
ECRTS 2019

Proceedings of the
Work-in-Progress Session

July 10th, 2019
Stuttgart, Germany

Editor:
Andrea Bastoni

Message from the Chair

It is my pleasure to welcome you to the Work-in-Progress (WiP) session of the 31st Eu-

romicro Conference on Real-Time Systems (ECRTS 2019). The WiP session is dedicated

to new and on-going research in the field of real-time and embedded systems. The WiP

session provides an opportunity for researchers to communicate their evolving ideas, to

discuss them with the real-time community, and to receive feedback which will help them

identify new trends and gather new insights on their on-going research.

This year, the Work-in-Progress session features five excellent contributions in mul-

tiple fields of real-time systems. Each paper summarizes in three pages the motivation

for the analyzed problem, provides insights on the relevance of the topics, and discusses

possible solutions. Each paper is also accompanied by a poster that will help the au-

thors to discuss further details with the community during the reception following the

presentations.

I am confident that many of the contributions presented today will appear as full

conference or journal papers in the near future, and I wish the authors to find inspiration

and fruitful collaborations in this session.

The WiP proceedings are available online on the ECRTS 2019 website:

https://www.ecrts.org/work-in-progress/

I would like to express my gratitude to the members of the Program Committee who

have done a tremendous job in providing constructive feedback for each contribution in

a very limited time. Additionally, I would like to thank the organizers of ECRTS 2019

for their support in organizing the WiP session.

On behalf of the Program Committee, I wish you a pleasant session. I hope that you

will enjoy the presentation and that you take the opportunity to discuss the papers with

the authors during the poster session.

Andrea Bastoni

SYSGO GmbH

ECRTS 2019 Work-in-Progress Chair

https://www.ecrts.org/work-in-progress/

Organizers

Andrea Bastoni, SYSGO GmbH, Germany

Program Committee

Martina Maggio, Lund University, Sweden
Ahlem Mifdaoui, DISC, Univ. Toulouse, France
Geoffrey Nelissen, CISTER, ISEP, Portugal
Bryan Ward, MIT Lincoln Laboratory, USA

ECRTS 2019 Work-in-progress Papers

Design and implementation of an FPGA-based NoC for Real Time
Systems
Yilian Ribot González and Geoffrey Nelissen . 1

Towards a generic platform for the distribution of avionics applica-
tions on manycores
Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset and Jean-Luc Scharbarg 4

ResilienceP Analysis: Bounding Cache Persistence Reload Over-
head for Set-Associative Caches
Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar 7

Towards Real-time Self-adaptation Using a Verification Mechanism
Hiroyuki Nakagawa, Hiroki Tsuda and Tatsuhiro Tsuchiya 10

Towards Robust and Cost-Effective Critical Real-Time Systems un-
der Thermal-Aware Design
Javier Pérez Rodŕıguez and Patrick Meumeu Yomsi . 13

Copyright c© 2019 by papers’ authors. All Rights Reserved.

Design and implementation of an FPGA-based NoC for Real Time Systems

Yilian Ribot González and Geoffrey Nelissen
CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal

Abstract—In order to communicate, cores of a multi-core
platform traditionally relied on shared busses. However, with
the increasing number of computation nodes integrated in
multi- and many-core platforms, Network-on-Chips (NoCs)
emerged as a new communication medium in Systems-on-
Chips (SoCs). Hoplite-RT is a new NoC design that was
recently proposed in [1]. Hoplite-RT has a compact design,
is easy to analyze, and was specifically tailored to target
FPGAs. In this work, we introduce priority-based routing
to Hoplite-RT and change the network topology so as to
improve packets’ Worst-Case Traversal Time (WCTT).

1. Introduction

SoCs are usually composed of several, possibly hetero-
geneous, processing elements. In order to communicate,
the processing elements used to rely on shared busses.
However, due to the large increase of on-chip elements
during the last decade, communication through shared
busses is not an appropriate solution for such platforms
anymore. Indeed, at most one node can take control of a
bus and transmit data at each cycle. This causes a bottle-
neck for the overall system. NoCs have been identified as a
good alternative to palliate this issue [2]. NoCs are router-
based packet switching networks and hence allow several
processing elements to transmit messages in parallel [3].
As discussed in [4], NoCs have remarkable scalability,
parallelism, and re-usability properties, and help meet
system-wide power and timing constraints.

FPGAs are chips made of reconfigurable elements that
can be programmed to implement virtually any digital
functionality. Therefore, they are well suited to the de-
velopment of custom-made SoCs. FPGAs allow to design
systems with a high degree of parallelism and high data
processing rate at a relatively low cost. However, FPGAs
expose a limited number of reconfigurable elements and
most FPGAs do not supply enough resources to embed
complex NoC designs together with a large number of
processing elements.

The literature on NoCs is extensive. Most of the
proposed solutions that present suitable properties for real-
time systems (i.e., bounded worst-case timing behaviors)
rely on wormhole switching with virtual channels, buffer-
ing, and often some sort of priority-driven routing arbi-
tration [5], [6]. These concepts allow to develop powerful
NoC infrastructures with bounded WCTT but suffer from
two main drawbacks: (1) they are expensive to implement
in FPGA platforms; and (2) their complexity renders their
analysis extremely complex as shown by the number of
flaws that were recently discovered in existing works [7].

In complete opposition to the solutions mentioned
above, Hoplite is a newly proposed NoC infrastructure [8]
that reduces the NoC features to their bare minimum
and hence decreases considerably the network analysis
complexity and implementation cost (in terms of FPGA
resources utilization). Introduced by Wasly et al in [1],

Hoplite-RT is a modified version of Hoplite that provides
an upper bound on the NoC WCTT. Each Hoplite-RT
router has three input ports (North (N), West (W) and
Programming Element (PE)) and two output ports (South
(S) and East (E)) (see Figure 1(a)). Hoplite-RT assumes
that packets transmitted through the NoC are composed of
a single flit with two fields: the destination address and the
transmitted data. Hoplite-RT connects routers in a torus
topology (Figure 1(b)) and employs a modified version
of X-Y routing (packets first travel horizontally on the
X axis, and then vertically on the Y axis). Specifically,
the Hoplite-RT routing policy is built upon the concept of
deflection to avoid the cost of packet buffering. When two
packets coming from the W and N port of a router conflict
for the S port, Hoplite-RT gives the highest priority to the
packet originating from the W port. The packet originating
from the N port is then deflected toward to the E port
inconsiderately of its final destination. However, as the
deflected packet is now traveling along the X axis, it will
have the highest priority when it will require to go south
again. Therefore, the maximum number of deflections
suffered by a packet can be upper-bounded (see Sec. 2).
Contribution. In Hoplite-RT, a packet may be deflected
after each and every hop on the Y-axis, thereby leading
to possibly large WCTTs. Furthermore, Hoplite-RT treats
all packets identically. It does not allow to associate dif-
ferent priorities, and hence quality of services to different
packets. Nonetheless, Hoplite-RT is a compact, easy to
analyze, easy to implement, and inexpensive design. For
those reasons, we are interested in developing a NoC that
keeps the advantages of Hoplite-RT while improving its
real-time capabilities. This paper represents the first stages
of our research: (1) we propose a solution to limit the
number of deflections and hence the WCTT of a packet;
and (2) we introduce a notion of quality of service in the
routing policy.

2. Background

The architecture of an Hoplite-RT router is shown in
Figure 1(a). It is implemented using two multiplexers of
three inputs. Hoplite-RT takes advantage of the possibility
of “fracturing” the Look Up Tables (LUTs) of modern
FPGAs to reduce the implementation cost of the expen-
sive crossbar multiplexers. The modern families of Xilinx

(a) Hoplite-RT router (b) Hoplite-RT torus topoligy

Figure 1. Hoplite-RT design.

1

TABLE 1. RESOURCES UTILIZATION IN A VIRTEX-7 485T FPGA

Router LUTs FFs
Hoplite-RT router 85 139
Hoplite-RT router + Priorities 86 139
Hoplite-RT router + Priorities + New Topology 88 139

FPGAs present 6-inputs LUTs that can be fractured in
two 5-inputs LUTs sharing the same five input signals.
Since each 3:1 multiplexer can be implemented with a
5-inputs LUT, the two multiplexers of the router can be
implemented with a single 6-inputs LUT. The first row
of Table 1 shows the cost in terms of LUTs and flip-
flops (FFs) of a 64bits Hoplite-RT router implemented in
a Xilinx Virtex-7 485T FPGA after fracturation.

The WCTT wcTT of a packet transmitted over
Hoplite-RT between two nodes with coordinates (xo, yo)
and (xd, yd) in a mesh of size Sx × Sy is given by
Equation (1) (in clock cycles)

wcTT = hx + hy + (hy × Sx) + 2, (1)

where hx and hy are the distances travelled by the packet
on the X and Y-axis, respectively, when it does not con-
tend with any other packet (i.e., without any deflection).
That is, hx = (xd − xo + Sx) mod Sx (2)

hy = (yd − yo + Sy) mod Sy (3)

The term (hy×Sx) accounts for potential deflections costs.

3. Preliminary results

In this section, we describe the modifications we made
to the Hoplite-RT design in order to: (1) introduce a notion
of priority in the routing policy; and (2) decrease the
worst-case traversal time of a packet.

3.1. Priority-based routing

We first modify Hoplite-RT to introduce a two priority
levels (Low and High) scheduling scheme. This approach
allows us to provide different levels of quality of service to
different packets and hence decrease the average traversal
time of the high priority packets. The WCTT of high
priority packets may also be improved depending on
the application mapping and the network configuration.
However, we leave that analysis for future work.

In Hoplite-RT, the packets coming from the W port
always have the highest priority. Instead, in our new
design, low priority packets coming from the W port will
never be permitted to deflect high priority packets coming
from the N port. That is, if a high priority packet coming
from the N port and a low priority packet coming from
the W port conflict for the S port, then the N packet wins
the right to use the S port, and the W packet is deflected
towards the E port. To support this new routing policy,
the packet priority is encoded in its most significant bit.

We observe from Table 1 that this simple modification
consumes only one additional 6-inputs LUT in comparison
to a normal Hoplite-RT router.

