
Experiments for Time-Predictable Execution of
GPU Kernels

Flavio Kreiliger, Joel Matějka, Michal Sojka
and Zdeněk Hanzálek

OSPERT 2019
July 9, 2019,

Stuttgart, Germany

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 1 / 21



Motivation/Approach

NVIDIA Tegra X2

▶ CPUs: 4× ARM Cortex A57, 2× Denver (ARM/NVIDIA)
▶ GPU: 256 CUDA cores in 2 streaming multiprocessors (SM)

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 2 / 21



Motivation/Approach

Outline

Motivation/Approach

Experiments and results

Future work

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 3 / 21



Motivation/Approach

NVIDIA Tegra X2 block diagram

CPUs

GPU
Video & display

USB
SATA

MEM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 4 / 21



Motivation/Approach

NVIDIA Tegra X2 block diagram

CPUs

GPU
Video & display

USB
SATA

MEM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 4 / 21



Motivation/Approach

NVIDIA Tegra X2 block diagram

CPUs

GPU

Video & display

USB
SATA

MEM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 4 / 21



Motivation/Approach

NVIDIA Tegra X2 block diagram

CPUs

GPU
Video & display

USB
SATA

MEM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 4 / 21



Motivation/Approach

NVIDIA Tegra X2 block diagram

CPUs

GPU
Video & display

USB
SATA

MEM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 4 / 21



Motivation/Approach

GPU execution times under CPU interference
Tegra X2, CPUs performing sequential memory accesses

80%

100%

120%

140%

160%

180%

200%

CUDA UVM CUDA Kernel CUDA
memset

CUDA
memcpy

R
el

a
ti

ve
 e

xe
cu

ti
o

n
 t

im
e 

%

Alone

Interf 1

Interf 2

Interf 3

Interf 4

Interf 5

Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 5 / 21



Motivation/Approach

Safety-Critical applications
E.g. autonomous driving

▶ Future application will need to combine safety and high
performance

▶ Typically, only some parts of the system are safety-critical
▶ Goal: isolate critical parts from non-critical ones

▶ Failure in non-critical component should not propagate to a
critical one

▶ ISO26262: Freedom from interference

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 6 / 21



Motivation/Approach

Safety-Critical applications
E.g. autonomous driving

▶ Future application will need to combine safety and high
performance

▶ Typically, only some parts of the system are safety-critical
▶ Goal: isolate critical parts from non-critical ones

▶ Failure in non-critical component should not propagate to a
critical one

▶ ISO26262: Freedom from interference

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 6 / 21



Motivation/Approach

Interference on TX2

1. CPU-to-GPU

2. GPU-to-CPU
3. CPU-to-CPU
4. GPU-to-GPU

80%

100%

120%

140%

160%

180%

200%

CUDA UVM CUDA Kernel CUDA
memset

CUDA
memcpy

R
el

a
ti

ve
 e

xe
cu

ti
o

n
 t

im
e 

%

Alone

Interf 1

Interf 2

Interf 3

Interf 4

Interf 5

0

10

20

30

40

50

60

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

La
te

n
cy

 [
n

s]

WSS [B]

CPU – sequen�al read, sequen�al interference

Cache limit

Alone

Interf 1

Interf 2

Interf 3

Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 7 / 21



Motivation/Approach

Interference on TX2

1. CPU-to-GPU
2. GPU-to-CPU

3. CPU-to-CPU
4. GPU-to-GPU

80%

100%

120%

140%

160%

180%

200%

CUDA UVM CUDA Kernel CUDA
memset

CUDA
memcpy

R
el

a
ti

ve
 e

xe
cu

ti
o

n
 t

im
e 

%

Alone

Interf 1

Interf 2

Interf 3

Interf 4

Interf 5

0

10

20

30

40

50

60

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

La
te

n
cy

 [
n

s]

WSS [B]

