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(Al Evolution to Multi-Processor
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= Roadmap continues: 90—-565—545—32 nm

= Multi-Processor System-on-Chip
(MPSoC) architectures are a reality
for a while...
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FEDERALE DIE LALJSANNE

W™  MPSoCs are Spreading Fast
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) . .
- Design Issues in MPSoCs

= MPSoCs have very complex architectures

= Advanced components and CAD tools very expensive
* Time-closure issues, system speed decreased

= Aggravated thermal issues: Thermal-Aware MPSoC Layouts
= Hot-spots, non-uniform thermal gradients

, T T 7 7 .
[Sun, Niagara

Broadband ngh ChanCGS

HIGHEST TEMPERATURE (C)

100, 80

[Sun, .8 GHz [, \ 4 £t A rmn A ]
Sparc v9 43\\_ \ 0 Processor] Of tneriridli
Microproc] o ) wear-outs
LR S ey & 05°C and very short
" e . 8a1°C lifetimes!
[Santarini, EDN, March ‘05] e B | o

[Coskun et al '07]
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hermal Aware

(Al Advocatin g
FEDERALE DE LAUSANNE 21/ DM

= |ntegration of HW/SW modeling and management

[
: |  Detailed Heat Flow Models |
[ Iy |
I Fast Power-Thermal Exploration I
I I . I I
I G - ---
[ HW Thermal AW / SW
[ monitoring Tuning knobs
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P MPSoC Thermal Modeling Problem:
CEDERALL D LADSANINE Inltlal Th ou htS

= MPSoC Modeling and Exploration

= SW simulation: Transactions, cycle-accurate (~100 KHz)
[Synopsys Realview, Mentor Primecell, Madsen et al., Angiolini et al.]

At the used cycle-accurate level, they are too slow for thermal [ZZ2¢
analysis of real-life applications! @%

= Heat Flow Modeling

m Finite-Element simulation
[COMSOL Multiphysics [FEMLAB]

Too computationally intensive and very complex to tune in MPSoC
with limited set of sensing components!

= High-order RC-level heat flow models
[Hotspot, Link et al.]

Not close-loop interaction at run-time with inputs from
MPSoC components!

© ESL/EPFL 2011



P MPSoC Thermal Modeling Problem:
Initial Thoughts

ECOLE POLYTECHMIQUE
FEDERALE DE LALISAMNME

= MPSoC Modeling and Exploration

= SW simulation: Transactions, cycle-accurate (~100 KHz)
[Synopsys Realview, Mentor Primecell, Madsen et al., Angiolini et al.]

At the used cycle-accurate level, they are too slow for thermal ZZZE??
analysis of real-life applications! .
’ PP u‘é@@-

= Heat Flow Modeling

: Finite-Element simulation ~
Request: Fast (and relatively accurate) thermal model for
MPSoCs that enables close-loop run-time interaction

WILIT THTHeu setl 01 sernsing COInporneriLs!

= High-order RC-level heat flow models
[Hotspot, Link et al.]

Not close-loop interaction at run-time with inputs from
MPSoC components!

© ESL/EPFL 2011



)
.M(Ifl! RC-Based Thermal Modeling for MPSoC

= Model interface
Input: power model of tier components, geometrical properties

Output: temperature of tier components at run-time

= Thermal circuit: 15t order RC circuit
Heat flow ~ Electrical current ; Temperature ~ Voltage
Metal and Si layers composed of elementary blocks

si| sil si [L3!
si|si|si|si

Si
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)
.M(”l! RC-Based Thermal Modeling for MPSoC

= Model interface
Input: power model of tier components, geometrical properties

Output: temperature of tier components at run-time

= Thermal circuit: 15t order RC circuit
Heat flow ~ Electrical current ; Temperature ~ Voltage
Metal and Si layers composed of elementary blocks

Top
ight N
N S : _— WV E
of S! S! Si . — U ..4/\/\/\/_
Si| si| s\| si S C.
dth = I si
© Bottom
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)
.M(Ifl! RC-Based Thermal Modeling for MPSoC

= Model interface
Input: power model of tier components, geometrical properties

Output: temperature of tier components at run-time

m Thermal circuit: 1t order RC circuit

Heat flow ~ Electrical current ; Temp  Si thermal conductivity
: < dependent on temperature
Metal and Si layers composed of ele % 160

