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Trends in Aerospace

| Trend towards new and additional IT-services and *E lgﬁ_.
denser functional integration:

R |

Operations — -

Airport Operations

B 7 P
[:] (=]
Maintenance RSTwo
Operations
- = Airline 3
= = ~Operations 2 * ~Passenger
g - Services

EUROCAE: WG-T2 — Aeronautical Systems Security October 2010 Page 4

Demand for new and additional IT-services on aircraft itself and between aircraft and ground

* Integrate formerly physically separated functions onto one platform
* New failure modes and failures

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

I_ part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.
(0,8

« New threats and vulnerabilities
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Partitioning, Mixed-Ciriticality, ....
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I Mixed-Criticality System in Industry — What's it?

| Multiple safety criticalities (residing) on same platform
2 Key requirement for platform: Platform needs to fulfill safety requirements at minimum of
highest safety requirement of application.
» Criticalities are assigned by safety process and don’t change

» Chosen independence between applications to minimize interaction between otherwise
independent “safety chapters” (system level safety analysis extremely complicated w/o this
requirement).

What it is NOT

» A system where system approach sacrifices lower criticality applications for whatever
purpose (directional partitioning property)

“Real-life” aspects:

» Deployed for many years (B777, B787, A380, A350, E170/175, E190/195, ...) under the name
Integrated Modular Avionic (IMA) systems

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

I_ part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.
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> Wish to deploy modern computing platforms like multicore or even
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I Mixed-Criticality in Academic Literature (especially Scheduling)

| Originated in 2007 with Vestal paper

» Higher criticality applications have “higher * priority in case of “issues”
» Requires adaptation of safety process (mentioned in 2007 paper)

» “The thinking behind this multi-criticality bounds on execution time is that the software and
hardware are fixed, all that was varying are the verification methods” St. Vestal (2015)

> Programming approaches for higher criticality are different

© Thales 2015 All rights reserved.

- Simpler conftrol flow; different verification and validation techniques

- Even safety margin can be smaller for higher criticality code

- Example: High MC/DC (Modified Code / Decision Coverage) coverage for high criticalities
requires high

From mainstream industrial viewpoint: Research focuses more on “performability” and
not (safety) criticality

Some techniques may, however, be applicable to systems where safety requires only
attribute integrity and “less” availability

| Research on flexibility of scheduling however is generally valuable

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

part or disclosed to a third party without the prior written consent of Thales -
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I Partitioning

| Is a concept for spatial and | Types of partitioning
temporal separation/segregation
of functionally independent

» Time partitioning: temporal aspect

ny way, in wh

2 Space partitioning: memory aspect

- ©Thales 2015 All rights

components:
} . 2 |/O partitioning: time and space
: » Prevents interference between two partitioning for I/O
E components

e Partition/process: independent
segregated environment

e Separation kernel / Memory
Management Unit: control instance

* Temporal partitioning does not need
to be implemented in time slots | E.g.
P. Binns with slack scheduling on
Primus EPIC

Keynote ECRTS 2015, Lund, Sweden I I I A L E 5
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I Application Needs - Fail-Safe Versus Fail-Operational

| Partitioning for safety does not always require safety attribute availability

2 Fail-operational: Attribute integrity and availability

ny way, in wh

- Aerospace: plane cannot “stop” in air
> Fail-safe Attribute integrity

s - ©Thales 2015 All rights

- Railway signaling: tfrain can stop
- Minimum level of availability is required to avoid or minimize manual operation
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I Boeing 777 - First Airplane with Integrated Modular Avionics (IMA)

o
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I Boeing 777 Integration

cT

- ©Thales 2015 All rights reserve

sent of Tha

| Dual integrated cabinets provide all processing and 1/0O resources for:

» Displays (incl. Graphics Generation)

ed, adapted, published, translated, in any way, in \

» Flight Management (incl. Autothrottle)
35 > Central Maintenance
; > Communication Management (incl. Flight Deck Communication)
{ > Airplane Condition Monitoring
a: > Flight Data Recorder
; » Data Conversion Gateway
¥ > Quick Access Recorder

| ]5 Keynote ECRTS 2015, Lund, Sweden I I I A L E 5



Cockpit
Boeing 777
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Boeing 777 Avionics Architecture