3.2. New topology

Even though it looks beneficial, the new priority-based
routing policy described in Section 3.1 is in fact extremely
inefficient; the WCTT of high priority packets remains
unchanged (only their average-case traversal time is re-
duced), but more importantly, the WCTT of low priority

(a) Ring representation (b) Equiv. mesh representation

Figure 2. Directional ring with bypasses topology

packets is not bounded anymore. Indeed, a low priority
packet may always contend with high priority ones and
therefore never be able to use the S port of a router.

In this section, we propose a new network topology
that, in most cases, reduces the WCTT of high priority
packets by a factor of two, and allows to reinstate the
same WCTT bound for the low priority packets as in the
original design of Hoplite-RT.

In the standard torus topology (see Fig. 1(b)), a de-
flected packet will hop through Sx routers (where Sx is the
number of routers on the X axis), before entering again in
the same router where it was initially deflected. That is, the
packet did not progress toward its destination after those
Sx additional hops. We prevent this issue to happen by
changing the network topology to a directional ring with
bypasses (see Fig. 2(a)). In that new topology, all routers
are connected by a single unidirectional ring (red links).
Then, every pair of routers that are Sx positions apart
on the ring are connected by a bypass (green and black
links). Equivalently, if we look at the network as a mesh
(see Fig. 2(b)), it connects the E port of the last router
in row number y to the W port of the first router in row
number (y+ 1) mod Sy. Then, the bypasses correspond
to the links on the columns of the mesh.

Thanks to this new topology, when a packet is de-
flected, it reaches the same router as it would have if it
was not deflected, after Sx hops. That is, the packet always
progresses toward its destination even when deflected.
Consequently, the WCTT decreases.

However, this new topology requires to modify the
router design. Indeed, in the particular case where two
packets arrive at the same instant in the same router (via
the W and N ports) and that router is their destination,
Hoplite-RT would solve the conflict by deflecting one of
the two packets to the E port. This situation causes a
remarkable increase in the WCTT of the deflected packet.
We aim at solving this issue by allowing the programming
element connected to the router to read both packets
simultaneously. This necessarily increases the design cost
of the router and the programming element. The cost
of implementing a router with priority routing in the
new topology is shown in Table 1. It requires only three
additional 6-inputs LUTs in comparison to the original
Hoplite-RT design.

3.3. Bound on the WCTT

The WCTT of a packet is defined as follow:
wcTT = nhops + ndef × cdef , (4)

where nhops is the number of hops in a network with zero
load (i.e., when the packet does not suffer any deflection),
ndef is the maximum number of deflections suffered by
the packet on its route, and cdef is the cost of a deflection.

2

The term nhops is defined as:

nhops = hr + hb + 2, (5)

where hr and hb are the number of hops on the ring
and bypasses, respectively, and the additional two hops
account for the injection (at the source node) and exit
(at the destination node) of the packet into and from the
network. We prove bounds for each of those terms.
Lemma 1. The number of hops on the ring in a zero-load

network is given by hr = (xd − xo + Sx) mod Sx.

Proof: According to our routing policy, each
packet travels first through the ring from the origin router
at coordinate (xo, yo) until it reaches a router with the
same X coordinate xd as the destination. According to
the topology presented in Fig. 2(b), the number of hops
on the ring is:

hr =

{
xd − xo when xd ≥ xo

xd − xo + Sx when xd < xo

= (xd − xo + Sx) mod Sx

Lemma 2. The number of hops on a bypass in a zero-load
network is given by hb = (yd − y′o + Sy) mod Sy

where
y′
o =

{
yo when xd ≥ xo

yo + 1 when xd < xo
(6)

Proof: Remember that a bypass in Fig. 2(a) cor-
responds to a column in Fig. 2(b). Let Sy be the number
of routers in a column, and y′o be the Y coordinate of the
router at which the packet stops travelling on the ring and
starts using bypasses (i.e., the first router with the same X
coordinate xd as the destination). Then, according to the
router numbering shown in Fig. 2(b),

y′o =

{
yo when xd ≥ xo

yo + 1 when xd < xo

and the number of hops on the Y axis of the mesh is:

hb =

{
yd − y′o when yd ≥ y′o
yd − y′o + Sy when yd < y′o

= (yd − y′o + Sy) mod Sy

The maximum number of deflections ndef that a packet
may suffer is different for high and low priority packets.
We analyze both cases in Lemmas 3 and 4.
Lemma 3. The maximum number of deflections suffered

by a high priority packet is given by ndef =
⌊
hb

2

⌋
.

Proof: Let P denote a high priority packet. When
P enters a router from the W port and requests the S port,
it cannot be deflected. Then, in the following router of the
Y axis, P will be a packet coming from the N port. In
this new router, P may be deflected toward the E port
by another high priority packet conflicting for the S port.
Subsequently, P will travel on the ring until it reaches
a router with the same X coordinate as its destination.
The whole process will then repeat until P arrives to its
destination router. That is, P may be deflected at half the
routers it traverses that share the same X coordinate as
its destination, i.e., it may be deflected

⌊
hb

2

⌋
times.

Lemma 4. The maximum number of deflections suffered
by a low priority packet is given by ndef = hb.

Proof: A low priority packet entering from the W
port may always be deflected to the E port. Therefore, a

low-priority packet may be deflected as many times as it
may try to use a bypass, i.e., hb times.

The additional cost in terms of hops introduced by
each deflection is analyzed in Lemma 5.
Lemma 5. The cost of a deflection is cdef = Sx − 1.

Proof: When a packet is deflected, it must hop
through Sx routers on the ring to reach the same router
as it would have if it could have used the bypass instead,
i.e., though Sx routers instead of 1, thereby leading to an
additional cost of Sx − 1.

4. Conclusion and Future works

In this paper, we presented solutions to improve the
timing performance of Hoplite-RT with a marginal in-
crease of the FPGA resource utilization. We first intro-
duced a notion of priority in the routing policy. Then,
by changing the network topology to a directional ring
with bypasses, we reduced the number of deflections
and therefore the WCTT of high priority packets, and
maintained the WCTT of low priority packets.

Yet, because each packet may suffer a different num-
ber of deflections, Hoplite-RT does not guarantee that
packets will be received at the destination router in the
same order as they were emitted at the origin router.
Therefore, with the current design, long messages can
difficulty be split in several flits sequentially injected in the
network. As future work, we plan on developing solutions
to ensure that the packets arrive in an orderly fashion
at the destination router while keeping the advantages
of Hoplite-RT and trying to increase its cost as little
as possible. We are also working on solutions to map
applications on nodes and configure packet injection rates
at each node to fully take advantage of the new network
design discussed in this paper, e.g., to optimize the link
bandwidth usage, or to improve the WCTT of high priority
packets at the detriment of low priority ones.

Acknowledgements. This work was partially supported by Na-
tional Funds through FCT/MCTES (Portuguese Foundation for
Science and Technology), within the CISTER Research Unit
(UID/CEC/04234), by the Operational Competitiveness Pro-
gramme and Internationalization (COMPETE 2020) under the
PT2020 Partnership Agreement through the European Regional
Development Fund (ERDF), and by national funds through FCT
within project POCI-01-0145-FEDER-029119 (PReFECT).

References
[1] S. Wasly, R. Pellizzoni, and N. Kapre, “HopliteRT: An efficient

FPGA NoC for real-time applications,” in ICFPT 2017, 2017.

[2] L. Benini and G. De Micheli, “Networks on chip: a new paradigm
for systems on chip design,” in Proc. of DATE 2002, 2002.

[3] A. Agarwal and R. Shankar, “Survey of network on chip (noc)
architectures and contributions,” JECA 2009, vol. 3, 2009.

[4] C. A. Zeferino and A. A. Susin, “Socin: a parametric and scalable
network-on-chip,” in Proc. of 16th SBCCI, 2003.

[5] Y. Huan and A. DeHon, “FPGA optimized packet-switched NoC
using split and merge primitives,” in Proc. of FPT 2012, 2012.

[6] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. Wil-
son, M. Wrighton, and A. DeHon, “Packet switched vs. time multi-
plexed fpga overlay networks,” in Proc. of 14th IEEE FCCM, 2006.

[7] N. Borislav, S. Tobuschat, L.Soares, R. Ernst, and A. Burns, “Real-
time analysis of priority-preemptive nocs with arbitrary buffer sizes
and router delays,” RTS 2019, vol. 55, no. 1, 2019.

[8] N. Kapre and J. Gray, “Hoplite: Building austere overlay nocs for
fpgas,” in Proc. of 25th FPL, 2015.

3

Towards a generic platform for the distribution of
avionics applications on manycores

Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset, Jean-Luc Scharbarg
IRIT - Université de Toulouse

2 rue Charles Camichel
31000 Toulouse, France

{firstname.lastname}@irit.fr

Abstract—The interconnection of many-cores by an avionics
full duplex switched Ethernet network (AFDX) is envisioned for
future avionics architecture. The principle is to distribute avionics
functions on these many-cores. Many-cores are based on simple
cores interconnected by a Network-on-Chip (NoC). The allocation
of functions on the available cores as well as the transmission of
flows on the NoC has to be performed in such a way that avionics
timing constraints are never violated. Several theoretical solutions
have been proposed for this distribution. However they have not
been evaluated on real architectures. In this paper we introduce
a framework for the prototyping of such implementations. This
framework is based on the existing ProNoC tool which allows
the configuration of an FPGA as a NoC. The goal is to be able
to compare distribution solutions with different NoC features in
terms of scheduling or routing.

Index Terms—Many-cores, NoC, task distribution, avionics

I. APPLICATION DOMAIN AND CHALLENGE

Aircrafts include numerous electronic equipments. Some of
them, like flight control and guidance systems, provide flight
critical functions, while others may provide assistance services
that are not critical to maintain airworthiness. Current avionics
architecture is based on the integration of numerous functions
with different criticality levels into single computing systems
(mono-core processors) [1]. These computing systems are
interconnected by an AFDX (Avionics Full Duplex Switched
Ethernet) [2]. As depicted in the upper part in Figure 1, the
End System (ES) provides an interface between a processing
unit and the network.