— Actual value

§150
:'>/‘140
=
‘g130 \
2 120 \
N si|si|si |LS! 3 110 ~
si| si| si| si £ 100 \‘
_ 2 (IMEC, 90nm)
Thermal conductance matrix = o

27 47 67 87 _ 107 _127
Thermal capacitance matrix\ Temperature (in Celsius)
[ Atienza, et al., TODAES 2007] m @@ ‘m k=1.m
Temperature chang |
« Powexconsumption

Temperature vector at instant )
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. Discrete RC-Thermal Estimation Tool
R for tiers of 3D Chips

= Creating linear approximation while retaining variable
Si thermal conductivity:

= Si thermal conductivity linearly approx. : G, (t) =1+ q t,
= Numerically integrating in discrete s thermal conductivity

time domain the tk : gé‘goependent on temperature
= ——Actual value
tk+1 = 'A\(tk).t k+ Bpk ; k = 1m 551‘512 —Linear fit
=
At) =0 (@ et BLh g
. 2 120
Time step chosen small 8 10
enough for convergence Té 100
2 g . (IMEC,90nm)
|_

27 47 67 87 107 127
Temperature (in Celsius)

© ESL/EPFL 2011 12



. Discrete RC-Thermal Estimation Tool
R for tiers of 3D Chips

= Creating linear approximation while retaining variable
Si thermal conductivity:

= Si thermal conductivity linearly approx. : Gj; (t) = 1 + q t,

= Numerically integrating in discrete
time domain the t, :

terr = AMILF Bpe s Kig 1600 4
A(t) = p _ = 1400 »
(t) = (1-dC'G(t)); B[E _ 1200 -
Complexity scales linearly with the || 8 2 800
omplexity scales linearly wi e & > 800 -
number of modeled cells g E 600 Ilne_artl'_lermal.
(simulated on Xeon Server) = = ggg y n
Thermal library validated against E 0 V ' ' ' '
finite element model (IMEC and EPFL) 0 2000 4000 6000 8000 10000
Number of Cells
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MWW \psoC Thermal Library Validation

FEDERALE DIE LALJSANNE

= Extensible set of layers in MPSoC deS|gns ) gg@
= Pre-defined material layers and components: =5 *

Silicon, copper (10 layers), packaging,
interposer, bumps, etc.

= Configurable nr. of cells and iterations per tier
= [nitially 10ms thermal interval (1000 iterat./tier)

= Test chips manufactured at EPFL: Pads
= Three types of layouts

© ESL/EPFL 2011 14



(| Correlation Results:
- Intra-Tier Heat Transfer

= [ateral heat flow
= Tested range: 0.5W to 10W per heater
= Similar accuracy results at different tiers

= Measurements/simulations in case ~9W:

+ -
§ . i Temp (Kelvin)
g Intra Layer
G 336 -
333 -,

330 -
327 -

e Sim ulation

" = \Measurement
~

Heater and sensor at th
same point (Max temp)

Avq Intra'layer efror= 0.5%
Device 2 Device 4 Device7 Device 8 Device 10
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A Correlation Results:

ECOLE POLYTECHMICIUE

FEDERALE DIE LAUSANNE Intra—Tier Heat TranSfer

= Lateral heat flow

= Tested range: 0.5W to 10W per heater
= Similar accuracy results at different tiers

= Measurements/simulations in case ~9\W: EEEEEEE
B = SR E
Variations of less than 1.5% between 3D chip

measurements and RC-based 3D thermal model

Kf' ] ! y, = \}\\ SISV} l
| o /T \ 330 - Qirm tilatian
\ y —_— Slmulation
| 327 -

324 - \TMeasurement

I S

Avg Max temp Error=0.7%

Heater and sensor at th —Avg Intra’layer efror= 0.5%
same point (Max temp) Device 2 Device 4 Device7 Device 8 Device 10

© ESL/EPFL 2011 16



B Temperature Management is Power

ECOLE POLYTECHMICIUE

st Gontrol under Thermal Constraints
= Power consumption of cores
determines thermal behavior

= Power consumption depends on oRAM | 1L

frequency and voltage P | e

= Setting frequencies/voltages can control
power and temperature

= Optimization problem:
frequency/voltage assignment in i E
MPSoCs under thermal constraints i)

.

