WCET’ 2002

2™ | nternational Workshop on Worst-Case
Execution Time Analysis
(Satellite Event to ECRTS 02)

Technical University of Vienna, Austria
June 18, 2002

M essage from the Wor kshop Chair

Welcome to the 2" international Workshop on Worst-Case Execution Time (WCET) Anal-
ysis, a satellite event of the Euromicro Conference on Real-Time Systems. The workshop
was held in Vienna, Austria, on the 18th of June 2002. This is the second event in the series
after the successful first meeting held in Delft.

The aim of the workshop is to provide a forum for discussing current trends and issues
related to the timing analysis of Real-Time Systems with special emphasis on bridging the
gap between industry and academia. The meeting encourages debate and interaction be-
tween participants through short presentations followed by active discussion. The program
of the workshop presents contributions on the following areas of timing analysis:

o Within the context of high-level analysis techniques contributions address path anal-
ysis techniques and issues related to object oriented programming models.

e On low-level analysis techniques the focus is on modelling timing behaviour of pro-
cessor features such as cache effects, branch prediction and speculative execution.

e The industrial view presents timing requirements in the aerospace industry and cur-
rent models of analysis and current tool support.

I would like to express my congratulations to all participants, authors, reviewers, and the
organisation of the workshop (special thanks to Antoine Colin and Stefan Petters) that have
made this event a successful one.

Dr. Guillem Bernat.
University of York. England, UK

Table of contents
Session I: High level analysis

e A Prototype Tool for Flow Analysis of C Programs.
Jan Gustafsson, Bjorn Lisper, Nerina Bernmudo, Christer Sandberg and Linus Sjoberg.
Malardalen University, Vasteras, Sweden.

e A novel Gain Time Reclaiming Framework Integrating WCET Analysis for Object-
Oriented Real-Time Systems.
Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat. University of York, United
Kingdom.

e A Unified Flow Information Language for WCET Analysis,
Andreas Ermedahl, Jakob Engblom, Friedhelm Stappert.

Session II: Tools

e WCET Estimation from Object Code Implemented in the PERF Environment.
Douglas Renaux, Jodo Goés and Robson Linhares. Laboratory of Embedded Sys-
tems Innovation and Technology, Brasil.

e Status of the BOUND-T WCET Tool.
Niklas Holsti and Sami Saarinen. Space Systems Finland Ltd., Espoo, Finland

Session I11: Industrial views

e You Can’t Control what you Can’t Measure, or Why it’s Close to Impossible to Guar-
antee Real-Time Software Performance on a CPU with On-Chip Cache.
Nat Hillary and Ken Madsen. Applied Microsystems Corp./Wind River Sysrems Inc.

o \Worst Case Execution Time Prediction.
Marc Langenbach, Christian Ferdinand and Reinhard Wilhelm

e The European Space Agency’s Involvement and interest in WCET and Scheduling
Analysis.
Morter Rytter Nielsen, Eric Conquet and Jean-Loup Terraillon. ESA, Nordwijik,
Netherlands.

Session IV: Low Level Analysis

Cache Modelling vs Static Cache Locking for Schedulability Analysis in Multitasking
Real-Time Systems.
Isabelle Puaut. IRISA, Rennes, France.

A Framework to Model Branch Prediction for WCET Analysis.
Tulika Mitra and Abhik Roychoudhury. National University of Singapore, Singa-
pore.

Difficulties in computing the WCET for Processors with Speculative Execution.
Christine Rochange and Pascal Sainrat. Institut de Recherche en Informatique de
Toulouse, France.

Session V: Issues in WCET Analysis

Why You Can’t Analyze RTOSs without Considering Applications and Vice Versa.
Jorn Schneider. Saarland University, Saarbriicken, Germany.

How Much Worst Case is Needed in WCET Estimation?
Stefan Petters. University of York, United Kingdom.

Is WCET Analysis a Non-Problem? - Towards New Software and Hardware Archi-
tectures.
Peter Puschner. University of Vienna, Austria.

