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Introduction

General goal

• Increase the precision of WCET estimation...

,! by focusing on the influence of the software semantics

,! i.e., not about hardware modeling !

The project

• W-SEPT = WCET: SEmantics, Precision, Traceability

• Find, trace and exploit semantics information:

,! Main issue: Express infeasible paths given or automatically discovered and

preserve them through compilation process

,! Approach:

⇤ Use a common format: FFX (Flow fact Format Xml-like)

⇤ Rely/adapt/extend existing timing analysis tool (OTAWA)
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Project overview
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Partners: skills/complementarity

• IRIT Toulouse: C/binary level and WCET computation

• Verimag Grenoble: high-level/design, semantic analysis

• Inria/Irisa Rennes: compilation and binary level

• Continental Toulouse: industrial application - Engine Management System (EMS)

This talk

• Focus on 3 topics/experiments

,! Exploiting High Level Properties

,! Tracing flow information through compiler optimization

,! Expressing and exploiting path properties
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Exploiting High Level Properties

Model-based design

• Particularly in safety critical domains (Scade/Lustre)

• But not only (Simulink/Stateflow)

• Compilation process: HL to C to bin

Consequences for timing analysis

• Semantic static analysis exist at HL

• HL properties may have strong influence on WCET

• HL properties are “hard” to discover at lower level

Experiment with Lustre

• Representative: Lustre ⇠ Scade (avionics)

• ... and not so different from Simulink

• What is important: synchronous paradigm, i.e., execution = infinite loop,

each iteration performs an atomic reaction

Exploiting High Level Properties 4/16



Synchronous Programming Workflow
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• Design level:

,! Concurrent, Hierarchic design

,! Idealized Concurrency

,! Behavior =

sequence of reactions

logical discrete time

,! Several styles/languages

Here: data-flow/Lustre
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Synchronous Programming Workflow

     ...
   if (L15){

   } else {

   }

}

   if (L15){

#include<...>

struct modes_ctx{

void modes_step(){

     ...

...

}

   if (L5){

  ...

   ...

     ...

     ...

   }

   }

   } else {

(step)

C code

}

struct modes_ctx{

void modes_step{

...
}

  ...

     ...

   ...

#include<...>

   if (L5){

   }

     ...

BA

modes

• Synchronous Compiler

,! Target language = C

,! Generates the step procedure

(+ the necessary memory/ctx)

,! Basically: no more concurrency

(static scheduling)

,! Simple sequential code

HL to C
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Synchronous Programming Workflow

   }

   if (L15){

   } else {
     ...

     ...

    write_outputs();

#include<...>

...

#include "modes.h"

void main (){

  while(1){

    wait_period();

    read_inputs();

    modes_step();

    write_outputs();

}

(step)

C code

(main)

C code

}

#include<...>
struct modes_ctx{

void modes_step{

     ...

...
}

   if (L5){
  ...

#include<...>

...
#include "modes.h"

void main {
  while(1){
    wait_period();
    read_inputs();
    modes_step();

}

   }

   ...

BA

modes

,! Basically an infinite loop

• Example of main code

,! Each loop performs one reaction

,! Depends on system choices

periodic/event-driven etc.

HL to C
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Synchronous Programming Workflow

   }
   ...
   if (L15){
     ...
   } else {
     ...
   }

    write_outputs();   ...
  b 8a48
8a3c:
  ldr r3, [pc,#1568]

modes_step:

  stmdb sp!, {fp, lr}

  add fp, sp, #4

  ...

  cmp r3, #0

  beq 8a3c

  mov r3, #1

8a3c:

  b 8a48

  ...

  ldr r3, [pc,#1568]

   ...

8a48:

  ...

   ...

(step)

C code

(main)

C code bin code

}

#include<...>
struct modes_ctx{

void modes_step(){

     ...

...
}

   if (L5){
  ...

#include<...>

...
#include "modes.h"

void main {
  while(1){
    wait_period();
    read_inputs();
    modes_step();

}

modes_step:
  stmdb sp!, {fp, lr}
  add fp, sp, #4
  ...
  cmp r3, #0
  beq 8a3c
  mov r3, #1

   ...
8a48:
  ...

