mifdaoui, DISC, University of Toulouse, France

Borislav Nikolic, IDA/TU Braunschweig, Germany

Iñaki Val, IK4-IKERLAN, Spain

Jean-Luc Scharbarg, INP/ENSEEIHT, University of Toulouse, France

Julian Proenza, Universitat de les Illes Balears, Spain

Luis Almeida, University of Porto, Portugal

Paul Pop, TU Denmark, Denmark

Rodrigo Coelho, TU Kaiserslautern, Germany

Svetlana Girs, Mälardalen University, Sweden

Ye-Qiong Song, LORIA, France

Zdenek Hanzalek, CTU in Prague, Czech Republic

Keynote

5G and Real-Time Networks: A practical example

Real-Time Networks hold great value for industrial users. This session will discuss a practical
example of the maritime industry. Operators of container terminals in seaports are looking into

automated operations of their container handling equipment. While first semi-automated
systems are deployed in ports worldwide, the industry is now looking into 5G and Real-Time-
Networks to enable full automation. This session will explain the use case, will map according
industrial requirements to the features of 5G and will speak about related research activities.

MATTHIAS JABLONOWSKI

Global Practice Lead – Ports & Roads, Nokia

Matthias Jablonowski is global practice lead of the Ports

and Roadways programs at Nokia. Being intrigued by the

opportunities of connected technologies and digital

transformation, he works with port authorities and

terminal operators on Port 4.0 and terminal automation

projects as they embark on their smart ports journey.

With road operators he discusses next generation traffic

technologies and cooperative intelligent transportation

systems enabling safer and less congested roadways.

Matthias has been instrumental in the expansion of Nokia

into the Transportation industry.

DynaMO - Dynamically tuning DSME Networks
Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

CISTER/ISEP and Prince Sultan University
Porto, portugal and Saudi Arabia

{hhkur,rarss,emt}@isep.ipp.pt,akoubaa@psu.edu.sa

ABSTRACT
Deterministic Synchronous Multichannel Extension (DSME) is a
prominentMAC behavior first introduced in IEEE 802.15.4e support-
ing deterministic guarantees using its multisuperframe structure.
DSME also facilitates techniques like multi-channel and Contention
Access Period (CAP) reduction to increase the number of available
guaranteed timeslots in a network. However, any tuning of these
functionalities in dynamic scenarios is not explored in the standard.
In this paper, we present a multisuperframe tuning technique called
DynaMO which tunes the CAP reduction and Multisuperframe
Order in an effective manner to improve flexibility and scalability,
while guaranteeing bounded delay. We also provide simulations to
prove that DynaMO with its dynamic tuning feature can offer up
to 15-30% reduction in terms of latency in a large DSME network.

KEYWORDS
IEEE 802.15.4e, DSME, Multisuperframe tuning

1 INTRODUCTION
IEEE 802.15.4 [2] is one of the legacy protocols that supports low-
rate communication with Guaranteed Time Slot (GTS) allocation
mechanism that provides guaranteed bandwidth for time-critical
data. However, it suffered from limited scalability as the number of
GTS provided was restricted to 7. The enhancement of this protocol,
the IEEE 802.15.4e [1], [10] rectifies this problem by the provision
of multichannel and CAP reduction techniques. DSME is supported
by a multisuperframe structure (Fig. 1) which is a stack of several
superframes containing a Contention Access Period (CAP) and Con-
tention Free Period (CFP) for communication. This multisuperframe
structure is defined by a Multisuperframe Order (MO).

DSME also introduces a new technique called CAP reduction
with which the number of GTS resources to accommodate trans-
missions can be further increased. This is achieved by removing
the CAP in a multisuperframe except for the first, hence radically
increasing the number of available GTSs. To invoke CAP reduction
in the network, the coordinator has to send an Enhanced Beacon
(EB) with a CAP reduction primitive.

Traditionally, DSME networks require a careful planning of its
several MAC parameters, such as MO and CAP Reduction usage, by
an experienced network engineer, to achieve adequate QoS levels.
As of now, these values are determined statically at the beginning
of the network. In scenarios where traffic or the number of nodes
can change, which is increasingly becoming a common place in
large-scale IoT networks, static settings inevitably lead to some
kind of compromise in terms of delay or throughput that can only

Conference’17, July 2017, Washington, DC, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

be addressed by devising mechanisms that can adapt on-the-fly to
new conditions.

The main contribution of this paper are as follows:

• We introduce a dynamicMultisuperframe andCAP reduction
tuning technique (DynaMO) that yields better QoS perfor-
mance in terms of delay.
• Weprovide a numerical analysis to calculate the overall delay
of the network.
• Weevaluate DynaMOusing the simulation platform "OpenDSME"
to validate our analytical model.

In the following section we provide a brief literature survey. In
section III we discuss the problem, then in Section IV, we provide
the DynaMO algorithm and discuss is functionality. Later in Section
V, we provide a numerical analysis for delay. We complement this
analysis using simulation in Section VI. We wrap up our work with
conclusions and discussions in Section VII.

2 RELATEDWORKS
In our previous research [12], we observed reduced delay in DSME
network when CAP reduction was utilized. But this analysis was
only made for a static network. There have also been several re-
search works like [3] and [5] in which the performance of DSME
was analysed. However in these simulative studies, features like
the CAP reduction and superframe structure were kept static. We
believe this static configuration can be an impediment to the overall
Quality of Service of the network.

In classic IEEE 802.15.4, researchers in [6] and [14] have used
algorithms to adjust Superframe Order (SO) at the coordinator by
considering parameters of end devices such as queue size, queuing
delay, energy consumption per bit and data rate. This helped in
improving the overall network life time. In one of our earlier works
[8], in contrast to the traditional explicit allocation of GTS in IEEE
802.15.4, we used implicit allocation as the number of GTSs is
limited. We were able to produce betterment in QoS in terms of
bandwidth utilization.

The literature in varying the structure of MAC to improve QoS is
not limited to DSME. Mashood Anwar [4] studied the variations in
superframe of LLDN an other key MAC behavior of IEEE 802.15.4e
and was able to provide an insight on the tuning of superframe to
yield better network performance. Several parameters like sensors
refresh rate, number of devices accommodated in network, data
payload exchanged between the devices and even different levels
of security were analyzed in this work.

We believe that dynamic tuning of the multisuperframe parame-
ters such as MO and CAP reduction primitives has a possibility to
yield better network performance. Hence we investigated several
scenarios of DSME networks and propose a dynamically tunable
multisuperframe scheme that yields better performance in terms

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

of delay. In what follows, we present the scenarios of the problem
that DynaMO helps to overcome.

3 BACKGROUND TO THE PROBLEM
The DSME network provides deterministic communication using
its beacon enabled mode in which the entire time frame is sepa-
rated into multisuperframes accommodating several superframes
as shown in Figure 1. The superframe is defined by BO , the Beacon
Order which is the transmission interval of a beacon in a super-
frame,MO theMulti superframe Order that represents the enhanced
beacon interval of a multi-superframe and SO the Superframe Order
that represents the beacon interval of a superframe within a Multi-
superframe duration. The number of superframes in a multisuper-
frame can be given by 2(MO−SO) and the number of superframes
that a multisuperframe should accommodate is set by the PAN
coordinator and is conveyed to the nodes via an Enhanced Beacon
(EB) at the beginning of each Multisuperframe.

CAP CFP CAP CFP CAP CFP CAP CFP

Superframe 1 Superframe 2 Superframe 1 Superframe 2

Multi-superframe 1 Multi-superframe 2 Single GTSs

Figure 1: Superframe structure with BO=3,MO=3, SO=2

Under CAP reduction, all the superframes in a multisuperframe
can be converted into complete CFPs except for the first. In accor-
dance to the standard, both CAP reduction and MO are determined
statically at the start of a multisuperframe by the Personal Area Net-
work Coordinator (PAN-C). The network that is statically defined at
the beginning will have limited capabilities to cope with constantly
evolving network with joining and leaving of the nodes. Some of
the adverse results can be "an improper bandwidth allocation either
due to not enough GTS slots" or "wasted bandwidth increasing the
contribution to the delay."

Having a routing layer such as RPL (Routing Protocol for Lossy
Networks) over DSME is a fundamental mechanism to solve this
problem. In our approach, an updated routing tree of the varying
network topology is provided to the PAN-C by the RPL. As the num-
ber of nodes changes (via association/disassociation), RPL updates
this information and the PAN-C generates a schedule spread into
the available GTSs resources. A detailed report on implementing
RPL over DSME can be found in [11].

In this contribution, we design an algorithm that is able to set the
most adequate value of MO and toggle CAP reduction considering
the needed resources. In doing so, we are able to minimize latency.
The necessary changes to the values of theMO or the CAP reduction
primitive are sent in the beacon payload of an EB at the beginning
of every multisuperframe. Hence, with a dynamic evolution of
a wireless sensor network with addition/removal of nodes new
values for MO and CAP reduction primitives can be dynamically
set, eventually improving the overall QoS of the network.

4 DYNAMO ALGORITHM
In this section, we introduce an efficient multisuperframe tuning
algorithm called DynaMO. The general idea of this algorithm is
adaptively increasing and decreasing the multisuperframe structure
based on the evolution of GTS allocation requirements over time.

Algorithm 1 presents the DynaMO adaptive network algorithm
and Table 1 presents the notation used for the description of the
algorithm.

Notations Description
N total number of nodes
ai node ai where iϵ (1,N)
NChannels number of channels = 16
Ti index of the timeslot in the multisuperframe
NCFP total number of GTSs in the CFP of a multisuperframe
NCAP number of GTS added when CAP reduction is activated

Table 1: Notations for DynaMO

As the network grows/diminishes dynamically, the routing layer
will update the topology and forward the respective schedules that

DynaMO - Dynamically tuning DSME Networks Conference’17, July 2017, Washington, DC, USA

Figure 2: multisuperframes in DSME network

contain the list of pair-wise GTSs transmissions. This is provided
as an input (Algorithm line 1). Let us consider pairs of neighbor
nodes (ai ,aN) to transmit between each other. This transmission
list will be provided as a bitmap to the link layers using the RPL
backbone for every beacon interval.

The PAN Coordinator has access to all information needed to
establish a multi-channel GTS allocation, including, the number
of channels (NChannels), the number of the GTSs time slots (NTS)
and the total available GTS resources (NCFP = NChannels ∗ NTS).
The number of time slots can sometimes vary if the CAP reduction
primitive is activated. In such a case, the number of time slots
will be 7 + NCAP , where NCAP is the number of time slots added
via CAP reduction. The PAN-C initially randomly determines the
values of BO, MO, and SO and the CAP reduction primitive. Any
change in the network is reported to the PAN-C or the routing
parent nodes for every multisuperframe interval. The delay taken
to accommodate a new network will depend on the size of the
multisuperframe.

In our algorithm, we first determine the number of resources that
need to be allocated in the network. This is achieved through a near
optimal scheduling algorithm such as simulated annealing [15] or
Symphony [11]. In fact, an optimal schedule must use the minimum
number of time slots and channels so that minimal latency can be
achieved. The nodes must also be placed in such a way that there
is no overlapping transmissions amongst them.

5 DELAY ANALYSIS UNDER CAP REDUCTION
For our numerical analysis first we derive the value of NCFP (n) ,
which is dependent on the values of the MO, BO and SO. This
value is calculated to know the overall GTSs resources available
under CAP reduction, then we calculate its respective delay. DMax
represents the maximum delay a transmission has to undergo for a
successful GTS allocation in a multisuperframe.

In accordance to the standard, there will be an Inter Frame Spac-
ing (IFS) period between every successful transmission. Depending
on their size if less than aMaxSIFSFrameSize , it is called Short
Inter Frame Spacing (SIFS), else it is called Long Inter Frame Spac-
ing (LIFS). Under LIFS, the size extends for a minimum period of
minLIFSPeriod symbols. This IFS contributes to the delay along
with other parameters such as Lf rame , the frame length, Rs , the
symbol rate and Rb the bit rate. In accordance to research work
[13] done towards calculating delay in a superframe intervals, the
maximum delay can be given as:

Dmax =

DSI FS =
(Lf rame × Rs)

Rb
+minSIFSPeriod ,

DLI FS =
(Lf rame × Rs)

Rb
+minLIFSPeriod

(1)

The duration of the multisuperframe slot will depend on the
multisuperframe order (MO) issued by the PAN coordinator. This
varies with respect to topology obtained through RPL. Let TMS be
the duration of the multisuperframe slot, NMD be the total number
of symbols forming the multisuperframe,NMDi be the total number
of symbols forming the multisuperframe since the value of SO = 0,

TMS =
NMD

TCAP +TCFP
= NMDi × 2MO−4 (2)

Equation 2 stands true for a scenario with CAP reduction for a
single multisuperframe period encompassing all the GTSs in the
CFP time period. It also considers a CAP region of duration TCAP .

A single GTS can span across several superframe slots, and so
we should provide a constraint on it. GTS must be greater than the
total forward delayDmax . Let us consider Nmin to be the minimum
number of superframe slots a single GTS can extend over. The total
forward delay Dmax can be given by:

Dmax = TMS × Nmin (3)

As we consider a critical data oriented network, we neglect the
delay that occurs in the CAP region of the traditional IEEE 802.15.4.
Under CAP reduction the absolute number of GTSs is not certain,
however it can be expressed asm × NCFP , wherem is the number
of channels and NCFP is the timeslots in CFP. From these, the
maximum number of GTSs that can be allocated to devices can be
given by:

NCFP (n) =min

(TCAP +TCFP) (1 −
TCAP
TMS

)

Nmin

,m × NCFP

(4)

As given in Figure 2, for the need of simplicity, we consider a CFP
with just 2 timeslots and 2 channels (4 available GTSs resources),
this can be generalized for a larger number of channels. In this Fig-
ure we present several scenarios across the different time intervals.
A delay analysis was performed for all these scenarios.

The scenarios (Figure 2) taken for the numerical analysis are
listed as follows:
(i) From T1 to T2: This is a multisuperframe in which normal DSME
without CAP reduction is employed. The multisuperframe in this
scenario is expected to support 5 GTS transmissions. It should be

Conference’17, July 2017, Washington, DC, USA Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

noted that without CAP reduction, the superframe has to wait for
a "duration of CAP" before it is able to transmit.

(ii) From T2 to T3: This is a multisuperframe with CAP reduc-
tion employed in it. Unlike the previous discussed case, the final
transmission need not wait for a CAP.

(iii) From T3 to T4: This is a multisuperframe with CAP reduction
employed and the number of transmissions it has to accommodate
is 13. But the MO in this scenario is static, the final transmission of
this use case also has to wait for an entire CAP period before its
transmission.

(iv) From T4 to T5: This is a multisuperframe with CAP reduction
employed with a static MO, but it should be noted that it just needs
to accommodate 3 GTSs. As a result of this 8 GTSs remain unoccu-
pied contributing to the wasted bandwidth eventually affecting the
overall throughput of the network.

(v) From T5 to T6: This holds the same condition as scenario iii,
but with DynaMO, PAN-C counts the number of transmissions to
be accommodated by the CFP. As value is above the number of
timeslots available, it increases the MO by 1 adding a superframe
to the multisuperframe. In this use case, the MO is 2, thus joining
3 superframes within a multisuperframe, eventually reducing the
overall delay.

(vi) From T6 to T7: In this case the number of GTSs to be ac-
commodated is 4. PAN-C deploys CAP reduction in this scenario
eventually providing a single superframe to accommodate the 4
transmissions. This method will reduce the wastage of bandwidth
thus increasing the throughput.

We calculated the delay of the network for all the use cases as
mentioned above using Equation 2. We considered a network that
dynamically grows and thus demanding more GTSs resources. For
CAP reduction scenarios, we take the value of MO to be 1. For this
numerical analysis we consider idle time to be 0 and a constant bit
rate of 1kbps.

From Figure 3, it can be noted that under traditional DSME,
the transmission delay of the GTS frames starts to increase at a
point where the multisuperframe cannot allocate more GTSs. As
the MO is constant, delay inevitably starts to increase when enough
resources are not available, imposing a transmission deference to
the next superframe. However, if CAP reduction is triggered, delay
is much smaller when compared to the normal DSME, as more
GTSs resources are available. With DynaMO, the MO is increased
when more resources are needed, hence, it provides better results
than networks with solely CAP reduction enabled (by 15%) and
DSME networks with constant, non-dynamic settings (by 35%).

6 SIMULATION ANALYSIS
For evaluating DynaMO, we use the OpenDSME simulation plat-
form [7]. OpenDSME is a OMNET++/C++ simulation based envi-
ronment that is dedicated for the simulation of the IEEE 802.15.4e
DSME protocol. OpenDSME also provides the possibility of imple-
menting a viable network layer on top of it. The DSME sublayer of
OpenDSME employs a typical slot based reservation system for a
schedule that is provided by the top layer.

In our model, we provide BO, MO, SO and the CAP reduction
primitives as a direct input. Other network simulation parameters
such as traffic rate, the burst size, the interference and the mobility

Figure 3: Comparison in terms of delay

Application type BO SO MO CAP reduction
Delay sensitive 6 0 1 Enabled
Reliability sensitive 8 3 Disabled
Energy Critical 14 1 14 Enabled
High throughput 10 5 6 Disabled
Large scale 10 1 8 Enabled

Table 2: Application scenarios for BO,MO,SO variation

models are also be given directly. Furthermore, there is also a pos-
sibility to input the schedule in accordance with a static schedule.
We have also incorporated delay and throughput parameters [9] in
the network definition files to obtain the appropriate output for the
network simulated. The simulations were carried out on a mesh
network and the overall network delay was observed.

IEEE 802.15.4e standard provides certain suggestive values for
BO, SO and MO for application specific scenarios (Table II). These
values when kept static provide us a multisuperframe format with
a specific number of superframes. For the delay sensitive settings
BO, SO and MO is 6,0,1, hence number of superframes within a
multisuperframe will be 2. In such a case, a transmission need not
wait for a long time for the eventual transmission. However, when
kept static, it may result in increased latency.

In Table 3, we provide the parameters that we have used for all
the scenarios we put under extensive simulations.

6.1 Comparison against static CAP reduction
For this comparison we calculate the values of the overall delay of
the network with respect to the number of GTSs transmissions. For
this simulation we analyze the delay of 50 nodes under different
traffic rates ranging from 5-75 Kbps for CAP reduction and without
CAP reduction scenarios in Fig 4. This result complements our
theoretical analysis shown in Figure 2, clearly showing DynaMO
in action.

With a limited number of GTSs transmissions, the delay per-
formance does not have a significant decrease with the scenarios
without CAP reduction (5,10,15 transmissions). Delay performance

DynaMO - Dynamically tuning DSME Networks Conference’17, July 2017, Washington, DC, USA

Parameters 6.1 against CAP reduction against different traffic rates 6.2 against high throughput settings
Packet Length 75B 75, 100B 75, 100B
Packet Traffic Interval 50, 30, 15ms 50, 30, 15ms 50, 30, 15ms
Destination sink sink sink
MAC Queue Length 30 30 30
MAC Frame Retries 7 7 7
BO 6 10 6, 10
SO 3 5 3, 5
MO DynaMO 6, DynaMO 4, 6, DynaMO
Number of Nodes 5 to 50 5 to 50 5 to 50
Traffic Rate 15, 25, 75k Kps 15, 25, 50, 75 Kbps 25, 50, 75, 100 Kbps
CAP Reduction DynaMO OFF ON/OFF/DynaMO

Table 3: Simulation Parameters

Figure 4: Delay analysis against static CAP reduction set-
tings

is in-fact sometimes better without CAP reduction when the num-
ber of nodes is less than 10, due to less wasted bandwidth. However,
as the number of transmissions increases, with CAP reduction, de-
lay is minimized. This is due to the fact that nodes need not wait till
another superframe duration to accommodate the transmissions
that did not occur during the initial superframe interval.

DynaMO switches the CAP reduction parameters according to
the resource requirements and hence doesn’t compromise on the
delay for those scenarios in which CAP reduction is still not needed,
offering a clear advantage over static settings.

For clear understanding, the example of DynaMO is demon-
strated along with the 75Kbps and the 5Kbps case in Figure 5. The
dotted lines represent the scenario with static CAP reduction. Ini-
tially, the CAP reduction is OFF providing minimal delay (similar
to the scenario without CAP reduction), whereas at T0, due to the
scarcity of the resources, the CAP reduction is turned ON dynami-
cally and we can witness a reduction in delay by almost 30%. Above
20 scheduled transmissions, an increase in MO under DynaMO
further maintains a lower delay in comparison to static settings
including the CAP reduction enabled setting.

Figure 5: Delay analysis for 75 and 5 Kbps traffic rate

6.2 Comparison against Delay sensitive and
high throughput settings

In this experiment, we compare the static high throughput settings
and the static delay sensitive settings (dotted lines) with DynaMO.
In Figure 6, we demonstrate this comparison over 100Kbps. The
other traffic rates also have a similar behavior. OpenDSME does
not allow the value of SO to be set to ’0’ by default. So we took
another delay sensitive setting of BO, SO and MO to be 6,3,4 such
that the number of superframes within a multisuperframe will be 2
and every beacon interval will have 4 multisuperframes.