CPU – sequen�al read, sequen�al interference

Cache limit

Alone

Interf 1

Interf 2

Interf 3

Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 7 / 21



Motivation/Approach

Interference on TX2

1. CPU-to-GPU
2. GPU-to-CPU
3. CPU-to-CPU

4. GPU-to-GPU

80%

100%

120%

140%

160%

180%

200%

CUDA UVM CUDA Kernel CUDA
memset

CUDA
memcpy

R
el

a
ti

ve
 e

xe
cu

ti
o

n
 t

im
e 

%

Alone

Interf 1

Interf 2

Interf 3

Interf 4

Interf 5

0

10

20

30

40

50

60

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

La
te

n
cy

 [
n

s]

WSS [B]

CPU – sequen�al read, sequen�al interference

Cache limit

Alone

Interf 1

Interf 2

Interf 3

Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 7 / 21



Motivation/Approach

Interference on TX2

1. CPU-to-GPU
2. GPU-to-CPU
3. CPU-to-CPU
4. GPU-to-GPU

80%

100%

120%

140%

160%

180%

200%

CUDA UVM CUDA Kernel CUDA
memset

CUDA
memcpy

R
el

a
ti

ve
 e

xe
cu

ti
o

n
 t

im
e 

%

Alone

Interf 1

Interf 2

Interf 3

Interf 4

Interf 5

0

10

20

30

40

50

60

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

La
te

n
cy

 [
n

s]

WSS [B]

CPU – sequen�al read, sequen�al interference

Cache limit

Alone

Interf 1

Interf 2

Interf 3

Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 7 / 21



Motivation/Approach

Interference on TX2

1. CPU-to-GPU
2. GPU-to-CPU
3. CPU-to-CPU
4. GPU-to-GPU

80%

100%

120%

140%

160%

180%

200%

CUDA UVM CUDA Kernel CUDA
memset

CUDA
memcpy

R
el

a
ti

ve
 e

xe
cu

ti
o

n
 t

im
e 

%

Alone

Interf 1

Interf 2

Interf 3

Interf 4

Interf 5

0

10

20

30

40

50

60

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

La
te

n
cy

 [
n

s]

WSS [B]

CPU – sequen�al read, sequen�al interference

Cache limit

Alone

Interf 1

Interf 2

Interf 3

Source: Capodieci et al., Detailed characterization of platforms,
Deliverable D2.2, H2020 project HERCULES, 2017.

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 7 / 21



Motivation/Approach » PREM

CPU-to-CPU interference

▶ Possible solution (a part of): PRedictable Execution Model
(PREM)

▶ Tasks prefetch batches of data to CPU-local memory
(cache/scratchpad) and synchronize on access to main
memory

▶ Well applicable to
number-crunching
applications:
▶ Image processing
▶ Neural networks

▶ GPUs are better suited for
these

P C C W

P C W

P W WP

CPU1

CPU2

MC

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 8 / 21



Motivation/Approach » PREM

Problems with PREM on GPUs

▶ Memory bandwidth is almost always a
bottleneck

▶ Compute-phases are shorter due to high
parallelism

▶ Mutual exclusion for memory access kills
performance

P C C W

P C W

P W WP

CPU1

CPU2

MC

▶ Costly synchronization (≈ 2 µs)
▶ between CPU and GPU or
▶ between multiple SMs in the GPU

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 9 / 21



Motivation/Approach » PREM

PREM on GPU: Early approach – GPUguard (ETHZ)

CPU

K(GPU-GUARD)

HV

SHM

GPU Init

O
ffload

C
he

c k
-i

n

R
e

q 
M

em
-p

ha
se

M?

M

R
e

q 
C

om
p-

ph
as

e

C?

C

C
h

ec
k-

ou
t

C?

finiMSpinning on SHM Spinning on SHM

Further execution

cudaDeviceSynchronize

Create GG-Interface, exchange SHM, Retrieve GG-stats

M-WCET C-WCETSetup T

▶ Low performance due to excessive synchronization between
CPU and GPU

CPU/GPU

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 10 / 21



Motivation/Approach » PREM

PREM on GPU: Early approach – GPUguard (ETHZ)

CPU

K(GPU-GUARD)

HV

SHM

GPU Init

O
ffload

C
he

c k
-i

n

R
e

q 
M

em
-p

ha
se

M?