   ...
BA

modes

• Binary code

,! via arm-elf-gcc

,! WCET estimation should be done here

i.e. a step of main infinite loop

for modes step

HL to C C to bin
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High Level Properties (that may help)
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• Programming pattern: computation modes, based on clock-enable construct

• Intra-module exclusions: between A0, A1, A2, and between B0 and B1

,! may or may not be obvious on the code (i.e. structural)

• Inter-module exclusions: not in mode A0 implies mode B1

,! no chance to be obvious on the code

• In all cases, relatively complex properties:

,! infinite loop invariants

,! unlikely to be discovered by analysing the C or bin code of one step
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High Level Properties (that may help)
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• Programming pattern: computation modes, based on clock-enable construct

• Intra-module exclusions: between A0, A1, A2, and between B0 and B1

,! may or may not be obvious on the code (i.e. structural)

• Inter-module exclusions: not in mode A0 implies mode B1

,! no chance to be obvious on the code

• In all cases, relatively complex properties:

,! infinite loop invariants

,! unlikely to be discovered by analysing the C or bin code of one step

• Can be discovered using, e.g., model-checking techniques

(here, Lesar = Lustre Model-Checker)
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Traceability: form HL property to binary (ILP) constraint

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG
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Traceability: form HL property to binary (ILP) constraint

• Relate HL var to C var (compiler patch)

Code generation

(gcc)
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Traceability: form HL property to binary (ILP) constraint

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)
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Traceability: form HL property to binary (ILP) constraint

• No optimization (-O0)

CFG’s strictly match

e.g. ¬(high ^ nom) becomes in ILP:

edge29,30 + edge49,50  1

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)

BA

modes

bin CFG

HL Compil

(Lustre ! C)

C CFG

low

high

nom

idle

degr
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Traceability: form HL property to binary (ILP) constraint

• Optimization (-O2)

CFG obfuscated, but still works

• No optimization (-O0)

CFG’s strictly match

e.g. ¬(high ^ nom) becomes in ILP:

edge29,30 + edge49,50  1

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)
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Traceability: form HL property to binary (ILP) constraint

e.g. ¬(high ^ nom) becomes in ILP:

edge15,14 + edge13,21  1
edge11,14 + edge13,21  1

• Optimization (-O2)

CFG obfuscated, but still works

• No optimization (-O0)

CFG’s strictly match

e.g. ¬(high ^ nom) becomes in ILP:

edge29,30 + edge49,50  1

• C branches to bin branches ?

,! simple heuristic: rely on debugging info

• Relate HL var to C var (compiler patch)

Code generation

(gcc)
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High Level properties, conclusion

• Fully automatic proof of concept

• Implements 2 strategies:

,! Iterative: computes a WCET candidate, try to refute it with HL model checking,

and so on until WCET candidate cannot be refuted.

⇤ reaches a (relative) best solution, but converges very slowly

,! Pairwise a priori: check, once for all, any possible pairwise relation between “well

chosen” HL variables

⇤ e.g. clocks are clearly good candidates

⇤ quadratic number of relations to check, but single WCET analysis

• Experiments: with both strategy, the gain is about 40%, pairwise strategy runs much

faster (few seconds vs few minutes).

? P. Raymond, C. Maiza, C. Parent-Vigouroux, F. Carrier, and . Asavoae.

Timing analysis enhancement for synchronous program. Real-Time Systems, 2015.
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Traceability and compiler optimization

Problem

• Infeasible path properties are generally discovered/given at C level

• Relate infeasible C path to infeasible binary path ?

• Radical solution: No optimization: perfect match, no problem...

But the code is likely to be rather inefficient!

• Impact of optimization on WCET estimation, for 12 classical benchmarks:

,! “-O1 code” WCET as a % of “-O0 code” WCET
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Allow optimization in WCET estimation?

• Rely on existing compiler tracing facilities (e.g. dwarf)

,! Accept to lose some properties (cf. previous topic)

• Allow optimization that do not (or slightly) impact the CFG

,! not so bad: data optim. largely speedup code in general

• Modify/adapt compilers to make them trace-property aware.

,! Probably the most satisfactory ...

,! .. but requires a lot of work

,! Not suitable when off-the-shelf, black-box compilers are required

The project approach

• Study the “path-aware” compiler approach

• Experiment/proof-of-concept based on the LLVM compilation platform
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General idea

• Flow informations = IPET-like constraints

• CFG transformation = constraint rewriting

,! possible loss in precision

• Example: loop bounds and loop unrolling

,! #A  Xmax

,! Becomes:

⇤ #A’  Xmax / k

⇤ and #A”  k �1

• Proof of concept for ⇠ 10 classical optim.