The delay is always higher in the high throughput setting, and
this gap increases with traffic rate. The higher MO in the high
throughput settings causes a wastage of bandwidth which results
in additional delay, contrary to the time-sensitive settings in which
the superframes are closely packed. We observe almost 20-25%
reduction of delay under delay sensitive settings when the number
of transmissions is maximized. However, relying on static settings
which provide shorter MO is often not an adequate solution, as it

Conference’17, July 2017, Washington, DC, USA Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

Figure 6: Delay Analysis against delay-sensitive settings

can compromise the QoS if the network needs to accommodate an
increase in traffic.

In Figure 6, at T0, we start DynaMO with a high throughput set-
ting, consisting of one superframe in a multisuperframe. However,
as the timeframe moves on to T1 and the number of transmissions
increases, DynaMO automatically adapts its MO based on the num-
ber of resources. In this case, by increasing MO, DynaMO packs
more superframes within the beacon interval, providing more GTS
bandwidth and eventually obtaining lesser delay.

We can observe a significant reduction in delay, even when com-
pred against the static delay-sensitive settings. Notice, that the
delay-sensitive setting does not outperform DynaMO in terms of
delay when the the number of transmissions is lesser. Although
this could somewhat appear counter-intuitive, as the number of
transmissions increases, the short MO is not able to accommodate
the transmissions causing a deference of transmissions to the subse-
quent superframes. This increases delay and its effect is particularly
visible above 35 scheduled transmissions. With DynaMO employed,
we are able to witness 15-30% reduction in delay when compared
to the standard presets.

7 FUTUREWORK
In this paper we introduced an efficient multisuperframe tuning
technique that can switch CAP reduction and tune the MO on
demand, on a dynamic DSME network. From our simulations and
numerical analysis, we learn that static settings are an impediment
when it comes to large scale DSME network. With our tuning
technique, we were able to obtain 15-35% of reduction in the overall
delay of the network.

The network analysis in this paper was focused on delay over a
mesh network. DynaMO also impacts other QoS parameters such as
throughput and bandwidth utilization, and these will be objective
of further work, while applying our technique into other different
topologies and scenarios. We hope this algorithm will be part of
a package aiming at dynamically improving the QoS of DSME, as
we believe this is necessary for this protocol to achieve its full
potential.

Though DSME has all the factors to become a de-facto protocol
for critical IoT, not much research work has been done on imple-
menting it in real platforms, nor over real time operating systems.
We intend to implement DynaMO and DSME over a Commercial
off The Shelf Technologies (CoTS) to better assess its capabilities
over real hardware.

ACKNOWLEDGEMENTS
This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Technology)
and co-financed by ERDF (European Regional Development Fund)
under the PT2020 Partnership, within the CISTER Research Unit
(CEC/04234); also by FCT/MEC and the EU ECSEL JU under the
H2020 Framework Programme, within project ECSEL/0002/2015,
JU grant nr. 692529-2 (SAFECOP). This work is also support by the
Research and Translation Center (RTC) at Prince Sultan University.

REFERENCES
[1] 2011. IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4-2011
(Revision of IEEE Std 802.15.4-2006) (Sept 2011), 1–314. https://doi.org/10.1109/
IEEESTD.2011.6012487

[2] 2016. IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011) (April 2016), 1–709. https://doi.org/10.1109/
IEEESTD.2016.7460875

[3] Giuliana Alderisi, Gaetano Patti, Orazio Mirabella, and Lucia Lo Bello. 2015.
Simulative assessments of the ieee 802.15. 4e dsme and tsch in realistic process
automation scenarios. In Industrial Informatics (INDIN), 2015 IEEE 13th Interna-
tional Conference on. IEEE, 948–955.

[4] M. Anwar and Y. Xia. 2014. IEEE 802.15.4e LLDN: Superframe configuration for
networked control systems. In Proceedings of the 33rd Chinese Control Conference.
5568–5573. https://doi.org/10.1109/ChiCC.2014.6895891

[5] S. Capone, R. Brama, F. Ricciato, G. Boggia, and A. Malvasi. 2014. Modeling and
simulation of energy efficient enhancements for IEEE 802.15.4e DSME. In 2014
Wireless Telecommunications Symposium. 1–6. https://doi.org/10.1109/WTS.2014.
6835017

[6] Joseph Jeon, Jong Wook Lee, Jae Yeol Ha, and Wook Hyun Kwon. 2007. DCA:
Duty-cycle adaptation algorithm for IEEE 802.15. 4 beacon-enabled networks. In
Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th. IEEE, 110–113.

[7] Florian Kauer, Maximilian Köstler, Tobias Lübkert, and Volker Turau. 2017.
OpenDSME-A portable framework for reliable wireless sensor and actuator
networks. In Networked Systems (NetSys), 2017 International Conference on. IEEE,
1–2.

[8] Anis Koubaa, Mário Alves, and Eduardo Tovar. [n. d.]. i-GAME: an implicit
GTS allocation mechanism in IEEE 802.15. 4 for time-sensitive wireless sensor
networks. In Real-Time Systems, 2006. 18th Euromicro Conference on. IEEE, 10–pp.

[9] Harrison Kurunathan. 2019. OpenDSME support file. https://github.com/
harrisonkurunathan/throughputnedfile. (2019).

[10] Harrison Kurunathan, Ricardo Severino, Anis Koubaa, and Eduardo Tovar. 2018.
IEEE 802.15. 4e in a Nutshell: Survey and Performance Evaluation. IEEE Commu-
nications Surveys & Tutorials (2018).

[11] Harrison Kurunathan, Ricardo Severino, Anis Koubâa, and Eduardo Tovar. 2018.
RPL over DSME: A Technical Report. Technical Report. CISTER-Research Centre
in Realtime and Embedded Computing Systems.

[12] Harrison Kurunathan, Ricardo Severino, Anis Koubâa, Eduardo Tovar, et al.
2017. Worst-Case Bound Analysis for the Time-Critical MAC behaviors of IEEE
802.15. 4e. In 13th IEEE International Workshop on Factory Communication Systems
Communication in Automation (WFCS 2017). 31, May to 2, Jun, 2017.

[13] Pangun Park, Carlo Fischione, and Karl Henrik Johansson. 2009. Performance
analysis of GTS allocation in beacon enabled IEEE 802.15. 4. In 2009 6th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communi-
cations and Networks. IEEE, 1–9.

[14] Ricardo Severino, Nuno Pereira, and Eduardo Tovar. 2014. Dynamic cluster
scheduling for cluster-tree WSNs. SpringerPlus 3, 1 (2014), 493.

[15] Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. In
Simulated annealing: Theory and applications. Springer, 7–15.

https://doi.org/10.1109/IEEESTD.2011.6012487
https://doi.org/10.1109/IEEESTD.2011.6012487
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/ChiCC.2014.6895891
https://doi.org/10.1109/WTS.2014.6835017
https://doi.org/10.1109/WTS.2014.6835017
https://github.com/harrisonkurunathan/throughputnedfile
https://github.com/harrisonkurunathan/throughputnedfile

A Preliminary Roadmap for Dependability Research in Fog
Computing

Zeinab Bakhshi

Mälardalen University

Sweden

zeinab.bakhshi@mdh.se

Guillermo Rodriguez-Navas

Nokia Bell Labs

Israel

guillermo.rodriguez-navas@nokia-bell-labs.com

ABSTRACT

Fog computing aims to support novel real-time applications by
extending cloud resources to the network edge. This technology
is highly heterogeneous and comprises a wide variety of devices
interconnected through the so-called fog layer. Compared to tra-
ditional cloud infrastructure, fog presents more varied reliability
challenges, due to its constrained resources and mobility of nodes.
This paper summarizes current research efforts on fault tolerance
and dependability in fog computing and identifies less investigated
open problems, which constitute interesting research directions to
make fogs more dependable.

CCS CONCEPTS

• Computer systems organization → Reliability; Availabil-
ity; Redundancy;

KEYWORDS

Fog Computing, Edge Computing, Internet of Things, Real-time,
Fault tolerance, Dependability

1 INTRODUCTION

Fog computing is a recent computational paradigm, first intro-
duced by Cisco, to extend cloud computing computational resources,
closer to the edge of the network [7, 19]. Fog is a middle layer
between the cloud and the devices to have more efficient data pro-
cessing, effective analysis and storage scalability. It also reduces
the amount of data transmitted to the cloud [14]. There is a general
understanding that this technology is suitable for Cyber-Physical
Systems, IoT and Industrial IoT (IIoT) in different application areas.
For instance, smart cities, agriculture domains, vehicular systems,
industrial automation, health-care and robotics. It is also claimed
that fog represents a solution to improve latency for distributed
control systems in general.

According to Bonomi et al. [7] fog computing has the following
characteristics, a) Low latency and location awareness; b) Supports
geographic distribution; c) End device mobility; d) Capacity of

processing with a high number of nodes; e) Wireless access; f)
Real-time applications and g) Heterogeneity. These characteristics
make fog computing a suitable solution for overcoming problems
manifested by the use of traditional cloud computing in Internet of
Things (IoT), like high mobility and low latency, but they also give
rise to new dependability challenges. Note that each of the factors
mentioned above represents a difficulty for achieving dependability,
so the combination of all of them makes the whole undertaking
even more challenging.

Dependability is the ability of a system to supply trusted and
available services. A dependable system is a system which is able to
avoid service failures that are more frequent and more severe than
is acceptable. There are many dimensions that should be consid-
ered to analyze whether a fog-based solution is dependable, such
as availability, reliability, performability, maintainability; which are
well-known dependability attributes (or requirements) [4]. At the
same time, there are different ways to implement a dependable sys-
tem, for instance using fault tolerance algorithms and redundancy
techniques. Given the interest in fog computing and the difficulties
it introduces in terms of dependability, it is important to under-
stand how dependability and fault tolerance are addressed in the
literature on fog computing.

This paper summarizes fog computing dependability require-
ments and discusses the gap, in terms of dependability, of the exist-
ing solutionswith respect to the desired dependability requirements.
After presenting a basic hierarchical structure of fog architecture,
in this paper we will 1) identify and classify current research ap-
proaches for dependability in fog computing, 2) compare different
proposed solutions considering traditional dependability notions
for critical systems, and 3) discuss research gaps related to fog com-
puting dependability. We realized that there is a range of terms
alternatively used for fog computing by authors in the literature.
For instance edge clouds, cloudlets, mobile edge computing, etc. We
considered these terms as related technologies to fog computing
in our study. The remainder of this paper is organized as follows.
In Section 2 we present the fog computing architecture. In Section
3, we review current approaches for dependability solutions in fog
computing. In Section 4 we discuss the gaps between current re-
search approaches and fog computing dependability requirements
and finally we conclude our work in Section 5.

2 FOG COMPUTING ARCHITECTURE

Fog computing is a highly virtualized platform that provides stor-
age, communication, computation, controlling, machine learning
services in a decentralized network closer to devices [1, 15]. To the
best of our knowledge, there is no reference architecture for fog
computing, however, there are basic architectures for fog proposed
in the literature, like [15, 21, 25]. The proposed architectures are
mostly constituted by a three-layer structure, as depicted in Figure
1, which includes a layer between cloud and devices, known as fog
layer. This fog layer carries out the task of computation from clouds
closer to the network edge.

Figure 1: The basic hierarchical architecture of fog comput-
ing.

There is a somehow diffuse border between fog computing and
the paradigm called edge computing, but there is an important
difference that we will apply in this work: edge computing does not
preclude the existence of a cloud to which the intermediate nodes
are connected. However, whenever edge is used in combination
with cloud, one can arguably say that both paradigms are equivalent.
For this reason, we also investigated systems introduced as edge
computing but have considered them as instances of fog.

In the following we will describe each layer of the hierarchical
fog computing architecture:

2.1 Cloud Layer

This layer consists of multiple, powerful computational resources,
storage and servers, which are capable of processing, analyzing and
storing large amounts of data. Cloud computing provides services

for different application domains, for instance, vehicular systems,
smart cities, smart factories, health-care, etc. [25]. The clouds are
efficiently managed and scheduled by some control strategies to im-
prove utilization of the cloud resources. Although cloud computing
is empowered by huge computational resources and storage capac-
ities, for certain tasks, e.g. those requiring low latency, it might be
better to release their execution to other parts of the system, closer
to the edge [27].

2.2 Fog Layer

According to the OpenFog consortium, the fog computing model
moves computation from the cloud closer to the network edge,
by placing geo-distributed computational resources between the
cloud and sensor layer [21]. The Fog computing layer is composed
of fog platforms (the fog nodes) which rely on highly virtualized
resources running under hypervisors. Fog platforms are constituted
by a large number of fog nodes consisting of routers, switches,
Wireless Access Points (WAP), Road Side Units (RSUs), gateways,
wireless set-top boxes, network bridges and cellular base stations
[6, 11].

These fog nodes, which can be fixed or mobile, are distributed
in different geographical locations to provide services in proximity
of edge devices. Given that the edge devices (Sensor layer) can
be mobile, the Fog layer should enable reallocation of tasks and
resources at runtime. In fact, the high mobility characteristic of
fog computing typically gives the impression that fog nodes enter
in and out the network, which may give rise to novel availability
issues. In terms of security, the existence of this intermediate level
also increases the attack surface of the system considerably.

2.3 Sensor Layer

This layer is bottom layer in the hierarchical architecture which
consists of devices, sensors, actuators in a physical environment;
for instance, vehicles, smart cards, IoT devices, etc. Devices in this
layer are geographically distributed, can be fixed or mobile, and re-
quireminimal computational resources, being typically very energy-
constrained. Usually utilized as smart sensing devices, they sense
data and gather information, and then send it to the upper layer for
processing, storage and distribution [2].

3 CURRENT DEPENDABILITY APPROACHES
FOR FOG COMPUTING

Dependability approaches for fog computing aremainly proposed to
address dependability objectives, redundancymodels and fault man-
agement solutions. Figure 2 present a summary of the approaches
in our literature review.

3.1 Dependability Objectives

Dependability requirements for fog computing are not clearly de-
fined, as fog computing is a very recent technology. Our review
of existing literature shows that authors differ significantly from
each other in terms of the types of faults and errors they address,
the method applied and even the dependability requirements them-
selves. Our study shows that the most common objectives are im-
proving availability, reliability and Quality of Service (QoS). The
ways to improve these attributes are typically based on redundancy
models which are explained in the following subsection. Our study
also shows that scalability, i.e. the ability to provide service for a
large number of devices in the Sensor layer, is a crucial aspect of Fog.
This can be related to the dependability attribute of performability.

3.2 Redundancy Models

Proposed redundancy models has been applied at different levels of
the systems architecture: the communication links, the computing
nodes and the application software. For instance, regarding net-
work connectivity, Cau et al. used 5G communication to satisfy
network reliability [10]. Wiss & Forsstrom. consider higher net-
work connectivity as availability by using SCTP protocol instead
of TCP [29].

Other works also consider the possibility of node failure. Itani et
al. proposed dynamic failure recovery to improve node availability
[16]. Zhou et al. used message broadcasting to check node avail-
ability for offloading tasks in case of fog node or link failures [33].
Okafor et al. proposed using of Spin-Leaf topology in fog network
to ensure availability [20].

There is an interesting family of solutions that rely on software
reallocation in order to increase service reliability/availability. Saqib
& Hamid. proposed a task off-loading solution to ensure reliable
computation in fog computing and IoT network [26]. Aral & Brandic.
focused on QoS of VMs in an edge network infrastructure [3] and
Osanaiye et al. proposed a live VMmigration framework to increase
QoS by improving availability of VM fog nodes [22]. Rimal et al.
focused on improving system performance to promote QoS [24].

But, although authors allegedly address all these requirements,
quantitative goals which would help us to define system thresholds
are seldom or partially reported. In the scheme proposed in [9],
authors considered strategies to minimize bandwidth and storage
usage in which they reported percentage values of the gap between
optimal scheme and practical measurements, lower than 6.2% and
30% for bandwidth and storage usage respectively.

Availability of replicated nodes or links are checked using differ-
ent monitoring tools [17] or calculated via mathematical methods
[9] or the use of machine learning algorithms [3].

With respect to the applied redundancy schemes, we found out
that all types of redundancy have been used by different authors. It
was observed that sometimes natural redundancy has been used for
path redundancy, for instance as provided by wireless broadcast in

Figure 2: Summary of current dependability approaches for
fog computing.

[10]. The most common approach is Primary/Backup redundancy,
with reconfiguration upon failure. Schemes relying both on Active
replication (also known as Active/Active or Hot stand-by) and Pas-
sive replication (also known as Active/Passive or Cold stand-by)
were found. For instance, Banson et al. proposed a dynamic path
selection method based on Software defined networks (SDN), lever-
aging SDN monitoring tools to check the links availability status
[5]. In another work [12] Maximum Distance Separable code (MDS)
is used for dynamic clustering to find redundant nearby nodes. Al-
though there are some approaches using dynamic redundancy, most
often static allocation of redundancy is used. Cau et al. proposed
static signal forwarding to available nodes in case of node failure
in the network [10]. Other works also proposed passive replication
in which virtual backup resources are pooled and shared across
multiple virtual infrastructure [28, 31].

3.3 Fault Management Solutions

Solutions for fault management in fog computing proposed in the
available publications on dependability and fog computing shows
that authors have more importantly focused on these specific prob-
lems: a) Optimal allocation of redundancy, to reduce utilization.
An instance is the work of Mennes et al. [18] which proposed an
algorithm for optimal application placement; b) Techniques for
error detection and reconfiguration upon failure, like e.g. Cher-
vaykov et al. proposed a reconfigurable data storage system based
on Redundant Residue Number System (RRNS) [13] and Xiao et
al. [30] proposed a re-transmission method to re-send data in case
of links or nodes failures or delay issues in a fog network; c) Meth-
ods for checking availability of redundancy, like monitoring tools,
especially tailored for resilient networks [32].

4 DISCUSSION

Our study has provided us with very useful information about the
current state of the art regarding dependability and fog computing.
We have identified a number of research topics that seem to have

received much attention from the research community. Namely:
the trade-off between resource utilization and fault tolerance, the
use of redundancy methods to increase availability and, last, the
trade-off between reliability and timeliness, particularly for node
replication schemes.

However, there is also an extensive list of challenges that have
received very little attention. In the following, we summarize the
open research problems that, in our opinion, deserve further inves-
tigation. The list does not intend to be exhaustive, but it defines a
preliminary roadmap of the issues that need to be addressed next.

Introducing more complex failure modes. We noted that
only simple (benign) failure modes have been considered in the lit-
erature. Authors typically consider crash and omission failures for
communication links and available vs. non-available node failures
(i.e. Stop failure semantics). However, more complicated failure
modes like Byzantine or arbitrary failures, late performance and
failures due to malicious faults remain unaddressed in this hetero-
geneous fog environment with complicated functionality. Another
aspect that deserves more research is identifying system specifica-
tion failures. For instance, late performance, bad design or wrong
demand expectation/dimensioning might cause general failures as
they have been disregarded while designing dynamic mechanisms
such as dynamic reallocation of software. To give just an example,
both intentional and unintentional Denial of Service (DoS) failures
are possible in systems that do not properly handle oversized loads,
even in cases where system allows dynamic changes. We believe
that as the technology extends to more domains, the nature and
severity of the faults that need to be addressed will have to be
clarified.

Integration of multiple levels of redundancy. Since fog is
a complex, multi-layered architecture, we need to consider fail-
ure probability in each layer of fog computing. So far, redundancy
schemes have been proposed individually, and the potential inter-
ference between them has not been investigated. This also includes
clarifying the interaction between application and data replica-
tion throughout the architecture, including data source and data
transmission, which can be upward (from clouds to fog), down-
ward (from sensors to fog) or internally cashed in fog node. All of
this makes the fault-tolerant replication model more complicated,
comparing to cloud and traditional critical systems.

Security issues aggravated by faults. We found out that there
are a number of papers dealing with security [8, 13, 20, 22], but
none of them addressed security for fog computing in the presence
of unintentional faults. On the other hand, methods to achieving
replication securely under differing threat models has not been
specifically surveyed to provide secure redundancy techniques.

Error propagation through the fog structure. Uncontrolled
error propagation is an important problem in any dependable sys-
tem. The usual way to handle this problem is by defining and
substantiating appropriate error-containment regions. This work
has not been done for existing fog computing architectures. This
aspect is related to the security problems discussed above, since

correct error-containment is a good support for security, but it
also concerns non-malicious faults, which can spread as subsystem
errors and cause unexpected failures in other parts of the system.
In a highly-dynamic system like the fog, poor handling of error
propagation might even lead to instability system-level problems.
This also opens an opportunity to investigate novel methods for
error forecasting and dynamic error containment.

Fault recovery and node reintegration. Current approaches
studied in this work have investigated different methods for fault
detection, fault-tolerance, fault prevention and fault diagnostics.
However, in a long-lifed system like the fog, it is also needed to
develop methods that allow faulty components to recover and be
reintegrated in the system operation. This can prevent system fail-
ure or shut down caused by fast redundancy attrition.

