Exploiting Branch Constraints without Exhaustive Path Enumeration

Ting Chen, Tulika Mitra, Abhik Roychoudhury, Vivy Suhendra

National University of Singapore

Static WCET Analysis

Flow analysis

- Loop bounds and infeasible paths
- Micro-architectural modeling
 - Effects of micro-architecture on execution time

Estimation

Find an upper bound on WCET given the results of flow analysis and micro-architectural modeling

WCET Estimation

Tree-based: Timing schema

- Simple and efficient
- Difficult to handle infeasible path information
- Implicit path enumeration (IPET)
 - Program flows expressed as linear equations
 - Generally difficult to express infeasible path consisting of a sequence of basic blocks

Path-based

- Search for the longest path in the program
- Naturally handles various flow information

Longest Path Search

- Enumerate all possible paths and select the one with the maximum execution time
 - 6.55 x 10¹⁶ paths in a single iteration of a loop
 - Fails to produce results after 60 hours
- Stappert's technique
 - Find the longest path π
 - If π is infeasible remove π from the CFG and search for the next longest path
 - Inefficient if large fraction paths are infeasible
 - 99.9% infeasible paths

How to avoid exhaustive path enumeration?

Overall approach

- WCET of each basic block is known
- Focus on the loops
- Construct DAG corresponding to loop body
- Acyclic path from source to sink in DAG
- Find the longest acyclic path in the DAG

Avoiding exhaustive path enumeration

- Compute the "conflicting" branch-branch or assignment-branch pairs a-priori
 - x > 3 and x < 2 are conflicting</p>
 - x = 1 and x > 2 are conflicting
- Traverse the DAG from sink to source
- Remembering the longest path so far is not enough during traversal
 - If it is infeasible, then we need to backtrack
- Maintain only those partial paths which when extended can potentially become the longest path

Illustration: Infeasible Path

Illustration: Infeasible Path

Illustration: Infeasible Path

Conflicting pairs: B1 \rightarrow B2 & B7 \rightarrow B8 B6 \rightarrow B7 & B7 \rightarrow B9

B10: B10 B9: B9,B10 B8: B8,B10

B7:B7,B8,B10 [B7→B8] :B7,B9,B10 [B7→B9]

B6:B6,B7,B8,B10 [B7→B8] :B6,B7,B9,B10 [B7→B9]

Conflicting pairs: B1 \rightarrow B2 & B7 \rightarrow B8 B6 \rightarrow B7 & B7 \rightarrow B9

B7:B7,B8,B10 [B7→B8] :B7,B9,B10 [B7→B9]

B6:B6,B7,B8,B10

B5:B5,B7,B8,B10 [B7→B8] :B5,B7,B9,B10 [B7→B9]

Conflicting pairs: B1 \rightarrow B2 & B7 \rightarrow B8 B6 \rightarrow B7 & B7 \rightarrow B9

B6:B6,B7,B8,B10 B5:B5,B7,B9,B10

Conflicting pairs: B1 \rightarrow B2 & B7 \rightarrow B8 B6 \rightarrow B7 & B7 \rightarrow B9

B7:B7,B8,B10 [B7→B8] :B7,B9,B10 [B7→B9]

B6:B6,B7,B8,B10

B5:B5,B7,B8,B10 [B7→B8] :B5,B7,B9,B10 [B7→B9]

Conflicting pairs: B1 \rightarrow B2 & B7 \rightarrow B8 B6 \rightarrow B7 & B7 \rightarrow B9

B6:B6,B7,B8,B10

B5:B5,B7,B8,B10 [B7→B8] :B5,B7,B9,B10

Experimental Evaluation

Function	Total Paths	Feasible Paths	Enumerated Paths
statemate	6.55 x 10 ¹⁶	1.09 x 10 ¹³	121,831
statemate1	19,440	7,440	15
statemate2	902	36	14
statemate3	1,459,364	69,867	40
statemate4	10	10	1
statemate5	256	58	4

Discussion

Infeasible path patterns of arbitrary length
Discovering more infeasibility information
Infeasible paths spanning loop iterations