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

processing
unit

hosting
avionics

applications

End
System

...

...

...

...

...

...

eth

eth

eth

ddr memory

ddr memory

...

...

...

...

...

...

...

AFDX network

Avionics Computer System

Current architecture

Envisioned architecture

...

AFDX network

Fig. 1. An AFDX network.

Mono-core architectures are being replaced by multi- or
many-core ones in many contexts. This move is also envi-
sioned in aircrafts. However, multi-core architectures are based
on complex hardware mechanisms whose temporal behavior
is difficult to master. Conversely many-core architectures are
based on simpler cores interconnected by a Network-on-Chip
(NoC). These cores are more predictable [3]. Thus, many-cores
are promising candidates for avionics architecture. Such an
architecture integrating many-cores is illustrated in the lower
part in Figure 1. A typical many-cores architecture provides
Ethernet interfaces which are used for the connection with
the AFDX network. Additionaly, memory controllers manage
access to DDR. An an example, Tilera Tile64 has 3 Ethernet
interfaces and 4 memory controllers [4].

The envisioned avionics architecture depicted in the lower
part in Figure 1 is a mixed NoC/AFDX architecture. Avionics
functions are distributed on the available many-cores. Commu-
nications between two functions allocated on the same many-
cores (local functions) use the NoC, while the communica-
tions between two functions allocated on different many-cores
(remote functions) use both the NoC and the AFDX. Main
constraints on this communication are the following:

1) end-to-end transmission delay has to be upper-bounded
by an application defined value,

2) frame jitter at the ingress of the AFDX network has to
be smaller than a given value (typically 500 µs).

The first constraint concerns local and remote functions, while
the second one only concerns remote functions. Transmission
delays on the NoC have an impact on both constraints.
These delays can vary for different reasons. First, a frame
can be delayed by other frames crossing the same routers
(router contentions). Second, in the case of a transmission
between remote functions, the Ethernet controller can be busy,
transmitting another frame (controller contention).

The mapping of functions on the many-cores has a major
impact on this NoC delay variation. [5] proposes a mapping
strategy that minimizes router contention. In this strategy, each
core is allocated at most one function and each avionics flow is
managed by its source function. [6] proposes a different strat-
egy, based on a static scheduling of Ethernet transmissions:
each transmission is assigned a periodic slot in a table. Thus
there are no more controller contentions and router contentions

4

are reduced, thanks to the mapping of functions on cores.

II. MOTIVATION

Both [5] and [6] consider Tilera Tile64 many-cores [4].
However delay computation are based on a model of the many-
core and no implementation is provided.

Therefore the first motivation of this study is to map
avionics functions on a hardware platform. One goal is to
validate results in [5] and [6].

The second motivation of this study is to be able to tune
many-core features, mainly NoC ones. Different many-cores
implement different topologies, different buffer sizes in router
ports, different scheduling algorithms in routers or different
routing strategies. For instance, Kalray MPPA [7] has larger
buffers than Tilera Tile64.

Therefore our goal is to map avionics functions on a generic
hardware platform that can be configured, based on existing
NoC features. As a first step, we consider a single many-core.

III. PROBLEM STATEMENT

The problem is to distribute a set of n applications
A0, . . . , An−1 on a many-core. Each application Ai is com-
posed of ni communicating tasks ti,0, . . . , ti,ni−1 Communi-
cation between tasks are modelled by a graph. The number of
cores as well as the NoC topology, buffer size and scheduling
algorithm in routers, routing are configurable. The distribu-
tion assumes a mapping strategy, e.g. SHiC [8], MapIO [9],
strategies proposed in [5] and [6] or an ad hoc one.

The resulting mapping is implemented on a hardware plat-
form, typically an FPGA, e.g. a Nexis4 card and transmission
delays are measured. These measured delays are then com-
pared with theoretically computed values.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

The proposed solution is based on a prototyping tool. In the
next paragraphs we present its main features and a preliminary
case study.

A. The prototyping tool ProNoC

ProNoC (Prototype NoC) has been defined in [10] and
is a prototyping tool which allows the design of many-core
system on chips (MCSoC). It proposes an interface to generate
the hardware code of a complete MCSoC. As shown in
Figure 2, this MCSoC is composed of processing tiles (PT)
interconnected using a NoC.

A processing tile (Figure 2b) is composed of different IP
(Intellectual Property) cores interconnected by a Wishbone
bus, an internal shared bus defined by OpenCores [11]. These
IP cores include memory (RAM), processor, GPIO, timer,
UART jtag and NI (Network Interface). The NI core allows
the transmission of the data from (to) the tile to (from) the
NoC.

ProNoC allows to generate a NoC. A NoC router is shown
in Figure 2c. It is composed of Input and Output ports and
a crossbar switch. The route of the packet is computed in
LRC. In order to support quality of service for different

A. Monemi et al. / Microprocessors and Microsystems 54 (2017) 60–74 63
Two pipelined FPGA-based NoC router architectures using split-

merge technique were proposed in [60,61] . In the first pipeline
stage of the split-merge NoCs, all received packets, which are
stored inside each input queue buffer are split based on the rout-
ing algorithm and saved in middle channel buffers. Hence, for
each input port, there is p − 1 middle buffers, which make in total
p × (p − 1) middle channel buffers for each router, where p is the
number of ports in one router. In the second pipeline stage (merge
state), each output port reads one active middle channel buffer by
using an arbiter. Both pipelined router designs were reported to
achieve a higher maximum operating frequency (up to 4 ×) than
4-VC CONNECT NoC. However, both architectures in [60,61] did not
support VC. Hence, a VC based router cannot be fairly compared
with their non-VC based router. In fact, VCs are expensive compo-
nents in both ASIC [68] and FPGA [23] platforms.

Kapre and Gray [24] proposed Hoplite , a low-cost NoC with an
aim to outperform CONNECT [18] and Split-Merge [60,61] NoCs by
offering lower area overhead. However, this goal was obtained by
removing VC and input buffers (bufferless NoC). As a flit can no
longer be buffered, their router deflects a flit when its desired
destination link is not available. This scheme results in a packet
cycling and non-minimal routing. It also introduces performance
degradation by increasing the average communication latency (up
to 100k clock cycles at injection ratio above 5% [69]).

Existing NoC prototypes on FPGA partially support the state-of-
the-art ASIC NoC optimizations. Designing a versatile FPGA-based
NoC platform which can support most advanced up-to-date NoC
features is the main goal of this work. Based on the literature re-
view, an optimized NoC platform is recommended to support VC,
VN, different routing algorithms, low pipeline latency, non-atomic
VA, and combined VA and SA as in ASIC NoC implementation.

In our previous paper [70] , we presented our preliminary two-
cycle NoC router prototype with support on VC, non-speculative
combined VA and SA, non-atomic VC reallocation and different
routing algorithms. However, the previous NoC router does not
support VN partitioning as VCs were added only for network
throughput enhancement. The proposed router is improved by
adding the following features:
1. An improved flow control for fully adaptive routing which al-

lows exchanging packet between EVCs and AVCs as well as
non-atomic VC reallocation on 80% of all available VCs in NoC
in [71] .

2. Support of different message classes for VN partitioning. Adding
static straight allocator (SSA) which allows single cycle latency
on packets traveling to the same dimension in [72] .
In this paper, we present ProNoC, our improved prototype plat-

form that generates the RTL codes of a complete heterogeneous
NoC-/WB-based MCSoC in a plug-and-play manner. We have devel-
oped several parameterizable hardware description language (HDL)
codes including network interface adapter (NI), memory controller,
Joint Test Action Group (JTAG) interface and general purpose in-
put/output (GPIO) which can be connected to available open-
source soft-core WB-based processors to generate a PT. PTs later
can be connected to the proposed low-latency NoC to generate a
heterogeneous MCSoC. ProNoC comes with several tools which au-
tomate these steps. We have also developed a NoC emulator which
speeds up NoC simulation using an FPGA device.
3. ProNoC system overview

Fig. 1 provides a general overview of the ProNoC MCSoC. This
consists of PTs (Fig. 1 (b)) connected via a low latency wormhole
VC-based NoC router(Fig. 1 (c)).

Fig. 1. ProNoC functional block diagram (a) MCSoC, (b) processing tile (PT), (c) NoC
router.
3.1. Router micro-architecture

The main contribution of ProNoC that is its FPGA-optimized
NoC architecture has been developed by analyzing of the two re-
cent existing open-source VC based NoC RTL codes, namely the
Stanford NoC [17] and CONNECT [18] . Stanford NoC targets ASIC
implementation and is enhanced with VC support, shared buffer
memory, non-atomic VC reallocation, low latency router (2-cycle),
look-ahead routing and speculative combined VC and SW alloca-
tors. However, it also consumes large number of LCs when mapped
to an FPGA platform [18] . As mentioned in Section 2 , CONNECT at-
tempted to solve this problem at the cost of reducing router’s max-
imum operating frequency. ProNoC proposes an open-source NoC
platform architecture that functionally behaves like Stanford NoC
and yet is more optimized than CONNECT NoC when is mapped in
an FPGA device. To do this, we first investigated the Stanford NoC
and discovered how its RTL code can be optimized for FPGA map-
ping without introducing drawback on router’s pipeline stages or
maximum operation frequency.

The rest of this section discusses the proposed low latency
router micro-architecture. Fig. 1 (c) shows the functional block di-
agram of proposed router by ProNoC tool. This router consists of
input/output (IO) ports, VSA, SSA, LRC, and a CS. The router’s HDL
code is parameterizable in terms of the number of IO ports, VC,
VN and buffer size per VC. Other parameters were also added for
selecting atomic or non-atomic VC reallocation, different RCs and
to enable/disable the use of SSA.
3.1.1. IO ports

In the proposed router, all input VCs located in the same in-
put port share one FPGA’s embedded dual port BRAM. Unlike
CONNECT which implements all VCs’ buffers using FPGA LCs, this
method significantly reduces the overall router LCU. In [72] , we
showed that for implementation of 4 × 4 NoCs on Stratix IV
EP4SGX230KF40C2 Altera FPGA, this method can save up to 40%
LCs while only introduces approximately 5% memory utilization
overhead. CONNECT targets for a single-cycle NoC router that ex-
ecutes ST stage directly after SA in the same clock cycle. Hence,
this technique could not be adopted by CONNECT as it requires an
asynchronous address/data read stage which cannot be supported
by current FPGAs’ BRAMs.