Session |:
High level analysis

| sabelle Puaut

Presentations

The "high level analysis” session was made of three presentations. The first one introduced
ongoing work on the automatic determination of flow facts (loop bounds, infeasible paths)
of C programs, applied at on intermediate code. The main issue raised by this presen-
tation was the applicability of such automatic flow determination to most hard real-time
applications. The second presentation dealt with the WCET analysis of object-oriented
programs and questioned about the usefulness of the early reclamation of gain time” (time
gained by executing applications quicker than expected) in object-oriented programs. The
third presentation introduced a language to express flow information, aimed at being both
independent of the methods used to compute WCETS, and independent of the WCET com-
putation tools. It questioned about the possibility to create/agree on a unified language to
express flow information, in order to allow the interoperability of different WCET analysis
building blocks.

Discussions

The discussions after the three presentations are categorized below according to four broad
topics that do not necessarily respect the chronological order in which they appeared.

On the applicability of automatic flow determination (on today pro-
gramming languages)

The main interest in the automatic determination of flow information (loop bounds, infeasi-
ble paths) is its safety compared to manual annotations, used in most WCET analysis tools.
However, automatically determining flow information does not always succeed, since it is
equivalent to solving the halting problem. The issue is then to determine whether such
automatic methods can be applied to most hard real-time applications.

One of the workshop attendee had experiences with code from avionic and automo-
tive applications showing that the code of such applications is rather simple, and that from
90obtained automatically from the programs source code. Things get more complicated
when flow information is obtained from object code, but some information can be made
available by the compiler or compiler designer (sizes of arrays, sophisticated translation
methods), making the attendee confident on the applicability of automatic flow analysis
methods to most hard real-time applications.

One can also distinguish between hard real-time applications, in which the code is in-
tended to be simple, and soft real-time applications, in which complicated flow information
occurs more frequently. Automatic flow determination is intended to work better on hard
real-time code than on soft real-time code. But this is not a big problem for soft real-time
applications, for which the safety of flow information is a less stringent requirement than

for hard real-time applications (for the former class of applications, manual annotations or
measurements can be used as an alternative to automatic flow determination).

On the programming discipline required to make flow analysis (and
more generally WCET analysis) feasible

Some failures of automatic flow determination techniques can come from code not suited
to hard real-time constraints, developed by programmers that are not aware of timing con-
straints, or programmer that suffer from stringent productivity constraints, like for instance
a time-to-market of a few months in the telecommunication area. The point here is that we
should not expect the WCET analysis tools to do everything for us. Rather, a programming
discipline is required to produce analysable code (programming, especially programming
real-time applications, is not easy). This can be seen as a contract between the programmer
and the WCET analysis tool: the programmer respects programming discipline such that
the WCET analysis tool can obtain WCET automatically. In that respect, WCET analysis
tools can help in this educational effort to produce better code, by identifying non real-time
code (e.g. non terminating loops).

On the integration of WCET analysis in the design process of applica-
tions

Most WCET analysers assume that the code of the whole application is available, and
assume that the application code is correct. This implies that WCET analysis in particular,
and that schedulability analysis in general, cannot be used in the very early stages of the
design process of applications. This point has been identified as a potential brake on the
use of WCET analysis techniques in the industry.

Another issue discussed was the issue of the feedback given by the WCET analysis
tools to the system designers. Currently, WCET analysis tools produce a single number
(the WCET) as a result of the analysis. Is this the best thing to produce for schedulabil-
ity analysis? When schedulability analysis fails, is there enough feedback to modify the
code or architecture so that the system schedulability can be established? The approach
called software performance engineering (Connie Smith) was mentioned; it consists in in-
crementally specifying and verifying application performance constraints by dividing the
application performance constraints into performance budgets that can be specified and
verified independently and incrementally.

More generally, the issue of integration of different subproblems related to scheduling
has been identified as an important one. Currently, the scheduling problem is tradition-
ally separated into two steps considered independently: schedulability analysis and WCET
analysis. But these steps are not actually that separated, especially when hardware compo-
nents such as caches are used (high worst-case timing cost of an interrupt on an architecture
with caches has an impact on the system schedulability). Are we currently using the right
design process to separate the scheduling problems into subproblems that can be solved
independently?

