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Motivation/Approach

NVIDIA Tegra X2

▶ CPUs: 4× ARM Cortex A57, 2× Denver (ARM/NVIDIA)
▶ GPU: 256 CUDA cores in 2 streaming multiprocessors (SM)
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NVIDIA Tegra X2 block diagram
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Motivation/Approach

GPU execution times under CPU interference
Tegra X2, CPUs performing sequential memory accesses
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Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.
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Motivation/Approach

Safety-Critical applications
E.g. autonomous driving

▶ Future application will need to combine safety and high
performance

▶ Typically, only some parts of the system are safety-critical
▶ Goal: isolate critical parts from non-critical ones

▶ Failure in non-critical component should not propagate to a
critical one

▶ ISO26262: Freedom from interference
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Motivation/Approach

Interference on TX2

1. CPU-to-GPU

2. GPU-to-CPU
3. CPU-to-CPU
4. GPU-to-GPU
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Motivation/Approach » PREM

CPU-to-CPU interference

▶ Possible solution (a part of): PRedictable Execution Model
(PREM)

▶ Tasks prefetch batches of data to CPU-local memory
(cache/scratchpad) and synchronize on access to main
memory

▶ Well applicable to
number-crunching
applications:
▶ Image processing
▶ Neural networks

▶ GPUs are better suited for
these

P C C W

P C W

P W WP

CPU1

CPU2

MC
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Motivation/Approach » PREM

Problems with PREM on GPUs

▶ Memory bandwidth is almost always a
bottleneck

▶ Compute-phases are shorter due to high
parallelism

▶ Mutual exclusion for memory access kills
performance

P C C W

P C W

P W WP

CPU1

CPU2

MC

▶ Costly synchronization (≈ 2 µs)
▶ between CPU and GPU or
▶ between multiple SMs in the GPU
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Motivation/Approach » PREM

PREM on GPU: Early approach – GPUguard (ETHZ)
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▶ Low performance due to excessive synchronization between
CPU and GPU

CPU/GPU
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Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:

▶ Low synchronization
overhead

▶ Applies not only to GPU
but can span the whole
chip

Cons:

▶ Cannot handle dynamic
workload

▶ Over-provisioning due to
uncertain execution time

▶ Reduced by our
approach
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Experiments and results

Overview

Interference Approach When
CPU-CPU PREM and TT scheduling past

GPU-GPU “PREM” and TT scheduling started in this paper
CPU-GPU TT scheduling + ? future

Experiments:
1. Synchronization overhead
2. Inter-kernel interference (2D convolution)
3. Detailed interference characterization (2D convolution)
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Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in

▶ Across multiple CUDA blocks (SMs):
▶ Spinlock-like in pinned (non-cached) memory: 2 µs
▶ Time-based (globaltimer register):

▶ Default timer resolution is not sufficient: 1 µs
▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in
▶ Across multiple CUDA blocks (SMs):

▶ Spinlock-like in pinned (non-cached) memory: 2 µs

▶ Time-based (globaltimer register):

▶ Default timer resolution is not sufficient: 1 µs
▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in
▶ Across multiple CUDA blocks (SMs):

▶ Spinlock-like in pinned (non-cached) memory: 2 µs
▶ Time-based (globaltimer register):

0 10 20 30 40 50 60 70

Iterations

0

1

2

3

4

T
im

e
[µ

s]

Default

▶ Default timer resolution is not sufficient: 1 µs

▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in
▶ Across multiple CUDA blocks (SMs):

▶ Spinlock-like in pinned (non-cached) memory: 2 µs
▶ Time-based (globaltimer register):

0 10 20 30 40 50 60 70

Iterations

0

1

2

3

4

T
im

e
[µ

s]

Default

After nvprof

▶ Default timer resolution is not sufficient: 1 µs
▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Intra-GPU interference

2D convolution benchmark
From Polybench-ACC benchmark suite
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GPU kernel

Mask
▶ Original (legacy)

implementation

▶ Tiled implementation with
prefetching

▶ Tile size ⇒ 4 kernels can
run simultaneously
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Experiments and results » Intra-GPU interference

Tiled 2D convolution schedule

▶ 4 kernels, 2 streaming multiprocessors
▶ prefetch, compute, writeback phases + spinning
▶ different kernels started with different offsets

0

512

1024

1536

2048

N
of

T
h

re
ad

s

K:0:0

K:1:0

K:2:0

K:3:0

SM 0

K0:B0

K1:B0

K2:B0

K3:B0

32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0

Time [us]

0

512

1024

1536

2048

N
of

T
h

re
a
d

s

K:0:1

K:1:1

K:2:1

K:3:1

SM 1

K0:B1

K1:B1

K2:B1

K3:B1

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 16 / 21



Experiments and results » Intra-GPU interference

Results: Execution + jitter

Legacy: 1 kernel

Legacy: 4 kernels

Tiled: 4 kernels, no scheduler
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Tiled: 4 kernels, 1400 ns offset
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Experiments and results » Interference characterization

Interference between prefetch and compute phases
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▶ Less overlap of prefetch phases ⇒ shorter execution time and
smaller jitter

▶ Compute phases interfere with each other (shared memory
bank conflicts)
⇒ prevents straighformward application of PREM
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Experiments and results » Interference characterization

Interference between writeback phases
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▶ Less overlap of writeback phases ≈⇒ shorter execution time
and smaller jitter
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Experiments and results » Interference characterization

Conclusion

▶ Time-triggered scheduling on TX2 GPU is possible

▶ GPU globaltimer register has sufficient resolution (160 ns)
after running nvprof

▶ Even very simple scheduling (adding offset) shows potential to
reduce execution time jitter
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Future work

Future work: Interference-aware scheduling of complex
GPU workloads
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