In our proposed router, single-cycle zero load latency can be
supported only for packets traveling to the same dimension (see
Section 3.1.4). To support this feature, the additional circuit (shown
in gray color in Fig. 2) is required to bypass the BRAM.

Fig. 3 shows how masking VSA’s signals can be generated in
a router with non-atomic VA. As multiple packets from different

Fig. 2. Overview of an MCSoC obtained using ProNoC [10]

t00 t01

t02t03

t10t11

t12t13

t30

t31t32

t33

t20t21

t22 t23

Fig. 3. Application mapping in the many-core (A0: upper left, A1: upper
right, A2: bottom left, A3: bottom right)

messages, the NoC can use different virtual channels (VC).
The management of these virtual channels is done by the SSA
and VSA parts of the router.

ProNoC proposes a graphical interface in order to customize
the MCSoC. It is possible to configure the definition of
the PTs, i.e. what are the IP cores used for each PT. The
parameterizitation of the NoC includes the number of virtual
channels, the size of the buffers, the routing algorithm (XY,
adaptative routing, . . .), the switch arbitration (RRA, WRRA)
and the topology (2D Mesh, Torus, . . .).

The main goal of ProNoC is to provide the FPGA im-
plementation of a fully functionnal MCSoC. Once all the
MCSoC parts have been constructed, the tool generates the
Verilog files that can be compiled for the FPGA. ProNoC tool
provides also a NoC simulator to evaluate the performance
of the NoC. Finally, ProNoC contains a NoC emulator. It
provides a behavioural execution model of the MCSoc and
the programming interface for processors cores.

B. A preliminary case study

We illustrate our solution based on ProNoC on a small case
study. This case study is composed of 4 applications, named
A0 to A3. Each application Ai is composed of 4 tasks ti,0 to
ti,3. The communication graph for each application is given
in Figure 4. The size of all the packets is 3 flits. One flit (flow
digit) is 4 bytes.

As represented in Figure 3, the NoC is a 2D-mesh network.
It uses XY routing algorithm. The flits are stored in input
queues of the NoC routers. The size of these queues is 4 flits.

5

Application 1

t13

t11 t10 t12

Application 0

t03

t01t00

t02

Application 2

t23

t21

t20

t22

Application 3

t33

t31

t30

t32

Fig. 4. Communication task graph for each application

The scheduling policy is round-robin. No virtual channel is
used.

Each core of the tiles executes at most one task.
The applications are allocated on the many-core using SHiC

strategy [8]. Figure 3 shows the resulting mapping.
Using the ProNoC emulator, the tasks are executed by the

processor core of the tiles. Our methodology is as follow. (1)
The task send the packet using ni_transfert function. (2)
This function asks the transmission to the network interface of
the tile. (3) A timestamp function is started. This function gets
the global clock value. (4) When the data are received by the
destination tile, the NI sends an interruption to the processing
core executing the reception function. (5) The handler of this
interruption reads the packet and gets the clock value.

Finally, the difference between the sending time and the
receiving time is the global transmission delay obtained using
the ProNoC tool. The results are given in Table I. We compare
the results with theoretical ones obtained using the recursive
calculus method described in [12]. The results show that the
delays obtained using the implementation are much larger
than the ones computed using a theoretical tool. It is due the
overhead in the source and destination tiles.

V. ENVISIONED SOLUTION

The theoretical computation of delays takes into account the
transmission between source and destination tiles. However it
ignores the delays within these tiles. Preliminary results on the
small use case show that these tile delays cannot be neglected.
Thus they have to be precisely characterized. Therefore a
precise analysis of the delays induced by tile architecture has
to be conducted.

In the case study, the ProNoC emulator is used. The case
study has to be extended with an implementation on an
FPGA which can then be connected to an AFDX network,
in order to obtain the architecture in Figure 1. We also have
to consider more complex (realistic) case studies and different
NoC features.

TABLE I
TRANSMISSION DELAYS OF EACH FLOW (IN µs)

Flows Practical delays Theoretical delays
t00 to t01 27.28 0.12
t01 to t02 24.22 0.12
t02 to t03 24.7 0.12
t10 to t13 54.06 0.12
t11 to t13 25.04 0.12
t12 to t13 38.02 0.12
t20 to t21 16.9 1
t21 to t20 8.49 1
t21 to t22 24.78 1
t22 to t21 24.36 1.2
t20 to t22 23.02 1.2
t22 to t20 38.22 1.2
t20 to t23 15.76 1.2
t21 to t23 17.5 1.2
t22 to t23 24.68 1.2
t31 to t32 24.24 0.6
t31 to t33 52.02 0.6
t32 to t33 23.46 0.4
t30 to t33 37.68 0.4
t30 to t32 38.66 0.24

REFERENCES

[1] DO-RTCA, “178c,” Software considerations in airborne systems and
equipment certification, 2011.

[2] Aeronautical Radio Inc. ARINC 664, Aircraft Data Network, Part 7:
Avionic Full Duplex Switched Ethernet (AFDX) Network, 2005.

[3] V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna,
E. Quiñones, R. Vargas, and A. Marongiu, “The Challenge of Time-
Predictability in Modern Many-Core Architectures,” in 14th Intl. Work-
shop on Worst-Case Execution Time Analysis, Madrid, Spain, 2014, pp.
63–72.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, 2007.

[5] L. Abdallah, J. Ermont, J. Scharbarg, and C. Fraboul, “Towards a
mixed NoC/AFDX architecture for avionics applications,” in IEEE 13th
International Workshop on Factory Communication Systems, WFCS,
2017, pp. 1–10.

[6] J. Ermont, S. Mouysset, J. Scharbarg, and C. Fraboul, “Message
scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture,”
in Proceedings of the 26th International Conference on Real-Time
Networks and Systems, RTNS, 2018, pp. 234–242.

[7] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Proc. of the Conf. on Design, Automation & Test in Europe (DATE’14),
2014, pp. 97:1–97:6.

[8] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in Proc.
of the 50th Annual Design Automation Conference, 2013, p. 39.

[9] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Reducing the con-
tention experienced by real-time core-to-i/o flows over a tilera-like
network on chip,” in Real-Time Systems (ECRTS), 2016 28th Euromicro
Conference on. IEEE, 2016, pp. 86–96.

[10] A. Monemi, J. Wei Tang, M. Palesi, and M. N. Marsono, “Pronoc: A
low latency network-on-chip based many-core system-on-chip prototyp-
ing platform,” Microprocessors and Microsystems, vol. 54, pp. 60–74,
October 2017.

[11] OpenCores, “WISHBONE System-on-Chip (SoC) interconnection
architecture for portable ip cores.” [Online]. Available:
https://opencores.org/howto/wishbone

[12] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Wormhole networks
properties and their use for optimizing worst case delay analysis of
many-cores,” in 10th IEEE International Symposium on Industrial
Embedded Systems (SIES), Siegen, Germany, June 2015, pp. 59–68.

6

ResilienceP Analysis: Bounding Cache Persistence
Reload Overhead for Set-Associative Caches

Syed Aftab Rashid, Geoffrey Nelissen, Eduardo Tovar
CISTER, ISEP, Polytechnic Institute of Porto, Portugal

I. MOTIVATION AND INTRODUCTION

In modern systems, the latency of an access to the main
memory is much higher than the latency of an individual
computation on the processor. Cache memory bridge this
performance gap between the main memory and processor by
holding frequently required data and instructions. Intuitively,
caches are used to decrease average-case memory access
latency; however, due to their limited capacity in comparison
to main memory the use of caches can also cause large
variations in the execution times of tasks. Due to limited space,
not all data/instructions of all tasks can simultaneously reside
in the cache. Hence, tasks may compete for cache space,
with the execution of one task potentially evicting memory
blocks previously loaded into the cache by other tasks. This
may result in increasing the worse-case execution/response
time (WCET/WCRT) of tasks depending on whether the
instructions/data needed by the tasks are already present in
the cache (i.e. cache hit) or not (i.e. cache miss).

The impact of caches on the WCET/WCRT of tasks is more
evident under preemptive scheduling. In preemptive schedul-
ing, tasks may suffer additional execution delays depending
on the state of the cache, namely, Cache Related Preemption
Delays (CRPDs) and Cache Persistence Reload Overheads
(CPROs). CRPDs are delays suffered by the preempted tasks
in reloading useful cache blocks (UCBs) (blocks cached before
the preemption and potentially reused after) that were evicted
from the cache during the execution of preempting tasks. On
the other hand, CPROs result from the eviction of persistent
cache blocks (PCBs) (memory blocks that, once loaded into
cache by the task, will never be invalidated or evicted by the
task itself and hence always available for fast access) due to
the interleave or preemptive execution with other tasks. Many
different approaches have been presented in the state-of-the-
art (SoA) to bound CRPDs [2] and CPROs [3], [4]. However,
most of these approaches focus on CRPD/CPRO calculation
assuming a direct-mapped cache. In a direct-mapped cache,
each cache set can hold at most one memory block and in case
of a cache conflict between two tasks τi and τj , each cache
block used by τj during its execution (i.e., called an evicting
cache block (ECB)) can evict at most one UCB/PCB of τi
and vice versa. However, today most processor architectures
rely on set-associative caches. In set-associative caches, each
cache set may hold more than one memory block depending
on the number of available cache ways (also called cache
associativity). Hence, one cache access by a task τj to the
same cache set used by another task τi, may lead to multiple
cache misses for τi (i.e., known as the cascading effect).