On the WCET analysis of object-oriented languages

There seems to be a wish to use object-oriented languages to program real-time applica-
tions, especially in the telecommunications area. Some features of object-oriented lan-
guages that make their timing analysis difficult or even impossible (or have a too important
impact on the performance of applications), have been discussed, and are usually avoided
in real-time applications: virtual functions, design patterns, frameworks, dynamic mem-
ory management, design factories, ... Two approaches have been discussed to overcome
this problem: either using these languages for soft real-time systems, or use them in hard

real-time systems and then restrict their capabilities such that their timing behaviour can
be analysed, while keeping their expressiveness. In the latter case, estimated WCETSs can
be more overestimated than in sequential programming languages due to features like dy-
namic dispatching. In such a situation, identifying and reclaiming gain time as soon as
possible can have an important impact on the system overall performance and utilisation.

Other issues

A recurrent question is why WCET analysis tools are not used in the industry? A po-
tential explanation is the lack of involvement of the compiler vendors in WCET analysis
techniques. WCET analysis tools require information on all the things the compiler does
(translation schemes, optimisations). Such information is not currently easily available.
While there is a need for such information, there is no unified data structure to express
such information, and it may be problematic for compiler vendors to provide them since it
is a part of their expertise. One can think of uses of WCET analysis with broader applica-
tions than hard real-time systems. One can for instance think of using it for comparing the
performance of different algorithm implementations.

A last aspect mentioned (not specially linked to high level analysis, but worth mention-
ing) was the introduction of on-chip multiprocessors. Such architectures blur the traditional
separation between WCET analysis and schedulability analysis, because determining the
WCET of a task cannot be done independently. It is also the source of observability prob-
lems to validate the timing model using in WCET analysis against the actual hardware.

A Prototype Tool for Flow Analysis of C Programs

Jan Gustafsson, Bjorn Lisper, Nerina Bermudo, Christer Sandberg, Linus Sjoberg
Department of Computer Engineering
Malardalen University, Vasteras, Sweden
{jgn, blr, nbo, csg}@mdh.se, 1sg98020Q@idt.mdh.se

Abstract

We describe a prototype tool for flow analysis. The purpose of the tool is to statically
analyse C programs in intermediate code format, and to calculate flow information, like loop
bounds. This information will be used by a subsequent low-level analysis to calculate a final
worst case execution time. We describe the main steps of the tool, and analyse a simple
example to illustrate our method.

1 Introduction

Predicting the Worst Case Execution Time (WCET) of programs is an essential step in design-
ing real-time systems, especially hard real-time systems. Methods based on static analysis can
guarantee the safeness of the predicted WCET, while measurements, in the general case, can not.

In the presence of loops and recursion, finite iteration bounds must be given to the WCET cal-
culation method. Most often, they are given as manual annotations by the programmer. Optional
annotations (like information on infeasible paths) may also be given, to reduce the overestimation
of the calculated WCET. The annotations can be supplied as comments or in a separate file.

A problem with manual annotations is that the calculation of these are often time-consuming
and error-prone. It would be advantageous if these annotations could be calculated automatically.
This is the aim of the project described in this paper.

The WCET project is a sub-project within CODER (Cluster on Distributed Embedded Real-
Time Systems) in the ASTEC [ASTO01] competence center. The project consists of two groups,
one at Uppsala University (low-level analysis) and one at Méalardalen University in Vésterds. The
flow analysis research is an activity of the Vasteras group.

The flow analysis tool is a part of a planned, complete WCET tool (see [EEST01] for details).
The flow analysis part will calculate the possible flow of the analysed program. This information
will, together with the results from the low-level analysis, be used to calculate a final WCET.

2 Overview of the Tool

2.1 The Input of the Tool

The tool analyzes C-programs in intermediate code format. We will use the NIC (New Intermediate
Code) format (developed within CODER). The full ANSI C language will be supported (including

pointers, recursion and unstructured code).

We assume that the code represents a syntactically and logically correct program. For example,
we assume that array indices are within bounds. We also assume that the control flow graph of
the analysed program is the same as in the final machine code, 1.e., that the final steps to machine
code does not change the control flow.