= Respect thermal constraint at all times |
<75°C

= Meet processing requirements

= Minimize power consumption

17
© ESL/EPFL 2011



B Thermgl Management:

ECOLE POLYTECHMNICQUE

FEDERALE DE LAUSAN NE I N |'I'| QI T NI h'I'Q
1CICAL | \J

= Static approach: thermal-aware placement to try to even out
worst-case thermal profile [Sapatnekar, Wong et al.]

= Computationally difficult problem (NP-complete)
ke

Not able to predict all working conditions, and leakage
changing dynamically, not useful in real systems

No formalization of thermal optimization problem!

= Dynamic approach: HW-based dynamic thermal management
= Clock gating based on time-out [Xie et al., Brooks et al.]
= DVFS based on thresholds [Chaparro et al, Mukherjee et al,]
= Heuristics for component shut down, limited history [Donald et al]

Techniques to minimize power, they only achieve
thermal management as a by-product...

© ESL/EPFL 2011



e Formalization of Thermal
aagement Problem in MPSo

l'l l w1 1 1IN\ vv

m Control '|'th.\¥'\[ Nnroanhlam .
Obs: Optimal frequency assignment module, 2-phase approach:
H

H 1) Design-time phase: Find optimal sets of frequencies for the
cores for different working conditions

2) Run-time phase: Apply one of the predefined sets found in
= Cont phase 1 for the required system performance

Tuning knobs: frequencies/voltages ot the system

_ Observer and control
Observed system: MPSoC L system,

Run-time HW <4%eliel outpulH ‘ Optimal %,
: frequency %

]

|

*

» assignment equirements:
module Max. Throughpu
./ LY o* Constraints:
Max. temperatyre
Thermal ="
Processor Thermal

cores SEeNnsors

19
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e Pro-Active Based Thermal Control:

ECOLE POLYTECHMNICQUE

FEDERALE DE LAUSANNE Phase 1. —_ DeSinn_Time

= Predictive model of thermal behavior given a set of
frequency assignments

Allowed core : Packaging,
Chip
power values and heat spreader
: floorplan ) )
frequencies information

mm e m S — T =T — ——— - - - —- Phase inputs

Non-linear offline problem ze sum of power

— consumption of cores

T

Constraint@’r fr>m % ,@

Performance constraint: on average, freq. is f,,

—  tpay = Altp)ts +Bpr, k=1..... .
Thermal equation L
( T‘kﬂtrﬂaxz k:].,D
Meet temp. consirainis at all time points

S Y i=1.....n Yk —

Table of
cores
frequencies
assignments

L Pik

fmi11<fk£fma.:{-. ; 1

Frequency in predefined range

20
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e Pro-Active Based Thermal Control:

ECOLE POLYTECHMNICQUE

FEDERALE DE LAUSANNE Phase 1. —_ DeSinn_Time

= Predictive model of thermal behavior given a set of
frequency assignments

Allowed core : Packaging,
Chip
power values and heat spreader
. floorplan . .

frequencies information

------------------------------------ Phase inputs
Non-linear offline problem ze sum of power

— — consumption of cores

T
Constraints: Z 17 f > m X n X favg

Table of
cores
frequencies
assignments

< tkt+1r = A(tk)tr + Bpr, k=1,..., O

Thermal equatlotn Si cgnductlwty depends on temp
g = Tmax; = 1,...,

< DPmax f:k/flfmx = Pik, t=1,...,n, Yk —T>

Power equation: quadratic dependence on freq.
fmin < fﬁa g fma.:{-. k=" s e L.

21
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] OLYTECH
FEDERALE DIE LALISAMNNE l 'r\h\ I Fa\"4

I Making Power and Thermal Constraints

= Power constraint adaptation
= Change non-affine (quadratic equality):

Pmax (Fi)? / (Fnax)® = Pix: i=1,..,n, VK

= To convex inequality:
Pmax (Fi)? ! (Frnax)? S Pigs i=1,..,n, VK

i 150 .