The few analyses in the literature that consider set-

associative caches only focus on CRPD computation. How-
ever, it has been shown in recent works [3], [4] that only
considering CRPDs for tasks scheduled under fixed-priority
preemptive scheduling may result in largely pessimistic WCRT
bounds and that the analyses that considers both CRPD and
CPRO [3], [4] dominate the WCRT analyses that only consider
CRPD [1]. Considering that the existing approaches for CPRO
calculation only consider direct-mapped caches, in this paper
we present different approaches to bound CPRO for set-
associative caches. First, we present the PCB-ECB approach
that considers PCBs of the task under analysis and ECBs of
all other tasks in the system to calculate CPROs. We then
introduce the resilienceP analysis that removes some of the
pessimism in the PCB-ECB approach by considering the re-
silience of PCBs when calculating CPRO. Finally, we present
a multi-set alike resilienceP analysis that considers variation
in the resilience of PCBs over different job executions of a
task in order to have an even tighter CPRO bound.

II. NOTATIONS AND BACKGROUND

We focus on set-associative caches using the Least-
Recently-Used (LRU) replacement policy, i.e., on a cache miss
the least recently used memory block within a cache set is
evicted. The number of memory blocks each cache set can
store is known as the number of ways or the associativity of
the cache and is denoted by k. The total number of sets in
the cache is denoted by cs. We use dmem to denote the time
needed to load one cache block from the main memory into
the cache. As we consider fixed priority preemptive scheduling
(FPPS), we use hep(i) to denote the set of tasks with priorities
higher than or equal to that of τi (hence including τi).
Evicting and Useful Cache Blocks (ECBs and UCBs). All
cache blocks used by the task during its execution are called
ECBs [5] and an ECB m is also a UCB at a program point
P, if m is cached at P and may be reused at program point Q
that may be reached from P without eviction of m [6].
Cache Related Preemption Delay (CRPD). when a task τi is
preempted by a higher priority task τj , ECBs of τj may evict
UCBs of τi that are to be reloaded from the main memory
after τi resumes. The additional execution time incurred by τi
due to these extra cache reloads is termed as CRPD.

For set-associative caches, the resilience analysis [7] domi-
nates all other method in the SoA to compute CRPD. It uses
the notion of resilience to bound the CRPD of task τi due to
preemptions by a higher priority task τj .
Resilience [7]. The Resilience of a memory block m at
program point P is the largest l such that all possible next
accesses to m (i) would be cache hits if there is no preemption,
and (ii) would still be cache hits if there is a preemption at

7

program point P with l cache accesses to the same cache set
as m. The Resilience of a cache block m at a program point
P is given by

resP (m) = (k − 1)−max -ageP (m) (1)

where max -ageP (m) is the maximum LRU-age of m at
program point P, i.e., the maximum number of accesses to
the same cache set as m from the last use of m before
or at program point P to the next access to m after P [7].
In resilience analyses, the CPRD of task τi due to a single
preemption by a higher priority task τj in a cache set s is
given by γres,si,j ;

γres,si,j = dmem × |UCBs
i \ {mi|res(mi) ≥ |ECBs

j |}| (2)

where |UCBs
i | and |ECBs

j | denote the number of UCBs/ECBs
of τi and τj in cache set s. Effectively, the total CRPD over
all cache sets s ∈ cs is given by γresi,j , where

γresi,j =
cs∑

s=0

γres,si,j (3)

Note that since the number of UCBs and the resilience is
calculated for each program point, γresi,j is given by the
program point that maximize Eq. (3) over all program points.
Details on the formulation of Eq. (1)-(2) can be found in [7].
Persistent Cache Block (PCB) [3]. A memory block mi of
task τi is a PCB if, once loaded by τi, mi will never be
invalidated or evicted from the cache when τi executes in
isolation.
Cache Persistence Reload Overhead (CPRO) [3]. The
CPRO of a task τj executing during the response time of a task
τi is denoted by ρj,i and is formally defined as the maximum
memory reload overhead suffered by task τj due to evictions
of its PCBs by tasks in hep(i) \ τj .

III. PCB-ECB APPROACH FOR CPRO CALCULATION

Existing approaches for CPRO calculation [3], [4] cannot
be used as is for set-associative caches. This is due to the
cascading effect in set-associative LRU caches which may
result in evicting several PCBs of task τj due to a single
ECB of tasks in hep(i) \ τj . This effect does not happen in a
direct-mapped cache where each ECB of tasks ∈ hep(i) \ τj
can evict at most one PCB of τj . Before presenting our
solution for set-associative caches, we first recall the CPRO-
union approach [3] that calculates the CPRO ρdirj,i of a task
τj executing during the response time of another task τi
considering a direct-mapped cache,

ρdirj,i = dmem ×
∣∣∣∣PCBj ∩

(⋃

∀τk∈hep(i)\τj

ECBk

)∣∣∣∣ (4)

where PCB j is the set of PCBs of τj and⋃
∀τk∈hep(i)\τj ECBk is the set of ECBs of all tasks
∈ hep(i) \ τj . For a formal proof of Eq. (4) see [3]. It is
proved in [3] that the set of PCBs of τj , i.e., PCB j , upper
bound the CPRO τj may suffer. We can easily extend that
concept to set-associative caches by observing that the number
of PCBs of τj in a cache set s, i.e., |PCBs

j |, upper bounds
the CPRO τj may suffer due to s. Let CPROs

j denote the
CPRO τj may suffer in cache set s, then CPROs

j = |PCBs
j |,

i.e., the total number of PCBs of τj in cache set s.

(a) SoA resilience Analysis (b) ResilienceP analysis

Fig. 1: Overestimation in the SoA resilience analysis

From [3], we also know that the worst-case impact of all
tasks in hep(i) \ τj on PCBs of τj is bounded by the set of
all ECBs of all tasks in hep(i) \ τj (See Eq. 4). Hence, the
worst-case impact of all task in hep(i)\τj on PCBs of τj in a
cache set s can be upper-bounded by CPROs

hep(i)\τj , where

CPROs
hep(i)\τj =

{
k if

⋃
∀τk∈hep(i)\τj ECB

s
k 6= ∅

0 otherwise
(5)

Consequently, the CPRO of task τj in cache set s is bounded
by ρset,sj,i , where

ρset,sj,i = dmem ×min
(
CPROs

j ,CPRO
s
hep(i)\τj

)
(6)

and the total CPRO one job of τj may suffer during the
response time of τi is thus given by ρsetj,i =

∑cs
s=0 ρ

set,s
j,i .

IV. RESILIENCEP ANALYSIS

The PCB-ECB approach presented in Section III assumes
that if one ECB of any task τk ∈ hep(i) \ τj is mapped to a
cache set s then all the PCBs of τj in s will be evicted. This
assumption is safe but very pessimistic. Therefore, to have
a tighter bound on the CPRO, in this section we determine
the set of PCBs of task τj that may remain cached even
after preemptions/executions of tasks ∈ hep(i) \ τj thanks to
the resilience of τj’s PCBs. However, we first note that the
SoA resilience analysis [7] cannot be used as is to calculate
the resilience of PCBs. To illustrate, see Fig. 1a showing the
control-flow graph (CFG) and mapping of memory blocks of
two jobs of task τj , i.e., τj,1, τj,2, in a 4-way set associative
cache. We assume that {m1,m2,m3,m4} are all PCBs of
τj . Using the SoA resilience analysis that only considers the
execution of one job of τj , i.e., τj,1, it results that the resilience
of PCB m1, m2, m3 and m4 is 0, 1, 2, and 3 respectively
(see Fig. 1a). However, these resilience bounds are not sound
considering that PCB m1, m2, m3 and m4 are reused only
during the execution of the next job of τj , i.e., τj,2. In fact,
the maximum-age of all these PCBs across two jobs of τj is 3
which leads to a resilience of 0 for all the PCBs (See Eq. (1)).

The ResilienceP analysis accounts for the overestimated
resilience of PCBs in the existing resilience analysis by
calculating the maximum-age of PCBs over all job executions
of τj . This is done by assuming that τj is cyclic, i.e., a loop
between the end point E and start point S of τj (e.g., see
Fig. 1b). The cyclic assumption ensures that the maximal
number of different cache accesses between the last use of
mj in one job of τj and the first access of mj in the next
job of τj are considered when determining the maximum-age
of mj . Moreover, knowing that PCBs are calculated at task

8

(a) Variation in the resilience of PCBs of task τj

(b) Different job executions of τj and τk
Fig. 2: Highlighting the pessimism in ResilienceP analysis

level [3] in contrast to UCBs (calculated per program point)
and the evictions of cache blocks in UCB ∩PCB are already
accounted for in the CRPD cost, the resilienceP analysis only
calculates the maximum-age of PCBs at the end point E
of a task τj using the same approach as proposed in [7].
Formally, under the resilienceP analysis the maximum-age of
a PCB mj is given by max -age(mj) = max -ageE(mj),
and the resilience of PCB mj is given by resPCB (mj) =
(k − 1) − max -age(mj). Consequently, the total CPRO of
one job of task τj executing during the response time of τi is
bounded by ρresj,i =

∑cs
s=1 ρ

res,s
i,j , where

ρres,sj,i = dmem×

∣∣∣∣∣∣
PCBsj \

mj |resPCB (mj) ≥

∑

∀τk∈hep(i)\τj
|ECBsk|

∣∣∣∣∣∣
(7)

V. MULTISET ALIKE RESILIENCEP ANALYSIS

The resilienceP analysis always considers the worst-case
(i.e., minimum) resilience of PCBs for all jobs of τj that
may execute in a time interval of length t. This is true if
τj only has a single execution path as in Fig. 1b. However,
if τj has multiple execution paths, the resilience of PCBs
may vary depending on the actual execution paths taken by
two successive jobs of τj . Therefore, always considering the
minimum resilience of PCBs over all job executions of τj may
overestimate the total CPRO τj may suffer. To illustrate this,
see Fig. 2a that shows the CFG of a task τj with two execution
paths and four possible execution flows between two jobs of
τj , i.e., p1→ p2, p2→ p1, p1→ p1 and p2→ p2. The cache
contents along each execution flow are also shown in Fig. 2a.
We assume that all memory blocks of τj except m0 and m5

map to the same cache set s of a 4-way set-associative cache.
For clarity, we only focus on PCB m1.

We can see in Fig. 2a that the resilience of m1 is minimum,
i.e., resPCB (m1) = 0, if first job of τj follows path p1 and the
next job follow path p2. Now consider the example schedule
shown in Fig. 2b showing four jobs of τj along with three jobs
of a task τk ∈ hep(i) \ τj such that ECBs

k = {mx}. Fig. 2b
also shows the contents of cache set s after the execution of
every job of τj and τk.