Manual annotations are used as a complement when the automatic flow analysis fails.

2.2 The Calculation

There will be a possibility to choose between a slower but more exact analysis or a faster but less
accurate. It will also be possible to change certain compiler- or system-specific data used in the

analysis (like integer type sizes).

2.3 The Output

The purpose of the tool is to calculate flow information (“flow facts”, see [EE00]), like number of
iterations and recursion levels, infeasible paths etc., that will be used in the subsequent low-level
analysis. The flow facts are attached to the scope graph [EE00] of the analysed program. A scope
graph is a partition of the program into scopes; a scope is a part of the program where certain

flow facts are valid.

2.4 Flow Analysis Overview

Basically, the analysis of a C program is performed using the steps described in Figure 1.

Point S
C program Optimization

NIC code

parser

Internal
representation

SSA

construction

SSA

form

Build
scope graph

Syntact.
analysis
Scope
graph Reduced
Flow SSA form
facts

Abstract
interpr.

Figure 1: Basic analysis steps.

e Parser. The C code is parsed to produce a NIC file.

Optimized
NIC code

Remove
non-cond.

e Pointer analysis. Pointers in the program are analyzed. Information about the resulting

points-to sets are stored in the NIC file.

e Optimization. The NIC code is optimized. These first three steps are developed within the

WPO project.

3

NIC code parser. The optimized NIC code is parsed to produce an internal representation.
This internal format is the basis for all subsequent analysis steps.

An SSA (Static Single Assignment) conversion is performed. The calculated data is added
to the existing internal representation.

Non-conditionals are removed. All assignments to variables that do not affect control flow
(transitively) are identified and removed from the program. If all references to a variable
are removed, the variable will be removed completely. The reason is to simplify and speed
up the rest of the analysis.

Scope graph construction. The scope graph is constructed using the control flow that can
be extracted from the internal representation.

Syntactical analysis. The code is “scanned” for simple, recognizable loop constructs and
the corresponding loop counts are calculated, if possible. The loops are replaced with as-
signments to the final values for the variables updated in the loop, resulting in a simpler
program to analyze in the following step.

The removal of non-conditionals is run again, since variables may become non-conditional
during syntactical analysis.

Abstract interpretation. The remaining code (after the previous step) is analysed using
abstract interpretation. The resulting flow facts are appended to the results file.

If there are constructs for which the abstract interpretation fails, the user is asked for manual
annotations for these. The analysis continues with these two last steps until the complete
code is successfully analysed.

Complete Example

The code below contains a simple and motivating example, activating all the steps of our tool.
For simplicity reasons, it does not contain pointers, arrays, or unstructured code. The variable i
1s assumed to receive a value between 0 and 5 by get_value().

int main(void) { int foo(int j) {

int i, j, k, n =10, ¢ = 2, p; int i, result = 0;

for (i = get_value(); i <=mn; i=1i+ c) { for (i = 0; i < 100; i++) {
p=1-c % 2; result += 2; result += 2;
if (p) k =1+ 2; ¥
¥ return(result) ;

j=1i+k; ¥

j = foo(p);

return(0) ;

¥

We first parse the code to a NIC file. Conversion to SSA form and removal of non-conditionals

(j, k, p', and result) yields a NIC code that is equivalent to the C code in Figure 2.

Next step is to calculate the scope hierarchy below. We see that each function and loop

constitutes a scope.

main

main L1 foo

[
foo L1

IThe variable p is used to control flow in the if-statement, but it is not used in foo. The analysis therefore

removes the later uses of p.

int main(void) { int foo(int j) {

int i, n = 10, ¢ = 2, p; int i;

for (i = get_value(); i <=mn; i=1i+ c) { for (i = 0; i < 100; i++) {3}
p=1i-c¢* 2 return(0) ;
if (p) {3 ¥
¥

foo(0);

return(0);

¥

Figure 2: Example program after removal of non-conditionals

The syntactical analysis will recognize the loop in foo as analyzable and output the flow fact
fooll:[] * Theader(foo_L1) — 100

which means that the loop in scope foo L1 iterates exactly 100 times. The notion Theader(foo_L1)
refers to the iteration count of the loop header. The function foo will be changed by the syntactical
analysis as shown below. We see that the loop has been replaced by an assignment.

int foo(int j) {
int i = 100;
return(0) ;

¥

A new run of removal of non-conditionals removes the variable i in foo since it does not affect
the control flow.