==

LIGHT
SENSOR

L |
T

REMOTE

SIEII\?S'—‘OTR PRIMARY

EICAS
A429
|
A429

CURSOR CURSOR
CONTROL CONTROL

LEFT CENTER
LEFT AIMS MCDU MCDU

CABINET

RIGHT AIMS
CABINET

SYSTEM
ARINC 629

FLY-BY-WIRE
ARINC 629

DO - 1O -

THALES




I Next generation
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I Avionics (Snapshot)

DU 3

CM MBSU 1
L ]

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin
part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved
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I Aerospace — A Long Tradition of Safety Civil Certification Standards

Part 21: Certification of Aircraft & Related Products, Parts & Appliances
CS 25: Certification Specifications for Large Aeroplanes
CS 25.1309: Equipment, Systems & Installations
AMC 25.1309: System Design & Analysis

Airworthiness Standards
ARP4754 / ED-79

A ble M Of C i Set of requirements to ensure
cceptable Means ompliance System passengers* safety

Legislation

ay, in whole orin

s 2015 All rights reserved.

N any w

Development Process

The equipment is not available yet... $ [ ARP 4761 ]
Structured approach to ensure that the DO-297 / ED-124 Safety Assessment
equipment WILL meet the (safety) objectives / Integrated \
DO-178C / ED-12C Modular Avionics (IMA) DO-254 / ED-80
Software < Electronic Hardware
Development Process DO-160D / ED 14D Development Process

. . . Environmental
The equipment is available. e e —— -

Tests are applied on the equipment itself. Procedures

Keynote ECRTS 2015, Lund, Sweden I I I A L E 5
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Safety in Aerospace —

Safety Assessment Process System Development Process

System Development

Aircraft Level Functional

Hazard Assessment -

(FHA)

A 'y
£ . | Failure Cpnditions,

unctiona Effects, Classification,

Interactions Safety Requirements ¥
Allocation of

L4

) Aircraft
Failure System Functions to

- Conditions—= System Level FHASs Functions

| Example ARP4754: Saieme

A

System Development o e,
Safety Requirements A

Process with strong ; " Development of

Aircraft Aircraft Level
Functions Requirements

et Architectural
Separation Preliminary System Requirements - Sy_stem
Safety fOC US Requirements Safety Assessments Architecture
(PSSA) - System
Common i Architecture
Cause i
Analysis
Allocation of
Item Reqyirements, Item _ | Requirements to
Safety Objectives, Requirements o Hardware &
Analysis Required Software
A4 Jl
Separation System Safety _ System System
& “erification Assessments (SSA) Implementation Implementation

—l Results Physical System
L ¥

© EUROCAE/RTCA Certification
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This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin
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Chip Evolution

\fs reserved.

[ Main Memory ’

g g
(=] L=
* E E
—{ erigges | 5 5 Network on Chip
= [ =
| © =
= =
[ 1o ] S Integrated ] Integrated
Fie] fe]
External External
11O /O
@ coTs () Custom @ coTs (D cCustom @@ coTs ) Custom
Host processor System-on-Chip (50C) Multi-Processor System-on-Chip (MP5oC)
Increasing integration density and complexity >

| 25 Keynote ECRTS 2015, Lund, Sweden
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I View of Aerospace Multi-Core Certification Body Related to Timing

* Only selective view of publicly available FAA CAST paper 32

hole orin

© Thales 2015 All rights reserved.

ay, inw

-~ *» (Functional) interference channels of multicore processors

Wi

» Concerns: there may be software or hardware channels through which the MCP cores or the
software hosted on those cores could interfere with each other

e Shared resources like Memory / Cache

Concerns: Memory or cache memory that are shared between the processing cores

A" "4

... can lead to problems such as the worst-case execution times (WCETs) of the software
applications hosted on cores increasing greatly due to repeated cache accesses by the
processes hosted on the other core, leading to repeated cache misses.