M

R
e

q 
C

om
p-

ph
as

e

C?

C

C
h

ec
k-

ou
t

C?

finiMSpinning on SHM Spinning on SHM

Further execution

cudaDeviceSynchronize

Create GG-Interface, exchange SHM, Retrieve GG-stats

M-WCET C-WCETSetup T

▶ Low performance due to excessive synchronization between
CPU and GPU

CPU/GPU

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 10 / 21



Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:

▶ Low synchronization
overhead

▶ Applies not only to GPU
but can span the whole
chip

Cons:

▶ Cannot handle dynamic
workload

▶ Over-provisioning due to
uncertain execution time

▶ Reduced by our
approach

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 11 / 21



Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:
▶ Low synchronization

overhead

▶ Applies not only to GPU
but can span the whole
chip

Cons:

▶ Cannot handle dynamic
workload

▶ Over-provisioning due to
uncertain execution time

▶ Reduced by our
approach

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 11 / 21



Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:
▶ Low synchronization

overhead
▶ Applies not only to GPU

but can span the whole
chip

Cons:

▶ Cannot handle dynamic
workload

▶ Over-provisioning due to
uncertain execution time

▶ Reduced by our
approach

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 11 / 21



Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:
▶ Low synchronization

overhead
▶ Applies not only to GPU

but can span the whole
chip

Cons:
▶ Cannot handle dynamic

workload

▶ Over-provisioning due to
uncertain execution time

▶ Reduced by our
approach

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 11 / 21



Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:
▶ Low synchronization

overhead
▶ Applies not only to GPU

but can span the whole
chip

Cons:
▶ Cannot handle dynamic

workload
▶ Over-provisioning due to

uncertain execution time

▶ Reduced by our
approach

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 11 / 21



Motivation/Approach » Time-Triggered scheduling

Another approach: Time-Triggered scheduling

▶ GPU jobs are often offloaded in batches (e.g. one video
frame)
▶ the whole batch can be scheduled
▶ all parameters are known at least at offload time
▶ the processing pipeline is static (safety)

Pros:
▶ Low synchronization

overhead
▶ Applies not only to GPU

but can span the whole
chip

Cons:
▶ Cannot handle dynamic

workload
▶ Over-provisioning due to

uncertain execution time
▶ Reduced by our

approach

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 11 / 21



Experiments and results

Outline

Motivation/Approach

Experiments and results

Future work

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 12 / 21



Experiments and results

Overview

Interference Approach When
CPU-CPU PREM and TT scheduling past

GPU-GPU “PREM” and TT scheduling started in this paper
CPU-GPU TT scheduling + ? future

Experiments:
1. Synchronization overhead
2. Inter-kernel interference (2D convolution)
3. Detailed interference characterization (2D convolution)

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 13 / 21



Experiments and results

Overview

Interference Approach When
CPU-CPU PREM and TT scheduling past
GPU-GPU “PREM” and TT scheduling started in this paper

CPU-GPU TT scheduling + ? future

Experiments:
1. Synchronization overhead
2. Inter-kernel interference (2D convolution)
3. Detailed interference characterization (2D convolution)

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 13 / 21



Experiments and results

Overview

Interference Approach When
CPU-CPU PREM and TT scheduling past
GPU-GPU “PREM” and TT scheduling started in this paper
CPU-GPU TT scheduling + ? future

Experiments:
1. Synchronization overhead
2. Inter-kernel interference (2D convolution)
3. Detailed interference characterization (2D convolution)

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 13 / 21



Experiments and results

Overview

Interference Approach When
CPU-CPU PREM and TT scheduling past
GPU-GPU “PREM” and TT scheduling started in this paper
CPU-GPU TT scheduling + ? future

Experiments:
1. Synchronization overhead
2. Inter-kernel interference (2D convolution)
3. Detailed interference characterization (2D convolution)

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 13 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in

▶ Across multiple CUDA blocks (SMs):
▶ Spinlock-like in pinned (non-cached) memory: 2 µs
▶ Time-based (globaltimer register):