Abstract interpretation of the remaining program will yield the following flow facts for the
remaining loop:

1. mainLi:[] * Theader(main_L1) > 3

2. mainL1:[] * Theader(main_L1) <6

3. main L1:<4..6>:Zime = 1

The first two flow facts means that the loop in main iterates between 3 and 6 times. The second
means that the program will always take the true edge in the if-statement in iterations 4 to 6 of
the loop.

References

[AST01] ASTEC (Advanced Software TEChnology) WWW Homepage. URL:
http://www.astec.uu.se/, November 2001.

[EE00] J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time
analysis. In Proc. 21*" IEEE Real-Time Systems Symposium (RTSS’00), November
2000.

J. Engblom, A. Ermedahl, M. Sjédin, J. Gustafsson, an . Hansson. orst-case

EEST01] J. Engblom, A. Ermedahl, M. Sjodin, J. Gustafsson, and H. H W
execution-time analysis for embedded real-time systems. Springer International Journal
of Software Tools for Technology Transfer, (STTT), 2001.

[EG97T] A. Ermedahl and J. Gustafsson. Deriving Annotations for Tight Calculation of Exe-
cution Time. In Proc. % International European Conference on Parallel Processing,

(Euro-Par’97), LNCS 1300, pages 1298-1307, August 1997.

A Novel Gain Time Reclaiming Framework Integrating WCET
Analysis for Object-Oriented Real-Time Systems

Erik Yu-Shing Hu! Andy Wellings and Guillem Bernat

Real-Time Systems Research Group
Department of Computer Science
University of York, York, YO105DD, UK

E-mail: {erik,andy,bernat}@cs.york.ac.uk

Abstract

This paper proposes a mnovel gain time reclaim-
ing framework integrating WCET analysis for object-
oriented real-time systems in order to provide greater
flexibility and without loss of the predictability and effi-
ciency of the whole system. In this paper we present an
approach which demonstrates how to improve the utili-
sation and overall performance of the whole system by
reclaiming gain time at run-time. Our approach shows
that integrating WCET with gain time reclaiming not
only can provide a more flexible environment to develop
object-oriented real-time applications, but it also does
not necessarily result in unsafe or unpredictable timing
analysis.

Keywords : Gain Time, Real-Time Java, Worst-
Case Execution Time (WCET) Analysis, Object-
Oriented WCET

1 Introduction

There is a trend towards using object-oriented pro-
gramming languages, such as Java and C++4, to de-
velop real-time applications. The success of hard real-
time systems, undoubtedly, relies upon their capability
of producing functionally correct results within defined
timing constraints. In order to achieve this, the pro-
cessor and resource requirements of the hard real-time
tasks have to be reserved. However, this may result
in under utilisation and lead to very poor performance
for aperiodic tasks. Unfortunately, object-oriented pro-
gramming languages support more dynamic behaviour
than procedural programming languages, and some of

*This work has been funded by the EPSRC under award num-
ber GR/M94113.

these features may bring about object-oriented applica-
tions having a more pessimistic worst-case behaviour. In
consequence, object-oriented real-time systems may suf-
fer from significantly lower utilisation and poorer overall
performance of the whole system than procedural real-
time systems.

Most scheduling algorithms assume that the WCET
estimation of each task is known prior to doing the
schedulability analysis. Typically, the WCET anal-
ysis and schedulability analysis are carried out sepa-
rately. Sophisticated techniques [6, 16, 17, 19], are
used in WCET analysis, for instance to model caching
and pipelining, to achieve safe and tight WCET es-
timation. However, most WCET analysis approaches
are only considered in relation to procedural program-
ming languages. Performing WCET analysis on object-
oriented programs must take into account additional
dynamic features, such as dynamic dispatching and
memory management. Some research groups have pro-
posed various approaches [10, 18] to address these issues,
but most approaches result in developing environments
which are inflexible and very limited.