Scalability concerns. Fog nodes should be able to provide ser-
vices for a large number of heterogeneous devices in different ap-
plication areas. These application domains can require large-scale
deployment of nodes, also for safety-critical domains. For instance,
firefighting, transportation systems and industrial robotics. When
a fog node fails in such large-scale critical systems, it is usually
difficult to coordinate the huge number of sensors and devices in
the presence of faults or to recover from failures. Similar unknown
risks, caused by the large system size and the massive number of
components, might be found in future applications.

A comprehensive faultmanagement framework is missing.
A fault management framework is a part of large network man-
agement structure. This framework can address faults in a higher
level as well as designing a high level management infrastructure
for addressing faults in a system [23]. Although there are some
frameworks proposed for Fog computing and fault tolerance in Fog
networks, they do not address faults in all aspects. For instance,
considering connection failure, node failure, application placement,
task management, etc. combined in the same framework package.
As indicated above, certain notions like fault diagnosis and fault
treatment have received little attention, as well as the threats posed
by malicious faults. All these aspects should also be integrated in
this fault management framework. Similarly to other large-scale
networked systems, the fog allows application of novel methods
based on statistical learning, such as machine learning, in order to
identify anomalies and forecast faults, but this type of work is still
in its infancy. A suitable framework should include methods for
data collection and collection, and a repository of considered faults
and mitigation techniques.

5 CONCLUSION

This paper has reviewed the current state of the art regarding
dependability and fog computing. We have summarized the current
research efforts and discussed a list of open research problems.

ACKNOWLEDGMENT

This research has received funding from the European Union’s
Horizon 2020 Research and Innovation programme under the Marie
Skłodowska-Curie grant agreement No 764785, and also from the
VINNOVA project 2018-02437.

REFERENCES

[1] M. Aazam and E. Huh. 2016. Fog Computing: The Cloud-IoT,
IoE Middleware Paradigm. IEEE Potentials 35, 3 (May 2016),
40–44.

[2] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. 2018.
Mobile edge computing: A survey. IEEE Internet of Things
Journal 5, 1 (2018), 450–465.

[3] A. Aral and I. Brandic. 2017. Quality of Service Channelling for
Latency Sensitive Edge Applications. In 2017 IEEE International
Conference on Edge Computing (EDGE). 166–173.

[4] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. 2004.
Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable and Secure Computing
1, 1 (Jan 2004), 11–33.

[5] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y. Kim.
2018. Ride: A Resilient IoT Data Exchange Middleware Lever-
aging SDN and Edge Cloud Resources. In 2018 IEEE/ACM Third
International Conference on Internet-of-Things Design and Im-
plementation (IoTDI). 72–83.

[6] Kashif Bilal, Osman Khalid, Aiman Erbad, and Samee U. Khan.
2018. Potentials, trends, and prospects in edge technologies:
Fog, cloudlet, mobile edge, and micro data centers. Computer
Networks 130 (2018), 94 – 120.

[7] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Ad-
depalli. 2012. Fog Computing and Its Role in the Internet of
Things. In Proceedings of the First Edition of the MCCWorkshop
on Mobile Cloud Computing (MCC ’12). ACM, New York, NY,
USA, 13–16.

[8] H. P. Breivold and K. Sandström. 2015. Internet of Things for
Industrial Automation – Challenges and Technical Solutions.
In 2015 IEEE International Conference on Data Science and Data
Intensive Systems. 532–539.

[9] J. A. Cabrera, D. E. Lucani., and F. H. P. Fitzek. 2016. On
network coded distributed storage: How to repair in a fog of
unreliable peers. In 2016 International Symposium on Wireless
Communication Systems (ISWCS). 188–193.

[10] E. Cau, M. Corici, P. Bellavista, L. Foschini, G. Carella, A. Ed-
monds, and T. M. Bohnert. 2016. Efficient Exploitation of
Mobile Edge Computing for Virtualized 5G in EPC Architec-
tures. In 2016 4th IEEE International Conference onMobile Cloud
Computing, Services, and Engineering (MobileCloud). 100–109.

[11] X. Chen and L. Wang. 2017. Exploring Fog Computing-Based
Adaptive Vehicular Data Scheduling Policies Through a Com-
positional Formal Method-PEPA. IEEE Communications Letters
21, 4 (April 2017), 745–748.

[12] X. Chen, X. Wen, L. Wang, and W. Jing. 2018. A Fault-Tolerant
Data Acquisition Scheme with MDS and Dynamic Clustering
in Energy Internet. In 2018 IEEE International Conference on

Energy Internet (ICEI). 175–180.
[13] Nikolay Chervyakov, Mikhail Babenko, Andrei Tchernykh,

Nikolay Kucherov, Vanessa Miranda-López, and Jorge M.
Cortes-Mendoza. 2019. AR-RRNS: Configurable reliable dis-
tributed data storage systems for Internet of Things to ensure
security. Future Generation Computer Systems 92 (2019), 1080
– 1092.

[14] A. V. Dastjerdi and R. Buyya. 2016. Fog Computing: Helping
the Internet of Things Realize Its Potential. Computer 49, 8
(Aug 2016), 112–116.

[15] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu.
2017. Survey on fog computing: architecture, key technologies,
applications and open issues. Journal of Network and Computer
Applications 98 (2017), 27 – 42.

[16] May Itani, Sanaa Sharafeddine, and Islam ElKabani. 2018. Dy-
namic multiple node failure recovery in distributed storage
systems. Ad Hoc Networks 72 (2018), 1 – 13.

[17] A. Jonathan, M. Uluyol, A. Chandra, and J. Weissman. 2017.
Ensuring reliability in geo-distributed edge cloud. In 2017
Resilience Week (RWS). 127–132.

[18] R. Mennes, B. Spinnewyn, S. Latré, and J. F. Botero. 2016.
GRECO: A Distributed Genetic Algorithm for Reliable Applica-
tion Placement in Hybrid Clouds. In 2016 5th IEEE International
Conference on Cloud Networking (Cloudnet). 14–20.

[19] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N.
Choudhury, and V. Kumar. 2017. Security and Privacy in Fog
Computing: Challenges. IEEE Access 5 (2017), 19293–19304.

[20] Kennedy Chinedu Okafor, Ifeyinwa E Achumba, Gloria A
Chukwudebe, and Gordon C Ononiwu. 2017. Leveraging fog
computing for scalable IoT datacenter using spine-leaf net-
work topology. Journal of Electrical and Computer Engineering
2017 (2017).

[21] OpenFog Consortium Architecture Working Group. 2017.
OpenFog Reference Architecture for Fog Computing. OpenFog
February (2017), 1–162.

[22] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. R. Choo, and M. Dlodlo.
2017. From Cloud to Fog Computing: A Review and a Con-
ceptual Live VM Migration Framework. IEEE Access 5 (2017),
8284–8300.

[23] Lilia Paradis and Qi Han. 2007. A Survey of Fault Management
in Wireless Sensor Networks. Journal of Network and Systems
Management 15, 2 (01 Jun 2007), 171–190.

[24] B. P. Rimal, D. Pham Van, and M. Maier. 2017. Mobile-Edge
Computing Versus Centralized Cloud Computing Over a Con-
verged FiWi Access Network. IEEE Transactions on Network
and Service Management 14, 3 (Sep. 2017), 498–513.

[25] José Santos, TimWauters, Bruno Volckaert, and Filip De Turck.
2017. Fog computing: Enabling the management and orches-
tration of smart city applications in 5G networks. Entropy 20,
1 (2017), 4.

[26] M. T. Saqib and M. A. Hamid. 2016. FogR: A highly reliable and
intelligent computation offloading on the Internet of Things.
In 2016 IEEE Region 10 Conference (TENCON). 1039–1042.

[27] Subhadeep Sarkar and Sudip Misra. 2016. Theoretical mod-
elling of fog computing: A green computing paradigm to sup-
port IoT applications. Iet Networks 5, 2 (2016), 23–29.

[28] W. Wang, H. Chen, and X. Chen. 2012. An Availability-Aware
Virtual Machine Placement Approach for Dynamic Scaling of
Cloud Applications. In 2012 9th International Conference on
Ubiquitous Intelligence and Computing and 9th International
Conference on Autonomic and Trusted Computing. 509–516.

[29] T. Wiss and S. Forsström. 2017. Feasibility and performance
evaluation of SCTP for the industrial internet of things. In
IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society. 6101–6106.

[30] Y. Xiao, Z. Ren, H. Zhang, C. Chen, and C. Shi. 2017. A novel
task allocation for maximizing reliability considering fault-
tolerant in VANET real time systems. In 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC). 1–7.
[31] Wai-Leong Yeow, Cédric Westphal, and Ulaş Kozat. 2010. De-

signing and embedding reliable virtual infrastructures. In Pro-
ceedings of the second ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures. ACM, 33–40.

[32] Xiao Yuan, Chimay J. Anumba, and M. Kevin Parfitt. 2016.
Cyber-physical systems for temporary structure monitoring.
Automation in Construction 66 (2016), 1 – 14.

[33] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and
R. Buyya. 2017. mCloud: A Context-Aware Offloading Frame-
work for Heterogeneous Mobile Cloud. IEEE Transactions on
Services Computing 10, 5 (Sep. 2017), 797–810.

Towards a Dynamic Replication of Messages in a
Network with Flexible Real-Time Guarantees

Alberto Ballesteros
DMI, Universitat Illes Balears

Palma de Mallorca, Spain
a.ballesteros@uib.es

Manuel Barranco
DMI, Universitat Illes Balears

Palma de Mallorca, Spain
manuel.barranco@uib.es

Sergi Arguimbau
DMI, Universitat Illes Balears

Palma de Mallorca, Spain
sergi.arguimbau@uib.es

Marc Costa
Universitat Illes Balears

Palma de Mallorca, Spain

Julián Proenza
DMI, Universitat Illes Balears

Palma de Mallorca, Spain
julian.proenza@uib.es

ABSTRACT
Distributed Embedded Systems (DES) typically have real-
time and dependability requirements. Moreover, if they
have to operate in dynamic operational contexts, they need
to be adaptive. That is, they must be able to automati-
cally and autonomously rearrange in response to changes.
In order for a DES to be adaptive, its underlying subsys-
tems must be flexible. The implementation of the flexibility,
just like the implementation of the real-time and depend-
ability, cannot be done in an orthogonal manner since it
entails the collaboration of various subcomponents at differ-
ent levels of the architecture. The DFT4FTT project pro-
poses a self-reconfigurable infrastructure for implementing
DES with real-time, reliability and adaptivity requirements.
One of the most relevant fault tolerance mechanisms is the
dynamic replication of messages, that makes it possible to
tolerate transient faults affecting the network. In this paper
we describe more in-detail the design and implementation of
this mechanism.

1. INTRODUCTION
Modern Distributed Embedded Systems (DES) operate

under dynamic operational contexts. On the one hand, the
operational requirements - which include what the system
has to do (its functionality), the real-time guarantees it
has to provide, and the reliability it has to exhibit - can
change in an unpredictable manner. On the other hand,
the operational conditions, that is the circumstances under
which the system has to operate can also change in an un-
predictable manner. Note that the operational conditions
include changes in the environment and changes in the sys-
tem itself, due to faults. This kind of DESs must be able
to rearrange to adequate to the new operational context,
while maintaining its real-time and dependability behaviour.
That is, this kind of DESs must be able to adapt. Adaptivity
can be achieved following the next steps: monitor the en-
vironment and the system itself; determine when a relevant
event has happened; decide on an counteraction to address
the effects of this event; and, finally, carry out said action.
Furthermore, these abilities must be carried out automati-
cally and autonomously. Some examples of adaptive DES
are: autonomous vehicles, machinery in a smart factory and
self-repairable devices.

Adaptivity is an interesting property and, in the scope of

this work, we explore it to achieve two different goals. In
general, adaptivity can be used to construct a more efficient
DES. This is because a DES that is able to dynamically
change the assignment of computational and communica-
tion resources to the different functionalities does not need
to be dimensioned for the worst case scenario. Moreover,
adaptivity is also appealing from a dependability perspec-
tive. The reason is that it allows the implementation of
dynamic fault tolerance mechanisms, which are more effec-
tive than the static ones. An example is the ability recover a
faulty node replica, thus, maintaining the level of reliability
of the DES during a longer period of time. Another example
is the ability change the fault tolerance strategy at runtime
depending on the operational requirements of the DES.

To properly construct a DES that is adaptive, it is nec-
essary that the underlying subsystems are flexible enough
to support the desired adaptive functionality. However, the
implementation of the flexibility cannot be done in an or-
thogonal manner since it entails the collaboration of various
subcomponents at different levels of the architecture. For
instance, if we want the DES to be able to change its opera-
tion at runtime, it must implement mechanisms allowing it
to load/unload tasks into/from the nodes, as well as regis-
ter and unregister their associated communications. Conse-
quently, an holistic approach must be followed, that is, the
system must be considered as a whole and implement spe-
cific services at different levels of the architecture to provide
such flexibility.

Note that this lack of orthogonality does not only affect
the implementation of the flexibility, but also the implemen-
tation of the real-time and the fault tolerance mechanisms.
Consequently, DESs with real-time, reliability and adaptiv-
ity requirements must be constructed in the form of what
we call a complete infrastructure, that is, as a set of interre-
lated hardware and software components (the architecture)
together with a set of in-built mechanisms that make it pos-
sible to fulfil all these requirements, both at the node and
at the network level.

To support real-time highly-reliable adaptive DESs, the
Dynamic Fault Tolerance for the Flexible Time-Triggered
Ethernet (DFT4FTT) project [3] proposes a complete in-
frastructure with advanced fault-tolerance capabilities while
taking into account the above-mentioned aspects.

At the node level, DFT4FTT provides high reliability by
means of active replication with majority voting. That is,

each critical task is executed in parallel in several nodes of
the DES, which we call Computational Nodes (CNs). To
provide flexibility at this level, we proposed a centralized
architecture in which a so-called Node Manager (NM) can
reconfigure at runtime the allocation and replication of tasks
into the CNs [3].

At the network level, we have designed DFT4FTT to
rely on the Flexible Time-Triggered Replicated Start (FT-
TRS) [5], a switched-Ethernet implementation of the Flexi-
ble Time-Triggered (FTT) communication paradigm. FTT
makes it possible for the nodes of a DES to exchange traf-
fic with real-time guarantees. Moreover, FTT provides full
flexibility in the communications, that is, on the one hand, it
supports the exchange of periodic as well as aperiodic traf-
fic with different real-time requirements and, on the other
hand, it allow to change the real-time requirements of the
traffic at runtime. High reliability is achieved by means of
fault tolerance. Specifically, permanent network faults are
tolerated by replicating the network, while transient faults
are tolerated by proactively retransmitting the critical mes-
sages.

Note however that, so far, the temporal replication of mes-
sages in DF4FTT was static. Such static replication can be
inefficient, or even ineffective, when facing the changing op-
erational conditions in which adaptable systems operate. To
overcome this issue, in the present paper we propose how to
make the proactive retransmission mechanism of DFT4FTT
dynamic. Specifically, we propose to change the number of
message replicas to be sent at runtime (referred to as k here-
after) depending on the current operational context.

It is important to highlight that, although all this work
has been developed in the scope of the DFT4FTT project,
the ideas here presented are quite generic and, thus, they
can be applied in different communication subsystems.

The rest of the document is organized as follows. First we
discuss the related work and introduce the main features of
DFT4FTT. Second, we explain how the system can detect
the need for changing k from a system-wide perspective, the
guidelines for dynamically determining the proper value of k,
and how to consistently and reliably propagate any change
to all the nodes. Third we describe a partial implementation
and a set of experiments that demonstrate the feasibility of
the ideas presented here. Finally, we summarize the paper’s
contributions and point out future work.

2. RELATED WORK
During the last decades several architectures have been

proposed for providing real-time and fault-tolerant ser-
vices for the execution and/or the communication of tasks
in distributed systems, e.g. MAFT,/FTP-AP, Delta-4,
GUARDS, EMC, DREAMS [1]. Some of them like Delta-
4 and DREAMS do even provide services to reallocate and
reschedule tasks at runtime. Nevertheless, some of these ar-
chitectures require complex communication protocols at the
application or transport layer to provide node fault toler-
ance, others require costly adhoc network topologies, while
others are generic architectures that do not provide any spe-
cific strategy for replicating the nodes or the network.

On the other hand, several Ethernet protocols do provide
some real-time and/or fault-tolerance properties. Some of
the newer ones such as PRP, AFDX, TTEthernet and spe-
cific TSN standards can even provide zero recovery times
by means of spatial redundancy, e.g. TSN’s IEEE 802.1CB.

However, none of these protocols provide temporal replica-
tion of messages to efficiently tolerate transient link faults,
i.e. at most, they use proactive message replication to send
critical messages through the available redundant paths so
as to tolerate permanent link faults. Moreover, they either
do not support online rescheduling or do imply a reschedul-
ing latency that is not adequate to timely react to critical
situations requiring a fast reconfiguration [5].

3. OVERVIEW OF DFT4FTT
As already introduced, DFT4FTT relies on FTTRS [5] to

implement the communication subsystem. In FTTRS the
regular nodes of the DES are called slaves and they are in-
terconnected by means a duplicated star. As seen in Fig. 1,
in DFT4FTT the slaves correspond to the CNs. The com-
munications among slaves is managed by the Node Manager
(NM), which embeds an FTTRS master.

The master organizes the communication in fixed-
duration slots called Elementary Cycles (ECs). In turn,
each EC is divided in several windows: Trigger Message
Window (TMW), Synchronous Window (SW) and Asyn-
chronous Window (AW). The EC starts with the master
transmitting the so-called Trigger Message (TM). The pur-
pose of this message is twofold: it notifies the slaves about
the start of a new EC and it polls the set of periodic mes-
sages that they have to transmit during that EC. Then, dur-
ing the SW, the slaves transmit the corresponding periodic
messages, as instructed by the TM. Finally, during the AW,
the slaves transmit their pending aperiodic messages.

FTTRS follows a publisher-subscriber communication
scheme. Every slave willing to transmit must publish mes-
sages through a dedicated logical virtual communication
channel called stream. Each stream has a set of attributes
that characterize the properties of the traffic it conveys.
Some examples of real-time attributes are the size of the
messages, the deadline and, in case of a periodic traffic, the
periodicity. In turn, slaves willing to receive must subscribe
to the corresponding streams.

Regarding the tolerance to faults affecting the network,
note that transient network faults are typically tolerated
using Automatic Repeat Request (ARQ). That is, when a
message is lost, the receiver notifies the transmitter that
the message was not received and, then, the transmitter re-
transmits said message. Note that this approach is efficient
in terms of bandwidth but it introduces a non-significant
delay that penalizes the real-time response of the network
[5]. That is why proactive retransmission is more suitable
in real-time systems, in general, and in DFT4FTT, in par-
ticular. Specifically, publishing nodes transmit each critical
message k times in advance to maximize the probability of
the subscribers to receive at least one message replica. Note
that k is a new attribute of the streams and that, so far, it
has been static in DFT4FTT.

At the node level, each functionality in the system is im-

Figure 1: System architecture. Figure 2: App example.

plemented by means of an application. An application is
composed of several interconnected tasks that can be exe-
cuted in parallel or sequential manner. In turn, a task is
the minimum unit of computation and can be deployed in
any CN. As an example, Fig. 2 shows a control application
composed of three tasks connected in sequence: a sensing
task (S); a triplicated control task (C), where each one of
its replicas executes in parallel; and an actuation task (A).

Note that an application is executed as a set of sequen-
tial phases involving execution of tasks and transmission of
messages. Thus, a given system configuration basically in-
cludes the allocation and replication of tasks, the number
of proactive retransmission of critical messages (k), and the
schedule of tasks and messages.

At runtime, the NM is the responsible for detecting when
a new configuration is required, find a new configuration
that fulfills all the operational requirements (functionality,
real-time guarantees and reliability), and propagate the new
configuration to al the CNs.

4. DYNAMIC MESSAGE REPLICATION
Making dynamic the proactive retransmission of messages

basically consists in (1) detecting when the operational con-
text changes; (2) determining, accordingly, on the specific
number of message replicas (k) for each type of message
(and stream); and, finally, (3) propagating the new replica-
tion parameters to the nodes of the DES. While all these
three steps are covered next in subsections 4.2, 4.3 and 4.4,
let us first introduce the two general policies that can be
followed to address them.

4.1 Dynamic replication policy
Although the fault tolerance mechanisms of a DESs are

not orthogonal to each other and to the other architecture
mechanisms, the NM can still follow two main policies to
temporally replicate messages in a dynamic manner, namely
the network-level policy and the system-level policy.

According to the network-level policy, the NM would make
its decisions on how to temporally replicate messages tak-
ing into account the operational context exclusively from
a network-level perspective. In other words, given a set
of streams and the level of criticality of each one of them,
the NM would take into account how many replicas of each
message of said streams are being proactively retransmit-
ted, what is the number of available links (i.e. the available
link spatial redundancy), and how the environment is affect-
ing the quality of the links (e.g. their BER). In particular,
the NM would set k for each stream to ensure, with a high
probability, that at least one message replica of each critical
stream reaches all the destination nodes. Note that there are
several strategies to decide on k, as proposed in [2]. The NM
can consider that the quality of the links used to transmit a
given stream is the worst (maximum) probability with which
messages are being lost in any of them and, thus, transmit
the stream using (the same) conservative value of k in each
one of those links. Alternatively, the NM can discriminate
the quality of each link and, thus, use a different value of k
in each one of them [2].