TABLE I: CPRO-table for every PCB mj of task τj
Number of jobs of τj (J)

2 3 ...
⌈
t
Tj

⌉

1 min(1, x) min(2, x) ... min(
⌈
t
Tj

⌉
− 1, x)

2 min(1, x) min(2, x) ... min(
⌈
t
Tj

⌉
− 1, x)

D
is

tu
rb

an
ce

(D
)

...

≥ k 1 2 ...
⌈
t
Tj

⌉
− 1

As the minimum resilience of m1 is 0 and |ECBsk| >
resPCB (m1), the resilienceP analysis (i.e., Eq. (7)) implies
that every time τk preempts τj or executes between two
subsequent jobs of τj , m1 will be evicted. This results in a
CPRO of dmem × 3. However, we can see in Fig. 2b that this
is not true. In fact even in the worst-case when we maximize
jobs of τj following the execution flow with the minimum
resilience (i.e., p1 → p2), m2 is evicted and reloaded only
two times resulting in a CPRO of dmem × 2.

The multi-set alike ResilienceP analysis reduces the pes-
simism in the ResilienceP analysis by considering the variation
in the resilience of PCBs across different job execution of a
task τj . For each PCB mj of τj we create a CPRO-table (See
Table I) to determine how many times mj can be evicted in an
interval of length t considering a given disturbance D, i.e., the
total number of ECBs of tasks in hep(i) \ τj . Given the value
of D and J, one entry in Table I (i.e., x) for a PCB mj tells
us how many times mj may be evicted and must therefore be
reloaded.

In future, we will investigate how to efficiently build Table I
and evaluate our solutions.
Acknowledgments. This work was partially supported under PhD grant
SFRH/BD/119150/2016, by National Funds through FCT/MCTES (Por-
tuguese Foundation for Science and Technology), within the CISTER Re-
search Unit (UID/CEC/04234); by the Operational Competitiveness Pro-
gramme and Internationalization (COMPETE 2020) under the PT2020 Part-
nership Agreement, through the European Regional Development Fund
(ERDF), and by national funds through the FCT, within project POCI-01-
0145-FEDER-029119 (PREFECT); by the European Union through the Clean
Sky 2 Joint Undertaking, under the H2020 Framework Programme (H2020-
CS2-CFP08-2018-01), grant agreement nr. 832011 (THERMAC).

REFERENCES

[1] S. Altmeyer, R. I. Davis, and C. Maiza, “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive
systems,” Real-Time Systems, vol. 48, no. 5, pp. 499–526, 2012.

[2] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on static
cache analysis for real-time systems,” Leibniz Transactions on Embedded
Systems, vol. 3, no. 1, pp. 05–1, 2016.

[3] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, and E. Tovar,
“Cache-persistence-aware response-time analysis for fixed-priority pre-
emptive systems,” in ECRTS, 2016, pp. 262–272.

[4] S. A. Rashid, G. Nelissen, S. Altmeyer, R. I. Davis, and E. Tovar, “Inte-
grated analysis of cache related preemption delays and cache persistence
reload overheads,” in RTSS. IEEE, 2017, pp. 188–198.

[5] H. Tomiyama and N. D. Dutt, “Program path analysis to bound cache-
related preemption delay in preemptive real-time systems,” in CODES,
2000, pp. 67–71.

[6] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” Computers, IEEE Transactions on,
vol. 47, no. 6, pp. 700–713, 1998.

[7] S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: Tightening
the crpd bound for set-associative caches,” in LCTES. ACM, 2010, pp.
153–162.

9

Towards Real-time Self-adaptation Using a
Verification Mechanism

Hiroyuki Nakagawa, Hiroki Tsuda, Tatsuhiro Tsuchiya
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, 565-0871 Japan
Email: {nakagawa, h-tsuda, t-tutiya}@ist.osaka-u.ac.jp

Abstract—Self-adaptation is desirable as an essential feature
for dealing with environmental changes. Several studies are
conducted on the development of self-adaptive systems; however,
most of the studies do not pay attention to time constraints that
the systems should satisfy. Even though some studies verify the
time constraints at design time, to our knowledge, no middleware
for self-adaptive systems religiously deal with time constraints
at runtime. This paper describes the vision and the current
state of our middleware that provides a modeling method,
scheduling mechanism, and programming framework for self-
adaptive systems that should behave under time constraints.

I. Introduction
Systems in the real world have to interact with their en-

vironments. Because of an increase in the diversity of the
environments and the life-span of systems, many of these
systems also have to adapt to their environmental changes
that are not considered at the design time. Self-adaptation
is regarded as an essential feature for dealing with such
environmental changes. This feature is studied in the software
engineering field [1].

Many of systems in the real world have time constraints, that
is, they are a kind of real-time systems [2]. Since an increase
of processing time caused by an unexpected environmental
change may result in a delay of behavior and a system failure,
it is desirable to establish a design methodology to implement
real-time self-adaptive systems. While most of the real-time
systems work in highly predictable environments as hard real-
time systems, our study aims to construct a self-adaptation
middleware that behaves as a soft real-time system. Some
studies, such as [3] [4] [5], have focused on adaptive real-
time systems. As in these studies, we assume that tasks
are sporadic. A sporadic task has a worst-case execution
time. However, since the worst-case execution time, which
is sometimes extended by unexpected environmental changes
that are not part of the considered operational domain, is
not determined at design time, we acquire the time from
the monitoring results at run time. While existing algorithms
schedule fixed tasks that have multiple service levels by
determining suitable service levels at runtime, our study deals
with the variability of multiple candidate tasks, that is, the
system has to determine which tasks should be executed or
not. In self-adaptive systems, configurations define which tasks
can be executed on the system.

Studies on self-adaptive systems such as [1] and [6] pointed
out the importance of dynamic verification; however, there is

Self-adaptation

layer

Components

Scheduling

layer

processing time

sensing data/

processing time

UPPAAL

scheduling
results

activate/passivate

Monitor

Analyze

Plan

Execute

current
configuration

Fig. 1. The overview of our self-adaptation middleware that can handle time
constraints.

no middleware that provides dynamic verification mechanisms
of time constraints. This paper presents our approach to
designing self-adaptation middleware that can deal with time
constraints. This paper also describes the current state of our
study.

II. Approach

Figure 1 illustrates the overview of our self-adaptation
middleware that handles time constraints. We assume that the
target system is constructed as a component-based system
[7], that is, the system is placed into separate components
which provide their functions and have their interfaces. Our
middleware adds two layers on the components that provide
system functions. The lower layer, called self-adaptation layer,
realizes self-adaptation. Self-adaptation mechanisms such as
those based on the MAPE (Monitor-Analyze-Plan-Execute)
loop [8] mechanism can be located in this layer. This layer
monitors components and collects sensing data and process-
ing time from the components. If the layer determines it
must adapt to environmental changes from the collected data,
the layer changes the configuration by controlling (activat-
ing/deactivating) the components. A configuration defines the
elements that a system is composed of. Therefore, the con-
figuration defines which tasks can be executed on the current
system.

The upper layer, called the scheduling layer, on the other
hand, dynamically checks whether the current configuration

10

satisfies time constraints. The layer verifies the adequacy of
the current configuration using input processing time and the
model that represents the configuration. The layer sends the
verification results to the lower layer.

In such a system, we have to consider the following three
parameters related to time constraints:
• texec: the time necessary to complete given tasks.
• tcalc: the time necessary to calculate texec.
• t f ind: the time to find a suitable configuration for the

current environment.
When the scheduling layer predicates a time constraint viola-
tion, that is, when the layer concludes that the scheduled tasks,
which take the time texec, will miss the deadline, the system
decides to start an adaptation. The scheduling layer searches
for a new configuration that satisfies all of time constraints.
When the verification passes all the time constraints, the layer
sends the suitable configuration as a verification result to
the self-adaptation layer, and then the self-adaptation layer
changes the states of the components to implement adaptation.

Here, we define our system model. A system has one or
more sporadic functions. We denote the i-th function as Fi.
To provide a function, set of tasks should be executed. Some
functions have alternative task sets to deal with environmental
changes. Generally, a function has one or more task sets. We
denote the j-th task set of the function Fi as Tsi j. The k-th task
in Tsi j is denoted as Ti jk. Every task has a estimated worst-
case execution time, denoted as e(Ti jk). Like the assumptions
presented by Block et al. [3], the worst-case execution times
are not assumed. Each task set Tsi j has a service level.

III. Scheduling Layer
The input of the scheduling layer is a current system

configuration, which we can model as a set of task sets for all
functions ΣiTsi j. The scheduling layer returns yes if the current
system configuration satisfies all of the time constraints. If
the current system configuration cannot satisfy the time con-
straints, the scheduling layer returns no and generates a new
systems configuration that satisfies the time constraints, i.e., a
new set of task sets ΣiTsi j′ . If two or more task sets for the
same functions can be the candidates of the new configuration,
the one that has a higher service level should be selected.

To implement the scheduling layer, we use UPPAAL. UP-
PAAL is a tool box for modeling, simulation, and verification
of real-time systems [9]. The verifier of UPPAAL checks
whether the timed automata which represent system behaviors
satisfy time constraints. Since our verification mechanism
has to verify time constraints at run time, the verification
mechanism dynamically generates an intermediate file that
represents a network of timed automata and executes the
UPPAAL verifier at runtime.

Although model checking techniques may suffer from the
state explosion problem, our approach uses UPPAAL not to
verify the violation of time constraints under all of the possible
situations but to find a suitable configuration under the current
environment, like one for using a model checking mechanism
for the planning [10]. We have observed that our scheduling

finalinitial

F
2

...

strategy A strategy B module A

strategy A’

exchangeable

...

functions

F
1

F
3

F
1

abstract tasks

task

tasktask

Fig. 2. Hierarchy of automata. The root automaton represents state transitions
of functions. States in functions represent abstract tasks, which are modeled
in automata of strategies or modules. A module corresponds to a task.

engine can output scheduling results well ahead of time in our
examples.