= Thermal constraint adaptation = =&,

= Use worst case thermal Ziof

conductivity in the range of Sof

allowed temperatures, and T
iterate (if needed) to optimum  Zwl—L— -+ 3

22
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H/wm Making Power and Thermal Constraints

ECOLE POLYTECHMICUE
FEDERALE DIE LAUSANNE (>AN\/iav

= Power constraint adaptation
Solve convex problem and get table of optimal
frequencies for different working conditions in
polynomial time (number of processors)

Required Starting Temperatures

average Cane . )
frequencies 30°C 35°C .- 100 °C

<= 100 MHz |<120,80,80,1205

150 MHz

=

1000 MHz

23
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(L Pro-Active Based Thermal Control:

ECOLE POLYTECHMNICQUE

wwii:  Phase 2 - Run-Time, Putting It All Together

= Use table of frequencies assignments and index by

actual conditions at regular run-time intervals

Targeted operating
frequency of cores

} { Current temperature of cores }

_____________________________________ Method inputs

Run-time optimal DVFS
assignment module

eeeeeeee

aaaaaaa ane N
eeeeeeeeeee sdRe B

1) Index table output of pt [ Phase / Run-time
with current working conc [ DVFS

changes for

output

2) Compare to current assignment to cores and
generate required signaling to modify DVFS values

24
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)
C-MP(DLHE Case Study: 8-Core Sun MPSoC

MPSoC Sun Niagara architecture
= 8 processing cores SPARC T1

= Max. frequency each core: 1 GHz
= 10 DVFS values, applied every 100ms

= Max. power per core: 4 W

= Execution characteristics of
workloads [Sun Microsystems]:

= Mixes of 10 different benchmarks,
from web-accessing to multimedia

= 60,000 iterations of basic _
benchmarks, tens of seconds of Sun’s Niagara MPSoC
actual system execution

[0 | - —
LA llEss
;l |
10

—:

25
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B Thermal Constraints Respected...

FEDDEMFL?EI.ELA]I:J[}.MNE And Faster Ove ra” '
g ' ' ' ' ' Total
% wr i . , e run-time of
& ; Mﬂh—w M
DV F S :=|,. “ [ Jw| |I"| |I.J| "',Ir'u || LI rﬁm"ll,l"-.lﬁ_. Tljﬂl.l Ill"'u |I|-.] '-.v._-] | r'q rjw-,ﬁ;li be n Ch ma rkS
% 57| ) I'.,-_J g I"«_-- | » \ J I'-.~. J 4
5T : 180 sec

Proposed method achieves better throughput than
standard DVFS while satisfying thermal constraints

2-phase é””' 106 sec
Convex =¥ (45% less
method: : :

g exec. time)

i 17h

=

|

F

| | \ | |
100 200 300 400 500 a00

Time (in 100s of mulli-seconds)

[
-

L)

26
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B('\@m The Big Picture for Thermal-Aware Design:

ECOLE POLYTECHMICIUE

AT DA Large-Scale Computing in Datacenters

= Area is expensive, we try to get denser infrastructures
= New containers: many more servers each, >10x density

—

Paralleling Gear

. T

@ Fuel Oil Storage Tanks

45 of energy overhead in cooling, how to get highe
computational densities (with lower cooling costs)?

= Air-cooled datacenters are
very inefficient .

= Cooling needs as much energy
as IT... and thrown-away

= For a 10MW datacenter | oA I
~US$ 4M wasted per year e aping 15—

© ESL/EPFL 2011 Datacenter energy overhead, ASHRAE




M Processing Trends: Single to Multi-Core

FEDERALE DIE LALJSANNE

How do you feed so many cores?
Memory bandwidth wall!

I} B

ORES

";F TN ir]

o

m1 "= B T T
il.ll'-" T_]:. i

EiefsiuilE e 'y

r‘—t : :

'pE-I..- -!] 1

P E¥LE

-' i 1

i om & u 5 i

BRGioT..
[ iw S Tl

el [
1

o Py
]

|« 13.75 mm —

[Courtesy: Yuan Xie, ICCAD 2010]
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FEDERALE DE LALISANMNE

W™ \Why not using 3 Dimension?