In contrast, following the system-level policy the NM
would make its decisions considering the operational con-
text from the perspective of the whole system, i.e. consid-
ering the available (spatial) redundancy at multiple levels
of the DFT4FTT system architecture. This would result in

a more efficient message replication, since the DFT4FTT’s
fault-tolerance mechanisms of these additional redundancy
levels can indirectly tolerate transient faults affecting the
messages, without having to ensure that at least one mes-
sage replica reaches the destination in a link basis. The main
fault-tolerance mechanisms DFT4FTT includes at its other
levels are: (1) the replication of critical tasks (in different
nodes), so that each critical data message is transmitted sev-
eral times (once per task replica) even if each task replica
is configured to send only one copy of that message; (2) the
Distributed Consistent Majority Voting (DCMV) [4], which
allows replicated tasks to achieve a consensus thereby toler-
ating faults affecting not only task replicas themselves, but
also their ability to transmit/receive critical data messages;
(3) the Cc-vector Exchange Protocol (CVEP) [4], which al-
lows tolerating bursts by proactively retransmitting several
replicas of each critical data message in several consecu-
tive ECs; (4) the reintegrating mechanisms proposed in [4],
which allow recovering transiently-faulty nodes; and (5) the
duplication of the network, which provides up to 4 partially-
redundant physical paths between each pair of nodes [5].

We have decided to follow the system-level policy to de-
sign and implement the dynamic replication of messages.
We believe that this policy is better, since it can exploit the
different DFT4FTT’s redundancy levels to provide the nec-
essary reliability in a more cost-effective manner. This does
not mean, however, that other redundancy levels could sub-
stitute the message replication. Although other levels can
indirectly improve the tolerance to faults affecting the trans-
mission of messages, it is important to deal with each fault
as close as possible to its point of origin both in the space
and the time domains. In general, if the errors generated by
a fault propagate to a higher level, they can provoke faults
at that level that, then, will manifest in manners that are
more severe and difficult to handle.

4.2 Detection of the need for changes
In this section we outline which changes of the operational

context make it necessary to update the number of message
replicas to be proactively retransmitted, i.e. k. Then, we
explain which information can be monitored to detect these
changes.

Since the system must be (re)configured in an holistic
manner, the explanation of what changes trigger the up-
date of k must be done from a system-wide perspective. At
system’s start-up the NM sets k to a conservative value,
considering the different levels of redundancy of DFT4FTT,
but assuming that the network has to deal with the harshest
environment in which the system is going to operate. Then,
the NM decides to dynamically reconfigure the system, in-
cluding k, when it encounters the following situations. First,
if the environment actually becomes more benign, then the
NM can reduce k to save energy, or to ease future configura-
tions in which it could need to fit new streams (e.g. if new
tasks are put into execution). In any case, k should always
be conservative enough to prevent the system from failing
while, in the future, it carries out reconfiguration actions to
increase k again so as to deal with an increasingly harshly
environment. In this later case note that, if the network has
no available-enough bandwidth to increase k (e.g. if it had
to accommodate new tasks and their streams), then the NM
would need to reconfigure the redundancy at the other levels.
This reconfiguration can consist in evicting non-critical tasks

(or even reduce the number of task replicas), and thus their
streams, to free bandwidth so as to accommodate higher
values of k. In any case, the NM has to find a configuration
in which the redundancy degree at the different levels of its
architecture guarantee, as a whole, the desired system reli-
ability. Second, if the system loses (spatial) redundancy at
any of its other levels due to faults - e.g. if a node, task, or
link fails -, then the NM should increase k taking into ac-
count the just-mentioned considerations about the available
bandwidth. Analogously, if the system regains redundancy
thanks to its reintegration mechanisms, then the NM can
conservatively reduce k as explained before. Third, if the
operational requirements (functionality, RT guarantees, or
reliability) of the system change, then the NM may need to
change the set of tasks to be executed (and with them their
interdependencies and streams). If so, it will need to find a
new configuration with an adequate redundancy degree in
each level of its architecture, including again a conservative
value for k.

It is important to note that it may be impossible to find a
new configuration that fulfills all the requirements when the
operational context changes. If so, the NM needs to find a
new configuration in which the system provides its services
with an adequate/acceptable level of reliability (even though
it is in a degraded manner from the functional point of view).

Next we outline the mechanisms DFT4FTT can use to
monitor the environment and the system itself, so as to de-
tect the just-described situations that require a system re-
configuration.

For detecting changes in the environment that affect the
network, the NM can use different mechanisms. First, sev-
eral radiation sensors could be placed in the system from
which the NM could measure how harshly the environment is
and, thus, estimate the expected rate of transient link faults.
Second, the NM can also estimate the rate of transient faults
affecting each link through which it receives messages, by
using the counter of dropped incoming messages (due to er-
rors in the channel) provided by the Ethernet card it uses
to communicate through that link. Third, in DFT4FTT
each CN periodically transmits to the NM an I Am Alive
(IAA) message which piggybacks information contained in
the TM. The NM can use the percentage of IAA omissions
from a given CN to estimate the probability with which the
transmitted TM does not reach that CN and, thus, the rate
of transient faults affecting the link through which it trans-
mits messages to that CN. Finally, the CVEP retransmission
mechanism mentioned in Sec. 4.1 requires task replicas to
send ACK messages [4], which then are used by the switch to
determine which critical data messages each task replica was
able to transmit/receive. The NM can use this information
to estimate the rate of transient link faults as well.

To detect changes in the available spatial redundancy, the
NM can use the just-mentioned mechanisms (except the first
one). For instance, if a CN omits its expected IAA during a
relatively long period of time, the NM will diagnose that CN
as permanently faulty. Conversely, if that CN reintegrates,
and from then on successfully transmits its IAA, then the
NM will detect that the CN is available again.

Finally, for detecting changes in the operational require-
ments, the NM includes application-dependant knowledge
(codified at design time) about both the environment and
how the system should operate accordingly [3]. For instance,
in an autonomous vehicle, the NM can use this knowledge to

detect when the terrain changes and, then, determine what
are the new operational requirements to adequately drive.

4.3 Determination of the configuration
To determine a new system configuration we propose that

the NM carries out a search among all the possible con-
figurations to find a valid one, i.e. one that fulfills all
the operational requirements. Some of the search tech-
niques we are considering for this purpose are: heuristic-
based techniques like branch and bound with a greedy algo-
rithm, metaheuristic-based techniques like Tabu search [6]
and solvers like SMT solvers [8].

In particular, for a given configuration to be considered as
valid, it must fulfill the real-time requirements of the tasks
and messages, as well as the reliability requirements. Thus,
the search technique must contain both an holistic sched-
uler analyzer and a reliability analyzer. In any case, the
search process can require more or less computation time
and storage capacity. The number of possible configura-
tions can be huge depending on the number of aspects con-
sidered in the search, e.g. the allocation and replication
of tasks, k, etc. Moreover, the scheduling and reliability
analyses of each configuration can also take a non-negligible
amount of time. Thus, we are assessing the performance
of the above-mentioned search techniques so as to decide
whether the search should be carried out at runtime or com-
pletely/partially pre-calculated offline.

Independently of the tool(s) the NM will finally use, next
we outline the strategy we propose to decide how many repli-
cas should be proactively retransmitted for each type of mes-
sage. In this sense, we differentiate among data messages,
the Trigger Message (TM) and control messages.

Data messages are used by CNs to transmit the
application-level data among tasks. Of those messages, we
propose to temporally replicate only the ones that are con-
sidered as critical, e.g. the ones that replicated tasks use to
exchange the information they need to reliably vote on. To
reduce the complexity of finding an adequate system con-
figuration, the NM must calculate a conservative value of
k that is common to all critical data messages. Note how-
ever, that this value should not be calculated assuming the
transient failure rate of the link that is encountering more
errors. This is so because the cause that leads a link to be
specially error prone is not necessary a harshly environment
(that would affect the other links in a similar manner), but
it can also be a local mechanical/electrical defect of that
link. Therefore, the calculation of the common value of k
should be based on the radiation sensors’ measurements or
on a trimmed mean of the transient failure rates estimated
for each link. Then, if a given link shows to be more error
prone than expected, the NM should find a new configura-
tion with a higher value of k for that specific link. In any
case, the fault diagnosis mechanisms of DFT4FTT should be
good enough to diagnose a specially error-prone link as per-
manently faulty and, then, to discard it from the available
spatial redundancy of the network.

As explained above, the TM plays a key role in the op-
eration of the DF4FTT communication subsystem. Con-
sequently, it is vital to transmit this message in a reliable
manner. With that being said, note that we already con-
structed a model of FTTRS and made a sensitivity analysis
to determine the impact of the replication of the TM in the
system reliability [4]. The results showed that the system

reliability improves as the k of the TM increases; but that
this improvement starts to become negligible when k is in-
creased from 3 to 4. Moreover, the difference in bandwidth
usage when using 2 or 4 TM replicas is also negligible. Thus,
it makes no sense to add complexity to the system trying to
dynamically replicate the TM if the gain in bandwidth does
not justify it. Consequently, we propose to set the number
of the TM replicas to a fixed value of k = 4.

Control messages are the messages used by both the NM
and the CNs to help in managing the operation of the sys-
tem. Some examples are the Master Command Message
(MCM) sent by the NM as later described in Sec. 4.4, and
the IAA message CNs (see Sec. 4.2). Which value of k is the
appropriate one depends on both the criticality of the spe-
cific control message and how frequently it is transmitted.
We propose to replicate only the control messages that are
critical. In principle critical control messages should be dy-
namically replicated as data messages are. However, if the
difference in the bandwidth used by a critical control mes-
sage is negligible when comparing k = 2 with k = 4, then
we propose to consider a fixed value of k = 4 for it, so as
to reduce the need for reconfigurations. For instance, con-
sider the case of the MCM. As it will be explained, the NM
uses the MCM to consistently propagate the changes on the
system configuration to the CNs and, thus, it is as critical
as the TM. However, the MCM is rarely transmitted since
reconfigurations are not expected to be frequent. Thus, we
propose to use a fixed value of k = 4 for this control message.

4.4 Propagation of the configuration
Once the NM has decided on a new configuration (includ-

ing the new values of k), it is necessary to propagate the
information about that configuration to the CNs. In partic-
ular, the new values of k are then used by the CNs, in the
transmission, to issue the correct number of message replicas
and, in the reception, to check that the correct number of
replicas has been received. Moreover, this propagation has
to be done consistently in both the NM and all the CNs.
This means that the NM and the CNs have to update their
internal databases with the same configuration information
at an equivalent time.

As said in Sec. 3, k is an attribute of the stream. Thus,
for the particular case of the propagation of the new values
of k, DFT4FTT could rely on the mechanism FTTRS al-
ready provides to consistently update any stream attribute
[5]. However, this mechanism has two important shortcom-
ings. First, it cannot propagate configuration information
regarding aspects other than the stream-related ones. Sec-
ond, even propagating only the different values of k of a given
system configuration would require the transmission of many
individual and replicated control messages, thereby limiting
the real-time response of the propagation itself. Therefore,
here we propose a new mechanism for propagating a whole
configuration in a more efficient manner. In any case, since
the focus of this paper is on the communication, this mech-
anism will be described in terms of the databases used to
store the stream attributes. However, everything said here
can be applied to the other databases.

First of all, the stream database of the NM and the CNs
is composed of two databases: (1) the read database, which
is used in the normal operation to consult the attributes of
the streams; and (2) the write database, which keeps all the
system changes pending to be applied.

Once the NM has introduced all the changes of a new
configuration into its write database, it sends the full list of
changes to all the CNs by means of the Master Command
Message (MCM), which is broadcast as an aperiodic con-
trol message. Moreover, as already mentioned, the MCM
is proactively retransmitted several times to ensure that it
is received by all the CNs and, thus, that there is no data
inconsistency.

Upon the reception of the MCM, each CN updates its
write database with the content of said message. After that,
the NM decides in which EC the read databases should be
updated with respect to the write databases. Then, the NM
sends a commit order inside the TM of said EC. This order
indicates that the NM is going to update its read database
at the end of the EC and, thus, instructs each CN to do so
with its own read database. Specifically, the NM and the
CNs update their read database in a new dedicated win-
dow placed at the end of the EC, we call the Commit Win-
dow. Neither the NM nor the CNs are operating with their
databases during this window and, thus, they can update
the read database without any risk.

5. EXPERIMENTATION
Since DFT4FTT is an ongoing project, its implementation

is subjected to the fully definition of its internal mechanisms.
In this sense, all the work herein discussed has been imple-
mented; except the search of configurations within the NM,
which as already explained is responsible for determining
the value of k for each stream. Specifically, in the context of
the work herein presented (the dynamic replication of k), we
have implemented the mechanisms that make it possible, for
each kind of message (and stream), to: generate k message
replicas, modify k at runtime, and propagate the new k to
the CNs. Moreover, we have tested the correct operation of
all these mechanisms in conjunction by switching between
configurations where k varies for all kind of messages (and
streams). The results of these experiments demonstrated
the feasibility of the work herein proposed.

Apart from that, these experiments allowed us to obtain
evidences to support some of the decisions taken during the
design process. In particular note that, from an intuitive
point of view, the quality of the synchronization between
the NM and the CNs should decrease as the value of k for
the TM increases. Thus, we carried out an experiment to
check that the decision of not dynamically replicating the
TM and consider a constant value of k = 4 for it does not
compromise this quality.

Fig. 3 depicts the testbed for this synchronization-related
experiment. The NM periodically transmits the TMs to two
CNs. The CNs, when receiving the TM replicas, calculate
when to trigger the start of the Synchronous Window (SW)
(Sec.3). In-between the NM and the CNs we placed a Ne-
tAnalyzer [7], which is a dedicated piece of hardware that
timestamps messages with high time resolution. The data
collected by the NetAnalyzer helps to characterize the trans-
mission of TMs and, thus, rule out that a potential lack of
synchronization is due to jitter in this transmission. The
synchronization quality is measured by a microcontroller
which, by means of GPIOs connected to the NM and the
CNs, timestamps the start of each EC and its correspond-
ing SW as seen by each CN. The synchronization quality for
each EC is calculated as the difference of time between the
beginning of the SW in each one of the two CNs.

Figure 3: Testbed for the experimentation.

Figure 4: Histogram of the SW delay in both CNs for k = 4.

To properly carry out this experiment we conducted mul-
tiple tests. Specifically, we conducted tests for 2, 3 and 4
TM replicas. In each one of these three cases we injected
all possible error scenarios affecting the reception of the TM
replicas, except the error scenario in which all the TM repli-
cas are corrupted. Moreover, each error scenario is repeated
1000 times to have multiple samples of each one of them.

Regarding the transmission of the TM replicas, we mea-
sured the delay and jitter of the time between the transmis-
sion of: (1) the first TM replica sent in each pair of consec-
utive ECs; (2) the same TM replica sent to CN1 and CN2;
(3) each pair of consecutive TM replicas sent in the same
link. The results of the tests showed that the behaviour of
the NM, in terms of predictability, is quite good. The pe-
riodicity with which the NM transmits the TMs, the delay
in the transmission of the same TM replica to the two CNs,
and the separation between TM replicas in the same link
are quite constant; independently of the value of k and the
injected faults. However, it should be noted that we no-
ticed a small number of outliers. We believe this is because
the tests were carried out using a software implementation
of the FTTRS switch/master and, thus, this issue should
disappear in a final hardware implementation.

As concerns the results in the reception, i.e. the quality
of the synchronization of the CNs, we did not notice any
relevant loss of synchronization; neither due to the TM’s k
nor due to the injected faults. The results for k = 4 are
summarized in Fig. 4. Specifically, this figure shows the
delay with which CNs have determined the beginning of the
SW in each EC, grouped from 0 to 100 us.

A value of zero would indicate a perfect synchronization.
Although the synchronization is not perfect, most of the
samples are between 4 and 60 us; which is reasonably good,
tanking into account that we are using the just-mentioned
software implementation. Again some outliers, which are
not shown in the figure to better fit the page layout, are
present. However in a future hardware implementation the
quality of synchronization is expected to drastically improve.

6. CONCLUSIONS
In this paper we present the design and partial implemen-

tation of the dynamic message replication mechanism of the
DFT4FTT architecture. This mechanism has the potential
to increase DESs tolerance to transient faults affecting the
network in a cost-effective manner; by taking advantage not
only from the temporal redundancy of messages, but also
from the redundancy of the different levels of the architec-
ture.

We explained how the system can detect the necessity
for reconfiguring itself so as to adequately tolerate transient
faults; the guidelines for how to decide on a proper number
of replicas for each kind of message in any new configuration;
and how to consistently and reliably propagate such a new
configuration to all the nodes of the DES. Then, we outlined
the implementation we have done of the ideas presented here
in our ongoing implementation of DF4FTT; as well as the
tests we carried out to demonstrate their feasibility. More-
over, we described an exhaustive experiment through which
we corroborated that the replication we propose for the TM
both, tolerates faults and does not negatively impact the
synchronization of the nodes.

In the short term we will propose how to use an adequate
search technique to find proper system reconfigurations by
taking into account, among other aspects, the degree of tem-
poral redundancy of messages (k).

7. ACKNOWLEDGMENTS
This work was supported by project TEC2015-70313-R

(Spanish Ministerio de economı́a y competividad) and by
FEDER funding.

8. REFERENCES
[1] I. Álvarez, A. Ballesteros, M. Barranco, D. Gessner,

S. Derasevic, and J. Proenza. Fault Tolerance in
Highly-Reliable Ethernet-based Industrial Systems. In
Proceedings of the IEEE (Early Access), 2019.

[2] I. Álvarez, M. Barranco, and J. Proenza. Mixing Time
and Spatial Redundancy over Time Sensitive
Networking. In Proc. 48th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), Luxemburg, 2018.

[3] A. Ballesteros, J. Proenza, and P. Palmer. Towards a
Dynamic Task Allocation Scheme for Highly-Reliable
Adaptive Distributed Embedded Systems. In Proc. 22th
IEEE Int. Conf. on Emerging Tech. and Factory
Autom. (ETFA), Limassol, 2017.

[4] S. Derasevic. Node Fault Tolerance for Distributed
Embedded Systems based on FTT-Ethernet. PhD thesis,
University of the Balearic Islands, 2018.

[5] D. Gessner, J. Proenza, M. Barranco, and
A. Ballesteros. A fault-tolerant ethernet for hard
real-time adaptive systems. IEEE Transactions on
Industrial Informatics, 15(5):2980–2991, May 2019.

[6] F. Glover. Future paths for integer programming and
links to artificial intelligence. Computers & Operations
Research, 13(5):533 – 549, 1986.

[7] Hilscher. NetAnalyzer.

[8] W. Steiner. An Evaluation of SMT-Based Schedule
Synthesis for Time-Triggered Multi-hop Networks. In
31st IEEE Real-Time Systems Symposium, pages
375–384, Nov 2010.

Routing Heuristics for Load-balanced Transmission in
TSN-Based Networks

Mubarak Adetunji Ojewale
mkaoe@isep.ipp.pt

Patrick Meumeu Yomsi
pmy@isep.ipp.pt

CISTER Research Centre, ISEP
Polytechnic Institute of Porto, Portugal

ABSTRACT
A carefully designed routing synthesis can help system de-
signers achieve a better load balancing in TSN-based net-
works and avoid congestion. To this end purpose, this work
proposes two heuristics referred to as (1) LB-DRR, which
aims at achieving a better load balancing and compute as
much disjoint routing paths as possible for each replicated
flow; and (2) CR-DRR, which recomputes paths for time-
sensitive flows in congestion situations. Extensive simula-
tions demonstrate that the proposed approach outperforms
the classical Shortest Path (SPA) and the weighted Equal
Cost Multi-path (wt-ECMP) algorithms in terms of the max-
imum load transmitted on a link by more than 70% and 20%,
respectively.

Keywords
Time Sensitive Networking; Routing Algorithms; Conges-
tion; Load-Balancing

1. INTRODUCTION
Ethernet in its original specification was not designed with

real-time communication in mind. The IEEE Time Sensi-
tive Networking (TSN) Task Group [7] acknowledged this
fact and has been investing considerable workforce to come
up with a set of new standards to address this limitation.
In this context, the group has designed sophisticated mech-
anisms to achieve temporally predictable and reliable trans-
mission of packets over switched Ethernet networks. Specif-
ically, key features like flow-synchronization; -management;
-control; and -integrity, have been instanced. For a given
network, deriving an efficient and cost-effective flow control
scheme is paramount. It would make it possible for users
and operators to centrally and dynamically discover; con-
figure; monitor; and report on the capabilities of switches
and end-stations (a.k.a. nodes) [9]. In a nutshell, the TSN
flow control mechanism can be considered from two per-
spectives: (1) the scheduling (i.e., when each flow shall be
transmitted); and (2) the routing (i.e., on which path each
flow shall be transmitted). Dürr et al. [2] demonstrated that
the scheduling problem of real-time (a.k.a. time-sensitive)
flows can be reduced to the No-Wait Job Shop Problem
(NW-JSP), which is NP-Hard. On another front, Wang
and Crowcroft [14] proved that any routing problem that is

Copyright retained by the authors.
RTN’2019, Stuttgart, Germany

subject to two or more independent additive or multiplica-
tive tree constraints is NP-Hard. This is the case for time-
sensitive flows, unfortunately. They are subject to timing,
bandwidth, cost and reliability constraints. Consequently,
seeking for an exact solution is very challenging and com-
putationally expensive. Designing efficient heuristics is the
only viable alternative.

