
The W-SEPT project

1

: Towards

Semantic-aware WCET Estimation

C. Maiza

2

, P. Raymond

2

, C. Parent-Vigouroux

2

, A. Bonenfant

3

, F. Carrier

2

, H. Cass

´

e

3

,

P. Cuenot

5

, D. Claraz

5

, N. Halbwachs

2

, E. Jahier

2

, H .Li

4

, Mi. De Michiel

3

, V. Mussot

3

,

I. Puaut

4

, C. Rochange

3

, E. Rohou

4

, J. Ruiz

3

, P. Sotin

3

, W-T. Sun

3

WCET Workshop, 2017

1

This project was founded by ANR

2

Univ. Grenoble Alpes-VERIMAG

3

Univ. Toulouse-IRIT

4

Univ. Rennes 1/INRIA-IRISA

5

Continental

Introduction

General goal

• Increase the precision of WCET estimation...

,! by focusing on the influence of the software semantics

,! i.e., not about hardware modeling !

The project

• W-SEPT = WCET: SEmantics, Precision, Traceability

• Find, trace and exploit semantics information:

,! Main issue: Express infeasible paths given or automatically discovered and

preserve them through compilation process

,! Approach:

⇤ Use a common format: FFX (Flow fact Format Xml-like)

⇤ Rely/adapt/extend existing timing analysis tool (OTAWA)

Introduction 1/16

Project overview

a

n

a

l

y

s

i

s

P

r

o

g

r

a

m

a

n

a

l

y

s

i

s

P

r

o

g

r

a

m

(compiler optim. aware)

annot.binary

µ-archi

analysis

Worst Path Search

(e.g. IPET/ILP)

CFG construction

annot.

a

n

a

l

y

s

i

s

P

r

o

g

r

a

m

annot.C

High

Level

compilation

and traceability

compilation

transfer

transfer

Application Domain

Design

Annotation Languages

(Scade, Simulink etc.)

High Level Design

(IPET or other)

Annotation aware Path Search

Program analysis

User provided properties

(transportation, energy)

Hard real time

hardware constrained

(automotive)

Critical Real time

Introduction 2/16

Partners: skills/complementarity

• IRIT Toulouse: C/binary level and WCET computation

• Verimag Grenoble: high-level/design, semantic analysis

• Inria/Irisa Rennes: compilation and binary level

• Continental Toulouse: industrial application - Engine Management System (EMS)

This talk

• Focus on 3 topics/experiments

,! Exploiting High Level Properties

,! Tracing flow information through compiler optimization

,! Expressing and exploiting path properties

Introduction 3/16

Exploiting High Level Properties

Model-based design

• Particularly in safety critical domains (Scade/Lustre)

• But not only (Simulink/Stateflow)

• Compilation process: HL to C to bin

Consequences for timing analysis

• Semantic static analysis exist at HL

• HL properties may have strong influence on WCET

• HL properties are “hard” to discover at lower level

Experiment with Lustre

• Representative: Lustre ⇠ Scade (avionics)

• ... and not so different from Simulink

• What is important: synchronous paradigm, i.e., execution = infinite loop,

each iteration performs an atomic reaction

Exploiting High Level Properties 4/16

Synchronous Programming Workflow

onoff

toggle

high

ctrl low

idle

onoff

toggle

nom

degr

ctrl

toggle

onoff

data outB

outA

outB

A B

modes

idle

data

outA

low

high

A0

A1

A2

data

nom

degr

B0

B1

BA

modes

• Design level:

,! Concurrent, Hierarchic design

,! Idealized Concurrency

,! Behavior =

sequence of reactions

logical discrete time

,! Several styles/languages

Here: data-flow/Lustre

Exploiting High Level Properties 5/16

Synchronous Programming Workflow

 ...
 if (L15){

 } else {

 }

}

 if (L15){

#include<...>

struct modes_ctx{

void modes_step(){

 ...

...

}

 if (L5){

 ...

 ...

 ...

 ...

 }

 }

 } else {

(step)

C code

}

struct modes_ctx{

void modes_step{

...
}

 ...

 ...

 ...

#include<...>

 if (L5){

 }

 ...

BA

modes

• Synchronous Compiler

,! Target language = C

,! Generates the step procedure

(+ the necessary memory/ctx)

,! Basically: no more concurrency

(static scheduling)

,! Simple sequential code

HL to C

Exploiting High Level Properties 5/16

Synchronous Programming Workflow

 }

 if (L15){

 } else {
 ...

