
Issues using the Nexus Interface for Measurement-Based
WCET Analysis

Adam Betts and Guillem Bernat
Real-Time Systems Research Group

Department of Computer Science
University of York, UK

{abetts, bernat}@cs.york.ac.uk

Abstract

Hardware debug interfaces such as Nexus have
the power to unleash the full potential of
measurement-based WCET approaches due to the
passive nature in which timing data are collected
from the processor. However, difficulties arise as a
result of their restrictive nature, thus disallowing
true user freedom in the selection of instrumenta-
tion point placement. This paper elaborates on the
problems encountered when using the Nexus inter-
face in our measurement-based WCET framework,
and how some of these issues can be resolved, par-
ticularly that of irreducibility.

1 Introduction

Measurement-based (MB) WCET analysis tech-
niques are being embraced as the predictability of
state-of-the-art processors diminishes due to mod-
ern speed-up features, e.g. cache, branch predic-
tion, out-of-order execution, etc. Real-time hard-
ware architects are increasingly looking towards
such features as the thirst for performance en-
hancement grips the embedded market [5]. How-
ever, the resulting effect is instruction latencies
that are difficult to model statically, thus result-
ing in pessimistic assumptions about speed-up fea-
tures’ behaviour that ultimately leads to loose
WCET estimates. MB approaches, on the other
hand, permit tighter WCET estimates [2] by test-
ing the program on its actual hardware platform.

The main hindrance in using MB approaches is
that timing data need to be collected whilst the
program executes: either processor simulation or
software probing performs the desired task. Cycle-
accurate simulators capture both functional and
temporal aspects of a processor, which are usually
constructed by scrutinising the processor’s user
manual. Many factors render themselves crucial
in the accurate design of a processor simulator for

which failure can produce unsafe WCET estimates.
Engblom [3] has cited potential sources of error in
simulator construction and he concludes that user
manuals are generally not trustworthy and that
complex processors do not lend themselves to ease
of construction. Alternatively, software monitoring
inserts instrumentation points (ipoints) in the pro-
gram in order to accumulate timing data during its
execution. The clear advantage of this technique is
program execution on its intended hardware, thus
overcoming intrinsic difficulties in modelling the
processor and peripheral hardware. However, a
negative phenomenon widely known as the probe

effect ensues whereby ipoints disturb the temporal
nature of the program, i.e. the execution time of
the program differs when the software ipoints are
removed.

A solution for the seemingly unavoidable probe
effect has arrived in the form of hardware debug
interfaces, such as Nexus [6] which is discussed in
section 3, and the ARM embedded trace macro-
cell (ETM) [4]. The fundamental aspect of these
interfaces is that data are collected passively from
the processor during program execution. Problems
do arise through the restrictive nature that is im-
posed on data collection, which restricts true user
freedom in the selection of instrumentation point
placement, thus requiring new techniques to han-
dle these hurdles. In this paper we discuss such
problems and techniques in the context of Nexus,
primarily because it is now an IEEE-ISTO stan-
dard, although they are equally applicable to the
ETM.

In this paper we discuss how this restriction
naturally leads to the problem of irreducibility
in the data structure that is employed in our
measurement-based framework, the instrumenta-
tion point graph (IPG), which is briefly introduced
in the next section. We will show how some ir-
reducible issues can be resolved by the relation-
ship that exists between the program’s control flow



graph (CFG) and the IPG. We further discuss how
trace data loss and out-of-order execution affects
the computation of WCET estimates. Finally, we
outline some conclusions and future areas of work.

2 Instrumentation Point Graphs

Our approach combines timing data collected dur-
ing measurement through high-level static tech-
niques that reconstruct the longest path through
the program, independent of the type of monitor-
ing employed. This is accomplished using the IPG
in which the atomic unit of computation is the time
that is observed between ipoints, instead of basic
blocks, which is the case of the CFG. In essence,
the IPG arranges the possible transitions among
ipoint pairs in the CFG into structural form. The
transitions among ipoints in the IPG thus repre-
sent sequences of code exercised when a particular
edge is followed. Timing measurements for these
sequences are obtained by executing the program
using test-data generation algorithms.

Once the IPG has been built, we adopt tra-
ditional calculation methods found in the litera-
ture, i.e. tree-based, path-based and IPET, re-
vising them accordingly so that they pertain to
the IPG. As hierarchical representations have dif-
ficulty modelling irreducible regions of code, the
reducibility property of an IPG is a central issue in
tree-based methods. Software instrumentation can
guarantee the reducibility of the resultant IPG, de-
tails of which can be found elsewhere [1]; however,
as true user freedom in ipoint placement is disal-
lowed in Nexus-monitored programs, this property
is only in evidence in trivial CFGs. An example
later in the paper will help clarify this issue.

3 The Nexus Standard

Nexus has been introduced in response to the ever-
increasing subtle nature of software and hardware
bugs [6, 7]. This subtlety has arisen as a result of
the complexity of modern processors: more tran-
sistors, faster clock-rates, multiple-level on-chip
caches, multi-core processors, etc. All these intri-
cacies mask the visibility of bugs and render tra-
ditional methods of debugging, e.g. in-circuit em-
ulators and logic analysers, inappropriate. Nexus
uses JTAG ports to communicate between a debug
tool and the processor, and is increasingly being
supported by chip manufacturers such as Motorola
and STMicroelectronics.