* Planning and Verification of Resource Usage

» Concern: Interconnect Fabrics / Inferconnect Modules as source of non-deterministic behavior,
fear of resource capacity violation, ...

This document may not be reproduced, modified, adapted, published, translated, in any

part or disclosed to a third party without the prior written consent of Thales -
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Multicore: General Possible
Undesired Effects (Temporal)

© Thales 2015 All rights reserved.

N

Other possible undesired effects affecting
temporal determinism

2> How does current hardware affect mixed
crificality and especially interference?

> What can be done about it (analysis,
improvement, inclusion in processes)
especially in current commercial off the shelf
(COTS) architectures.

Details in papers

> O.Kotaba, J. Nowotsch, M. Paulitsch, S.
Petters, H. Theiling. Multicore In Real-Time
Systems - Temporal Isolation Challenges Due
To Shared Resources. WICERT workshop as part
of DATE 2013.

» D. Dasari, B. Akesson, V. Nelis, M.A. Awan, S.M.
Petters. Identifying the Sources of
Unpredictability in COTS-based Multicore
Systems. SIES conf. 2013.

Keynote ECRTS 2015, Lund, Sweden

Shared

resource

Mechanism

System bus

Clontention by multiple cores
Contention by other device - 1O, DMA, etc.

Contention by coherency mechanism traffic

Bridges

Contention by other connected busses

MMemory bus
and controller

Cloncurrent accoss

Memory

(DRAM)

Interleaved access by multiple cores canses address
sot-up delay
Delay by memory refresh

Shared cache

Cache line eviction

Contention due to concurrent access

Coherency: Read delaved due to invalidated entry
Coherency: Dwelay due to comtention by coherency
mechanizm read reqguested by lower level cache

Coherency: Contention by coherency mechanism on this
lavwel

Local cache

Coherency: Read delaved due to invalidated entry
Coherency: Contention by coherency mechanism read

TLE=s Coherency overhead
Addressable Overhead of locking mechanism accessing the memory
devices

I/70 Device state altered by other thread fapplication
Interrupt routing overhead

Contention on the addressable device - e.g. DR A,
Interrupt concroller, otc.

Synchronous access of other bus by the addressable
device (e.g. DMA)

Pipeline stames

Contention by parallel hyperthreads

Logical units

Clontention by parallel applications

Other platform-zpecific effects, e.o.
BIOS Handlers, Automated task migration, Cache
atashing, etc.




Assessment of Multi-Core Worst-Case Execution Behavior

Overview

| Motivation:

© Thales 2015 All rights reserved.

CCSR
configuration
control and
status register
mapping

| Goal

> Analysis of partitioning feo’rurgs of
modern multicore computer in SPT

context of use in IMA

» Impact of integration on
worst-case timing (WCET) of application

| Approach

2> memory-intensive tests

Focus of work:

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

part or disclosed to a third party without the prior written consent of Thales -

OPEN
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[uss ]
SD/MMC

Pattern Matcher

other I/0 master

» Integration leads to common use of shared resources. Partitioning impact needs to be
evaluated for safety-critical applications, such as IMA

|

CoreNet Interface

L3 § |~ DDR Controller
L3 $ («~—{DDR Controller

Freescale P4080

* Network on Chip (hot much data available); some memory access performance tests
Details of work published at EDCC2012 (J. Nowotsch, M. Paulitsch)

THALES
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Assessment of Multi-Core WCET
Memory (DDR) Accesses (8 Cores)

s - ©Thales 2015 All rights reserved.
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1 p

10000

time [us

— 1000 |
100

10

read-read ———— -
read-write ¢
write-read ——— 4

write-write —=—
| |

3 4 5 6 7
Active Cores

8

1/30 about
4 times
slower
overdll

(8¥1/32)

Worst-case access time increases over-proportionally with more cores.