 ...

 write_outputs();

#include<...>

...

#include "modes.h"

void main (){

 while(1){

 wait_period();

 read_inputs();

 modes_step();

 write_outputs();

}

(step)

C code

(main)

C code

}

#include<...>
struct modes_ctx{

void modes_step{

 ...

...
}

 if (L5){
 ...

#include<...>

...
#include "modes.h"

void main {
 while(1){
 wait_period();
 read_inputs();
 modes_step();

}

 }

 ...

BA

modes

,! Basically an infinite loop

• Example of main code

,! Each loop performs one reaction

,! Depends on system choices

periodic/event-driven etc.

HL to C

Exploiting High Level Properties 5/16

Synchronous Programming Workflow

 }
 ...
 if (L15){
 ...
 } else {
 ...
 }

 write_outputs(); ...
 b 8a48
8a3c:
 ldr r3, [pc,#1568]

modes_step:

 stmdb sp!, {fp, lr}

 add fp, sp, #4

 ...

 cmp r3, #0

 beq 8a3c

 mov r3, #1

8a3c:

 b 8a48

 ...

 ldr r3, [pc,#1568]

 ...

8a48:

 ...

 ...

(step)

C code

(main)

C code bin code

}

#include<...>
struct modes_ctx{

void modes_step(){

 ...

...
}

 if (L5){
 ...

#include<...>

...
#include "modes.h"

void main {
 while(1){
 wait_period();
 read_inputs();
 modes_step();

}

modes_step:
 stmdb sp!, {fp, lr}
 add fp, sp, #4
 ...
 cmp r3, #0
 beq 8a3c
 mov r3, #1

 ...
8a48:
 ...

 ...
BA

modes

• Binary code

,! via arm-elf-gcc

,! WCET estimation should be done here

i.e. a step of main infinite loop

for modes step

HL to C C to bin

Exploiting High Level Properties 5/16

High Level Properties (that may help)

onoff

toggle

high

ctrl low

idle

onoff

toggle

nom

degr

ctrl

toggle

onoff

data outB

outA

outB

A B

modes

idle

data

outA

low

high

A0

A1

A2

data

nom

degr

B0

B1

• Programming pattern: computation modes, based on clock-enable construct

• Intra-module exclusions: between A0, A1, A2, and between B0 and B1

,! may or may not be obvious on the code (i.e. structural)

• Inter-module exclusions: not in mode A0 implies mode B1

,! no chance to be obvious on the code

• In all cases, relatively complex properties:

,! infinite loop invariants

,! unlikely to be discovered by analysing the C or bin code of one step

Exploiting High Level Properties 6/16

High Level Properties (that may help)

onoff

toggle

high

ctrl low

idle

onoff

toggle

nom

degr

ctrl

toggle

onoff

data outB

outA

outB

A B

modes

idle

data

outA

low

high

A0

A1

A2

data

nom

degr

B0

B1

• Programming pattern: computation modes, based on clock-enable construct

• Intra-module exclusions: between A0, A1, A2, and between B0 and B1

,! may or may not be obvious on the code (i.e. structural)

• Inter-module exclusions: not in mode A0 implies mode B1

,! no chance to be obvious on the code

• In all cases, relatively complex properties:

,! infinite loop invariants

,! unlikely to be discovered by analysing the C or bin code of one step

• Can be discovered using, e.g., model-checking techniques

(here, Lesar = Lustre Model-Checker)

Exploiting High Level Properties 6/16

Traceability: form HL property to binary (ILP) constraint

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

Exploiting High Level Properties 7/16

Traceability: form HL property to binary (ILP) constraint

• Relate HL var to C var (compiler patch)

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

low

high

nom

idle

degr

Exploiting High Level Properties 7/16

Traceability: form HL property to binary (ILP) constraint

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

low

high

nom

idle

degr

Exploiting High Level Properties 7/16

Traceability: form HL property to binary (ILP) constraint

• No optimization (-O0)

CFG’s strictly match

e.g. ¬(high ^ nom) becomes in ILP:

edge29,30 + edge49,50 1

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

low

high

nom

idle

degr

Exploiting High Level Properties 7/16

Traceability: form HL property to binary (ILP) constraint

• Optimization (-O2)

CFG obfuscated, but still works

• No optimization (-O0)

CFG’s strictly match

e.g. ¬(high ^ nom) becomes in ILP:

edge29,30 + edge49,50 1

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

low

high

nom

idle

degr

Exploiting High Level Properties 7/16

Traceability: form HL property to binary (ILP) constraint

e.g. ¬(high ^ nom) becomes in ILP:

edge15,14 + edge13,21 1
edge11,14 + edge13,21 1

• Optimization (-O2)

CFG obfuscated, but still works

• No optimization (-O0)

CFG’s strictly match

e.g. ¬(high ^ nom) becomes in ILP:

edge29,30 + edge49,50 1

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

low

high

nom

idle

degr

Exploiting High Level Properties 7/16

High Level properties, conclusion

• Fully automatic proof of concept

• Implements 2 strategies:

,! Iterative: computes a WCET candidate, try to refute it with HL model checking,

and so on until WCET candidate cannot be refuted.

