
1

Raimund Kirner

Classifications of Code
Annotations and Discussion of

Compiler-Support for Worst-Case
Execution Time Analysis

Raimund Kirner
Peter Puschner

Real-Time Systems Group
Vienna University of Technology

2Raimund Kirner, TU Wien

SW Development and WCET
analysis for real-time applications
• SW is mostly written in imperative programming

languages
– Trend: graphical interfaces like state charts
– Also domain-specific languages like data-flow

languages (transformed to imperative
implementations.)

• Today, only very small fractions of performance-
critical code is written in assembly code.

• Precise and accurate WCET analysis wanted?
analysis of object code mandatory!!

3Raimund Kirner, TU Wien

Why is it hard to analyse code
semantics for WCET analysis?

• Platform-specific behavior (memory layout,
ROM-areas, memory-mapped IO, …)

• Control-flow is well hidden within low-level
constructs of object code (indirect jumps, …)

• Formal limitations of computability (loop bounds,
correlation of code predicates, type-inference in
object-oriented languages, …)

• etc.

4Raimund Kirner, TU Wien

Work around: Guide the analysis by
means of code annotations (1)

• Annotations to find jump-targets [aiT]:

instruction <addr> calls <target-list>;
instruction <addr> branches to <target-list>;

• Labeling assembly-instructions with high-level
meaning [aiT]:

instruction <addr> is a return;

5Raimund Kirner, TU Wien

Work around: Guide the analysis by
means of code annotations (2)

• Describing possible values of variables [aiT]:

condition <addr> is always <bool value>;
snippedt <addr> is newer executed;
instruction <addr> is entered with <state>;

• Describe boundaries of memory access [aiT]:

instruction <addr> accesses <addr-range>;

6Raimund Kirner, TU Wien

Work around: Guide the analysis by
means of code annotations (3)

• Describe iteration bounds of loops [Bound-T]:

subprogram “<fn-name>”
loop that uses <var-name>

repeats <= 7 times;
end loop;

end “<fn-name>”;

(written in external code annotation file)

2

7Raimund Kirner, TU Wien

Reflection on code annotations
• Code annotations may be erroneous

• Code annotations often have to be done at
object code level update/check necessary
when changing and re-compiling the code

• Manually annotating the code is labor-intensive
(especially at the object-code level !!!)

• Questions:
Are there code annotations that can be avoided?
Can the process of annotation be simplified?

8Raimund Kirner, TU Wien

Classification of Code Annotations (1)

• Platform Property Annotations (PPA)

• CFG Reconstruction Annotations (CRA)

• Program Semantics Annotations (PSA)

• Auxiliary Annotations (AA)

9Raimund Kirner, TU Wien

Classification of Code Annotations (2)

Platform Property Annotations (PPA)

• Description of special semantics behind the
access of memory-mapped IO
(local annotations).

• Description of platform properties that influence
the execution time (mostly global annotations).

• Examples:
description of memory layout, properties of
target hardware, …

10Raimund Kirner, TU Wien

Classification of Code Annotations (3)

CFG Reconstruction Annotations (CRA)

• Help to build basic structures of code analysis:
– control-flow graph (CFG) and call-graph

• Allow to reverse-engineer the high-level code
structure from the low-level assembly
statements.

• Examples:
list of targets for branch instr, type labeling of
branch instr, …

11Raimund Kirner, TU Wien

Classification of Code Annotations (4)

Program Semantics Annotations (PSA)
• Local description of program behavior
• Support for

– path analysis
– value analysis
– etc.

• Examples:
flow annotations like loop bounds, description of
variable values, …

12Raimund Kirner, TU Wien

Compiler-Support for WCET Analysis (1)

Information accessible by the compiler:

• Program representation at source and object code level.

• Performed code transformations to obtain object code

What a compiler can help:

• Describe CFG of object code (to avoid the need of CRA)

• Provide mapping of source-code annotations to object
code (simplification by writing annotations at source
code level instead of object-code level) [PPA,PSA,AA]

3

13Raimund Kirner, TU Wien

Compiler-Support for WCET Analysis (2)

What a compiler can help (2):
• Emit properties of a program’s execution behavior

(reduce amount of code annotations) [PSA]
– in general, some PSA may remain mandatory
– but in practice almost no PSA is mandatory!

• Improve predictability of code
– imitation of “WCET-oriented programming”
– e.g., single-path conversion can reduce the

execution-time jitter of real-time programs
– support of predictable HW mechanisms

(e.g., prefetching, scratchpad memory, cache locking),

14Raimund Kirner, TU Wien

Final remark on code annotations

Not all code annotations are artificial:

• application-context (operation mode) may be
specified to refine the analysis [PSA]
(e.g. range on initial variable values, CFG
restriction)

• mapping of target-specific properties to code
may be mandatory [PPA]
(e.g. memory-mapped IO)