The principal way to extract WCET data
through the Nexus interface is by utilising its

program trace feature, branch trace messaging

(BTM). This allows time stamps to be recorded
when sequential program flow discontinues, i.e. at
taken branches and exceptions. In the case of taken
direct branches, Nexus includes the number of se-
quential instructions that were executed since the
last taken branch or exception, including those di-
rect branches that resolved to untaken and indirect
branches. The address of the branch target and
branch-condition predicate bits can also be derived
by using the more refined historical BTM feature
[7]. At first sight it would appear that only moni-
toring taken branches in unnecessarily restrictive.
The motivating factor for this is to lower the bur-
den placed on the Nexus interface: too many re-
quested debug reports results in trace buffer over-
flow. The BTM feature is the principal means of
extracting WCET data, so we now qualify how its
restrictive properties impacts the computation of
MB WCET estimates.

Irreducible IPGs

In optimising compilers and WCET analysis, the
reducibility of a CFG is a key property as loop
identification techniques, for example, are greatly
simplified. A loop is irreducible when there are
multiple entries into the loop [9], so that no sin-
gle node dominates all nodes in the loop body.
In these cases it is often difficult to compute the
nodes that are contained in the body, the nesting
relationship among loops, and even the number of
loops. However, using the Nexus interface in our
framework ensures a much higher prevalence rate
of irreducibility in the IPG, even for relatively sim-
ple CFGs. Worse yet, the irreducibility properties
are vastly more complex than an optimising com-
piler would typically introduce on a CFG, in the
sense that reducibility encapsulates much larger
subgraphs of the IPG.

The cause of irreducibility emanates from the
virtual nature of Nexus ipoints in contrast to the
physical nature of software probes. In the latter,
all executions of a program that invoke a set of
basic blocks include the execution of ipoints be-
longing to those basic blocks. This is not the case
in the BTM, in which only the invocation of a tran-
sition among basic blocks triggers the time stamp.
Therefore, unless an edge e that includes a virtual
ipoint dominates all other edges E including vir-
tual ipoints on each path to exit in the CFG, it is
possible that the flow of control skips around e to
each edge in E. This point is illustrated in figure
1: there is a CFG with virtual ipoints on all transi-

2



tions for which Nexus would record a time stamp1,
as well as the resulting IPG that consists of ipoints
as nodes. The edge that includes ipoint i1 clearly
dominates edges that include ipoints i2 and i3 in
the CFG, thus ensuring that all paths from start
pass through this edge to reach i2 and i3. On the
other hand, there is no dominance relation among
i5 and i6 and they both reside in a natural loop
structure. Therefore, the set of ipoints on paths
from start to this loop have a corresponding edge
to i5 and i6 if start is their immediate dominator;
the complexity evidently intensifies as the size of
this set increases as well as the number of ipoints in
the loop body. Another complexity that emerges
from figure 1 is that of misidentification of loop
nesting structures. The natural loop structure con-
taining i5 and i6 might incorrectly be identified as
a nested loop whereby i5 is the outer loop header
and i6 is the inner loop header. In fact, all edges
i5 → i6, i6 → i5 and i6 → i6 are loop backedges
since they correspond to another iteration of the
loop in the CFG. This problem is also in evidence
in the while loop structure that contains i2 and i3.

We utilise two interlinked techniques in han-
dling IPG irreducibility that is generated by virtual
ipoint placement. Firstly, by using the relation-
ship between the CFG and the IPG it is relatively
straightforward to ascertain when simulated nested
loops actually conform to a single loop. This is
primarily carried out by inspection of the domi-
nance relation that exists among basic blocks in
the CFG with respect to that of the ipoints in
the IPG. Secondly, we can reduce the intricacy of
IPG irreducibility, and complexity in general, by
means of edge pruning. The relationship between
the CFG and the IPG is yet again central to the
accomplishment of this task, as well as the familiar
WCET principle that a program’s WCET occurs
under maximum loop iteration. In general, any
edge in the IPG that bypasses the execution of a
loop in the CFG can be pruned. Although both
of these techniques reduce some irreducibility as-
pects, the general case remains an open problem.

Trace data loss

As we discussed above, Nexus attempts to prevent
trace data loss through its BTM scheme by record-
ing data when program flow discontinues. This
does not completely guarantee fulfilment of this re-
quirement since tightly grouped sequences of con-
trol flow changes might still overwhelm the JTAG
port. The problem is accentuated by the pulsat-
ing increase in microprocessor performance that re-

1We include start and exit nodes as ipoints

(A) (B)

exit

start start

exit

PSfrag replacements

i1
i1

i2i2

i3i3

i4

i4

i5

i5
i6

i6

Figure 1: (A) CFG with virtual ipoints on edges
Nexus monitors and (B) Resultant IPG generated

sults in higher instruction throughput. Multiple-
issue processors, more accurate branch prediction
schemes, and more elaborate speculative execution
techniques ensure a faster turnover of branch in-
structions. In sharp contrast to this, nobody is
suggesting that the average size of basic blocks,
typically six instructions, is on the verge of increas-
ing.