In recent years, the scheduling problem has received signif-
icantly more attention by the research community than the
routing. However, Nayak et al. [10], Singh [12], and Gavriluţ
et al. [4] among others raised voices and stressed on the im-
portance of routing in achieving low latency, predictability,
and reduced architecture cost. In this work, we follow the
same path and focus on the routing problem of TSN flows
as an improper routing strategy may increase the number
of transmission operations, thereby incurring additional de-
lay. Also, it may increase the blocking time of flows in the
network if too many flows try to simultaneously traverse the
same path. We believe that a strategy that minimizes the
number of transmission operations and the blocking times
suffered by each flow would help get around and/or mitigate
these situations.

. Limitations of the state-of-the-art. The TSN stan-
dard on path control and reservation [8] recommends the
Constrained Shortest Path First (CSPF) routing scheme for
the transmission of time-sensitive flows (see page 71). It
dictates that this scheme

“essentially performs shortest path routing on the
topology that only contains the links meeting the
constraint(s).”

From this quote, it follows that CSPF is similar to the
Shortest Path Algorithm (SPA) in its operation. Conse-
quently, it is also exposed to congestion and increased block-
ing time for flows. To illustrate this claim, let us consider
the network topology in Figure 1, where six nodes (Node 1
to Node 6) and six switches (S1 to S6) are connected by
full duplex links. Nodes communicate through flow trans-
missions over the links and switches. In this example, we
consider three flows – flow f1 (green) is transmitted from
Node 1 to Node 6; f2 (yellow) from Node 2 to Node 5; and fi-
nally, flow f3 (brown) is transmitted from Node 4 to Node 4.
We assume that the CSPF routing policy is adopted and all
valid paths from each source to each destination node al-
lows each flow to satisfy its end-to-end timing requirement.
Then, all these flows are transmitted via the “direct link”
(in red) between S1 and S6, thus increasing the eventual
blocking time over this link for each flow. This state of facts

Figure 1: Congestion under CSPF routing policy.

makes this link the potential single point of failure of the
network and may cause congestion despite the high level of
connectivity. The same limitation applies to the Equal Cost
Multi-Path (ECMP) and the weighted ECMP (wt-ECMP)
routing schemes [12], unfortunately. The basic idea of these
two routing schemes is as follows. Under ECMP, instead of
computing a single shortest route like this is the case with
SPA, multiple shortest routes are computed and from these,
one or several routes are selected arbitrarily. The wt-ECMP
scheme distinguishes itself from ECMP only in the selection
mechanism. Here, for all the computed shortest routes, a
“weight” is assigned to each route to make sure that selec-
tion is not performed in an arbitrary manner.

. Our contribution. To get around the aforementioned
hurdles and to fully take advantage of the network connec-
tivity, we suggest the adoption of a routing strategy that
ensures load balancing, i.e., a strategy that distributes the
transmission operations among the links as even as possible.
In addition, this approach ensures that no link becomes the
only potential point of failure of the network. In this scope,
this paper proposes two heuristics, referred to as LB-DRR
and CR-DRR, with the following objectives:

. LB-DRR: which aims at finding a feasible route for
each flow so that the traffic on each link is minimized1.

. CR-DRR: which aims at computing alternative routes
for each flow in a situation of congestion at run-time.

Although the proposed routing schemes are motivated by
the limitations observed in the specifications of TSN, they
can be ported (with minor efforts) to a large portion of real-
time Ethernet networks.

. Paper organization. The rest of this paper is structured
as follows. Section 2 presents the model of computation and
introduces the notations adopted in this work. Our proposed
heuristics (LB-DRR and CR-DRR) are detailed in Section 3.
Section 4 reports on the experiments carried out and discus-
sions about these. Section 5 discusses the related works on

1This heuristic also makes sure that replicated flows are
transmitted on routes as disjoint as possible.

the topic in the literature. Finally, Section 6 concludes the
paper and provides future research directions.

2. MODEL OF COMPUTATION
In this section, we define the network topology and the

flows specification assumed throughout this paper. Also, we
introduce the notations and parameters necessary for a good
and crystal clear understanding of our proposed heuristics.

. Network topology specification. We modelled the net-
work as an undirected graph G = (V,E), where the set
V = N ∪ S of vertices in G is composed of a finite set N
of nodes and S of switches (see Figure 1 for an example).
The vertices are connected by a set E of full duplex links
or edges. This means that each edge e ∈ E is defined by a
couple (v1, v2) ∈ V × V of two connected nodes.

. Flow specification. By default, every TSN-based net-
work addresses recurrent (periodic and/or sporadic) flows
grouped in classes (e.g., CDT, Audio/Video, etc.). These
flows are transmitted within so-called cycles2 and within a
cycle, each flow is treated individually (irrespective of its
period) [10]. When all flows are released simultaneously (as
assumed in this work), we can safely restrict our attention
to a single cycle (the first one). As such, we consider a set of

n aperiodic time-sensitive flows F
def
= {f1, f2, . . . , fn}. Each

flow fi
def
= (srci, dsti, repi, Ci, Ti, Di) ∈ F is characterized

by a 5-tuple, where: (1) srci is the source node; (2) dsti is
the destination node; (3) repi is the replication level (i.e.,
the number of replicates of fi allowed to be transmitted
from srci to dsti); (4) Ci is the size; and finally (5) Di is the
deadline of the flow, i.e., the latest time instant by which
at least one copy (original or replicates) of fi must reach
dsti. We assume all flows are uni-cast, i.e., each flow has
a unique destination. We define the set of replicates of fi

as repfi
def
= {fi,1, fi,2, . . . , fi,repi} and assume that each flow

and all its replicates are transmitted simultaneously over the
network.

2The length of each cycle is computed as the Least Common
Multiple (L.C.M.) of the periods of all flows.

3. PROPOSED SOLUTION
In this work, we assume that all edges are homogeneous

(i.e., they all have the same characteristics and are inter-
changeable). Before we detail our proposed routing strat-
egy, let us first define a number of concepts for a better
understanding of our approach from the reader standpoint.

Definition 1 (Route). A route ri of flow fi is defined
as an ordered list 〈(srci, vi,1), (vi,1, vi,2), . . . , (vi,p, dsti)〉 of
edges that can be traversed by fi from its source to its desti-
nation.

Definition 2 (Valid route). A valid route for fi is
defined as any route ri that meets its timing requirement Di.

Definition 3 (Length of a route). The length of a
route ri denoted by len(ri) is defined as the number of edges
along the route.

Definition 4 (load of a edge). For every edge e =
(v1, v2) ∈ V ×V , we define the load of e, denoted by load(e),
the sum of the sizes of all flows traversing e. Formally, the
load of edge e is defined by Equation 1.

load(edge)
def
=

∑
fi traversing edge

Ci (1)

Definition 5 (MaxLoad of a route). The MaxLoad
of a route ri, denoted by Maxload(ri), is defined as the max-
imum load of all edges in ri. Formally, the MaxLoad of
route ri is defined by Equation 2.

Maxload(ri)
def
= max

edge∈ri
{load(edge)} (2)

At this stage, we have all the tools we need to describe
our proposed routing solution. The basic idea is as follows.
In contrast to the traditional routing schemes (e.g., SPA,
ECMP and wt-ECMP), where the underlying strategy is to
focus on finding the shortest route for each flow, here we
explore all the valid routes. If we denote by Ri the set of all
valid routes for flow fi, then our routing strategy consists in
selecting the route that results in the best load distribution
in Ri, i.e., the route that minimizes the cost function defined
in Equation 3.

Cost(ri,K)
def
= Maxload(ri) + K · len(ri) (3)

In this Equation 3, parameter K > 0 is a penalty constant
value defined by the user. This parameter is meant to pe-
nalize the routes with longer lengths. To make a long story
short, it must be looked at as trade-off. It must be set in
such a way that the weight of K · len(ri) in the cost func-
tion is significant and Maxload(ri) does not dominate it
and vice-versa. In the latter case, if K · len(ri) dominates
Maxload(ri), then the cost function would behave like wt-
ECMP. On the other front, Maxload(ri) is computed to pe-
nalize solutions where some edges in the route are transmit-
ting a high number of flows3. Last but not least, if several
routes return the same lowest-cost value, then we select one
of these routes in an arbitrary manner. Formally, for each
flow fi, its best route Best(fi) is defined by Equation 4.

Best(fi)
def
= min

ri∈valid routes
{Cost(ri,K)} (4)

3Hence making these edges become potential bottlenecks.

In this equation, variable “valid routes” denotes the set of
all valid routes for flow fi. Consequently, wt-ECMP is a
special case of the proposed approach, where parameter K
is sufficiently large and K · len(ri) dominates Maxload(ri).
Now, we can proceed with the details of our proposed rout-
ing schemes.

./ On load-balancing (Algorithm 1). The load balanc-
ing routing scheme (LB-DRR) takes three components as
inputs, namely: (1) the network topology G; (2) the set F
of flows to be routed; and finally (3) the user-defined penalty
variable K. In the description of the algorithm, the notation
|A| refers to the cardinal of set A.

For each flow fi, after the initialization phase (lines 1
to 3), LB-DRR computes the best route by using Equa-
tion 4 (line 6). Then, the load of all edges on this route
is updated (line 8) and the selected route is appended to
the list of best routes Ri of flow fi. If the number of repli-
cas of fi is strictly greater than zero, then all the edges
that have already been traversed by the original flow fi are
recorded in variable used edge (line 12). Next, all the valid
routes are computed (line 13) and the route ri,j that has
the minimum overlap with used edges is selected for replica
fi,j (with j ∈ [1, repi]) (line 15). If several routes return the
same minimum overlap with used edges, then one of these
routes is selected arbitrarily and the load of all edges on
ri,j is updated (line 17). Note that the edges belonging to
used edges are also updated so as to take into account those
traversed by replica fi,j (line 19). Thereafter, route ri,j is
appended to Ri (line 20) and Ri, which is the list of selected
routes for fi and its replicas, is appended to the list R of the
selected routes for all flows (line 23). When this process is
completed for all fi to be transmitted, the algorithm returns
the list R (line 25).

./ On congestion recovery (Algorithm 2). This algo-
rithm, referred to as CR-DRR, is based on the Tabu meta-
heuristic [5] and is reactive in that it aims at re-routing the
flows caught in a congestion situation. In a nutshell, the
main intuition behind any tabu-based meta-heuristic is to
temporarily mark some moves as forbidden so as to force the
algorithm to seek for alternative solutions, potentially bet-
ter in comparison to the current one with respect to a given
metric. With this concept in mind, the CR-DRR scheme op-
erates as follows. It takes five components as input: (1) the
network topology G; (2) the original routing configuration
for all flows R; (3) the congestion threshold cgst threshold4;
(4) the list of the loads on each edge (load); and finally
(5) the user-defined penalty variable K. All congested edges
according to parameter cgst threshold are stored as “tabu-
edges” (csgt edges) and are temporarily removed from the
network topology (line 2). For every congestion situation,
we initialized the set of congested routes csgt routes (i.e.,
all routes containing at least one congested edge); the set
of flows (csgt flows) traversing the congested routes; and
the new set of routes Rnew to include all routes in R except
the congested routes (lines 3 to 5). Then, we seek for alter-
native routes on the new topology for each congested flow
fi ∈ cgst flows (line 7). From these alternative route(s),
we select the best route5 ri by using Equation 3 (line 9).

4This parameter defines the upper-limit of the load admis-
sible on an edge, otherwise it is deemed as congested.
5Again, if several routes return the same minimum cost,
then we select one of these in an arbitrary manner.

Algorithm 1: LB-DRR routing scheme.

Data: Network topology G; Set of flows F ; Constant K
Result: List of best routes for each flow in F

1 R← empty list[];
2 edges← Set of all edges in G;
3 load← zeros[|edges|];
4 foreach fi ∈ F do
5 Ri ← [];
6 Compute ri = Best(fi) (see Equation 4);
7 foreach edge ∈ ri do
8 load[edge] = load[edge] + Ci;
9 end

10 Ri.append(ri);
11 if repi > 0 then
12 used edges← {edge ∈ ri};
13 routes = valid routes(G, srci, dsti);
14 for j = 1 to repi do
15 ri,j = arg min

r∈routes
(|used edges ∩ {edge ∈ r}|);

16 foreach egde ∈ ri,j do
17 load[edge] = load[edge] + Ci;
18 end
19 used edges = used edges ∪ {edge ∈ ri,j};
20 Ri.append(ri,j);

21 end

22 end
23 R.append(Ri);

24 end
25 return R

We check if re-routing flow fi will not cause congestion on
any edge in ri (line 10). If it does, we leave fi on its original
route old ri (line 24). At the end of this process, we update
the list load in two phases: (i) on the old route old ri: we
deduct Ci from all edges (line 12) and (ii) on the new route
ri: we augment Ci to all the edges (line 15). We update
cgst edges (lines 17 to 22). In case there is no alternative
route for fi in New Topology, it is kept on its original route
old ri (line 27). Finally, the computed route is appended
to Rnew (line 29) and when all congested flows have been
re-routed, the list Rnew is returned for all flows (line 31).

4. EXPERIMENTAL RESULTS
In this section, we report on the experiments conducted

on synthetic workloads to evaluate the performance of the
proposed heuristics (LB-DRR and CR-DRR) in terms of
maximum load transmitted on an edge against SPA and wt-
ECMP. Then, we assessed the scalability of the proposed
algorithms to demonstrate their applicability.

. Setup. We considered a TSN network, modeled as an
Erdős-Rényi graph [3] with 50 nodes and a connectivity level
falling in the interval [0.15, 0.35]. We set K = 100 and ran-
domly generated up to 1000 real-time flows in the window
[25, 200]. For each flow, we assume that its size is between
200 and 1000 bytes and its replication level is randomly cho-
sen between 0 and 2. Also, to constrain the solution space
(i.e., to limit the set of valid routes for each flow), we con-
sider the deadline of each flow in the range of 2 to 5 time
units and assume a constant traversal time of 1 time unit
per edge. In the first batch of experiments, we assumed the

Algorithm 2: CR-DRR routing scheme.

Data: Network topology G; Original routing
configuration R; List of loads on each edge
(load); Congestion threshold cgst threshold;
Constant K

Result: A new routing configuration Rnew

1 cgst edges← {edge inG | load(edge) > cgst threshold};
2 New Topology ← G \ cgst edges;
3 cgst routes← {r ∈ R | r ∩ cgst edges 6= ∅};
4 cgst flows← {fi traversing a route in cgst routes};
5 Rnew ← R \ cgst routes;
6 foreach fi ∈ cgst flows do
7 routes← valid routes(New Topology, srci, dsti);
8 if (routes 6= ∅) then
9 ri = arg min

r∈routes
(Cost(r,K));

10 if (Maxload(ri) ≤ cgst threshold) then
11 foreach edge ∈ old ri do
12 load[edge] = load[edge]− Ci ;

13 end
14 foreach edge ∈ ri do
15 load[edge] = load[edge] + Ci ;
16 end
17 foreach edge ∈ cgst edges do
18 if (load(edge) ≤ cgst threshold) then
19 New Topology =

New Topology.add(edge);
20 cgst edges = cgst edges \ {edge};
21 end

22 end

23 else
24 ri = old ri
25 end

26 else
27 ri = old ri
28 end
29 Rnew.add(ri);

30 end
31 return Rnew

LB-DRR routing scheme and the second batch, we assumed
the SPA routing scheme. In the latter case, we applied the
CR-DRR algorithm to re-route the flows under congestion
situations.

. Results and discussion. From the first batch of exper-
iments, we observed that LB-DRR reduces the maximum
load transmitted on an edge (Maxload) by 70.3% and 23.3%
in average as compared to SPA and wt-ECMP, respectively.
Figure 2a shows the Maxload for each routing scheme when
the numbers of flows varies and LB-DRR clearly dominates
both SPA and wt-ECMP. By varying the connectivity level
of the network (see Figure 2b), we observed that LB-DRR
performs better as the network connectivity increases and
its Maxload decreases significantly. Note that higher con-
nectivity brings about longer run-time overhead due to the
increasing number of routes to be considered.

Figure 3a illustrates the scalability of LB-DRR w.r.t. in-
creasing number of flows. Regarding the increase of the
number of flows, we observed that LB-DRR scales linearly,
but very slowly (it took only 26 seconds to compute routes

(a) Load balancing: LB-DRR vs. SPA and wt-ECMP. (b) Performance improvement w.r.t. network connectivity.

Figure 2: Load balancing and performance improvement of LB-DRR.

(a) Scalability w.r.t. number of flows. (b) Scalability w.r.t. number of nodes.

Figure 3: Scalability of LB-DRR.

for 1000 flows). Now, regarding the increase of the number
of nodes, we set the network connectivity level to 0.2 and
consider 100 real-time flows. Figure 3b shows that the exe-
cution time of LB-DRR grows exponentially as the number
of nodes exceeds 75. However, it could still compute routes
for 125 nodes in 11 minutes.

From the second batch of experiments, we routed 750 real-
time flows by using SPA, and we observed a huge congestion
on the selected routes. Figure 4 shows the congestion recov-
ery and the load redistribution results. In Figure 4a, the net-
work load was initially unbalanced (see the red curve) with
several flows routed only on a limited number of edges (see
the peak on the far-left), while several edges were left unused
(see the long tail to the far-right). By applying the CR-DRR
scheme, a tremendous improvement has been observed (see
the black curve). Figure 4b shows the load distribution of
the congested network before and after CR-DRR is applied.
From this figure, the load distribution curve of CR-DRR
is close to the normal distribution. Finally, CR-DRR pre-
sented the same behavior as LB-DRR in terms of scalability.

5. RELATED WORK
Traffic routing of time sensitive (real-time) flows is non

trivial [9]. Routing optimization has been well studied in lit-

erature and sophisticated techniques have been proposed [6,
13]. However, contributions on TSN routing schemes have
started less than a decade ago. In this context, both the
rapid spanning tree protocol and shortest path bridging al-
gorithms have widely been adopted in practice [11]. On
another front, the IEEE802.1 Qca standard [8] specifies the
Constrained Shortest Path First routing algorithm for TSN
transmissions, but this algorithm does not prevent conges-
tion situations and can increase contention in the network,
unfortunately. Arif and Atia [1] proposed a methodology
to evaluate the routes of a TSN end-to-end connection, but
load-balancing was not part of their objectives.

Nayak et al. [10] explored ILP-based algorithms for rout-
ing time sensitive flows in TSN networks with Time Aware
Shapers (a.k.a. IEEE-802.1Qbv). The proposed approach
in their work differs from ours in that it does not address
the congestion and load-balancing problems. Targeting a
better load balancing for a TSN network, Singh [12] pre-
sented an algorithm, based on meta-heuristics, capable of
routing new traffic flows at runtime with minimal overhead.
But, the proposed approach adopts the shortest path algo-
rithm (SPA) as initial solution and not all feasible routes
are considered. This limits the solution search-space, un-
fortunately. Gavrilut et al. [4] also took the same path and

(a) CR-DRR adopted to recover from congestion (b) Load distribution under CR-DRR.

Figure 4: CR-DRR Congestion recovery.

proposed heuristic methods for topology and routing synthe-
sis. Their method tries to achieve an optimal usage of the
switches and links as well as an efficient routing of flows.
However, they did not consider load-balancing. This paper
fills this gap: it solves the problem of load-balancing, dis-
joint routing for duplicated flows and dynamic re-routing in
congestion situation.

6. CONCLUSION
In this work, we proposed two routing heuristics, referred

to as LB-DRR and CR-DRR, in order to address the prob-
lems of load-balancing and congestion in TSN-based net-
works. We evaluated the performance of the proposed schemes
against the popular SPA and wt-ECMP routing algorithms
and showed an improvement of more than 70% and 20%, re-
spectively. This improvement has been observed w.r.t. the
maximum load transmitted on an edge. On another front,
the proposed heuristics exhibited high scalability w.r.t. an
increase in the number of flows. Given these promising re-
sults, we plan to investigate both the routing and schedul-
ing of time-sensitive flows simultaneously. Also, it would be
interesting to address multicast flows; develop techniques
to reduce the search space of valid routes as the number
of nodes increases and finally quantify the impact of these
techniques on the end-to-end timing requirements.

Acknowledgment
This work was partially supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Tech-
nology), within the CISTER Research Unit (UID/CEC/04234)

7. REFERENCES
[1] F. A. R. Arif and T. S. Atia. Load balancing routing

in time-sensitive networks. In Problems of Inf. Science
and Technology (PIC S&T), Third Int. Scientific
Practical Conf., pages 207–208. IEEE, 2016.

