
Early WCET Prediction using Machine Learning
(Work in Progress)

Armelle Bonenfant1, Denis Claraz2, Marianne de Michiel1 and Pascal Sotin1

1IRIT 2Continental

Toulouse, France

June 27, 2017
WCET Workshop

Dubrovnik, Croatia



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Cost of a Bug

Relative cost of a bug (according to IBM)

Design phase 1
After development 5

After deployment 100

‘The cost to fix an error found after product release was four to five times as much as one
uncovered during design, and up to 100 times more than one identified in the maintenance phase.’

— IBM Systems Sciences Institute

→ Transfer to WCET?

2 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Cost of a Bug

Relative cost of a bug (according to IBM)

Design phase 1
After development 5

After deployment 100

‘The cost to fix an error found after product release was four to five times as much as one
uncovered during design, and up to 100 times more than one identified in the maintenance phase.’

— IBM Systems Sciences Institute

→ Transfer to WCET?

2 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

What the Industry Wants

source
code

some magic
tool

+compiler options
+target architecture

WCET
prediction

pessimistic/accurate

→ Realistic expectations?

‘This is a very wild idea and I doubt that it will work on real programs.’

— An anonymous reviewer

3 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

What the Industry Wants

source
code

some magic
tool

+compiler options
+target architecture

WCET
prediction

pessimistic/accurate

→ Realistic expectations?

‘This is a very wild idea and I doubt that it will work on real programs.’

— An anonymous reviewer

3 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Preliminary Results Preview

Technique
Accuracy

Training set Evaluation set

Multi-Layer Perceptron
Err. 10%

24% u. 0% o.

Err. 11%
24% u. 1% o.

Random Forest
Err. 4%

3% u. 0% o.

Err. 12%
4% u. 2% o.

Linear Regression
Err. 10%

8% u. 4% o.

→ So far the results on TACLeBench are partial and disappointing

These results are due to Frédéric Fort.

4 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Our Proposal: Use Machine Learning

Machine Learning Input: a Spreadsheet

Program Characteristic 1 Characteristic 2 · · · WCET
A 1410
B 6912

...

Machine Learning Output: a Formula

WCET ' f (characteristics)

5 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Outline of the Presentation

1 Introduction

2 Learning Framework

3 Source Code Analysis

4 Preliminary Results

6 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Learning Framework

source
code

compiler

+options

binary
timing

analysis

+architecture

WCET
estimate

source
analysis characteristics predictor

WCET
prediction

formula

Machine
Learning

C1 C2 WCET
A

B

prediction
error

7 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Issue 1/3: The Learning Set

C1 C2 · · · WCET
A

B

.

.

.

Machine Learning requires:

Large sets (more than 1 000 programs)

Representative sets

Candidates program sets

Benchmarks repr. ok, size not ok

Industrial bank of functions good repr., borderline size, availability issue

Generated programs unlimited size, doubtful repr., compilation optim. issue

8 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Issue 2/3: The Characteristics

Choose
C1 C2 · · · WCET

A

B

Gather
C1 C2 · · · WCET

A

B

Machine Learning requires:

Numerical or discrete characteristics

Characteristics controlling the learnt attribute

↪→ Syntactic characteristics are insufficient

We rely on worst-case numerical metrics (details follow shortly)

9 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Issue 3/3: Feasibility and Validation

Do it exists a set of characteristics of the source code controlling
the WCET?

→ We consider prediction in ±20% as OK

10 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Outline of the Presentation

1 Introduction

2 Learning Framework

3 Source Code Analysis

4 Preliminary Results

11 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Source Code Analysis

C1 C2 · · · WCET
A 230 45
B

Worst Case Event Count Analysis

The worst case event count analysis delivers an over-approximation
of the number of events by category triggered by any symbolic
execution of the source program.