• Results for a Lustre program, with and

without infeasible path search and tracing:

Analysis optim. level

& tracing -O0 -O1 -O2

Off 2896 (100%) 1523 (52.5%) 1542 (53.2%)

On 2014 (69.5%) 997 (34.4%) 998 (34.5%)

Unroll k

P

A

B

E

C

P

E

B1

Bk

B’

A’

C’

A”

C”

? Li H., Puaut I. and Rohou E.

Traceability of Flow Information: Reconciling Compiler Optimizations and WCET Estimation. RTNS’14
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Expressing and exploiting path properties

Introduction

• How to tell to the WCET analyser that some paths are infeasible ?

• Basically two kinds of methods:

,! Make infeasibility explicit, via CFG transformation:

⇤ can (virtually) handle any property ...

⇤ ... but beware of graph size explosion !

,! keep infeasibility implicit, via additional IPET constraint

⇤ “ideally” compact (in fact, complexity is transfered to ILP solver)

⇤ ... but possible loss in precision

Expressing and exploiting path properties 12/16



Expressing and exploiting path properties

Introduction

• How to tell to the WCET analyser that some paths are infeasible ?

• Basically two kinds of methods:

,! Make infeasibility explicit, via CFG transformation:

⇤ can (virtually) handle any property ...

⇤ ... but beware of graph size explosion !

,! keep infeasibility implicit, via additional IPET constraint

⇤ “ideally” compact (in fact, complexity is transfered to ILP solver)

⇤ ... but possible loss in precision

• Or maybe a mix of both ?
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The project approach

• Design a versatile formalism, mixing explicit and implicit features

• PPA (Path Property Automata):

,! Inherits from formal language theory:

⇤ a CFG (program) , a language whose words are the executions

⇤ a property , an automaton recognizing feasible paths

⇤ removing infeasible path , intersecting the CFG and the property

⇤ use hierarchic automata (rather than flat ones) for concision
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Example (explicit product)

7
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X

• Program CFG, an execution = a word over alphabet {E,A,B,X}
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Example (explicit product)

• Informal property: A and B exclusive at each iteration
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• Program CFG, an execution = a word over alphabet {E,A,B,X}
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Example (explicit product)

? ? \ {A,B}

A,B

?

X

E

• Formalized as a language recognizer (PPA syntax)

• Informal property: A and B exclusive at each iteration
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Example (explicit product)
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• CFG ⇥ PPA product , language intersection
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Example (explicit product)

• Explicit approach: beware of graph size explosion !
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Example (mixed explicit/implicit product)
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• Program CFG, an execution = a word over alphabet {E,A,B,X}
• Informal property: A and B exclusive at each iteration

Expressing and exploiting path properties 15/16



Example (mixed explicit/implicit product)

?
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A,B: ↵

• Language recognizer with local counters and constraints (PPA syntax)
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Example (mixed explicit/implicit product)
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• Extended counter-aware product , CFG + ILP constraints
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• Language recognizer with local counters and constraints (PPA syntax)
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• Program CFG, an execution = a word over alphabet {E,A,B,X}
• Informal property: A and B exclusive at each iteration

Expressing and exploiting path properties 15/16



Example (mixed explicit/implicit product)

• Mixed explicit/implicit approach

? Mussot V. and Sotin P.

Improving WCET Analysis Precision through Automata Product.RTCSA, 2015.
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Conclusion

• Other topics studied/started during the project:

,! Semantic analysis at binary level

,! Limits of IPET/ILP methods

,! Beyond ILP: semantic + timing analysis as a whole

,! Targeting “costly” part of program (branch deltas)

,! User-guided analysis

,! etc. see http://wsept.inria.fr

• General result: a semantic-awre WCET workflow

• Raised interest from industrial partern
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Conclusion

• Other topics studied/started during the project:

,! Semantic analysis at binary level

,! Limits of IPET/ILP methods

,! Beyond ILP: semantic + timing analysis as a whole

,! Targeting “costly” part of program (branch deltas)

,! User-guided analysis

,! etc. see http://wsept.inria.fr

• General result: a semantic-awre WCET workflow

• Raised interest from industrial partern

Thanks for your attention !

Questions ?
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