▶ Default timer resolution is not sufficient: 1 µs
▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in
▶ Across multiple CUDA blocks (SMs):

▶ Spinlock-like in pinned (non-cached) memory: 2 µs

▶ Time-based (globaltimer register):

▶ Default timer resolution is not sufficient: 1 µs
▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in
▶ Across multiple CUDA blocks (SMs):

▶ Spinlock-like in pinned (non-cached) memory: 2 µs
▶ Time-based (globaltimer register):

0 10 20 30 40 50 60 70

Iterations

0

1

2

3

4

T
im

e
[µ

s]

Default

▶ Default timer resolution is not sufficient: 1 µs

▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Synchronization

Synchronization between GPU jobs/kernels

▶ Within one CUDA block (one SM of the GPU) – built-in
▶ Across multiple CUDA blocks (SMs):

▶ Spinlock-like in pinned (non-cached) memory: 2 µs
▶ Time-based (globaltimer register):

0 10 20 30 40 50 60 70

Iterations

0

1

2

3

4

T
im

e
[µ

s]

Default

After nvprof

▶ Default timer resolution is not sufficient: 1 µs
▶ nvprof recofigures the resolution to about 160 ns

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 14 / 21



Experiments and results » Intra-GPU interference

2D convolution benchmark
From Polybench-ACC benchmark suite

Dataset

T
ile
pl
ac
ed
in

S
ha
re
d
m
em
or
y Block 0 (SM0) Block 1 (SM1)

Mask

GPU kernel

Mask
▶ Original (legacy)

implementation

▶ Tiled implementation with
prefetching

▶ Tile size ⇒ 4 kernels can
run simultaneously

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 15 / 21



Experiments and results » Intra-GPU interference

2D convolution benchmark
From Polybench-ACC benchmark suite

Dataset

T
ile
pl
ac
ed
in

S
ha
re
d
m
em
or
y

Block 0 (SM0) Block 1 (SM1)

Mask

GPU kernel

Mask
▶ Original (legacy)

implementation
▶ Tiled implementation with

prefetching
▶ Tile size ⇒ 4 kernels can

run simultaneously

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 15 / 21



Experiments and results » Intra-GPU interference

2D convolution benchmark
From Polybench-ACC benchmark suite

Dataset

T
ile
pl
ac
ed
in

S
ha
re
d
m
em
or
y Block 0 (SM0) Block 1 (SM1)

Mask

GPU kernel

Mask
▶ Original (legacy)

implementation
▶ Tiled implementation with

prefetching
▶ Tile size ⇒ 4 kernels can

run simultaneously

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 15 / 21



Experiments and results » Intra-GPU interference

Tiled 2D convolution schedule

▶ 4 kernels, 2 streaming multiprocessors
▶ prefetch, compute, writeback phases + spinning
▶ different kernels started with different offsets

0

512

1024

1536

2048

N
of

T
h

re
ad

s

K:0:0

K:1:0

K:2:0

K:3:0

SM 0

K0:B0

K1:B0

K2:B0

K3:B0

32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0

Time [us]

0

512

1024

1536

2048

N
of

T
h

re
a
d

s

K:0:1

K:1:1

K:2:1

K:3:1

SM 1

K0:B1

K1:B1

K2:B1

K3:B1

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 16 / 21



Experiments and results » Intra-GPU interference

Results: Execution + jitter

Legacy: 1 kernel

Legacy: 4 kernels

Tiled: 4 kernels, no scheduler

Tiled: 4 kernels, 1300 ns offset

Tiled: 4 kernels, 1400 ns offset
0

1

2

3

A
v
g.

sc
en

ar
io

ex
ec

.
ti

m
e

[m
s]

0

2

4

6

J
it

te
r

[%
]

1.84%

6.47%

1.47%

0.15% 0.04%

Avg. time

Jitter in %

0 500
1000

1100
1200

1300
1400

1500
1600

1700

Tile offset [ns]

2.5

3.0

3.5

A
v
g.