[2] F. Dürr and N. G. Nayak. No-wait packet scheduling
for ieee time-sensitive networks (TSN). In Proc. of the

24th Int. Conf. on RTNS, pages 203–212. ACM, 2016.

[3] L. Erdős, A. Knowles, H.-T. Yau, J. Yin, et al.
Spectral statistics of erdős–rényi graphs i: local
semicircle law. The Annals of Probability,
41(3B):2279–2375, 2013.

[4] V. Gavrilut, B. Zarrin, P. Pop, and S. Samii.
Fault-tolerant topology and routing synthesis for
IEEE time-sensitive networking. In 25th Int. Conf. on
RTNS, pages 267–276. ACM, 2017.

[5] F. Glover. Tabu search: A tutorial. Interfaces,
20(4):74–94, 1990.

[6] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, and
J. F. Sibeyn. Packet routing in fixed-connection
networks: A survey. Journal of Parallel and
Distributed Computing, 54(2):77–132, 1998.

[7] IEEE. Time-Sensitive Networking Task Group.

[8] IEEE. IEEE Standard for Local and metropolitan area
networks— Bridges and Bridged Networks -
Amendment 24. IEEE, 2016.

[9] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang,
X. Shao, M. Reisslein, and H. Elbakoury. Ultra-Low
Latency (ULL) Networks: The IEEE TSN and IETF
DetNet Standards and Related 5G ULL Research.
IEEE Comm. Surveys & Tutorials, pages 1–59, 2018.

[10] N. G. Nayak, F. Duerr, and K. Rothermel. Routing
Algorithms for IEEE802. 1Qbv Networks. RTN
workshop, ECRTS, 2017.

[11] P. Pop, M. L. Raagaard, S. S. Craciunas, and
W. Steiner. Design optimisation of cyber-physical
distributed systems using IEEE time-sensitive
networks. IET Cyber-Physical Systems: Theory &
Applications, 1:86–94, 2016.

[12] S. Singh. Routing Algorithms for Time Sensitive
Networks. Master’s thesis, Univ. of Stuttgart, 2017.

[13] B. Wang and J. C. Hou. Multicast routing and its qos
extension: problems, algorithms, and protocols. IEEE
network, 14(1):22–36, 2000.

[14] Z. Wang and J. A. Crowcroft. Quality-of-service
routing for supporting multimedia applications. IEEE
Journal on Sel. Areas in Comm., 14:1228–1234, 1996.

Symphony - Routing Aware Scheduling for DSME Networks
Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

CISTER/ISEP and Prince Sultan University
Porto, portugal and Saudi Arabia

{hhkur,rarss,emt}@isep.ipp.pt,akoubaa@psu.edu.sa

ABSTRACT
Deterministic Synchronous Multichannel Extension (DSME) is a
prominent MAC behavior first introduced in IEEE 802.15.4e. It can
avail deterministic and best effort Service using its multisuperframe
structure. RPL is a routing protocol for wireless networks with low
power consumption and generally susceptible to packet loss. These
two standards were designed independently but with the common
objective to satisfy the requirements of IoT devices in terms of
limited energy, reliability and determinism. A combination of these
two protocols can integrate real-time QoS demanding and large-
scale IoT networks. In this paper, we propose a new multi-channel,
multi-timeslot scheduling algorithm called Symphony that provides
QoS efficient schedules in DSME networks. In this paper we provide
analytical and simulation based delay analysis for our approach
against some state of the art algorithms. In this work, we show that
integrating routing with DSME can improve reliability by 40 % and
by using Symphony, we can reduce the network delay by 10-20%
against the state of the art algorithms.

KEYWORDS
IEEE 802.15.4e, DSME, Multisuperframe scheduling

1 INTRODUCTION
Modern embedded systems, coupled with the advancements of
digital communication technologies, have been enabling a new
generation of systems, tightly interacting with the physical envi-
ronment via sensing and actuating actions: Cyber Physical Systems
(CPS). These systems, characterized by an unprecedented levels
of ubiquity, have been increasingly relying upon wireless com-
munication technologies to provide seamless services via flexible
cooperation, supporting different Internet of Things (IoT) applica-
tions. Several of these applications demand increased Quality of
Service (QoS), namely regarding determinism, reliability, scalability
and no compromise on energy efficiency.

The IEEE 802.15.4e standard provides time critical support for
IoT applications by introducing new MAC behaviors like TSCH,
DSME and LLDN [10]. Among these MAC behaviors, DSME - De-
terministic Synchronous Mutichannel Extension is a very versatile
MAC behavior. Like the classic IEEE 802.15.4, it can alternate be-
tween CSMA/CA and Guaranteed Timeslots (GTS) to support both
best effort and time-critical communications. DSME introduces
several features like the multichannel access to increase the scal-
ability and robustness of the network manifold. Despite its many
enhanced features, the standard does not specify any network layer
for QoS centric routing purposes. Although it can support mesh

Conference’17, July 2017, Washington, DC, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

topology, no intuition is given regarding the right mechanism that
can dynamically setup the necessary service.

Integrating a distributed routing protocol like RPL over DSME
"helps achieving increased scalability (via routing), while providing
robustness to cope with network changes". The challenge lies in
the integration of these standards and providing DSME schedules
periodically. In this paper we present an approach to integrate
DSME with RPL and an algorithm called Symphony to deliver
schedules periodically for the DSME associated nodes.

The main contribution in this paper are as follows:

• We overview the DSME and RPL networks and provide a
system architecture for efficient integration of these stan-
dards.
• We introduce Symphony, a time-frequency algorithm that
helps DSME nodes to maintain schedules periodically with
dynamic changes in the network based on RPL.
• Using simulations we show the advantage of RPL over a
traditional DSME network in terms of reliability.
• We use simulations to learn the advantages of Symphony
over the state of the art algorithms in terms of delay.

The rest of the paper is structured as follows: in section II, we
provide a brief literature survey then in Section III, we give an
overview of DSME and RPL, then in Section IV we elaborate the
system architecture of RPL over DSME. In Section V, we intro-
duce and discuss our algorithm Symphony. Finally, we provide an
in-depth performance analysis of our architecture and compare
Symphony with some of the state of the art algorithms for DSME
scheduling.

2 RELATEDWORKS
Following the standardizing efforts on protocols like 6LoWPAN
[12], the Internet Engineering Task Force (IETF) has focused on im-
plementing 6TiScH [4], a combination of the TSCH MAC behavior
of IEEE 802.15.4e, IPV6 and RPL. Implementing RPL over these
standards helped in providing optimal routing for the transmis-
sions and increased the overall reliability. Orchestra [5] is one of
the open source implementations based on 6TiScH, in which, the
nodes automatically compute their own local schedules and main-
tain several schedules for different traffic scenarios. Orchestra was
able to deliver high end-end delivery ratios with a good latency-
energy balance. In our work we provide an architecture for the
implementation of RPL over DSME networks.

The DSME MAC behavior of IEEE 802.15.4e provides increased
determinism and reliability in a multi channel environment. Several
researchers like in [13] and [15] have demonstrated the advantages
of DSME in terms of lesser delays and aggregate throughputs com-
pared with standard IEEE 802.15.4.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

There is some literature on developing scheduling algorithms for
the enhancements of IEEE 8021.5.4e to provide an optimal service.
For example, in case of TSCH, an other prominent MAC behavior
of IEEE 802.15.4e, a new enhancement called Adaptive-TSCH [3]
was developed by Peng Du. In this algorithm, the author provides
the nodes, the ability to hop amongst a subset of channels which
are deemed reliable based on their respective link qualities. Using
this technique an average increase of ETX (Expected Transmission
Count) by 5.6 % was observed.

There is also some research in implementingmulti channel sched-
uling algorithms for DSME [14] to improve its reliability. In this
algorithm several dummy GTSs slots were allocated to occupy the
transmissions in case of a transmission failure. However, this ap-
proach can impact over the overall delay of the network. In this
paper we compare this scheduling algorithm with Symphony.

Several researchers [9], [1] in their work developed analytical
and simulation assessments of DSME and TSCH MAC behaviors.
They proved that DSME performs better than TSCH in terms of end
to end latency when the number of nodes is higher than 30. The
enhanced features of DSME like CAP reduction helped in reducing
the end to end latency and also achieving better throughput and
scalability.

In this paper, we propose merging the functionalities of DSME
and RPL and aim at reducing the latency of the overall network. RPL
will provide optimal routes based on any objective function such as
power efficiency or link reliability, while our proposed algorithm
Symphony will provides dynamic GTS schedules periodically for
the entire network with minimal delay.

3 BACKGROUND TO DSME AND RPL
The DSME network provides deterministic communication using
its beacon enabled mode. This beacon enabled mode is supported by
multisuperframes that comprises stacks of superframes as shown
in Figure 1. Every superframe comprises of a Contention Access
Period (CAP) in which the nodes contend to access the channel and
a Contention Free Period (CFP) in which the nodes send the data
using Guaranteed timeslots (GTSs).

The superframe is defined by BO , the Beacon Order which is the
transmission interval of a beacon in a superframe, MO the Multi
superframe Order that represents the enhanced beacon interval of
a multi-superframe and SO the Superframe Order that represents
the beacon interval of a superframe. The number of superframes
in a multisuperframe can be given by 2(MO−SO) . The values of
BO, SO and MO are set by the PAN coordinator and is conveyed to
the nodes via an Enhanced Beacon (EB) at the beginning of each
Multisuperframe. This EB helps in the overall synchronization of
the network.

CAP CFP CAP CFP CAP CFP CAP CFP

Superframe 1 Superframe 2 Superframe 1 Superframe 2

Multi-superframe 1 Multi-superframe 2 Single GTSs

Figure 1: Superframe structure with BO=3,MO=3, SO=2

DSME can use channel adaptation or channel hopping for mul-
tichannel access in the CFP. In channel hopping, the hopping-
sequence of the channels for data transmission is pre-determined
and the same hopping pattern is repeated till the end of the data
transmission. Whereas in channel adaptation, the transmissions
are allowed to hop over the channels based on their link quality.
The multichannel access mechanisms of DSME allow several trans-
missions to occur in the same timeslot within different channels.
These multichannel access schemes open the possibility of forming
complex topologies like mesh for DSME networks.

RPL is a routing protocol that integrates technologies like IEEE
802.15.4 and IPv6 protocols. It supports both mesh as well as hierar-
chical topologies, and is specifically designed to support networks
that are prone to high exposed packet losses and limited resources
in terms of computation and energy.

RPL is based on hierarchical Directed Acylic graphs (DAGs) in
which a node can associate itself with many parent nodes. The
destination node of an RPL is called a sink and the nodes through
which a route is provided to internet are called gateways. RPL
organizes these nodes as Destination-Oriented DAGs (DODAGs).
In an RPL, every router in the system identifies and associates with a
parent. This association is done based on anObjective Function (OF).
OF can be based on quality determining parameters like LQI (Link
Quality Indicator) and RSSI (Received Signal Strength Indicator).
OF helps in providing an optimal routing path using metrics like
latency or power efficiency.

4 SYSTEM MODEL
In this paper, we introduce Symphony a dynamic algorithm that
provides "a variety of schedules to fit onto the multichannel DSME -
GTSs based on optimal routing decisions made by RPL."

RPL can use either broadcast or unicast to disseminate the Objec-
tive Function metrics using the DODAG Information Object "DIO".
This information also can be requested using the DODAG Informa-
tion Solicitation "DIS". The routing paths can be disseminated using
a Destination Advertisement Object "DAO". In an RPL network
perspective, when a node wants to join the DODAG it receives a
signaling message from a neighbor router, it (i.) adds the sender
address to its parent list, (ii.) computes a rank according to the
Objective Function such as reliability determining factors like LQI
(Link Quality Indicator) or RSSI, (iii.) forwards the updated rank
information to the parent.

For the system model we consider a mesh network (Figure 3)
with fully functional devices (FFDs) that can receive and transmit
messages in the Guaranteed Timeslots (GTSs). The FFDs maintain
the schedules locally and have their own superframes to accommo-
date the nodes associated to them. They also have a routing table
to maintain the nodes associated to them. Every superframe carries
various kinds of traffic to support symphony, such as the periodic
beacons for synchronization, RPL signaling traffic and application
data traffic.

In case of a GTS allocation, the allocation-request is sent to the
parent node (FFD) through the RPL network. The Symphony algo-
rithm at the coordinators helps to find the most efficient allocation
in the time-frequency domain. Symphony aims at "maintaining
schedules for all the transmissions in parallel without a overlap". It

Symphony - Routing Aware Scheduling for DSME Networks Conference’17, July 2017, Washington, DC, USA

chooses specific channels and timeslots for the GTSs transmissions
in order to achieve a "interference and a contention free scheduling".

A concrete example of our architecture (Figure 2) is as follows:
• A dedicated beacon broadcast for synchronization between
every superframe for every "X" slots, where "X" is the super-
frame duration of every individual superframe.
• A dedicated beacon broadcast for synchronization every
multi superframe for every "Y" slots, where "Y" is the multi
superframe duration coordinating every superframe with
the duration of "X".
• A Enhanced Beacon common for all coordinators in the
network carrying the broadcast + unicast packets for RPL
signaling (DIO, DIS, DAO), repeating every "Y" slots. In ac-
cordance with the standard, the Enhanced Beacon payload
can be a variable and it carries the RPL information.
• Dedicated unicast signal from the slave node to the parent
node followed by N unicast signals from the coordinator to
the slave nodes.

Figure 2: System Architecture

5 SYMPHONY ALGORITHM
Symphony is a routing aware algorithm that was designed based
on the methods of solving a Constraint Satisfaction Problem (CSP).
It performs scheduling based on several decision parameters like
that of the classic eight queens problem [6]. The optimal assign-
ment of time-slots and frequencies which is done by Symphony
is considered to be an NP-Hard problem [7]. Symphony will aim
at providing "dynamic allocation of timeslots based on the routing
information provided by RPL."

This scheduling problem is bounded by two major constraints,
which will be a determining factor in establishing an optimal solu-
tion.

Constraint 1: No same nodes either involving in transmission or
reception must fall under the same timeslot.

This constraint helps in avoiding all the interference in the net-
work. The standard offers a possibility for different nodes to com-
municate in a same timeslot simultaneously in different channels,
whereas, the same nodes can communicate in different timeslots
within the same or different channels.

Constraint 2Maximum number of channels and minimum num-
ber of timeslots should be used.

This constraint is more of a "quality constraint" that helps in
establishing the optimality of the algorithm. This constraint helps
in achieving the fact that "more bandwidth will not be wasted" and
at the same time "minimal timeslots will be used". By satisfying this
constraint the overall network throughput and scalability of the
network can be significantly increased, concomitantly achieving
minimal latency.

For our analysis we take a mesh network with 5 different nodes
that are interconnected with each other as shown in Fig 3. This
topology is considered to be obtained through RPL. This network
model can also be extended to any number of slave nodes with
reduced functionality (only receive information). For the schedule
placement, we only consider the guaranteed timeslots in the CFP
region of the DSME superframe with 3 channels in our model.

Figure 3: example of a mesh network

A schedule is considered to be optimal when it uses the resources
stringently and fully utilizing the multichannel capability of DSME
(Constraint 2). The optimality is checked by the following equation:

NT = ⌈(n/C)⌉ (1)

In the above equation NT represents the number of timeslots
occupied, n represents the total number of transmissions and C is
the number of channels used. It should also be noted that proving
the optimality should satisfy both Constraint 1 and Constraint
2. This optimal schedule can be obtained by an ILP formulation
provided in [11].

Our algorithm is a two step process, first we get Transmission
Based Ranks (TBR) for the nodes based on the number of routes
determined by the RPL. For example, in Figure 3, nodes B and C
have a transmission rank of 2, as both the nodes have two links
formed from them. We denote this Transmission Based Ranking as
TBR in our algorithm. As an output of TBR, we group several sets of
transmissions based on their respective ranks. In case of identical
ranks, we place the elements under a single subset. This step is
done in order to avoid any interference conflict in the scheduling
(Constraint 1). The subsets are grouped for all the transmission
routes provided by the RPL. The algorithm can be used for any
number of nodes that are associated with a PAN Coordinator or a
router to form respective schedules for the superframe.

For the example provided in Figure 3, we start placing transmis-
sions from C in adjacent timeslots (highest rank). By placing these
elements in the adjacent timeslots, we can negate any chances of
interference that can occur by the transmissions trying to transmit

Conference’17, July 2017, Washington, DC, USA Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

along the same timeslot. Further as the highest rank is placed ini-
tially, we devise a better strategy to accommodate the rest of the
nodes in a more optimal way, so that less number of timeslots are
utilized in scheduling. This step is now followed by the scheduling
transmissions from B in the next channel of the same timeslot. This
process is then backtracked to assign all the transmissions. Using
this algorithm, we receive an optimal solution as shown in Figure 4

Figure 4: Symphony schedule solution

6 PERFORMANCE ANALYSIS
Our performance analysis of this work is two fold: first we demon-
strate the improvement in reliability with routing implemented
over a DSME network. Then we use probabilistic analysis to cal-
culate the delay and compare the advantages of symphony over
several state of the art algorithms.

Every node in the network derives a ETX (Expected Transmission
Count). This is a parameter that is helpful in estimating the frame

loss ratio at the link. The ETX is dependent on the forward (Pf)
and the backward frame losses (Pb) of the nodes in a network, and
this value can be given by:

ETX = 1/(1 − Pf) (1 − Pb) (2)
ETX can determine the reliability of the links as the parameter

represents the inverse of successful packet delivery(PS):

ETX = 1/(PSf × PSb) = 1/Reliability (3)
In an RPL enabled network, the nodes will change the routes

to the sink when there is a deterioration of the link quality and
eventually the overall ETX. The delay also can increase when more
additional routes are deployed to reach the sink in case of a failure.

Using OpenDSME [8] an Omnet based simulation platform, we
simulated the reliability over a network of 25 nodes with static
concentric mobility type. Reliability of the network was calculated
based on the number of successful packet delivery as shown in
Equation 3. In the radio medium, we introduce a constant inter-
ference range to emulate a real-time wireless network. We used a
payload of 75 bytes carried in 100 packets over 16 channels of the
DSME network in accordance to the standard parameters. Without
having routing established for the network layer, it was noted that
the reliability of the network depletes steadily with the increase in
the number of nodes. We repeated the same experiment with the
same network configuration but with generic routing employed
in the network layer. We were able to observe that the reliability
does not deplete steadily and almost shows 40% betterment results
(Figure 5).

Figure 5: Reliability with generic routing

For the performance analysis of Symphony, we decided to car-
ryout a probability based delay analysis and then complement our
findings with simulations carried out in OpenDSME [8]. In both our
numerical and simulation analysis we compared the performance
of Symphony against state of the art algorithms like MDT [14], best
effort DSME scheduling and Random FIFO.

The average transmission delay can be calculated for successfully
transmitted GTS frames in the multisuperframe can be given by:

Symphony - Routing Aware Scheduling for DSME Networks Conference’17, July 2017, Washington, DC, USA

δ =
∞∑
i=0

P
f
(i,m)

(i (MI)) (4)

Considering the schedule for routing is carried our every mul-
tisuperframe, P f

(i,m)
is the probability that the GTS is successfully

transmitted in the ith superframe of the multisuperframem.MI is
the summation of all the individual BIs (Beacon Intervals) within
the multisuperframe. To calculate this probability let us take two
parameters: X s , the total number of GTS that is successfully trans-
mitted, and XS

(i,c) , the number of GTS that have to wait i super-
frames with c channels within a multisuperframe for its successful
transmission. Using these parameters the probability P f

(i,m)
can be

formulated as:

P
f
(i,m)

=

i∑
0
XS
(i,c)/X

S (5)

This probability considers the success of all the transmissionswithin
the multisuperframe m. Considering that the first set of GTS frames
based on the symphony schedule that gets successfully placed in
the initial attempt, they need not wait another superframe interval
for their data transmission. Let us consider this as XS

(0,c) . The value
of H varies depends on the success of this transmission.

XS
(0,c) = H (1 − Pe),

where c = (0 − 16) and H ϵ (0,1)
(6)

The value of X (i) will be incrementing as with the failures to
accommodate a successful transmission. The GTS superframes that
wait till the first adjacent superframe to get transmitted successfully
can be denoted by XS

(1,c) , this value can be formulated as:

XS
(1,c) = H (1 − Pe) (7)

where, H is the probability of failure to get accommodated within
the initial transmission.The value of H can be given as Pee−BI ·c ·iλ ,
this probability is with an assumption that all the transmissions
shall be carried out within the multisuperframe with i superframes
and c channels with a GTS arrival rate of λ. Generalizing for all the
i superframes, the successful transmissions can be denoted as:

XS
(i,c) = H (i) (1 − Pe) (8)

The value of the successfully transmitted GTS in a single super-
frame can be given as:

XS =

m∑
i=0

H (i) (1 − Pe) (9)

using the aforementioned equations, the probability to be trans-
mitted in the ith superframe can be calculated as:

P
f
(i,m)

= (1 − H) · H i (10)

and the overall average delay of the network can be given as:

δ =
m∑
i=0

(1 − H) · H i (i (MI)) (11)

For the numerical analysis we consider a multisuperframe with
2 superframes over 3 channels. We also consider three arrival rates
for the delay analysis. The increase in delay can be due to lesser
arrival rates. Lesser arrival rates also can have a negative impact on
the throughput of the network. However the multichannel feature
in DSME contributes to lesser delay and larger throughput.