⇤ reaches a (relative) best solution, but converges very slowly

,! Pairwise a priori: check, once for all, any possible pairwise relation between “well

chosen” HL variables

⇤ e.g. clocks are clearly good candidates

⇤ quadratic number of relations to check, but single WCET analysis

• Experiments: with both strategy, the gain is about 40%, pairwise strategy runs much

faster (few seconds vs few minutes).

? P. Raymond, C. Maiza, C. Parent-Vigouroux, F. Carrier, and . Asavoae.

Timing analysis enhancement for synchronous program. Real-Time Systems, 2015.

Exploiting High Level Properties 8/16

Traceability and compiler optimization

Problem

• Infeasible path properties are generally discovered/given at C level

• Relate infeasible C path to infeasible binary path ?

• Radical solution: No optimization: perfect match, no problem...

But the code is likely to be rather inefficient!

• Impact of optimization on WCET estimation, for 12 classical benchmarks:

,! “-O1 code” WCET as a % of “-O0 code” WCET

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bs cnt fdct fibcall
insertsort

jfdctint
ludcmp

matmult
ndes

ns nsichneu
ud

Traceability and compiler optimization 9/16

Allow optimization in WCET estimation?

• Rely on existing compiler tracing facilities (e.g. dwarf)

,! Accept to lose some properties (cf. previous topic)

• Allow optimization that do not (or slightly) impact the CFG

,! not so bad: data optim. largely speedup code in general

• Modify/adapt compilers to make them trace-property aware.

,! Probably the most satisfactory ...

,! .. but requires a lot of work

,! Not suitable when off-the-shelf, black-box compilers are required

The project approach

• Study the “path-aware” compiler approach

• Experiment/proof-of-concept based on the LLVM compilation platform

Traceability and compiler optimization 10/16

General idea

• Flow informations = IPET-like constraints

• CFG transformation = constraint rewriting

,! possible loss in precision

• Example: loop bounds and loop unrolling

,! #A Xmax

,! Becomes:

⇤ #A’ Xmax / k

⇤ and #A” k �1

• Proof of concept for ⇠ 10 classical optim.

• Results for a Lustre program, with and

without infeasible path search and tracing:

Analysis optim. level

& tracing -O0 -O1 -O2

Off 2896 (100%) 1523 (52.5%) 1542 (53.2%)

On 2014 (69.5%) 997 (34.4%) 998 (34.5%)

Unroll k

P

A

B

E

C

P

E

B1

Bk

B’

A’

C’

A”

C”

? Li H., Puaut I. and Rohou E.

Traceability of Flow Information: Reconciling Compiler Optimizations and WCET Estimation. RTNS’14

Traceability and compiler optimization 11/16

Expressing and exploiting path properties

Introduction

• How to tell to the WCET analyser that some paths are infeasible ?

• Basically two kinds of methods:

,! Make infeasibility explicit, via CFG transformation:

⇤ can (virtually) handle any property ...

⇤ ... but beware of graph size explosion !

,! keep infeasibility implicit, via additional IPET constraint

⇤ “ideally” compact (in fact, complexity is transfered to ILP solver)

⇤ ... but possible loss in precision

Expressing and exploiting path properties 12/16

Expressing and exploiting path properties

Introduction

• How to tell to the WCET analyser that some paths are infeasible ?

• Basically two kinds of methods:

,! Make infeasibility explicit, via CFG transformation:

⇤ can (virtually) handle any property ...

⇤ ... but beware of graph size explosion !

,! keep infeasibility implicit, via additional IPET constraint

⇤ “ideally” compact (in fact, complexity is transfered to ILP solver)

⇤ ... but possible loss in precision

• Or maybe a mix of both ?