Figure 2 shows the automata that the engine accepts as a
model that represents system behaviors. The automata form a
hierarchical structure. The upper part of Figure 2 represents the
perspective structure of the root automaton. The root automa-
ton is constructed such that it can represent the execution of all
functions of the system. Each function consists of one or more
abstract tasks. These abstract tasks are represented as locations
(states) in the root automaton. An abstract task is decomposed
into more specific and exchangeable automata. A task that can
be processed by one component is called a module and the one
that has to be processed by more than one component is called
a strategy. The decomposition is continued until an automaton
can be processed by a single component, that is, until all of
the tasks are represented as modules.

Such a modeling allows us to calculate the processing time
of a function by summing up processing times of relevant
modules. These processing times are recalculated at runtime
to update the attributes of automata. To represent the hierarchal
task structure, a parent automaton and child automata are syn-
chronized by a synchronizing channel. We use the UPPAAL’s
channel for this purpose.

When a time constraint violation is detected in a veri-
fication, the verification mechanism searches for a suitable
configuration by replacing a module or strategy with an
alternative one. The verification process continues until an
updated configuration, i.e., a set of automata, satisfies all the
time constraints.

IV. Preliminary Evaluation

We conducted a preliminary case study using simulation.
We designed a self-adaptive UAV (Unmanned Aerial Vehicle)

11

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

Fig. 3. The root automaton of a UAV controller system example. Loops labeled “Fx” correspond to individual functions. This automaton is synchronized
with other automata that represent strategies and modules.

controller based on our approach. We defined 10 functions for
the controller, such as take off, go forward, and turn left (right),
and decomposed them to define 4 strategies and 17 modules.
Figure 3 illustrates the root automaton of the controller. We
also defined time constraints, such as “E<> EndTakeOff and
clk <= 100” for the function F2 in Figure 3.

We constructed a mock-up self-adaptation mechanism and
components. The mock-up self-adaptation mechanism in the
self-adaptation layer was implemented on our programming
framework [11], which provides a general MAPE loop mech-
anism, i.e., features for monitor, analysis, planing, and execu-
tion. It sends processing time of components to the scheduling
layer. The mock-up components also print out logs if their
states are changed. We defined time constraints for each
function and initial processing time of each task. We simulated
two scenarios and observed that time constraint violations
triggered an adaptation: when we injected a fault or a large
processing time, our framework detected violations and started
to search for a new configuration. In both scenarios, the
verifications were correctly finished and the results, i.e., new
configurations, were implemented by changing component
states. We observed that the scheduling layer found suitable
configurations in these case studies; however, we have to eval-
uate the performance of our approach using larger examples.

V. Conclusion and FutureWork

This paper described our approach to dealing with adapta-
tion under time constraints. Our approach uses a self-adaptive
mechanism as the basis and assembles it with a scheduling
engine that uses a dynamic verification mechanism, which can
deal with time constraints. In this paper, we mainly explained
a scheduling mechanism that uses a verification technique. The
scheduling mechanism dynamically uses UPPAAL not only to
verify time constraints in the current configuration but also to
find a suitable configuration if it is required.

One of the main remaining parts of our study is a refinement
of the scheduling mechanism. The current mechanism is
optimistic about the time for scheduling, that is tcalc + t f ind.
Experimental results indicate that the scheduling requires
sufficiently short time; however the scheduling layer has to
manage time strictly. We have to evaluate the scalability of the
mechanism by conducting experiments with a large number of

tasks and their candidate tasks for adaptation. Note that if we
construct the middleware to make the scheduling and self-
adaptation layers work in parallel, we can manage texec and
tcalc + t f ind independently.

We may need to extend the scheduling engine. The current
engine determines a suitable configuration under the assump-
tion that tasks are executed serially. If a system permits a
parallel execution of tasks, the scheduling result would be
improved. In this case, we will embed an existing scheduling
algorithm that can deal with a parallel scheduling into the
mechanism. We also plan to enhance the self-adaptation mid-
dleware. In order to be able to consider various delicate time
constraints related to texec, tcalc, and t f ind, not only at design
time but also at runtime, we will implement some useful APIs
that directly interact with the scheduling layer.

References
[1] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, and et al., “Software

engineering for self-adaptive systems: A second research roadmap,” in
Dagstuhl Seminar 10431, 2011.

[2] E.-R. Olderog and H. Dierks, Real-Time Systems: Formal Specification
and Automatic Verification, 1st ed. New York, NY, USA: Cambridge
University Press, 2008.

[3] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint, “An adaptive
framework for multiprocessor real-time system,” in Proc. of the 2008
Euromicro Conference on Real-Time Systems (ECRTS 2008), 2008, pp.
23–33.

[4] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and
M. Marley, “Performance specifications and metrics for adaptive real-
time systems,” in Proc. of the 21st IEEE Conference on Real-time
Systems Symposium (RTSS 2000). IEEE CS, 2000, pp. 13–23.

[5] T. F. Atdelzater, E. M. Atkins, and K. G. Shin, “Qos negotiation in
real-time systems and its application to automated flight control,” IEEE
Transactions on Computers, vol. 49, no. 11, pp. 1170–1183, Nov 2000.

[6] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time,” IEEE
Trans. on Software Engineering, vol. 42, no. 1, pp. 75–99, Jan 2016.

[7] D. Garlan, R. T. Monroe, and D. Wile, “Foundations of component-
based systems,” G. T. Leavens and M. Sitaraman, Eds. Cambridge
University Press, 2000, pp. 47–67.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[9] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” 1997.
[10] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Proc.

of the 5th European Conference on Planning: Recent Advances in AI
Planning (ECP ’99). Springer-Verlag, 1999, pp. 1–20.

[11] H. Tsuda, H. Nakagawa, and T. Tsuchiya, “Towards self-adaptation on
real-world hardware: A preliminary lightweight programming frame-
work,” in Proc. of the IEEE 9th Inter. Conf. on Self-Adaptive and Self-
Organizing Systems (SASO’15), Sept 2015, pp. 176–177.

12

Towards Robust and Cost-Effective Critical Real-Time Systems under
Thermal-Aware Design

Javier Pérez Rodrı́guez and Patrick Meumeu Yomsi
CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal

Email: {perez; pmy}@isep.ipp.pt

Abstract—The advent of multi-core platforms in critical real-
time domains such as the avionics, automotive and railways
to achieve higher and higher computing performance has
turned the view on thermal concerns of the underlying chip
die while it is still mandatory to meet all the temporal
constraints. As a matter of fact, high chip temperature may
not only degrade system performance and reliability, but it
may also damage the chip permanently. In this paper, we
propose a methodology to address this problem, based on
fixed task-to-core mapping and per-core analysis to derive
a sound system model without feedback loop. To this end,
it is important to have a better and deeper understanding
of the existing thermal models in the literature. This is the
main contribution of this research.

1. Introduction

For several decades now, critical real-time systems
have consistently and continuously been under the spot-
lights of experts from both industry and academia. This
is because they exposed stringent functional and non-
functional requirements that have to be met, otherwise
catastrophic consequences may occur. In general, these
systems are modeled by using a finite set of recurrent
tasks to be executed on a targeted hardware platform
(e.g., the Intel Core2 from Intel, the 4-core Arm V7
Raspberry Pi 3 B and B+ from Arm; the TMS-320-C6678
from TI, the Tile-Gx3000 from Tilera, and the MPPA-
256 architecture from Kalray) and each task commonly
consists of a potentially infinite number of instances
(jobs). Each job is characterized by four parameters: (1) a
release time, which defines the instant time at which the
job becomes available and ready for execution; (2) a
worst-case execution time, which defines an upper-bound
on the actual execution time of the job on the targeted
platform; (3) a minimum inter-arrival time, which defines
how frequent is the release of a new job1; and finally
(4) a deadline, which defines a time window, from the
release, wherein the job has to complete its execution.
While each task’s functional correctness is important for
these systems, the time at which the result is produced
is also central. To this end purpose, several factors have
to be considered at the system design time. Examples
include the task interactions, concurrency, and interference
at the software level; and the mechanisms governing the
execution of the tasks (preferably with a great level of
details) at the hardware level. To date, an entire body
of knowledge, techniques and methodologies have been

1. If the frequency is constant, then the task is said to be periodic.

Figure 1. Classical control block diagram for thermal management.

proposed in the literature on the topic, some of which are
now mature, especially for single core platforms. How-
ever, new challenges arise almost on a daily basis. This
is due to the ever growing complexity and computational
demand of the applications at the software level and/or
the non-disclosure of valuable and detailed information on
the targeted platform by the hardware vendors. Despites
these noticeable limitations and the constant necessity for
miniaturization of the emerging hardware components,
we have been witnessing the integration of more and
more processing elements in smaller silicon areas in order
to achieve better performance. As a matter of fact, the
integration scale has been doubling every three years [1],
[2]. From a software viewpoint, this has resulted in forcing
the processor to execute workloads at high frequencies
most of the time. Hence, (i) the necessity for hardware
miniaturization on one side; and (ii) the ever increasing
computational demand of the applications on the other
side, put together, have highlighted a serious problem: the
soaring power dissipation of the integrated circuits, which
in turn translates in temperature dissipation. Obviously,
high temperatures create a number of problems, because
transistors may fail to switch properly and therefore can
lead to transient and/or permanent errors for the entire
system. Specifically, an increment in the temperature until
an uncontrolled value can affect drastically the runtime
behavior of the tasks, and also the platform. This phe-
nomenon holds true irrespective of hosting the execution
of the tasks on a platform with a single or several cores.
According to Borkar [1], the price for cooling down a watt
of temperature in a processor is about $1 − $3 or more.
Consequently, this opens a broad avenue for research
for the design of cost-effective and more robust critical
real-time systems in critical real-time domains such as
the avionics, automotive and railways. To the best of
our knowledge, the thermal problem for critical real-time
systems has been addressed in the literature by either
switching off some core(s) [3], [4] or by re-scaling the
cores speed [5], [6], [7], [8]. Roughly speaking, this means
that the thermal management of the platform is handled

13

by using a feedback control block diagram as illustrated
in Figure 1. Here, action is taken only when the reported
temperature by the thermal sensor rises above a predefined
threshold. Below the threshold, no specific optimization
and/or workload distribution strategy is used to maintain
both the temporal and thermal behavior of the system.
As a consequence, the time spent in cooling down the
system may cause temporal changes in the original tasks
schedule and then jeopardize the schedulability. Further-
more, not all platforms can support speed re-scalability,
unfortunately. In this work, we argue and believe that
the problem must be addressed from a different angle.
In our opinion, it is possible to create a new “correct-
by-construction” framework, preferably unique, wherein
we model under the same umbrella both the temporal
and thermal “on-core” and “un-core” activities for each
processing element. For a given mapping, the on-core
model will capture the activity (temporal and thermal) of
the core under analysis, whereas the un-core model will
capture the interference (temporal and thermal) imposed
by other processing elements and share resources. As a
result, it will become easier to derive an analysis that
predicts the run-time behavior of the entire system without
any need of a feedback loop (see Figure 2).