Keynote ECRTS 2015, Lund, Sweden
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System Integration Problem Due to Multicore Processors
Interference Depends on Program

| Worst-case execution time depends on use of shared resource (like
common memory)

 Some idea about access times (Freescale P4080):

Number of in parallel * Access to main memory is 80-20 core cycles for one core

ge active resource * Access to main memory with 8 cores running in parallel is ca. 1000 cycles
£ (memory) accesses - only “long” time w/o access leads to improvement

5% A

| |

35 4 i 290% i

35 3 i 210% |

i |

3% | |

at 2 : 150% |

52 1 100% |

g% —_———— I._ Worst Case
€3 . =

g2 | Single core | Interference overhead I" Execution Time
Eé | WCET part | (interference dependent on use of shared resource) | (WCET)

OPEN
| 30 Keynote ECRTS 2015, Lund, Sweden I I A L
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Some Measured Values for Freescale P4080
Interference Between Single-Core and 8-Core Systems

| Worst case influence (for 8 core multicore system)

| Worst case observed versus worst case analysis & some conclusions can
be drawn for average case (slack between average and worst case)

single-core

multi-core

384.9 >> 8 times greater

max. upper bound max. upper bound
OET bound deviation| OET bound deviation
bmark [ms] _ms] [90] [ms] _Ims] [0]
cacheb 619 %_gy 13.9 1034 >%¥9@
iirflt 745 1 27.7 2476 1 7 404.8
rspeed 963 1418 - 2327 19021
a2time | 121 251 334 2971
bitmnp 2300 3504 52.4 5781 49170 0.5
tblook 2699 4556 68.8 7684 61156 695.9
martrix 464 8075 1642.0 1212 98075 7993.5
aifftr 188 1217 547.4 489 159313 | 32513.9

Difference
greater

for multicore
(more “slack”)

Context info: EEMBC benchmark; OET ... Observed Execution Time; bound ... analyzed using Absint AT

THALES
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I WCET for Multi-Core Computers Combined with Monitoring

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.
|Co
N

Basic idea to benchmark/analyze hardware and include access interference and monitor memory accesses (RTNS 2013
paper, ECRTS 2014 paper)
- Extension of timing analysis
- Applied to Absint’s aiT — commercial static WCET framework (extension memory accesses)
- Runtime Monitoring C
- Applied to bare-metal OS layer time frame

process frame

- Applied to SYSGO's PikeOS -

=0

Average-Case Extension ]

- Applied to bare-metal OS layer

CC'I'E1

Evaluation " time

- Based on Freescale's P4080, other i
processors evaluated

- Benchmarks deduced from
EEMBC Autobench benchmark suite g

co I'E@

" time
WCET reduction:

normal mmmmeeane partitioned x exit
- Utilisation increase: core 98.9%, system 55% ~ ----- abnormal  —-—- 1limit C,

- Additional accesses: 2 to 70 times the accesses that were statically assigned

Keynote ECRTS 2015, Lund, Sweden I I I A L E 5



Evaluation — Runtime Analysis

£3 2 T J 1 J 1 T . p

08 1 Core O -lialf'ﬁzr]- |

%E o | |

€2 — T J T T T ] T T -

35 i - Core 1 (matrix) _

g8 b ORISR R S SRR L 1

F; 2 F 1 J T T T J CI > 0 T ed) ]

? ﬁ; _.‘ ! I l I ! pre < \rspe ]

32 = T J T T T ] T T

22 ik ‘ ‘ du Core 3 (iirflt) _

ag o | l

88 2 F 1 T ] T T T 1 T =

8% ﬁ 1 Core 4 (tblook)

35 gl FES T _.‘ R R — 1 1 1

g2 E 2 F T J T T T ] T - =

03 & 1 Core 5 (aZtime) -

E: I I 1 I I I 1 I 1

T; 2 F T I T T T I T T -

he 1 Core 6 (bitmnp)

Q% i} | sl 1 | | | | | |

3 2 T J T T T J T T -
1 | 'CEIFE 7 {calchEI:l]- -

g5 “ e 200 400 GO0 800 1000 1200 1400 1600 1800

£3 time [ms]
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Example Scheduling N | |
Approach (3 Variants) a R s