We now use the probabilistic approach to calculate the delay of
schedule placement within a superframe. Unlike the calculation for
the entire multisuperframe, this calculation must be carried out for
every timeslot (Ts) of a single superframe. For this case, we take the
value ofH and replace withHtslot which is the probability of failure
to accommodate within the initial timeslot. This aforementioned
value can be expressed as:

Htslot = Pee
−Ts ·c ·iλ (12)

In order to generalize the aforementioned equation, let us con-
sider that all the timeslots have an equal size for all the i superframes
in the multisuperframe. Hence we can derive a formulation for the
delay for single GTS that fails to occupy the first timeslot and moves
to the next. Now we derive the delay for a timeslot to be:

δt imeslot = Pee
−Ts ·c ·iλ (Tl)/(1 − Pee−Ts ·c ·iλ) (13)

For numerical analysis, we compared symphony with MDT [14]
and brute-force FIFO algorithms [2]. This method is also used for
the GTS scheduling allocation in the OpenDSME framework [8] for
DSME implementation. The analysis shown in Figure 6 provides
the Transmission delay of the GTS frames for a set of transmissions
for different arrival rates (25, 50, 100 Kbps). With the change in the
topology of the network (addition of nodes), RPL updates a new set
of transmissions to be scheduled in the following multisuperframe.

Figure 6: number of transmissions vs GTS delay (Analytical)

MDT under-performs because it spares timeslots aiming better
reliability of the network. Certain amount of dummy timeslots are
allocated for reliability purposes, contributing to the delay. These
dummy packets result in more wasted bandwidth, eventually con-
tributing to delay. The Random FIFO technique works based on best

Conference’17, July 2017, Washington, DC, USA Harrison Kurunathan, Ricardo Severino, Anis Koubaa, Eduardo Tovar

effort. In case of any conflict, the transmission is scheduled the
eventual superframe to send the data. Symphony fills all the times-
lots stringently on the basis of channels available, thus eventually
leading to lesser transmission delays and also increased robustness.
Unlike Random FIFO and MDT, the Symphony schedules did not
wait until another Multisuperframe timeperiod to accommodate its
transmissions. Hence, Symphony was stringently able to achieve
lesser delay comparatively.

To complement our analytical results, we carried out simulations
for Symphony using the OpenDSME platform. We conducted ex-
periments for delay over several GTS transmissions. We simulated
our experiments at a 100 Kbps traffic rate for varying number of
transmissions. In our simulations, we pitted Symphony against
MDT, standard DSME and CSMA/CA.

Figure 7: number of transmissions vs GTS delay

From our performance analysis and simulations, we learn that
Symphony is able to achieve 10-15 % reduction delay when com-
pared to many state of the art algorithms for DSME. As the number
of transmissions increase Symphony is able to provide a schedule in
such a way it is optimal to achieve a lesser latency. It also must be
noticed that the transmissions that are provided onto Symphony is
derived through RPL, which in-turn can improve the overall Quality
of Service of the network manifold. We believe that integrating
RPL onto DSME and providing a routing aware algorithm like Sym-
phony can push DSME to become a de-facto standard for seamless
IoT communication.

7 FUTURE SCOPE
In this paper we introduce an approach to improve the overall Qual-
ity of Service in a periodically evolving real-time DSME network.
We provide an architecture for the integration of RPL and DSME
technologies through a routing-aware algorithm called Symphony.
The key goal of this work is to provide dynamic optimal schedules
for GTS allocation based upon the RPL topology information, while
reducing the latency of the overall network.

Through our detailed mathematical and simulation analysis we
compared Symphony to some of the state of the art algorithms to
find that, Symphony with its stringent packing strategy, performs
better in terms of latency. By adopting symphony, we can witness
a a decrease in latency by 10-15 %. Our Simulation of RPL also
provides us an insight that routing over a dynamically evolving
DSME networks can improve its reliability manifold.

We aim at implementing our algorithm in a hardware platform
which will enable us to compare with the existing analytical results.
We also intend to develop an open-source implementation of this
protocol for Commercially Off The Shelf WSN platforms (COTS)
(e.g. TelosB devices), to validate the results over real WSN hardware.

REFERENCES
[1] Giuliana Alderisi, Gaetano Patti, Orazio Mirabella, and Lucia Lo Bello. 2015.

Simulative assessments of the ieee 802.15. 4e dsme and tsch in realistic process
automation scenarios. In Industrial Informatics (INDIN), 2015 IEEE 13th Interna-
tional Conference on. IEEE, 948–955.

[2] Marc Domingo-Prieto, Tengfei Chang, Xavier Vilajosana, and Thomas Watteyne.
2016. Distributed pid-based scheduling for 6tisch networks. IEEE Communications
Letters 20, 5 (2016), 1006–1009.

[3] Peng Du and George Roussos. 2012. Adaptive time slotted channel hopping
for wireless sensor networks. In Computer Science and Electronic Engineering
Conference (CEEC), 2012 4th. IEEE, 29–34.

[4] Diego Dujovne, Thomas Watteyne, Xavier Vilajosana, and Pascal Thubert. 2014.
6TiSCH: deterministic IP-enabled industrial internet (of things). IEEE Communi-
cations Magazine 52, 12 (2014), 36–41.

[5] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne.
2015. Orchestra: Robust mesh networks through autonomously scheduled tsch.
In Proceedings of the 13th ACM conference on embedded networked sensor systems.
ACM, 337–350.

[6] Robert W Floyd. 1967. Nondeterministic algorithms. Journal of the ACM (JACM)
14, 4 (1967), 636–644.

[7] Ted Herman and Sébastien Tixeuil. 2004. A distributed TDMA slot assignment
algorithm for wireless sensor networks. InAlgosensors, Vol. 3121. Springer, 45–58.

[8] Florian Kauer, Maximilian Köstler, Tobias Lübkert, and Volker Turau. 2017.
OpenDSME-A portable framework for reliable wireless sensor and actuator
networks. In Networked Systems (NetSys), 2017 International Conference on. IEEE,
1–2.

[9] Harrison Kurunathan, Ricardo Severino, Anis Koubâa, and Eduardo Tovar. 2017.
Worst-case bound analysis for the time-critical MAC behaviors of IEEE 802.15. 4e.
In Factory Communication Systems (WFCS), 2017 IEEE 13th International Workshop
on. IEEE, 1–9.

[10] Harrison Kurunathan, Ricardo Severino, Anis Koubaa, and Eduardo Tovar. 2018.
IEEE 802.15. 4e in a Nutshell: Survey and Performance Evaluation. IEEE Commu-
nications Surveys & Tutorials (2018).

[11] Harrison Kurunathan, Ricardo Severino, Anis Koubâa, Eduardo Tovar, et al. 2018.
RPL over DSME: A Technical Report. CISTER.

[12] Nandakishore Kushalnagar, Gabriel Montenegro, and Christian Schumacher.
2007. IPv6 over low-power wireless personal area networks (6LoWPANs): overview,
assumptions, problem statement, and goals. Technical Report.

[13] Junhee Lee and Wun-Cheol Jeong. 2012. Performance analysis of ieee 802.15.
4e dsme mac protocol under wlan interference. In ICT Convergence (ICTC), 2012
International Conference on. IEEE, 741–746.

[14] Junhee Lee, Wun-Cheol Jeong, and Byeong-Cheol Choi. 2016. A multi-channel
timeslot scheduling algorithm for link recovery in wireless multi-hop sensor
networks. In Information and Communication Technology Convergence (ICTC),
2016 International Conference on. IEEE, 871–876.

[15] Tuomas Paso, Jussi Haapola, and Jari Iinatti. 2013. Feasibility study of ieee
802.15. 4e dsme utilizing ir-uwb and s-aloha. In Personal Indoor and Mobile Radio
Communications (PIMRC), 2013 IEEE 24th International Symposium on. IEEE, 1863–
1867.

[16] Prasan Kumar Sahoo, Sudhir Ranjan Pattanaik, and Shih-LinWu. 2017. A Reliable
Data Transmission Model for IEEE 802.15. 4e Enabled Wireless Sensor Network
under WiFi Interference. Sensors 17, 6 (2017), 1320.

[17] ThomasWatteyne, AntonellaMolinaro, Maria Grazia Richichi, andMischa Dohler.
2011. From manet to ietf roll standardization: A paradigm shift in wsn routing
protocols. IEEE Communications Surveys & Tutorials 13, 4 (2011), 688–707.

SlotSwapper: A Schedule Randomization protocol for
Real-Time WirelessHART Networks

Ankita Samaddar, Arvind Easwaran, Rui Tan
Nanyang Technological University, Singapore
{ankita003,arvinde,tanrui}@ntu.edu.sg

ABSTRACT
Industrial process control systems are time-critical systems
where reliable communications between sensors and actua-
tors need to be guaranteed within strict deadlines to main-
tain safe operation of all the components of the system.
WirelessHART is the most widely adopted standard which
serves as the medium of communication in industrial se-
tups due to its support for Time Division Multiple Access
(TDMA) based communication, multiple channels, chan-
nel hopping, centralized architecture, redundant routes and
avoidance of spatial re-use of channels. However, the com-
munication schedule in WirelessHART network is decided
by a centralized network manager at the time of network
initialization and the same communication schedule repeats
every hyper-period. Due to predictability in the time slots
of the communication schedule, these systems are vulnera-
ble to timing attacks which eventually can disrupt the safety
of the system. In this work, we present a moving target
defense mechanism, the SlotSwapper, which uses schedule
randomization techniques to randomize the time slots over
a hyper-period schedule, while still preserving all the feasi-
bility constraints of a real-time WirelessHART network and
makes the schedule uncertain every hyper-period. We tested
the feasibility of the generated schedules on random topolo-
gies with 100 simulated motes in Cooja simulator. We use
schedule entropy to measure the confidentiality of our al-
gorithm in terms of randomness in the time slots of the
generated schedules.

Keywords
WirelessHART, schedule, randomization, entropy

1. INTRODUCTION
Time-critical systems such as the industrial process con-

trol systems are real-time cyber-physical systems (CPS) that
monitor and control the production lines in a manufacturing
plant. The number of devices in such setup keeps increas-
ing. To support more devices and to cope up with frequent
changes in the network topology due to addition (removal)
of devices to (from) the network, a switch of the commu-
nication infrastructure from wired networks to wireless net-
works is desirable. Among the existing wireless sensor net-
work (WSN) standards, WirelessHART is best suited for the
industrial process control systems due to its reliable TDMA-
based schedule, centralized architecture, multi-channel sup-
port, channel hopping, redundancy in routes, and avoidance
of spatial re-use of channels.

RTN’19, July 2019, Stuttgart, Germany
©2019 Copyright retained by the authors.

Although the use of wireless brings flexibility and adapt-
ability to the communication infrastructure, it increases the
threats of cyber attacks. Some recent sophisticated attacks
against critical infrastructures such as Stuxnet [1] and Drag-
onfly [2] have alerted us to the shaky protection of the
conventional air gap solution. The main components of a
WirelessHART network are the sensors, actuators, Gate-
way, a network manager, and multiple access points (AP).
Each communication between these devices are real-time
flows with fixed periods and deadlines. To make the flows
schedulable, the schedule in a WirelessHART network is pre-
determined by the centralized network manager at the time
of network initialization. The same schedule is repeated over
every hyper-period (i.e., lowest common multiple of the pe-
riods of all the flows in the network), until there is any
change in the network topology, such as addition/removal
of new/existing devices to/from the network. The repeti-
tive execution of the deterministic flow schedule in a Wire-
lessHART network over every hyper-period makes these sys-
tems vulnerable to timing attacks. Such repetition greatly
helps the attacker to analyze the eavesdropped traces and
infer the schedule. With the inferred schedule, the attacker
can further launch various strategic destructive attack steps.
For instance, the attacker can selectively jam the transmis-
sions from/to a certain critical sensor/actuator which can
eventually breach the safety of the system.

In this work, we aim at reducing the predictability of
the time slots in the communication schedule of a real-time
WirelessHART network. We propose a moving target de-
fense (MTD) mechanism, the SlotSwapper, that random-
izes the time slots in the communication schedule over ev-
ery hyper-period, satisfying all the feasibility constraints of
a real-time WirelessHART network as follows— (1) dead-
lines of all real-time flows in the network are to be satisfied,
(2) the hop sequences associated with each flow are to be
preserved and (3) no conflicting transmissions in the net-
work are allowed. From our analysis, the attacker who can
monitor the wireless transmissions needs at least two hyper-
periods to infer the schedule. Randomizing the schedule over
every hyper-period renders the attacker’s inference futile,
thereby greatly improving the confidentiality of the Wire-
lessHART network’s operations. More varied are the slots
in a schedule, more difficult it is for the attacker to predict
them. Hence, the measure of uncertainty in the time slots
of a schedule can be expressed in terms of the amount of
randomness in the time slots over the hyper-period sched-
ules generated by our algorithm. We re-defined schedule en-
tropy [3] as a metric to measure the uncertainty in predicting
the time slots. We illustrated the feasibility of our proposed
algorithm on random topologies with 100 simulated nodes
in Contiki Cooja [4]. To the best of our knowledge, this

is the first work on randomization to reduce the determin-
ism of the time slots of a hyper-period schedule in real-time
WirelessHART networks.

2. RELATED WORK
Two notable works in the literature which adopt ran-

domization techniques in the context of real-time processor
scheduling are taskshuffler [3] and SPARTA [5]. [3] presents a
schedule randomization protocol, the taskshuffler, that shuf-
fles a set of fixed priority real-time tasks on a uniprocessor
system. [5] proposes SPARTA, a scheduler to randomize the
leakage points in the schedule protecting the system from
Differential Power Analysis (DPA) attacks. However, both
of these works are on uniprocessor system. Our problem is
even harder than multi-processor scheduling. m channels
and n real-time flows of our network can be mapped to m
processors and n real-time tasks respectively. However, the
conflicting transmissions among the flows impose additional
constraint in our network which makes our problem even
harder than multi-processor scheduling.

Due to support for TDMA schedule in WirelessHART net-
works, these networks are vulnerable to selective jamming
attacks [6]. [7,8] survey various possible jamming attacks and
the key ideas of existing security mechanisms against such
attacks in WSNs. [9] proposes various types of side-channel
attacks and their respective countermeasures in WSN. The
countermeasures against jamming attacks can be provided
from physical-layer solutions as in [7, 10] or cyber-space so-
lutions such as [11,12]. [13] presents the steps of an attacker
to launch jamming attacks in industrial process control sys-
tems. Recent works such as [14] and [15] provide counter-
measures against timing attacks in single and multi-channel
WSN respectively by permuting the slot utilization pattern
at the node level over a super-frame to randomize the sched-
ule. However, the flows considered in these works are not
associated with deadlines, hence, randomization of slot uti-
lization pattern at the node level makes the flows schedula-
ble. Our problem is more complex. Each flow in our net-
work is a real-time flow with a strict deadline. Permuting
the time-slots at each node does not guarantee deadline sat-
isfaction of all the real-time flows in our network, hence,
existing solutions in [14] and [15] are not applicable.

3. WIRELESSHART BACKGROUND
The WirelessHART protocol, being compliant with IEEE

802.15.4, is the first open wireless communication standard
for measurement and control in network and process indus-
try [16]. A WirelessHART network consists of a Gateway,
multiple field devices, APs and a centralized network man-
ager which are connected via wireless mesh networks. The
network manager, connected to the Gateway, is responsible
for managing the devices, scheduling, creating the routes
and optimizing the network. The field devices are wireless
sensors and actuators which can either transmit or receive
in a particular time slot. Also, in a time slot, a receiver can
receive from exactly one sender. Multiple APs are connected
to the Gateway via wired connections to provide redundant
paths between the Gateway and the network devices. The
key features of the WirelessHART network for which it is
suitable for process industries include

TDMA: For reliable collision-free communications in a Wire-
lessHART network, time is globally synchronized and slotted
into 10ms time slots within which a network device sends a
packet and receives its corresponding acknowledgment.

Channel and route diversity: WirelessHART supports a
maximum of 16 channels [17] at a frequency band of 2.4 GHz.
To avoid interference from neighboring wireless systems, it
adopts channel hopping in every time slot. A channel is
blacklisted if it suffers from external interference. Wire-
lessHART allows route diversity by transmitting a packet
multiple times via multiple paths over different channels.

Avoidance of spatial re-use of channels: To avoid in-
terference and to increase reliability, WirelessHART avoids
spatial re-use of channels [17]. The physical channel as-
signed to a link in a particular time slot is given by [17],
Chp = (ASN + Chl) mod m, where ASN represents Abso-
lute Slot Number and increases at every slot, Chl and Chp

are the logical and physical channels assigned to a node, m
denotes the number of channels in the network.

A WirelessHART network is represented as a graph G =
(V,E), where V is the set of nodes which are the sensors,
actuators and Gateway; E is the set of edges or links between
the devices. An edge e = u→ v, u, v ∈ V , is part of G, if and
only if device u can reliably communicate with device v. In
a transmission along an edge u→ v, the transmitting node,
u, is the sender and the receiving node, v, is the receiver of
the transmission.

Definition 1: Two transmissions along edges u → v and
w → x, where u, v, w, x ∈ V , are said to be conflicting
transmissions, if both of them have the same sender or the
same receiver, i.e., if (u = w)∨ (v = w)∨ (u = x)∨ (v = x).
For each edge u → v ∈ E, there exists a set of conflicting
transmissions in G. To keep track of the conflicting trans-
missions in G, we store an adjacency list known as the Con-
flict List. Each index i in the list corresponds to an edge
in E and the list corresponding to i stores the list of edges
which generate conflicting transmissions with i.

An end-to-end communication between a sensor and an
actuator occurs in two phases: a sensing phase and a con-
trol phase during which the communications are between the
sensors and the Gateway and between the Gateway and the
actuators respectively.

4. SYSTEM MODEL
Our system model consists of a WirelessHART network

G = (V,E) and n end-to-end flows F = {F1,F2, . . .Fn}.
Each flow Fi ∈ F periodically generates a packet at the
source node si ∈ V with period pi. The packet passes via
Gateway and reaches the destination node di ∈ V \ {si}
within deadline δi. We assume that our flows are of implicit
deadline, i.e., δi ≤ pi. A packet is scheduled in more than
one routes between the source and destination for reliability.

Definition 2: The release time (rij) of the jth instance
of flow Fi (j ≥ 1) is the time at which the jth instance of
Fi is released at the source node si. rij is defined as

rij = (j − 1) · pi. (1)

Definition 3: The number of hops in a route of a flow
Fi is the number of intermediate devices between the source
(si) and the destination (di) in the route of Fi.

Definition 4: Given a graph G with m channels and a set
of flows F , a feasible schedule S is a sequence of trans-
missions over the slots in S along the edges in G. Each
transmission is a mapping of a flow to a channel in a slot
satisfying the following conditions:

1. No transmission conflict: Two transmissions along
u→ v and w → x can be scheduled in the same time slot t,
if u→ v and w → x are non-conflicting transmissions;

2. No collision: If u→ v uses channel y and w → x uses
channel z in the same time slot t, then y 6= z, ∀y, z ∈ [1,m];

3. No deadline violation: If a flow Fj, 1 ≤ j ≤ n, has
h hops, then all the h hops of Fj are to be scheduled within
the deadline δj;

4. Flow sequence preservation: If a flow Fj has h hops,
then the kth hop (1 < k ≤ h) cannot be scheduled until all
the previous k − 1 hops are scheduled.

We assume that the network manager blacklists those
channels from the network in which the probability of suc-
cessful transmission is less than a certain threshold [18].
Therefore, the number of packet drops in the network can be
neglected. At the time of network initialization, the network
manager decides the schedule depending on the number of
available channels, the topology of the network and avail-
able routes for each flow [17], [19]. Given a graph G, a set
of n flows F over G and m channels, the network manager
runs any scheduling algorithm A that generates a schedule
S satisfying all the conditions of Definition 4. The network
manager then informs all the network devices about the al-
located slots in which they can transmit (receive) messages
from specific neighbors. The network devices become ac-
tive only in those slots in which they can transmit (receive)
messages. The same schedule repeats every hyper-period.

5. THREAT MODEL
The main objective of the adversary is to select a critical

sensor or an actuator as the victim node in the network and
predict the time slots in which the victim node sends (re-
ceives) packets to (from) its neighboring nodes by observing
the traffic in the network. Our adversary model is based on
the following assumptions:-

1. The adversary is aware of the network parameters such
as the number of channels adopted by the network.

2. The adversary is equipped with multiple antennae, hence,
he is capable of listening to all 16 channels in 2.4 GHz
ISM band in the network.

Based on the above assumptions, the adversary has the fol-
lowing capabilities:

Capability 1: The adversary can target a specific node
(sensor or actuator) as the victim node in the network and
monitor all communications associated with that node. Af-
ter analyzing the traffic for a sufficiently long period of time,
the adversary can predict the time slots in which the victim
node communicates with its neighbors.