JUITII'U—JUFH'UB

80 CORES
.rir: EREEE“
ﬁﬁﬂﬂﬁﬂﬂn
E FT_' .::Ii_' i

o s I T
& S Eﬁﬁﬁ.q

§aEN s

3 |'i E |5

5 ﬂﬂﬂﬁ.'

|« 13.75 mm - . - . oo
Memory die with Through-Si Via (TSV) placement [Source: Intel]
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B('/\mm Run-Time Heat Spreading in 3D MPSoCs:
AT More Complex Cooling Needs!

FEDERALE DIE LALJSANNE

= 5-tier 3D stack: 10 heat sources and sensors - I

__Inject between 4W—1.5W> i

2nd Tier

5t Tier Pl
’;g '\ 2000 I 04 .
= I Large and non-uniform
‘\ v 4" Tier heat propagation!
I’ (up to 130° C on top tier)

00000

© ESL/EPFL 2011 7 i i "



B(lmm  Zero-Emission Datacenter: Liquid Cooling
st Technology and Predictive Energy Management

=Datacenters are “intelligent” heaters
+ 30-40% of carbon footprint in Europe using district heating networks

*Direct re-use of heat output
« 3D MPSoC architectures
Aquasar datacenter server: 80% payback of electricity costs

1. Micro-Channel Liquid Coolers
2. Heat Exchanger
3. Direct “Waste”-Heat Usage

© ESLJE Water 60°C Courtesy: IBM Ziirich 31



B(lmm  Zero-Emission Datacenter: Liquid Cooling

ECOLE POLYTECHMICIUE

@i Technology and Predictive Energy Management

=Datacenters are “intelligent” heaters
+ 30-40% of carbon footprint in Europe using district heating networks

*Direct re-use of heat output
« 3D MPSoC architectures
Aquasar datacenter server: 80% payback of electricity costs

14 Mimra Claaminal | iquid Coolers

e eat Usage

—

3D Stack

\Water pump

SSSSS

Through Silicon Via

| /
\\_' S 80°C

© ESLIE Water 60°C

Courtesy: IBM Ziirich 32



(Al Zero-Emission Datacenter: Liquid Cooling
muniEs Technology and Predictive Energy Management

=Datacenters are “intelligent” heaters
+ 30-40% of carbon footprint in Europe using district heating networks

*Direct re-use of heat output
« 3D MPSoC architectures

Aquasar datacenter server: 80% payback of electricity costs

T
e

© ESLIE Water 60°C Courtesy: IBM Ziirich 33



minem NanoTera CMOSAIC Project: DeS|gn of
DAL B LA 3D MPSoCs with Advanced Coolina

VVIR \NA VAL TV |

= 3D systems require novel electro-thermal co-design
* Academic partners: EPFL and ETHZ
* Industrial: IBM Zurich and T.J. Watson

3D MPSoC datacenter chip: microchannels etched
on back side to circulate (controlled) liquid coolant

evel Active
Cooling
Manager

task scheduling and
power management HH (fast 3D
heat flow

prediction)

34

of coolant flux m
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p¢/\gm Creatin

ECOLE POLYTECHMNICQUE D (\ B

FEDERALE DIE LALJSANNE

a Fast Thermal I\/Iodel' Compact

RC Network of

=)

Gsi
Si/metal layer —an/, Silicon cell

cells | :
,/NI\GT ICS.

= Convective boundary conditions
between layers for each tier separately

< CIbftop = htopA(Ta'Ttop)

—

" TSVs change resistivity
of interlayer material

q b_bottom =h bottomA(Ta'Tbottom)

© ESL/EPFL 2011



W@ 3p MPSoC Thermal Library Deployment

FEDERALE DIE LALJSANNE

= Extensible set of layers in 3D stack
= Up to 9 tiers and heat spreader
= Pre-defined layers:

Silicon, copper (10 layers), glue,
overmold, interposer, bump

= Configurable nr. of cells and iterations per tier
= Also 10ms thermal interval (1000 iterat./tier)
= Multi-tier test chip manufactured at EPFL.:

Heating  Temperature monitor
resistance (sensor wire)

© ESL/EPFL 2011

3D Stack

.......