sc
en

ar
io

ex
ec

.
ti

m
e

[m
s]

0.0

0.5

1.0

1.5

J
it

te
r

[%
]

Baseline [ms]

Avg. time

Jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 17 / 21



Experiments and results » Intra-GPU interference

Results: Execution + jitter

Legacy: 1 kernel

Legacy: 4 kernels

Tiled: 4 kernels, no scheduler

Tiled: 4 kernels, 1300 ns offset

Tiled: 4 kernels, 1400 ns offset
0

1

2

3

A
v
g.

sc
en

ar
io

ex
ec

.
ti

m
e

[m
s]

0

2

4

6

J
it

te
r

[%
]

1.84%

6.47%

1.47%

0.15% 0.04%

Avg. time

Jitter in %

0 500
1000

1100
1200

1300
1400

1500
1600

1700

Tile offset [ns]

2.5

3.0

3.5

A
v
g.

sc
en

ar
io

ex
ec

.
ti

m
e

[m
s]

0.0

0.5

1.0

1.5

J
it

te
r

[%
]

Baseline [ms]

Avg. time

Jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 17 / 21



Experiments and results » Interference characterization

Interference between prefetch and compute phases

0
ns

50
0

ns

10
00

ns

15
00

ns

20
00

ns

30
00

ns
0

2000

4000

P
h

as
e

ex
ec

.
ti

m
e

[n
s]

Prefetch time Compute time

0

50

100

150

J
it

te
r

re
la

ti
ve

to
av

g.
p

h
as

e
ex

ec
.

ti
m

e
[%

]

▶ Less overlap of prefetch phases ⇒ shorter execution time and
smaller jitter

▶ Compute phases interfere with each other (shared memory
bank conflicts)
⇒ prevents straighformward application of PREM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 18 / 21



Experiments and results » Interference characterization

Interference between prefetch and compute phases

0
ns

50
0

ns

10
00

ns

15
00

ns

20
00

ns

30
00

ns
0

2000

4000

P
h

as
e

ex
ec

.
ti

m
e

[n
s]

Prefetch time Compute time

0

50

100

150

J
it

te
r

re
la

ti
ve

to
av

g.
p

h
as

e
ex

ec
.

ti
m

e
[%

]

▶ Less overlap of prefetch phases ⇒ shorter execution time and
smaller jitter

▶ Compute phases interfere with each other (shared memory
bank conflicts)
⇒ prevents straighformward application of PREM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 18 / 21



Experiments and results » Interference characterization

Interference between prefetch and compute phases

0
ns

50
0

ns

10
00

ns

15
00

ns

20
00

ns

30
00

ns
0

2000

4000

P
h

as
e

ex
ec

.
ti

m
e

[n
s]

Prefetch time Prefetch jitter Compute time Compute jitter

0

50

100

150

J
it

te
r

re
la

ti
ve

to
av

g.
p

h
as

e
ex

ec
.

ti
m

e
[%

]

8
1
.5

5
%

7
7
.8

7
%

7
8
.6

2
%

6
8
.2

0
%

6
0
.7

4
%

3
9
.8

7
%

2
5
.4

9
%

2
6
.2

7
%

1
8
.8

7
%

1
1
.7

6
%

1
3
.3

6
%

1
2
.8

6
%

▶ Less overlap of prefetch phases ⇒ shorter execution time and
smaller jitter

▶ Compute phases interfere with each other (shared memory
bank conflicts)
⇒ prevents straighformward application of PREM

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 18 / 21



Experiments and results » Interference characterization

Interference between writeback phases

0
ns

20
0

ns

40
0

ns

60
0

ns

80
0

ns

10
00

ns
0

500

1000

1500

P
h

as
e

ex
ec

.
ti

m
e

[n
s]

Writeback execution time

0

100

200

J
it

te
r

re
la

ti
ve

to
av

g.
p

h
as

e
ex

ec
.

ti
m

e
[%

]

▶ Less overlap of writeback phases ≈⇒ shorter execution time
and smaller jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 19 / 21