Expressing and exploiting path properties 12/16

The project approach

• Design a versatile formalism, mixing explicit and implicit features

• PPA (Path Property Automata):

,! Inherits from formal language theory:

⇤ a CFG (program) , a language whose words are the executions

⇤ a property , an automaton recognizing feasible paths

⇤ removing infeasible path , intersecting the CFG and the property

⇤ use hierarchic automata (rather than flat ones) for concision

Expressing and exploiting path properties 13/16

Example (explicit product)

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}

Expressing and exploiting path properties 14/16

Example (explicit product)

• Informal property: A and B exclusive at each iteration

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}

Expressing and exploiting path properties 14/16

Example (explicit product)

? ? \ {A,B}

A,B

?

X

E

• Formalized as a language recognizer (PPA syntax)

• Informal property: A and B exclusive at each iteration

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}

Expressing and exploiting path properties 14/16

Example (explicit product)

7

66

88

1

2

3

4

5

E

X

A

B

X

• CFG ⇥ PPA product , language intersection

? ? \ {A,B}

A,B

?

X

E

• Formalized as a language recognizer (PPA syntax)

• Informal property: A and B exclusive at each iteration

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}

Expressing and exploiting path properties 14/16

Example (explicit product)

• Explicit approach: beware of graph size explosion !

7

66

88

1

2

3

4

5

E

X

A

B

X

• CFG ⇥ PPA product , language intersection

? ? \ {A,B}

A,B

?

X

E

• Formalized as a language recognizer (PPA syntax)

• Informal property: A and B exclusive at each iteration

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}

Expressing and exploiting path properties 14/16

Example (mixed explicit/implicit product)

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}
• Informal property: A and B exclusive at each iteration

Expressing and exploiting path properties 15/16

Example (mixed explicit/implicit product)

?

X

E

?

↵ 1

A,B: ↵

• Language recognizer with local counters and constraints (PPA syntax)

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}
• Informal property: A and B exclusive at each iteration

Expressing and exploiting path properties 15/16

Example (mixed explicit/implicit product)

7

1

2

3

4

5

6

8

X

↵ �

A: ↵

B: ↵

E: �

• Extended counter-aware product , CFG + ILP constraints

?

X

E

?

↵ 1

A,B: ↵

• Language recognizer with local counters and constraints (PPA syntax)

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}
• Informal property: A and B exclusive at each iteration

Expressing and exploiting path properties 15/16

Example (mixed explicit/implicit product)

• Mixed explicit/implicit approach

? Mussot V. and Sotin P.

Improving WCET Analysis Precision through Automata Product.RTCSA, 2015.

7

1

2

3

4

5

6

8

X

↵ �

A: ↵

B: ↵

E: �

• Extended counter-aware product , CFG + ILP constraints

?

X

E

?

↵ 1

A,B: ↵

• Language recognizer with local counters and constraints (PPA syntax)

7

1

2

3

4

5

6

8

E

A

B

X

• Program CFG, an execution = a word over alphabet {E,A,B,X}
• Informal property: A and B exclusive at each iteration

Expressing and exploiting path properties 15/16

Conclusion

• Other topics studied/started during the project:

,! Semantic analysis at binary level

,! Limits of IPET/ILP methods

,! Beyond ILP: semantic + timing analysis as a whole

,! Targeting “costly” part of program (branch deltas)

,! User-guided analysis

,! etc. see http://wsept.inria.fr

• General result: a semantic-awre WCET workflow

• Raised interest from industrial partern

Conclusion 16/16

http://wsept.inria.fr

Conclusion

• Other topics studied/started during the project:

,! Semantic analysis at binary level

,! Limits of IPET/ILP methods

,! Beyond ILP: semantic + timing analysis as a whole

,! Targeting “costly” part of program (branch deltas)

,! User-guided analysis

,! etc. see http://wsept.inria.fr

• General result: a semantic-awre WCET workflow

• Raised interest from industrial partern

Thanks for your attention !

Questions ?

Conclusion 16/16

http://wsept.inria.fr

	Introduction
	General goal
	The project
	Project overview
	Partners: skills/complementarity
	This talk

	Exploiting High Level Properties
	Model-based design
	Consequences for timing analysis
	Experiment with Lustre
	Synchronous Programming Workflow
	High Level Properties (that may help)
	High Level Properties (that may help)
	Traceability: form HL property to binary (ILP) constraint
	High Level properties, conclusion

	Traceability and compiler optimization
	Problem
	Allow optimization in WCET estimation?
	The project approach
	General idea

	Expressing and exploiting path properties
	Introduction
	The project approach
	Example (explicit product)
	Example (mixed explicit/implicit product)

	Conclusion