Through Silicon Via
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A Correlation Results:

FEDERALE DIE LAUSANNE Inter—Tier Heat TranSfer

= Vertical heat flow (multi-level measurements)

« Tested range: 0.5W to 10W per heater
 Variations only of global temperatures trend
« Tier-2 measurements/simulations (~9W):

Temp (Kelvin)

Inter Layer

336 -
333 -

Device
02 330 -
heated 327

324

18 |  emmmmmSimulation 4

= \leasurement

Heater and sensor at th 210
same point (Max temp) Layer 2 Layer 3 Layer 4 Layer 5

© ESL/EPFL 2011 37




A Correlation Results:

e Inter-Tier Heat Transfer

= Vertical heat flow (multi-level measurements)

« Tested range: 0.5W to 10W per heater
. Variations only of gIobaI temperatures trend

Varlatlons of approxmately 5% between 3D chip
measurements and RC-based 3D thermal model

336

333 -
Device
02 330 -

heated 327

Avg Max temp Error=3.7%

324

18 |  emmmmmSimulation 4

315
Heater and sensor at th a1o

same point (Max temp) Layer 2 Layer 3 Layer 4 Layer 5

© ESL/EPFL 2011 38
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m/wm Modeling Liquid Coollng RC-Network
R in 3D MPSoC stacks

1vil \J \J WVI\NW

= Local junction temperature modeled as 4-resistor based
compact transient thermal model (4RM-based CTTM)

Rtot = Rcond + Rconv + Rheat

3@%0 3D-ICE: 3D IC Emulator

Lol with liquid cooling
lecanzono. hittp://esl.epfl.ch/3d-ice.html

4 convective 2 voltage-controlled
esistances current sources

!

39

© ESL/EPFL 2011



mi/wm Manufacturin

ECOLE POLYTECHMNICQUE

FEDERALE DIE LAUSANNE I |r||| ‘ R

Adding multi-tier liquid cooling in-/out-lets

Fluid Inlet. .Fluid Dutlet

Microchannel

Connection to
Package

© ESL/EPFL 2011 40



ECOLE POLYTECHMICQUE
FEDERALE DIE LALJSANINE

.........‘
2000000 OGS

200um EHT = 6.00kV  Signal A=InLens Date :14 Jan 2009 EPFL.CMI
Mag= 68X || LPFL-C
23 WD= 11mm StageatT= 1867 File Mame = alexd 1 nf

© ESL/EPFL 2011 41



O\ Manufactu rng o

ECOLE POLYTECHMICQUE
FEDERALE DIE LALJSANINE

Maximum error of 3.5% between measurements
and RC-based 3D thermal model with I|qU|d coollng

12 mL/min

3D-ICE
5-tier

50| 24 mL/min | 3D-ICE
| / 5-tier

40 3D-ICE
— V N | 5-tier

03 035 04 045 05 055

Temperature (°C)

Time (S) 42




(T Active-Adapt3D: Active cooling
aement for 3D MPSoCs

ECOLE POLYTECHMIQUE
FEDERALE DE LALISAMNME

= 3D MPSoC temperature control at system-level: R
* Electrical based: task scheduling, and DVFS (usec or few ms) _zsSSle
* Mechanical based: run-time varying flow rate (hundreds of ms) ;

manaAa
1IN

ITINVIEITU TN\

= Fuzzy logic-based controller and thermal-aware scheduler

1. Design-time analysis: extraction of set of thermal management rules 525"

2. Run-time thermal management: utilization of rules in scheduler and etal,

MICRO

subsequently fuzzy logic controller using both mechanical and electrical 2011
methods to achieve:

Thermal balan

Energy efficiency

ce

Inputs:

» Workload information

. FIoorpIari package

DVFS actuator &

Scheduler (TALB)

3D-ICE: Fast Transient

Integrated
flow rate and DVFS
fuzzy controller

<€

Microchannels —]

——————————

3@%[) Temperature

Response
for Each Unit

| Flow rate actuator

| (pump, valve)
N

© ESL/EPFL 2011
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(T Active-Adapt3D: Active cooling

ECOLE POLYTECHMNICQUE

FEDERALE DE LALSANNE manageme ant for RD MPRnC e

I1TICATITICA TTINVITIU TV VR TV \WUUNJSD

Coolant Inlet Coolant Flow > Coolant Outlet
700

| Location of the hotspot

Height (um)

e R AR R IR
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Distance along Channel length (um)

New insights about suitable thermal-aware scheduling :
and task aSS|gnment for 3D MPSoCs!