Experiments and results » Interference characterization

Interference between writeback phases

0
ns

20
0

ns

40
0

ns

60
0

ns

80
0

ns

10
00

ns
0

500

1000

1500

P
h

as
e

ex
ec

.
ti

m
e

[n
s]

Writeback execution time Writeback jitter

0

100

200

J
it

te
r

re
la

ti
ve

to
av

g.
p

h
as

e
ex

ec
.

ti
m

e
[%

]

1
5
7
.3

1
%

1
9
0
.2

7
%

8
2
.4

8
%

7
0
.0

3
%

7
5
.8

7
%

5
4
.2

8
%

▶ Less overlap of writeback phases ≈⇒ shorter execution time
and smaller jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 19 / 21



Experiments and results » Interference characterization

Conclusion

▶ Time-triggered scheduling on TX2 GPU is possible

▶ GPU globaltimer register has sufficient resolution (160 ns)
after running nvprof

▶ Even very simple scheduling (adding offset) shows potential to
reduce execution time jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 20 / 21



Experiments and results » Interference characterization

Conclusion

▶ Time-triggered scheduling on TX2 GPU is possible
▶ GPU globaltimer register has sufficient resolution (160 ns)

after running nvprof

▶ Even very simple scheduling (adding offset) shows potential to
reduce execution time jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 20 / 21



Experiments and results » Interference characterization

Conclusion

▶ Time-triggered scheduling on TX2 GPU is possible
▶ GPU globaltimer register has sufficient resolution (160 ns)

after running nvprof
▶ Even very simple scheduling (adding offset) shows potential to

reduce execution time jitter

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 20 / 21



Future work

Future work: Interference-aware scheduling of complex
GPU workloads

0 x sqrt norm

1 x sqrt norm

2 x sqrt norm

3 x sqrt norm

0 x sqrt mag

1 x sqrt mag

2 x sqrt mag

3 x sqrt mag

0 x conj

1 x conj

2 x conj

3 x conj

0 x sum
ch

1 x sum
ch

2 x sum
ch

3 x sum
ch

0 x mul

1 x mul

2 x mul

3 x mul

0 x div

1 x div

2 x div

3 x div

0 x add

1 x add

2 x add

3 x add

0 x mul c

1 x mul c

2 x mul c

3 x mul c

0 x add c

1 x add c

2 x add c

3 x add c

0 x elemmul

1 x elemmul

2 x elemmul

3 x elemmul

Avg. execution time in [us]

sqrt norm

sqrt mag

conj

sum ch

mul

div

add

mul c

add c

elemmul

49.0 55.7 63.1 74.7 49.0 51.4 67.1 75.1 49.0 50.7 65.6 74.5 48.9 48.4 49.3 55.6 48.9 57.7 80.3 98.8 48.9 58.1 78.7 99.1 48.9 53.8 69.9 80.3 48.9 51.0 66.0 73.4 48.9 50.8 66.1 74.2 48.9 59.0 82.3 99.7

10.2 11.6 16.1 21.0 10.2 21.4 31.4 40.2 10.2 19.4 29.0 37.1 10.3 11.3 18.7 26.0 10.2 23.6 35.2 48.5 10.2 22.0 29.8 42.1 10.2 23.6 30.6 38.6 10.2 19.0 28.0 35.7 10.3 19.1 28.5 36.3 10.2 22.7 35.8 48.8

12.0 13.6 19.5 27.5 12.0 25.2 38.9 47.9 12.0 24.1 40.7 51.4 12.0 13.1 22.6 31.0 12.0 39.1 58.4 75.8 12.0 30.6 46.9 67.2 12.0 35.3 48.4 61.7 12.0 24.7 43.4 55.7 12.0 24.1 41.2 53.4 12.0 35.2 58.9 74.9

2.9 3.4 3.9 7.9 2.9 5.3 13.3 17.0 2.9 4.5 11.9 15.1 2.9 4.3 6.1 12.2 2.9 8.6 15.7 19.3 2.9 8.1 13.9 17.7 2.9 7.9 13.7 16.9 2.9 4.4 11.8 14.7 2.9 4.3 11.7 14.5 2.9 8.4 14.8 18.7