Capability 2: Due to repetitive nature of the communica-
tion schedule, the adversary can estimate the hyper-period
of the schedule. The adversary can use this estimate in the
subsequent hyper-periods to infer the communication time
slots of the victim node.

Capability 3: The adversary can reverse engineer the chan-
nel hopping sequences by silently observing the channel ac-
tivities in the network [20].

With the above three capabilities, the adversary can exe-
cute further destructive attack steps. For instance, the ad-
versary can target specific transmissions from (to) certain
critical sensors (actuators) and can selectively jam the tar-
geted transmissions in specific time slots, thereby causing

Figure 1: A network graph with six nodes and one AP

1 2 3 4 5 6 7 8
S1 1− 2 — — 2− 3 4− 5 — — 3−AP

ch1 (F1) (F3) (F2) (F3)
4− 5 — 5−AP — 2− 3 3−AP 5−AP —

ch2 (F2) (F2) (F1) (F1) (F2)
S2 — 1− 2 — 5−AP 3−AP 4− 5 — 5−AP

ch1 (F1) (F2) (F1) (F2) (F2)
2− 3 4− 5 2− 3 — — 3−AP —

ch2 (F3) (F2) (F1) (F3)

Table 1: Two schedules S1 and S2 over 8 time slots with
three flows F1, F2, F3 where s1 = 1, s2 = 4, s3 = 2 and
d1 = d2 = d3 = AP .

disruptive effect on the system. Due to repetitive nature of
the hyper-period schedules, same flow gets transmitted in
the same time slot over every hyper-period. Hence, selec-
tively jamming the predicted channel in specific time slots
over every hyper-period results in jamming the targeted flow
with probability 1. Different from the constant jamming
attack that jams all the transmissions, selective jamming
is more stealthy as it allows the attacker to strategically
target certain critical sensors and/or actuators within their
proximity with much lower radio transmission power. This
reduces the overhead and cost for the attacker to implement
the jamming attack [21]. In contrast, random jamming that
does not infer the schedule and jams in randomly selected
slots is much less effective [22].

Attack consequences: Selectively jamming the transmis-
sions from a critical sensor node results in blocking the sen-
sor data to reach the Gateway. As a result, proper con-
trol commands cannot be delivered to the actuators which
in turn may result in degraded performance of the system.
Also, selectively jamming the control commands to reach
the actuators may hamper the safety of the system.

Motivation of our work: The main objective of our work
is to develop a MTD technique, the SlotSwapper, that ran-
domizes the communication time slots over every hyper-
period schedule such that the schedule changes before the
attacker can estimate it. We present a motivating example
to illustrate how the threat can be addressed by randomizing
the time slots in every hyper-period schedule.

Example 1: Consider the network graph shown in Fig-
ure 1 with two channels, three flows, F1, F2 and F3 where
the sources are s1 = 1, s2 = 4, s3 = 2; the destinations
are d1 = d2 = d3 = AP ; the periods and the dealines are
p1 = p3 = δ1 = δ3 = 8, p2 = δ2 = 4 respectively. Consider
S1 in Table 1 to be the hyper-period schedule over the flows.
Consider node 1 to be the victim node. In the traditional
TDMA-based real-time WirelessHART network, the network
starts with schedule S1 which repeats every 8 time slots. An
attacker listening to the channels in the network will find
nodes 1 and 2 communicating every 8 time slots. In par-
ticular, to identify this repetitive pattern, the attacker needs
to listen to the network for at least two hyper-periods, i.e.,
16 time slots. The attacker can launch selective jamming

attack earliest in the 17th slot. With our proposed MTD
technique, a new schedule is followed in each hyper-period,
i.e., if S1 is followed in the first eight slots, then S2 will be
followed in the next eight slots and so on. However, there
is no communication between nodes 1 and 2 in slot 1 in S2,
i.e., the communicating time slots in two consecutive hyper-
periods are different. To identify the repetitive patterns in
the schedule, the attacker needs to monitor the communi-
cations for at least two hyper-periods. Hence, by changing
the schedule every hyper-period, the system will change at
a faster pace compared to the learning pace of the attacker,
rendering further strategic destructive attack steps (e.g., se-
lective jamming) infeasible.

6. PROPOSED MTD TECHNIQUE
Our proposed MTD technique, the SlotSwapper, consists

of two main phases— (1) An offline schedule generation
phase (2) an online schedule selection phase. Sched Gen()
considers an initial hyper-period schedule B for a set of n
flows F over a graph G, and generates a new feasible sched-
ule S ′ by randomizing the slots in B. However, randomiza-
tion of time slots in B is to be done in such a way that all the
conditions of generating a feasible schedule (Definition 4) are
obeyed. To reduce the repeatability of time slots in B, we
propose to run Sched Gen() K times (K is a large number)
in offline mode and generate a set of feasible hyper-period
schedules S. We suggest to select a schedule uniformly at
random every hyper-period from S and execute that sched-
ule over that hyper-period.

Algorithm 1: SlotSwapper

1 S = {B};// a base scehdule
2 for i=1,2 upto K do
3 S = S ∪ Sched Gen();

4 S = Select a random schedule from S every hyper-period ;

Offline Randomized Schedule Generator : Algorithm 2
presents an overview of Sched Gen(). Table 2 summarizes
the notations used in the algorithm. We present an example
to illustrate the steps of Sched Gen().

G a network graph over V nodes and |E| edges
F a set of n flows defined over G
m number of channels in the network
hp hyper-period of n flows
B a base schedule consisting of mapping of a channel in a slot to a

flow over one hp
C Conflict List corresponding to the network graph G
S ′ a copy of the base schedule B
hop list a dictionary to store hop number to slot mapping of all the

flow instances in F
edge list a dictionary to map channel to edge in a particular slot in S ′.

Table 2: List of notations used in the algorithm.

Example 2: Consider the same setting as in Figure 1 and
Example 1. Let S1 in Table 1 be the base schedule. Let us
consider the 1st hop of F3 in S1 with σt = 4 and c ch = 1.
The window corresponding to 1st hop of F3 is [1, 7]. For
every slot σ′t ∈ [1, 7] and every channel ch ∈ [1, 2], we call
trConf() and check for conflicting transmission. 2 → 3
has conflicting transmission with [1→ 2, 2→ 4, 3→ AP] in
S1. Therefore, (slot,channel) pairs such as, (1, 1), (5, 2) and
(6, 2) are rejected due to transmission conflict with (4, 1).
Similarly, (slot,channel) pairs such as (5, 1) and (7, 2) are
also rejected by function deadPr() due to violation of dead-
lines of the flow instances. (slot,channel) pairs (5, 1) and

Algorithm 2: Sched Gen

1 for tick = 1,2, . . . , hp do
2 for j = 1,2, . . . , |F| do
3 if tick == Fj .deadline then
4 inst = tick/Fj .deadline;
5 for p = 1,2, . . . ,Fj .n hops do

6 σt = slot of pth hop of inst;
7 elig list = {};// empty list
8 if m == 1 // single-channel
9 then

10 lb = inst ∗ Fj .release time;
11 ub = inst ∗ Fj .deadline;

12 for σ′
t = lb, lb+1,. . . , ub do

13 if S′[σ′
t] 6= Fj then

14 Add σ′
t to the elig list;

15 σrandom = random(elig slots);
16 swap (σt, σrandom);

17 else

18 c ch = channel of pth hop of inst;
19 if p == 1// first hop
20 then
21 lb = inst * Fj .period;

22 else

23 lb = slot of (p− 1)th hop of inst + 1;

24 if p == Fj .n hops // last hop
25 then
26 ub = inst * Fj .deadline;

27 else

28 ub = slot of (p+ 1)th hop of inst - 1;

29 for σ′
t = lb, lb+1,. . . , ub do

30 for ch = 1,2,. . . ,m do
31 b1 = trConf(σt, c ch, σ

′
t, ch, C);

32 b2 = deadPr(σt, c ch, σ
′
t, ch);

33 b3 = flowPr(σt, c ch, σ
′
t, ch);

34 if b1 && b2 && b3 == 1 then
35 Add (σ′

t, ch) to elig list;

36 (σ, c) = random(elig list);
37 swap(σt, c ch, σ, c);

38 update hop list, edge list and S′;

39 return S′;

(7, 2) correspond to the second instance of F2 with release
time at 5th slot and deadline at 8th slot. Hence, the second
instance of F2 cannot be swapped with any other slot before
slot 5 or after slot 8. Similarly, flowPr() does not allow
(slot,channel) pairs (1, 2), (6, 2) and (7, 2) in the eligible list
in order to preserve the hop sequences of flows. If the trans-
mission corresponding to 1st hop of 1st instance of F2 (via
edge 4 → 5) of (slot,channel) pair (1, 2) is allowed to swap
with (4, 1), then the second hop of that instance of F2 would
have been scheduled before the first hop, violating the hop
sequences of the flow instances. Finally, the list of eligible
(slot,channel) pairs are — [(2, 1), (2, 2), (3, 1), (3, 2), (4, 2),
(6, 1), (7, 1)]. Let (3, 2) be the randomly selected element.
Swapping the transmissions and the flow instances between
(3, 2) and (4, 1) and iterating the same procedure over all the
flow instances generates a completely new feasible schedule.

Online Selection of Schedules: On executing Sched Gen()
K times in offline mode, we get a set of feasible schedules S.
At the time of network initialization, each node is informed
about the time-slots in which it can send/receive messages in
each of these K hyper-period schedules. The online schedule
selector runs at each node once in every hyper-period, se-
lects a schedule S from S uniformly at random and executes
S over that hyper-period. To ensure that the same schedule

is selected at each node, we propose to use a pseudo-random
number generator (PRNG) [23] (assumed to be secure) ini-
tialized with the same seed at each node. This allows each
node to select the same schedule every hyper-period without
any additional communication.

7. MEASURE OF UNCERTAINTY
Given a set of schedules S generated by Sched Gen(), we

need to quantify the amount of uncertainty in the schedules
in S. In [3], schedule entropy is used to measure the uncer-
tainty of a given schedule for a uniprocessor system. We
have redefined schedule entropy as a function of the slot and
channel entropy to measure the randomness in the schedules
in S. In a multi-channel WirelessHART network, each of the
slots σi in a schedule S consists of m channels which can be
represented as σi = {ci1, ci2, . . . , cim}. Given a hyper-period
schedule S over l slots and m channels for a set of flows F ,
the occurrence of the jth flow Fj in the kth channel of ith slot
is a discrete random variable with possible outcomes from
0 to n, where 0 represents idle flow, n is the total number
of flows in F . Let cik = j denotes the jth flow occurring in
the kth channel of ith slot of S. However, the occurrence of
the jth flow in the kth channel of the ith slot restricts the
occurrence of some other flow F ′j in the same channel of the

same slot. Also, if a flow Fj completes its hops in the ith

slot in the schedule, it cannot occur in the subsequent slots
until the arrival of its next instance. We therefore, define
Schedule entropy as

Definition 5: Schedule entropy over a set of flows F for
a WirelessHART network with m channels is the conditional
entropy of Fj occurring in the kth channel of the ith slot,
given the entropy of all the slots from 1 to i− 1. It is repre-
sented as

H(S) =

l∑
i=1

H(σi|σ1, σ2, . . . , σi−1) (2)

H(σi) = −
n∑

ci1=0

n∑
ci2=0

. . .

n∑
cim=0

Pr(ci1, ci2, . . . , cim)

log2 Pr(ci1, ci2, . . . , cim) (3)

For a multi-channel WirelessHART network with n flows
(n > 16), the number of possible permutations in the cal-
culation of the joint probability for each slot is exponential.
Hence, we consider the empirical probability distribution of
the flows across all the channels in each slot which is an
upper-approximated value of slot entropy as the joint prob-
ability is always less than or equal to the sum of individ-
ual probabilities [24]. Further, calculation of conditional en-
tropy in Equation (2) involves joint probability distribution
of slots in S, which is exponential in nature. So, we consider
the empirical probability distribution of the slots in S.

Definition 6: Upper-approximated slot entropy H̃(σi)

and Upper-approximated schedule entropy H̃(S) are de-
fined respectively as follows

H̃(σi) = −
m∑

k=1

n∑
j=0

Pr(cik = j) log2 Pr(cik = j) (4)

H̃(S) =

l∑
i=1

H̃(σi). (5)

where Pr(cik = j) is the probability mass function of the jth

flow occurring in the kth channel of the ith slot.

8. EVALUATION
Simulation setup: We use Cooja simulator [4] of Con-
tiki 3.0 to test the feasibility of our schedules. We gen-
erated three random topologies with 100 simulated Tmote
Sky motes by varying the degree of nodes (θ) or the number
of incoming and outgoing edges incident on a node — (1)
Graph A (θ between 2 to 4) (2) Graph B (θ between 3 to 6)
(3) Graph C (θ between 3 to 8). More the degree of a node,
more are the chances of conflicting transmissions and less
is the number of available flows for a particular time-slot.
Nodes with highest number of neighbors are considered to
be the APs.

Flow Generation: A fraction (α) percent of the nodes
are randomly selected as the source and destination nodes.
The source and destination nodes are disjoint. In our ex-
periments we varied α between 20-80%. We selected the
number of hops of each flow to be between 2 to 8 [25] and
considered the shortest path as the primary path. The flows
have implicit-deadline with periods varying randomly in the
range of 27 to 210.

Experiments: We fixed the hyper-period at 210 time slots
and ran experiments upto 10000 hyper-periods with the num-
ber of flows and the number of channels varying between
10 to 40 and 1 to 4 respectively. For each condition, we
generated 100 random instances and measured the upper

approximated schedule entropy (H̃(S)) for each of these in-

stances. Figure 2 shows H̃(S) for all the tested scenarios. It

has been observed that H̃(S) is maximum for single-channel
WirelessHART network for all three graphs. This is because
in single-channel WirelessHART networks, there is no con-
flicting transmissions among the flows in the network. As a
result, a flow can be scheduled at any slot within its release

time and deadline. For a fixed number of channels, H̃(S)
increases significantly with increase in the number of flows
upto 30. After that, there is no significant increase in the

value of H̃(S) with increase in the number of flows. This is
because, with increase in the number of flows more flows can
appear in a slot. However, as the number of flows increase,
the number of conflicting transmissions among the flows in-
crease which in turn restricts the number of available flows

to be scheduled in a particular slot. H̃(S) also increases with
increase in the number of channels between 2 to 4, as the
number of available positions for a flow to be scheduled get
increased. However, it has been observed that with increase

in the number of channels, the increase in H̃(S) is signif-
icantly less for Graph C. Among all the three graphs, the
number of edges is maximum in Graph C resulting in more
conflicting transmissions among the flows thereby restricting
the number of available positions to schedule a flow.

Although we ran our algorithm upto 10000 hyper-periods
to measure the randomness in the generated schedules, the
amount of memory available to each Tmote sky mote is not
sufficiently large to store large number of schedules. We
measured that each mote can only support a maximum of
2000 time slot information. We observed that, if a node is in
the path of all the 40 flows, then it requires to store at-least
80 time slot information per schedule (40 for transmissions
and 40 for re-transmissions). With this specification, we
were able to store 25 schedules in each node. We can man-

Figure 2: Upper Approximated Schedule Entropy over Graph A,Graph B and Graph C, with number of flows varying between
10 to 40 and number of channels between 1 to 4 with a hyper-period of 1024 time slots

ually tune the nodes with different sets of schedules after
several hyper-periods to further reduce the chance of pre-
dicting the schedules. Our MTD technique only involves
an additional random number generation in each node once
in every hyper-period, the power consumption of which is
negligibly small.

9. CONCLUSION
In this work, we presented an MTD mechanism, the SlotSwap-

per, to reduce the predictability of TDMA slots in a real-
time WirelessHART network. We used schedule entropy to
measure the uncertainty of the schedules generated by our
algorithm. We illustrated the feasibility of the schedules on
simulated networks in Cooja with 100 Tmote sky motes.

10. ACKNOWLEDGEMENT
This work was conducted within the Delta-NTU Corpo-

rate Lab for Cyber-Physical Systems with funding support
from Delta Electronics Inc. and the National Research Foun-
dation (NRF) Singapore under the Corp Lab@University
Scheme.

11. REFERENCES
[1] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon.

IEEE Security & Privacy, 2011.
[2] Dragonfly: Western energy sector targeted by sophisticated

attack group, 2017. https://symc.ly/2Df3VTi.
[3] Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha.

Taskshuffler: A schedule randomization protocol for
obfuscation against timing inference attacks in real-time
systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016 IEEE. IEEE.

[4] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas
Finne, and Thiemo Voigt. Cross-level sensor network simulation
with cooja. In Local computer networks, proceedings 2006 31st
IEEE conference on. IEEE.

[5] Ke Jiang, Petru Eles, Zebo Peng, Sudipta Chattopadhyay, and
Lejla Batina. Sparta: A scheduling policy for thwarting
differential power analysis attacks. In Design Automation
Conference (ASP-DAC), 2016 21st Asia and South Pacific.
IEEE.

[6] Alejandro Proano and Loukas Lazos. Selective jamming attacks
in wireless networks. In Communications (ICC), 2010 IEEE
International Conference on. IEEE.

[7] Aristides Mpitziopoulos, Damianos Gavalas, Charalampos
Konstantopoulos, and Grammati Pantziou. A survey on
jamming attacks and countermeasures in wsns. IEEE
Communications Surveys & Tutorials, 2009.

[8] Deepali Virmani, Ankita Soni, Shringarica Chandel, and Manas
Hemrajani. Routing attacks in wireless sensor networks: A
survey. arXiv preprint arXiv:1407.3987, 2014.

[9] Kanthakumar Pongaliur, Zubin Abraham, Alex X Liu, Li Xiao,
and Leo Kempel. Securing sensor nodes against side channel
attacks. In High Assurance Systems Engineering Symposium,
2008. HASE 2008. 11th IEEE. IEEE.

[10] Raymond Pickholtz, Donald Schilling, and Laurence Milstein.
Theory of spread-spectrum communications–a tutorial. IEEE
transactions on Communications, 1982.

[11] Alejandro Proano and Loukas Lazos. Packet-hiding methods for
preventing selective jamming attacks. IEEE Transactions on
dependable and secure computing, 2012.

[12] Anthony D Wood, John A Stankovic, and Gang Zhou. Deejam:
Defeating energy-efficient jamming in ieee 802.15. 4-based
wireless networks. In Sensor, Mesh and Ad Hoc
Communications and Networks, 2007. SECON’07. 4th
Annual IEEE Communications Society Conference on. IEEE.

[13] Spase Stojanovski and Andrea Kulakov. Efficient attacks in
industrial wireless sensor networks. In ICT Innovations 2014.
Springer.

[14] Marco Tiloca, Domenico De Guglielmo, Gianluca Dini,
Giuseppe Anastasi, and Sajal K Das. Jammy: a distributed and
dynamic solution to selective jamming attack in tdma wsns.
IEEE Transactions on Dependable and Secure Computing,
2017.

[15] Marco Tiloca, Domenico De Guglielmo, Gianluca Dini,
Giuseppe Anastasi, and Sajal K Das. Dish: Distributed
shuffling against selective jamming attack in ieee 802.15. 4e
tsch networks. ACM Transactions on Sensor Networks
(TOSN), 2018.

[16] Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto
Gonzalez, Dolvara Gunatilaka, Chengjie Wu, Lanshun Nie, and
Yixin Chen. Real-time wireless sensor-actuator networks for
industrial cyber-physical systems. Proceedings of the IEEE,
2016.

[17] Deji Chen, Mark Nixon, and Aloysius Mok. WirelessHART:
Real-Time Mesh Network for Industrial Automation. Springer
Publishing Company, Incorporated, 2010.

[18] Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas,
Mark Nixon, and Wally Pratt. Wirelesshart: Applying wireless
technology in real-time industrial process control. In IEEE
real-time and embedded technology and applications
symposium. IEEE, 2008.

[19] Jianping Song, Song Han, Xiuming Zhu, Aloysius K Mok, Deji
Chen, and Mark Nixon. A complete wirelesshart network. In
Proceedings of the 6th ACM conference on Embedded network
sensor systems. ACM, 2008.

[20] Xia Cheng, Junyang Shi, and Mo Sha. Cracking the channel
hopping sequences in ieee 802.15.4e-based industrial tsch
networks. 2019.

[21] Kanika Grover, Alvin Lim, and Qing Yang. Jamming and
anti-jamming techniques in wireless networks: a survey.
International Journal of Ad Hoc and Ubiquitous Computing,
2014.

[22] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy
Wood. The feasibility of launching and detecting jamming
attacks in wireless networks. In Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and
computing. ACM, 2005.

[23] Wikipedia contributors. Pseudorandom number generator —
Wikipedia, the free encyclopedia, 2019.

[24] Claude Elwood Shannon. A mathematical theory of
communication. ACM SIGMOBILE mobile computing and
communications review, 2001.

[25] Rajeev Alur, Alessandro D’Innocenzo, Karl H Johansson,
George J Pappas, and Gera Weiss. Modeling and analysis of
multi-hop control networks. In Real-Time and Embedded
Technology and Applications Symposium, 2009. RTAS 2009.
15th IEEE. IEEE, 2009.