roc Al LAl LA
Microcha 1—*—*— - | Flow rate actuator

| (pump, valve)
N

44
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H{\wm Temperature-Aware Load Balancing (TALB)

MR Scheduler for 3D MPSoCs
/ - . .
Dispatching G Load balancing (Default):
Queues // Threads - Balances queue-length,
7/ but does not consider core
l \ locations

= TALB: I[Coskun,etal, DATE 2010]

* Thermal index () per core
|Iweighted = Ilqueue - & thermal (T(k))

heat sink
Core-1 Core-2 Core-3 Spreader

For cores at locations 1, 2 and 3:
al>a’® >«

45
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PSoCs

1vli

B Integrated Flow Rate and DVFS

ECOLE POLYTECHMNICUE
FEDERALE DIE LAUSANNE E 1177v; ( *nnt rnl I
i 4y 45 S \J LI VI

» 3D-ICE: predicted Fuzzy Adjusted Flow Rate

max. core temperat. Controller and DVFS

« TALB: Workload TN

 Pump power Look-up table (depends on 3D

chip and pump properties) [Sabry, et al., ICCAD 2010]

= Takagi-Sugeno fuzzy controller e NEY crwe——
IF X, =a; AND x, = a, ... THEN y,;=f;(X{,X5,..) ¥ v '

- Extract cooling rules at design time Fuzzification| |-  InferenceEngine || Diefuzzification

« Stable (circle criteria, BIBO stability,...) i

= Rules for multi-outputs at run-time o o
 Electrical: DVFS (VF) per core

* Cores next to the inlet:

* Mechanical: Flow rate (FL) _
| \ no thermal reduction needed
| IF Dis L THEN VF is H AND FLis L
4-tier chip: ~150 rules
] 46
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mwm Experiments Active Thermal Management

ECOLE POLYTECHMNICQUE

FEDERALE DE LAUSANNE 20D MPAnCe with Micrnchannale
Vi 1VII W/ \J IS J | 8 T1INJI U\ Wi

vvi

= Target 3D systems based on 3D ICs with Sparc-Power cores

Power values and workloads from real traces measured in Sun
platforms (database queries, web services, etc.)

= Cores and caches in separate layers
- 3D crossbar as interconnect

= Channels: S
- Width 100um and A =
height 50um =
*  Three flow rate 4] V337337
settings, default at EEEPAR(% core |ttt
32ml/min -Eruzig:a? g,@@m: /
C B Other A
l Microchannel [AAAATK,
@ TSV B
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e Run-time thermal Management for 3D

ECOLE POLYTECHMICIUE

FEDERALE DIE LAUSANNE Chis: therma| eva|uati0n

= For hot spot threshold 85°C, thermal violations: 0%

= Energy reduction:
« 70% average coolant energy (max. savings: 77%)

« 52% average total system energy (max. savinas: 85%)
[Coskun , Atienza, et al., MICRO 2011]

27N
?
{

1\)

\
\
\

1

il

Normalized energy
consumption
‘H
g = U NN U1 W
|

o

o
|

..’
AC_LB AC_TDVFS LB LC LB  LC_FUZZY LB 4tier AC_LB 4tierLC_ LB  4tier o

LC_FUZZY_LB

Promising figures for thermal control in 3D MPSoCs,
thermal gradients of less than five degrees/tier

© ESL/EPFL 2011
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P Conclusions: Aquasar 2010
warnEst  First Chip-Level Liquid Cooled Server

= MPSo0Cs: Interdisciplinary work Water-Cooled IBM

N
- Fast RC thermal models for 2D/3D SNy, BladeCenter
MPSoC with inter-tier variable 4 HS22
liquid fluxes (less than 5% error) ;

* Layout combining electrical and
mechanical constraints-modeling

= Next generation of thermal-aware & i
proactive controllers (task control, e ﬁ" =
flow rate and DVFS) W |

 Holistic control reduces significantly
the thermal issues and improves
energy cost (80% energy savings)

- “Green” datacenters: energy efficient
Roadrunner: 445 Mflops/Watt

Aquasar: 2250 MFlops/Watt | Back side

Water conditioning
© ESL/EPFL 2011 Courtesy: IBM Zirich 49
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