3 Unusable computing power SI n g | e

.+ Worst-case execution timesof ,_~ e | corz
25 verag | | | : use
.- tasksvery dependent on prectlion o Lo Ml e "> Worst case
utilization of cores w/\li\ WCE{A;_T (ncreases for T e
_ « Difference between average jooion [ Unleable computing power

and worst-case execution W g3 e e pone! fwo

-~ likely increases for cases with =, [ 1. S;)er(ejs
more cores used 1 / i e

-+ Conclusions: N Yy execuon reros e
f; « System optimal solution non-trivial 4 | mvorage oxecen

ﬁ once multiple cores are used - — four

M* « Harvesting unused execution S . cores
£ time in average case at . used
application level can be o L T
] distinguishing factor i e et T Execution Time

| 34 Keynote ECRTS 2015, Lund, Sweden I I I A L E 5
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I Why Extend Mixed-Criticality Systems to Security?

rorin

This d

arved

part ¢

A

model for considering and organizing ti
approach to aircraft information securit

FPRIVATE

T Fosc |

[Conusithe Aireratt] [ Operate the Aircrar] |
[ Ademer |

Infourmm and En

Aiirfine

| Pessenger |

Controlfed

|_oncomones ]

Flight and
Embedded
Control Systems

Cabin Systems
] 8~ roAUnd
Metwork Interface

“WHE f HF /
SATCOM

Airline Information

Passenger

5 i Information and
ervices Entertainment
Services
ﬁ%mulnlstratwe In-Flight
Flighpt DSGulpt port Entertainment
Cabin Support

Maintenance

Passenger Intemet

W AI-Ground” Y
i. Network Intefface :

T R Ground” T
i Network Interface

Broadband 7§

Cellular

Computing Devices
Wireless Devices
Gaming Devices

4

Airline

Airline-Approved
3m Party Providers

Passenger-accessed

J Party Providers

| 36 Keynote ECRTS 2015, Lund, Sweden
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| Functional integration

| Passenger &
Maintenance / Services
Integration

| Modern A/C are
Systems of Systems
(ATM)

THALES



This document may not be reproduced, modified, adapted, published, translated, in any way, in whole orin

part or disclosed to a third party without the prior written consent of Thales

Security Zones — Example Architecture DIN VDE V 0831-104

- ©Thales 2015 All rights reserved.
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Safety in Aerospace —

Safety Assessment Process System Development Process

System Development

Aircraft Level Functional

Hazard Assessment -

(FHA)

A 'y
£ . | Failure Cpnditions,

unctiona Effects, Classification,

Interactions Safety Requirements ¥
Allocation of

L4

) Aircraft
Failure System Functions to

- Conditions—= System Level FHASs Functions

| Example ARP4754: Saieme

A

System Development o e,
Safety Requirements A

Process with strong ; " Development of

Aircraft Aircraft Level
Functions Requirements

et Architectural
Separation Preliminary System Requirements - Sy_stem
Safety fOC US Requirements Safety Assessments Architecture
(PSSA) - System
Common i Architecture
Cause i
Analysis
Allocation of
Item Reqyirements, Item _ | Requirements to
Safety Objectives, Requirements o Hardware &
Analysis Required Software
A4 Jl
Separation System Safety _ System System
& “erification Assessments (SSA) Implementation Implementation

—l Results Physical System
L ¥

Certification

Keynote ECRTS 2015, Lund

|_8© EUROCAE/RTCA



I nteg ratl O n Of Security Assessment Process Safety Assessment Process System Development Process

T - -
Se C u rlty I nto Aircraft Security Scope l«——Aircraft Functions Aircraft Functional
— - i .| Hazard Assessment/ Aircraft Aircraft Level
S afety P ro C e SS \_> Preliminary Aircraft Preliminary Aircraft Funcjions Requirements
Security Risk Safety Assessment
e B Assessment Y
- Functional Failure Cpnditions;
Functional 3 Effects, Classification,
Interactions Interactions Safety Requi "
1 = Allocation of
ng‘iﬁif;;g;ﬁifﬁ:::’: System Level Functional Hazard System = ﬁ;?;i: to
Assessments Functions =
Sys. Secu. Scope ‘4—' Systems
L N S,}(fte"“ System FCs System T
I rehitecture -
Fungtions Failure Condjtions, Effects,
Preliminary System Classification, Safety Requirements ‘
Security Risk 7 S ity l
Assessment Requirements Architedtural Development
Preliminary System Requirements of System
[ Safety A ments System Architecture
[Archltecture
‘ v
Item Allocation of
—  Requirements ™ i
Security ltem N Squirepents Requ"ements
Requirements to Hardware
Item Requirements,
Analysis Required Item Requirements, & Software
Safety Objectives,
Analysis Required
System
System Implementation
Implementation
v v System
- Implementation
S_ystem Security System Safety f v
Risk Assessment Assessments -
7Y System/Aircraft
Result
) [ Level
Al S — Results Integr.atlo.n &
Arcra arety Verification
ssessment
Aircraft Security Result f
Risk Assessment Phys ystem
Development complete & ready for Certification