2. Problem statement

Nowadays, multi-core platforms are pervasive in nu-
merous critical real-time systems due to the enormous
computing capabilities they offer. While meeting domain-
specific standards’ requirements (e.g., the ARINC-653
and DO-178C in the avionics; and the ISO-26262 in the
automotive) in terms of temporal requirements, our main
objective is to address the following question. As the
adoption of a multi-core platform exposes the underlying
chip die to several heating sources and the temperature of
each core can interfere with the thermal dissipation of the
neighboring cores, how to adapt and/or design a robust
and cost-effective thermal model of the platform that can
easily be coupled with the adopted temporal model of
the application so as to make it possible for the system
designer to capture in an accurate manner both the chip-
wide and the localized thermal behaviors of the system
at run-time? The derived thermal model, associated with
the temporal model, will allow for a sound thermal-aware
schedulability analysis for the entire system.

3. Overview of existing thermal models

Before going into details, it is worth mentioning that
power models as described in the literature have failed
to manage temperature, despite the well-known duality
between heat transfer and electrical phenomena. Conse-
quently, to pave the way towards a convincing solution to
the aforementioned problem, an educated strategy com-
mands us to proceed by exploring all the thermal models
that have been proposed in the literature in first place. In
this regard, only two thermal models have been developed
to the best of our knowledge: (1) a coarse-grained model
referred to as TEMPEST [9], which uses a Resistance-
Capacitance (RC) parallel circuit representation; and (2) a
fine-grained model referred to as HotSpot [10], [11],

which uses a RC serial circuit representation. Below, we
briefly discuss their advantages and disadvantages.

. TEMPEST. This model has been proposed by
Dhodapkar et al. [9]. Here, temperature is tracked
only at a macro-architectural level, i.e., at the
chip level. Consequently, this model is not flexible
and allows only for chip-wide thermal-aware tech-
niques such as Dynamic Voltage and Frequency
Scaling (DVFS) [12] and Fetch Toggling [13] for
reducing the processor peak temperatures. On the
positive side, TEMPEST is easily portable to new
hardware architectures and simple to implement
because it makes it possible to safely bound the
temperature of the underlying platform irrespec-
tive of the localization of eventual hotspots and it
is agnostic to the hardware run-time mechanisms.
However, it has been proven that localized heating
occurs much faster than chip-wide. In this case,
chip-wide treatments are too conservative, unfor-
tunately.

. HotSpot. This model has been proposed by
Skadron et al. [10]. In contrast to TEMPEST,
temperature is tracked at the granularity of indi-
vidual micro-architectural units and the equivalent
RC circuits have at least one node for each unit.
As such, this model allows for the detection of
hotspots and to promptly activate a thermal re-
sponse. The system designer can operate at block-
level on the underlying platform or even below,
and so, he can capture and handle the effects of
hotspots more accurately. However, the model is
way less portable and much more complex to im-
plement as it requires a detailed understanding of
the mechanisms governing the run-time behavior
of most hardware components (e.g., branch predic-
tor, load-store queue, D-cache etc.). In addition,
the sampling rate at which the detection of new
hotspots is performed have to be closely scruti-
nized as it plays a central role here, unfortunately.

4. Envisioned approach

From the discussion conducted in Section 3, it fol-
lows that the HotSpot model exposes better features than
TEMPEST for the design of an accurate thermal-aware
management technique upon a multi-core platform. How-
ever, the right level of abstraction that would make it
unnecessary to model all the micro-architectural units and
still achieve a sound analysis is missing. To fill this gap,
we plan to proceed in three phases as follows.

First, we plan to revisit the task-to-core mapping
strategies available in the literature in order to take into
account the thermal profile of each task in our mapping
procedure. During this phase, we will promote mapping
strategies for which the increase of the overall plat-
form temperature is as minimum as possible. This will
be achieved by using a stochastic-based approach for
example. Second, for the resulting mapping, we will
adopt a per-core analysis and build a unique “correct-
by-construction” framework wherein we model both the
temporal and thermal “on-core” and “un-core” activities
for each processing element. Our combined system model

14

Figure 2. Envisioned control block diagram for thermal management.

will allow us not only to guarantee soundness, but also to
optimize for thermal efficiency and thus costs. The on-core
model will capture the activity (temporal and thermal)
of the core under analysis, whereas the un-core model
will capture the interference (temporal and thermal) im-
posed by other processing elements and share resources.
Finally, we will derive an analysis that predicts the run-
time behavior of the entire system from a temporal and
thermal viewpoint without any need of a feedback loop
(see Figure 2). Note that in presence of such a feedback
loop, the imprecision of the thermal sensor may lead to
an optimistic, if not wrong, analysis. Consequently, our
proposed approach will rely on strong mathematical foun-
dations based on an open control loop with perturbations
for each core.

5. Conclusion
In this work, we detailed our research roadmap for

the design of a robust and cost-effective critical real-
time system under thermal-aware design. We revisited
the thermal models available in the literature and briefly
discussed their advantages and disadvantages. We reached
the conclusion that the HotSpot thermal model exposes
the most promising features to help us meet our objec-
tives both from a temporal and thermal viewpoint, but
it requires some adjustments. The main challenge is to
find the correct level of abstraction that would make it
unnecessary to model the thermal behavior of all micro-
architectural units. Finally, we elaborated on the directions
that we are planning to explore to derive our thermal-
aware schedulability analysis for multi-core platforms.

Acknowledgment
This work was partially supported by National Funds

through FCT/MCTES (Portuguese Foundation for Sci-
ence and Technology), within the CISTER Research Unit
(UID/CEC/04234); by the European Union through the
Clean Sky 2 Joint Undertaking, under the H2020 Frame-
work Programme (H2020-CS2-CFP08-2018-01), grant
agreement nr. 832011 (THERMAC).

References
[1] S. Borkar, “Design challenges of technology scaling,” IEEE Micro,

vol. 19, no. 4, pp. 23–29, July 1999.

[2] R. Mahajan, “Thermal management of CPUs: A perspective on
trends, needs and opportunities.” in Proceedings on 8th Interna-
tional Workshop on THERMal INvestigations of ICs and Systems
(THERMINIC), 10 2002.

[3] P. Kumar and L. Thiele, “Thermally optimal stop-go scheduling
of task graphs with real-time constraints,” in 16th Asia and South
Pacific Design Automation Conference (ASP-DAC 2011), Jan 2011,
pp. 123–128.

[4] Y. Chandarli, N. Fisher, and D. Masson, “Response time analysis
for thermal-aware real-time systems under fixed-priority schedul-
ing,” in IEEE 18th International Symposium on Real-Time Dis-
tributed Computing, April 2015, pp. 84–93.

[5] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to
manage energy and temperature,” in 45th Annual IEEE Symposium
on Foundations of Computer Science, Oct 2004, pp. 520–529.

[6] N. Bansal and K. Pruhs, “Speed scaling to manage temperature,”
in STACS, V. Diekert and B. Durand, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 460–471.

[7] S. Wang, Y. Ahn, and R. Bettati, “Schedulability analysis in hard
real-time systems under thermal constraints,” Real-Time Systems,
vol. 46, pp. 160–188, 10 2010.

[8] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, “Feedback
thermal control of real-time systems on multicore processors,”
in Proceedings of the Tenth ACM International Conference on
Embedded Software, ser. EMSOFT. New York, NY, USA: ACM,
2012, pp. 113–122.

[9] A. Dhodapkar, C. How Lim, G. Cai, and R. Daasch, “TEM2P2EST:
A Thermal Enabled Multi-model Power/Performance ESTimator,”
in Power-Aware Computer Systems, 06 2001, pp. 112–125.

[10] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan, “Temperature-aware microarchitecture:
Extended discussion and results,” in In Proceedings of the 30th
Annual International Symposium on Computer Architecture, 07
2003, pp. 2–13.

[11] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan,
S. Ghosh, and S. Velusamy, “Compact thermal modeling for
temperature-aware design,” in 41st Design Automation Confer-
ence., July 2004, pp. 878–883.

[12] D. R. Sulaiman, M. Ibrahim, and I. Hamarash, “Dynamic voltage
frequency scaling (DVFS) for microprocessors power and energy
reduction,” 4th International Conference on Electrical and Elec-
tronics Engineering, 12 2005.

[13] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic
techniques and thermal-RC modeling for accurate and localized
dynamic thermal management,” in Proceedings Eighth Interna-
tional Symposium on High Performance Computer Architecture,
Feb 2002, pp. 17–28.

15

	 Design and implementation of an FPGA-based NoC for Real Time Systems Yilian Ribot González and Geoffrey Nelissen
	 Towards a generic platform for the distribution of avionics applications on manycores Ghina Abdallah, Jérôme Ermont, Sandrine Mouysset and Jean-Luc Scharbarg
	 ResilienceP Analysis: Bounding Cache Persistence Reload Overhead for Set-Associative Caches Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar
	 Towards Real-time Self-adaptation Using a Verification Mechanism Hiroyuki Nakagawa, Hiroki Tsuda and Tatsuhiro Tsuchiya
	 Towards Robust and Cost-Effective Critical Real-Time Systems under Thermal-Aware Design Javier Pérez Rodríguez and Patrick Meumeu Yomsi

