Worst-Case Execution Time Analysis of Predicated

Architectures
Florian Brandner Amine Naji
LTCI u2Is

Telecom ParisTech ENSTA ParisTech

TELECOM D
ParisTech

Eaimy ENSTA

This work is supported by the Digiteo project PM-TOP.

nnn

1/15

What is Predication?

Predication:
e Combination of architectural and compilation techniques.
e Converts control dependencies to data dependencies.
e Conditional execution based on a guard bit called Predicate.

e |t allows the compiler to eliminate branches (and their side effects).

2/15

What is Predication?

Predication:
e Combination of architectural and compilation techniques.
e Converts control dependencies to data dependencies.
e Conditional execution based on a guard bit called Predicate.

e |t allows the compiler to eliminate branches (and their side effects).

Branch side effects:
e High penalties (pipelines depth).

e Branch prediction: Conflicts and miss-prediction.
e Branch delay-slots: Explicit Nops and code size increase.

e Limited Instruction-Level Parallelism (ILP).
e Mostly a problem for VLIWs.

e Cannot bundle instructions before and after branches.

2/15

Patmos Architecture

Overview:
e Dual-issue VLIW.

e Fully predicated.

e All instructions can be predicated.
e 8 predicate registers (p0, ..., p7)
e pO is always true.

e Predicates can be inverted (!p0).

e Branch variants:

o Non-delayed: 2 or 3 cycles penalty.
o Delayed: Execute 2 or 3 bundles in branch delay slots.

3/15

Example: if-conversion

int foo(int a, int b) {
return t = a < b ? a : b;

}

Function in C code

4/15

Example: if-conversion

cmpult $pl=a < b
($pl) brefnd x
bref y
int foo (lnt a, int b) { mov t= b
return t = a < b ? a : b; mi
} J
[
Function in C code Control-flow graph with branches

4/15

Example: if-conversion

|

cmpult $pl= a < b
($pl) brefnd x

int foo(int a, int b) {

return t = a < b ? a : b;
|)
l
Function in C code Control-flow graph with branches
i
cmplt S$pl= a < Db
mov t=b
($pl) mov t= a
1

Control-flow with predicates

4/15

Predication in Real-Time Systems

Some benefits:

o Eliminates branch penalties:

e Simpler analysis (eliminates branches).
e Fewer conflicts between branches, since fewer branches.

® Better cache locality due to fewer control-flow transfers.
® This promises more predictable code.
® Single-Path Programming:

e Extreme approach: Remove branches almost completly.
e Goal: Eliminate timing variations.

5/15

Predication in Real-Time Systems

Some benefits:

o Eliminates branch penalties:

e Simpler analysis (eliminates branches).
e Fewer conflicts between branches, since fewer branches.

® Better cache locality due to fewer control-flow transfers.
® This promises more predictable code.
® Single-Path Programming:

e Extreme approach: Remove branches almost completly.
e Goal: Eliminate timing variations.

Predicated instructions have to be analyzed.

5/15

Timing Analysis With Predicates

Challenges:

® The execution of instructions depends on the predicate register value.

® Predicate register values are needed to build program’s CFG.
® Program’s CFG is needed to analyze predicate registers.

e Handling of nested branches in branch delay slots.
® All underlying analyses have to be aware of predicates.

® Expressing flow constraints on predicated code.

6/15

Timing Analysis With Predicates

Challenges:

® The execution of instructions depends on the predicate register value.

® Predicate register values are needed to build program’s CFG.
® Program’s CFG is needed to analyze predicate registers.

e Handling of nested branches in branch delay slots.
® All underlying analyses have to be aware of predicates.

® Expressing flow constraints on predicated code.

Simple solution:

® Consider predicate to be true and false for each instruction.

® Conservatively perform join after each instruction.

6/15

Timing Analysis With Predicates

Challenges:

® The execution of instructions depends on the predicate register value.

® Predicate register values are needed to build program’s CFG.
® Program’s CFG is needed to analyze predicate registers.

e Handling of nested branches in branch delay slots.
® All underlying analyses have to be aware of predicates.

® Expressing flow constraints on predicated code.

Simple solution:

® Consider predicate to be true and false for each instruction.

® Conservatively perform join after each instruction.

Our approach:
Recover control-flow from predicated code through unfolding.

6/15

Compilation/Analysis Flow

patmos-clang

src1.bc.o

Applicaion app.optbc 3'appo Y app

System Libraries
libsrc1.bc.o
patmos-llc: LLVM control-flow graph.
oy predication anawls
m Inter-procedural control-flow Graph.
libsrcN.bc.o
1lvm-link
crt0.c crt0.bc.o

patmos-clang llvm-ar

llvm-opt gold

The Patmos toolchain (LLVM Compiler).

7/15

Motivating Example: Load Side-Effects

switch (x) {
case O0: . break;
case 1: ... break; SWT
case 2: ... break; A///> X
default: ... break; (c1J(c2)(c3)(orT]
}
C code. LLVM control-flow graph.

cmpult Spl=x, 3
($pl) shl Srl=x, 2
(!Spl) bref DET
($pl) lwe Srl=[S$rl+]t]
nop
($pl) brecfnd S$ril

Assembly code of SWT block using jump table.