|_ © EUROCAE/RTCA
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I MILS — Multiple Independent Levels of Security

c O

| Architecture for a (software) system processing data of different security
domains concurrently = Combines applications of different trust within the
same system

ny way, in who

| High-assurance security architecture based on the concepts of separation
and controlled information flow

s - ©Thales 2015 All rights reserve

» Separation builds on tfime partitioning and spatial partitioning (e.g. periodic
processing, memory protection, I/0 separation)

» Controlled information flow: white-list based communication between
separate partitions
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| Small analysable components; composability targeted

| Certifiable MILS systems are built out of key components (separation kernel,
trusted hardware, guards, ...)
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Overview I/0O Sharing on Partitioned Systems (1)
-> Software-Based Sharing

Partition Partition - Driver and a possible emulator
App are located in runtime address
space of the Separation Kernel

")
A

« Uses Separation Kernel (SK)
functions to route data from/to
partitions

« Hardware Protection Units support
the Separation Kernel for access
enforcement

IOMMU - 1/O Memory Management Unit
/O —Input/Output

MMU - Memory Management Unit
MLS — Multi-Level Security
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Overview I/0O Sharing on Partitioned Systems (II)
- Central I/0 Patrtition

Partition| Partition « 1/0 partition has dedicated
App App access to the hardware

! i * « Runsin an isolated address space

« Implements the driver

« Uses Separation Kernel functions
to route data from/to partitions

- Data of different criticality /
classification is routed via this
partition

MMU - Memory Management Unit IOMMU - 1/O Memory Management Unit

MLS — Multi-Level Security 7O - Input/Output
THALES
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Overview I/0O Sharing on Partitioned Systems (l11)
- Self-Virtualization of Devices

» Devices provide runtime interfaces to software
» Devicesreceive configuration via a trusted boot partition / boot driver
 Each level of classification get direct access to a virtual device interface
e |/O partition routes data and performs software steps
» Overall reduction of driver’'s and I/O partition’s code complexity

- Special Requirements on the hardware have to be fulfiled

SLS 1/O P P SLS 1/O cas P
Partition Partition| Partition Partition Partition | Partition

1/O App App App 1/0 App App App
’1! T! ] 'rl I Tl :l
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I Hardware Requirements for Self-Virtualizing Hardware
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. Secure Initialization
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1. Internal Spatial Separation

Internal Temporal Separation

Secure Interrupt Handling / Triggering

Secure Direct Memory Access (DMA) Transfers

SLS I/O

SLS I/O

Partition Partition Partition Partition Partition Partition
1/O App \ App App 1/O App App App
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I Summary and Review ' —
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.|| Mixed-criticality and certification applied for PR R -

2 decades, processes exist, ...  Tardware Contract é T
§ I N )
> DO-297, CAST-32, DO-330, DO-326/ED202, EN50129, ... [Lforewerecenforaion wo- v
¢ | Criticalities are assigned by safety process and don’t change

-] To bediscussed, extended,

z 2 Combination of safety process and performance

* (or scheduling) approaches interesting

; 2 Incremental certification is of real value. Partly this has been applied already in avionics,

g but could provide a real value to other industries as well.

2 2 Difference between worst-case and best-case approaches increase: is there a potential

; for new methods and improvements for mixed-criticality architectures

2 Combination of safety development approach and security development approaches
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