The loss of trace data has varying consequences
on the computation of WCET estimates. Incom-
plete information about the branch target address
will evidently result in difficulties in reconstruct-
ing the path that was executed in the program.
Consequently, the time that is observed between
recorded pairs of ipoints can lead to inaccurate
WCET estimates as it will include the execution
of a path that includes another unrecorded ipoint.
If measurement is being used to ascertain loop
bounds then data loss inevitably leads to the pos-
sibility of underestimation since fewer iterations
will be observed than the actual number. The ir-
reducibility problem of IPGs further complicates
trace data loss: others [10] have shown that it is
possible to reconstruct the path through a program
by instrumenting the leaves of the CFG’s domina-
tor tree. However, the dominator tree of the IPG is
extremely shallow as a result of irreducibility, thus
eliminating this possibility.

The key to reducing trace data loss is to min-
imise the data rate out of the CPU. In particular,
Nexus does permit the monitoring of a set of ad-
dresses within a specified range. Hence it is pos-
sible to guide the instrumentation process given
static and dynamic properties of the program. For
example, some studies [8] have shown that only a

3



small number of branches are dynamically invoked,
thus it may be more pertinent to observe these lo-
cations. Other properties such as whether a branch
appears on the worst path, the size of the program
etc., have equal bearing.

Out-of-order execution

Of all the contemporary hardware features, out-of-
order execution causes the greatest distress within
the field of WCET due to the sheer complexity
required in the analysis - it has also inhibited MB
analysis [2]. The crux of the problem is that out-of-
order execution permits instructions to execute in
a different order to that described in the program,
thus it is difficult to determine the correspondence
between timing data and the instructions it encom-
passes. This obstacle is independent of the basic
unit of computation employed, so it equally applies
to the IPG. Moreover, since Nexus targets modern
microprocessors there is a greater likelihood that
out-of-order execution problems arise as this tech-
nique creeps into the embedded market.

Finding solutions for the out-of-order problem
that do not result in undue pessimism is a diffi-
cult task. However, as we indicated above, Nexus
does provide additional information that might dis-
ambiguate some of these issues. Knowledge such
as the number of sequential instructions executed
since the last program flow discontinuity could pro-
vide valuable insight.

4 Conclusions and Future work

Hardware debug interfaces such as Nexus appeal
greatly to MB WCET analysis techniques due to
the passive collection of timing data from the pro-
cessor, thus eliminating the probe effect. However,
new problems surface as a result of the restrictions
imposed by these interfaces on the placement of
virtual instrumentation points.

In particular, we have demonstrated how irre-
ducibility quickly becomes problematic even for
relatively small CFGs, and that irreducibility is de-
cidedly more complex. On the other hand, we have
highlighted how the relationship between the CFG
and our underlying data structure, the instrumen-
tation point graph, can be exploited to overcome
some of these issues. The focus of future work is
to formalise these techniques and to extend them
in order to handle a larger subset of irreducible
graphs. We also showed how trace data loss and
out-of-order execution negatively impacts the com-
putation of WCET estimates. Future work in this

area will quantify these effect and propose some
solutions.

References

[1] A. Betts and G. Bernat, ”Instrumentation
Point Graphs for WCET Analysis”, Techni-
cal report, Department of Computer Science,
University of York, April 2005.

[2] A. Colin and S. Petters, ”Experimental Eval-
uation of Code Properties for WCET Analy-
sis”, In proceedings of the 24th Real-Time
Systems Symposium (RTSS’03), December
2003.

[3] J. Engblom, ”Processor Pipelines and Static
Worst-Case Execution Time Analysis”, PhD
Thesis, Uppsala University, Uppsala, Swe-
den, April 2002.

[4] ARM development tools. At
http : //www.arm.com.

[5] G. Frantz, ”Digital Signal Processor
Trends”, IEEE Micro, Vol. 20, No. 6, pages
52-59, November 2000.

[6] The Nexus 5001 forum. At
http : //www.nexus5001.org.

[7] J. Turley, ”Nexus Standard
Brings Order to Microproces-
sor Debugging”, August 2004. At
www.nexus5001.org/nexus− wp− 200408.pdf,
March 2005.

[8] S. Sechrest, C-C. Lee and T. Mudge, ”Corre-
lation and Aliasing in Dynamic Branch Pre-
dictors”, In Proceedings of the 23rd annual
international symposium on Computer archi-
tecture, May 1996.

[9] V. Sreedhar, G. Gao, and Y. Lee, ”Identify-
ing Loops using DJ graphs”, In ACM trans-
actions on Programming Languages and Sys-
tems, 18(6):649-658, November 1996.

[10] M.M. Tikir and J.K. Hollingsworth, ”Ef-
ficient Instrumentation for Code Coverage
Testing”, In proceedings of the international
symposium on Software testing and analysis,
July 2002.

4