8/15

High-level Overview

Construct an inter-procedural CFG (iCFG):
e Split LLVM’s basic blocks.

e Proceeds in two phases (next slide).
e According to branches and predicate definitions.
e Considering branch delay slots.

® CFG nodes:

Wrapper around LLVM'’s basic blocks.
Associated with a set of predicates known to be true.
All instruction become unconditional (predicates are removed).

[)
[)
[)
e Replace nullified instructions by nop.

9/15

Algorithm: UnFold Basic Block
Find the split point.
1. Scan instructions in LLVM's basic block and check for splits:

Track live predicates.
Case 1: The instruction defines a predicate:

e Track the predicate.
e Split the control-flow immediately.

Case 2: The instruction is a branch.

e Track branch delay slots.
e Track successors.
Split the control-flow after branch delay slots.

10/15

Algorithm: UnFold Basic Block
Find the split point.
1. Scan instructions in LLVM's basic block and check for splits:
e Track live predicates.
e (Case 1: The instruction defines a predicate:

e Track the predicate.
e Split the control-flow immediately.

e (Case 2: The instruction is a branch.

e Track branch delay slots.
e Track successors.

e Split the control-flow after branch delay slots.

At this point the control-flow is split, now we build the iCFG.

2. Build the inter-procedural control-flow graph:
e Create iCFG Node.
e Attach live predicates that are known to be true
e Recursively scan branch targets (from phase 1.)
e Create iCFG edges to branch targets

10/15

Motivating Example: Unfolded Control-Flow Graph

cmpult $pl=x, 3

SWT ($pl) shl Srl=x, 2
¥ Y (!$pl) bref DFT
(c1)(c2)(c3)(oFT] ($pl) lwe Sri=[Srl+it]
nop

($Spl) brefnd $ril

LLVM's CFG. Assembly code of SWT.
{p0}
{p0} X A {p0,p1}
nop shl Srl=x, 2
bref DFT nop
nop 1lwc Srl=[S$rl+jt]
nop nop
nop brcfnd Srl

VAN

(orr] (c1)(c2])(c3]
Unfolded iCFG.

11/15

Algorithm

Extensions:
e The support of multi-issue execution (VLIW processors ex. Patmos).
e The implementation handles calls and returns.
e Handling of branches nested in branch delay slots.

e Support for non-disjoint predicates requires stack.

12/15

Algorithm

Extensions:
e The support of multi-issue execution (VLIW processors ex. Patmos).
e The implementation handles calls and returns.
e Handling of branches nested in branch delay slots.

e Support for non-disjoint predicates requires stack.

Linear Complexity:
o The algorithm performs depth-first search on CFG.

e Every instruction is processed once for every set of potentially active
predicates (up to 27).

12/15

Experiments: Increase in the number of instructions

Setup: Subset of TACLe benchmarks. LLVM compiler 3.5. Optimizations(-02)

1.5
€
S 1.4
Q
()
c
s 1.3
k<] © n
3 e
£ 12 =2
3 -
£
-
2 1.1
N
K]
£ 1
5
z
_ - m o o @ c :
@ < £ o} @ e & c
£ 3 2 B B @ a b}
@ ket = S I ? s
£ 5 © 39] H
© ©
E ol © S
@ ° °
@ i= r=Y
3 S S

Increase in the number of instructions due to unfolding for the delayed (i), mixed (), and non-delayed
() configurations with VLIW instruction bundles, normalized to the size of LLVM's original CFG (lower
is better).

® Usually low overhead induced by unfolding (between 10% and 20%).
® Susan benchmark shows higher increase (between 43% and 45%.)

13/15

Experiments: Increase in the number of instructions

Setup: Subset of TACLe benchmarks. LLVM compiler 3.5. Optimizations(-02)

1.5
€
5 1.4
Q
o
c
s 1.3
k<] © n
3 2
£ 12 =2
3 -
£
°
2 11
N
K]
e 1
15
z
_ - © o = « < :
© < g o} o) e S c
g H 5 H - 5 g g
@ X 8 3
; £ 5 8 2 @ =
E B hd e F
© ©
E g @ S
3 ° °
© F=3 F=3
s S5 =

Increase in the number of instructions due to unfolding for the delayed (i), mixed (), and non-delayed
() configurations with VLIW instruction bundles, normalized to the size of LLVM's original CFG (lower
is better).

® Usually low overhead induced by unfolding (between 10% and 20%).
® Susan benchmark shows higher increase (between 43% and 45%.)
® There is no size explosion in the unfolded iCFG.

13/15

Conclusion

In this work:

e Lightweight approach to handle predicated code in WCET analysis.
e Predicate definitions immediately lead to a control-flow split.

e Subsequent instructions are analyzed depending on predicate value.

e Control-flow dependencies are recovered and explicitly represented in
the unfolded iCFG.

e All instruction in iCFG are unconditional.

e Preliminary experiments show only a moderate iCFG size overhead.

14/15

Thanks for your attention

SHL

O 1

11111

JUNOD UORINIISU| POZI[EWION

Any Questions ?

“UBB\'09D)

uesns

eys

Japooua-jaepulls

J19pooap-jeepulls

ensyip

1unoolq

|lews-yewoiseq

15/15