26.1 29.4 36.3 38.1 26.1 37.7 45.2 54.9 26.1 39.1 48.9 59.8 26.1 28.6 35.3 39.4 26.1 52.5 78.1 103.6 26.1 46.9 70.0 97.2 26.1 41.8 53.9 69.8 26.1 38.7 47.3 59.8 26.1 39.5 49.3 60.0 26.1 56.4 82.6 105.6

30.4 38.7 49.6 52.8 30.4 46.9 52.6 61.7 30.4 47.4 57.8 67.9 30.4 38.3 45.2 47.7 30.4 56.4 80.5 105.6 30.3 55.7 78.5 104.1 30.4 51.5 61.1 73.8 30.4 48.1 58.1 68.1 30.4 48.1 58.7 68.5 30.4 59.8 84.7 107.9

14.1 20.9 30.3 31.4 14.0 34.3 42.2 50.6 14.0 35.0 44.2 54.2 14.1 23.2 31.8 34.3 14.0 42.0 65.0 86.1 14.0 35.3 54.8 76.8 14.0 38.7 50.0 62.9 14.0 35.0 43.2 54.1 14.0 34.8 44.1 54.9 14.0 43.3 66.5 85.2

12.5 14.2 20.2 28.2 12.5 25.7 39.7 48.8 12.5 24.9 42.0 52.5 12.5 13.8 23.1 31.3 12.5 39.5 60.4 80.6 12.4 30.8 49.0 70.4 12.4 35.1 46.6 60.0 12.4 25.2 41.7 52.1 12.4 24.9 41.8 52.9 12.4 37.4 61.3 79.9

12.2 13.8 19.7 28.1 12.2 25.3 39.3 48.2 12.2 24.1 41.2 51.0 12.2 13.3 22.6 31.0 12.2 39.7 59.2 78.0 12.2 30.8 47.8 68.7 12.2 35.7 46.9 61.0 12.2 25.0 41.9 53.8 12.2 24.7 41.7 53.0 12.2 36.3 60.1 77.3

31.2 34.3 37.7 41.1 31.2 38.0 46.6 55.9 31.2 38.2 48.8 59.0 31.2 33.0 35.3 41.5 31.2 57.3 83.0 108.7 31.2 52.7 78.4 104.6 31.2 45.3 58.8 73.3 31.1 38.1 49.2 61.0 31.1 38.1 49.4 60.3 31.1 61.7 87.9 110.3

1

2

3

4

5

6

A
v
g
.

ex
ecu

tio
n

tim
e

ratio
C

o
rresp

o
n

d
s

to
a
lgo

rith
m

s
listed

on
y
-ax

is

Traditional memory model - Avg. execution time

0 x sqrt norm

1 x sqrt norm

2 x sqrt norm

3 x sqrt norm

0 x sqrt mag

1 x sqrt mag

2 x sqrt mag

3 x sqrt mag

0 x conj

1 x conj

2 x conj

3 x conj

0 x sum
ch

1 x sum
ch

2 x sum
ch

3 x sum
ch

0 x mul

1 x mul

2 x mul

3 x mul

0 x div

1 x div

2 x div

3 x div

0 x add

1 x add

2 x add

3 x add

0 x mul c

1 x mul c

2 x mul c

3 x mul c

0 x add c

1 x add c

2 x add c

3 x add c

0 x elemmul

1 x elemmul

2 x elemmul

3 x elemmul

Jitter compared to avg. execution time [%]

sqrt norm

sqrt mag

conj

sum ch

mul

div

add

mul c

add c

elemmul

0.6 6.9 7.9 17.2 0.5 3.3 3.1 5.5 2.3 2.6 5.8 8.0 0.6 1.3 1.4 2.6 0.6 3.0 3.2 3.4 0.6 3.9 3.4 3.7 0.4 3.0 6.0 9.2 0.3 3.5 5.1 5.5 0.3 3.4 5.0 7.3 0.4 3.3 2.9 2.5