Example of categories:

Reading a variable
Performing a non-trivial multiplication
“Branching” back to the loop head

A mapping from category to number is called a “metric”

12 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Playing with Metrics

Sequential code gives one metric

Alternatives should be combined with care

m1 tm2 is a sound but coarse approximation of “m1 or m2”[
Addition 7→ 3
Product 7→ 4

]
t
[
Addition 7→ 4
Division 7→ 2

]
=

Addition 7→ 4
Product 7→ 4
Division 7→ 2


If neither m1 ≺ m2 nor m2 ≺ m1 we continue with {m1,m2}

The analysis is disjunctive (complexity issue)

Using bounds on the categories costs, we strengthen the ≺ relation[
Jump 7→ 11
Addition 7→ 2

]
≺

[
Jump 7→ 14
Product 7→ 5

]

Loop bounds are needed

Eventually
⊔

is used to get a unique metric

13 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Categories retained (so far)

Our implementation of the analysis considers:

Family Category Optimistic Pessimistic

Operations
Simple 0.5 1
Multiplication 1 5
Division 1 10

Control

Unconditional branch 0.5 1
Conditional branch 1 1
Computed branch 1 4
Call 0.5 10

Memory
Address setting 0.5 1
Load 2 20
Store 2 20

14 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Outline of the Presentation

1 Introduction

2 Learning Framework

3 Source Code Analysis

4 Preliminary Results

15 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Experiments Setting

Programs are compiled with gcc

↪→ The target is ARM

Worst Case Event Count analysis is performed by oRange

WCET analysis is performed by OTAWA

↪→ The model is a simple ARMv5

16 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Program Sets Involved

Training set (10 000)

↪→ Generated randomly (with if and for statements)

Evaluation set (5 000)

↪→ Generated the same way

TACLeBench (23)

↪→ Sequential part of the benchmark

17 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Learning Techniques Explored

Multi-Layer Perceptron

↪→ State-of-the-art neural network

Random Forest

↪→ Huge decision tree

Linear Regression

↪→ Best linear combination of the characteristics

18 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Accuracy Evaluation

Applying the learnt formula on a set of programs gives statistics

Correlation coefficient 0.9961

Mean absolute error 187.9878

Root mean squared error 490.4514

Relative absolute error 4.2395

Root relative squared error 8.972

Total Number of Instances 10000

Underestimations 283

Overestimations 0

We make the following summaries:

Err. 4%
3% u. 0% o.

19 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Current Accuracy of our Approach

Technique
Accuracy

Training set Evaluation set

Multi-Layer Perceptron
Err. 10%

24% u. 0% o.

Err. 11%
24% u. 1% o.

Random Forest
Err. 4%

3% u. 0% o.

Err. 12%
4% u. 2% o.

Linear Regression
Err. 10%

8% u. 4% o.

→ So far the results on TACLeBench are partial and disappointing

These results are due to Frédéric Fort.

20 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Linear Regression Formula

WCET = 0.0506 ∗ SimpleOp
+ 2.2557 ∗ Mult
+ 0 ∗ Div
+ 1.0391 ∗ CondBr
+ 2.638 ∗ UncondBr
+ 0 ∗ CalcBr
+ 0 ∗ Call
+ 0 ∗ Return
+ 1.9445 ∗ Address
+ 0 ∗ Load
+ 0 ∗ Store
+ 18.4446

21 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Related Work

Gustafsson et al.1,2 follow the same objective with different tools

Measurement-based approach

↪→ No need for hardware model but need the hardware itself

Ad-hoc learning techniques

Evaluation on the Mälardalen benchmark gives:

Accurate approach:
Err. 8%

4% u. 9% o.

Pessimistic approach:
Err. 31%

0% u. 52% o.

1Jan Gustafsson et al. “Approximate Worst-Case Execution Time Analysis
for Early Stage Embedded Systems Development”. In: SEUS. 2009.

2Peter Altenbernd et al. “Early execution time-estimation through
automatically generated timing models”. In: Real-Time Systems (2016).

22 / 23

Pascal Sotin – Early WCET



Introduction Learning Framework Source Code Analysis Preliminary Results Conclusion

Conclusion

Work in Progress

We seek early WCET predictions through Machine Learning

We proposed a source analysis for retrieving program metrics

↪→ Required for both learning and predicting

Several question are opened

Relevant characteristics
Best learning technique

23 / 23

Pascal Sotin – Early WCET


	Introduction
	Learning Framework
	Source Code Analysis
	Preliminary Results