6.6 5.5 9.1 9.9 4.7 7.3 5.6 5.6 7.2 9.9 15.9 17.1 5.9 5.7 10.1 9.9 4.7 7.5 4.5 5.9 4.7 8.0 6.6 7.0 4.7 13.3 14.9 19.5 5.3 8.6 11.0 13.9 5.9 9.9 12.9 15.9 5.0 4.1 4.5 6.2

4.0 4.7 8.2 11.6 5.1 7.6 8.1 8.7 5.1 8.0 14.5 12.8 4.0 4.6 8.5 9.3 4.0 11.0 3.1 4.2 4.0 10.5 5.8 5.2 4.0 15.9 14.0 10.8 4.0 7.9 11.4 10.9 4.0 7.2 12.1 11.7 4.0 2.7 3.2 4.5

9.8 7.6 7.4 10.1 9.8 6.0 14.2 17.8 9.8 10.0 17.8 21.5 9.8 6.7 5.2 12.1 9.8 8.9 11.2 8.4 9.8 11.9 13.6 14.2 9.8 10.1 17.7 15.1 9.8 3.6 17.6 17.4 9.8 3.7 15.0 17.6 9.8 7.2 8.9 10.3

1.1 2.6 9.6 8.4 1.1 6.8 8.1 7.4 1.1 9.9 13.0 9.6 1.6 3.2 6.9 5.6 1.1 0.9 0.6 0.9 1.1 1.7 3.0 3.5 1.1 6.9 2.6 4.6 1.1 10.0 9.5 10.8 1.1 9.7 12.0 11.4 1.1 1.4 1.2 1.5

2.6 3.7 9.9 18.5 2.6 4.8 6.0 5.4 3.1 6.7 10.0 8.7 2.6 4.3 5.4 6.0 3.0 2.6 1.7 1.3 2.7 6.7 0.9 1.2 3.0 10.9 9.6 5.6 2.7 8.1 9.9 9.3 3.0 8.3 10.4 10.9 3.1 1.6 1.1 1.5

3.4 7.7 14.3 13.8 3.4 9.3 9.2 8.3 4.3 15.1 13.7 11.8 3.4 5.5 9.1 7.8 3.4 8.3 2.8 3.4 3.4 12.9 3.5 3.6 3.4 15.7 15.0 10.9 3.4 16.5 11.1 10.7 3.4 15.6 13.8 13.4 3.4 3.3 2.6 3.8

3.8 4.5 8.7 13.5 3.9 7.3 8.5 7.9 3.9 6.4 12.7 10.7 3.9 5.3 6.9 8.7 3.9 9.7 2.9 3.2 4.6 9.7 4.6 4.2 4.6 18.1 14.1 12.8 3.9 6.1 10.1 11.7 3.9 7.4 12.0 12.0 3.9 2.1 2.6 4.3

3.9 5.3 7.8 13.3 3.9 7.6 8.5 8.6 4.7 6.0 13.0 10.5 4.5 4.3 7.8 10.3 3.9 9.8 3.4 4.1 4.7 12.5 4.7 4.9 4.7 18.4 15.7 12.3 4.7 7.7 11.8 13.1 2.9 7.0 13.8 13.4 4.7 3.1 2.9 4.2

0.5 0.9 2.5 4.7 0.5 1.6 3.7 5.2 0.5 2.0 7.5 8.6 0.5 0.8 1.2 4.7 0.7 1.1 0.7 0.8 0.5 1.8 2.7 2.7 0.7 2.8 2.2 3.1 0.8 1.3 7.9 7.6 0.5 1.1 8.9 9.0 0.5 0.8 0.5 0.7

100

101

J
itter

ra
tio

C
orresp

o
n

d
s

to
algorith

m
s

listed
on

y
-ax

is

Traditional memory model - Jitter compared to avg. execution time

F. Kreiliger et al. Experiments for Time-Predictable Execution of GPU Kernels OSPERT19 21 / 21


	Motivation/Approach