In contrast with the WCET analysis, a number of re-
search groups have proposed various flexible scheduling
algorithms [5, 14], for instance priority server algorithms
[5] and slack stealing algorithm [14], to provide a more
flexible real-time development environment with greater
performance of the whole system. In general, these flex-
ible scheduling algorithms are mainly focused on the use
of WCET estimation to improve the performance of the
aperiodic tasks at run-time. They have, however, paid
insufficient attention the fact that, for the most part,
hard real-time tasks are not executing via the worst-
case execution time path. Therefore, even though they
have demonstrated very complex scheduling algorithms
to improve the average performance of the whole sys-
tem, the improvements are still limited and the overhead

of the implementation is extremely high or it is some-
times not even possible to implement them in practice.

On the whole, the spare capacity of the real-time sys-
tem may be divided into three groups [8]: extra capac-
ity, gain time, and spare time. Extra capacity is the
capacity which is not allocated for hard real-time tasks
during the design phase. This can be identified off-line.
The gain time is produced when the hard real-time tasks
execute in less than their worst-case execution time esti-
mations. This may only be reclaimed at run-time since
it depends on the actual executions of task [8]. The
spare time may be defined as a situation in which the
sporadic tasks do not arrive at their maximum rate.
Most flexible scheduling algorithms are mainly focused
on reclaiming the extra capacity of the system. Only
a few research approaches [11, 9, 1] have discussed how
to reclaim the gain time. However, they have tended
to focus on procedural programming languages, rather
than on object-oriented programming languages.

We have proposed a static timing analysis environ-
ment for the Java programming language [13] and an
approach [12] to address dynamic dispatching issues for
object-oriented real-time systems. However, these only
take into account hard real-time threads. To provide
a more flexible computation model, one needs to con-
sider how to improve the performance of aperiodic tasks
without rendering hard real-time tasks unsafe.

In this paper we propose an approach which demon-
strates how to improve the utilisation and overall per-
formance of the whole system by reclaiming gain time at
run-time. The primary focus of this paper is to demon-
strate how to reclaim the gain times from periodic real-
time tasks, rather than how to apply them in scheduling
algorithms. Integrating the gain time reclaiming with
the scheduling algorithm is outside the scope of this pa-
per. Techniques such as Dual-Priority Scheduling [7]
and Dynamic Sporadic Server [5] are applicable. We
use a gain time reclaiming mechanism to compensate for
the tradeoff among flexibility, efficiency and predictabil-
ity. In our approach, the predictability of hard real-time
tasks is strengthened during the design phase and the
performance of the whole system is reinforced with gain
time reclaiming during run-time. It shows that integrat-
ing WCET analysis with gain time reclaiming not only
may achieve high utilisation and high performance of
the whole real-time system, but also keep the flexibility
and reusability of the object-oriented real-time applica-
tions. The major contributions of this paper are:

e presenting how to address the dynamic behaviour
of object-oriented programming features with min-
imum annotations

e demonstrating how to reclaim the gain time of high

performance object-oriented real-time systems with
the gain time reclaiming graphs

e balancing the flexibility and predicability of object-
oriented real-time applications by integrating
WCET analysis

The rest of the paper is organised as follows. A survey
of related work and an overview of our previous work are
given in Section 2 and Section 3 respectively. Section 4
demonstrates how gain time can be reclaimed in object-
oriented real-time systems. Finally, the conclusion and
future work are presented in Section 5.

2 Related Work

This section gives a survey of the related work of
gain time analysis [11, 9, 1] in the literature. Haban
and Shin have proposed an approach [11] placing soft-
ware triggers at the end of basic blocks in task code
to measure actual execution time. In [11], comparing
the actual execution time which calculated at the soft-
ware triggers point with pre-determined WCET values,
the gain time of the specific basic block can be calcu-
lated. In a similar way, Dix et al. have proposed an
approach [9] adding milestones into task code to cal-
culate the maximum remaining execution time of the
particular task. However, both approaches reclaim the
gain times after they have been generated and do not
integrate with WCET analysis.

Audsley et al. [1] have introduced a gain point mech-
anism to reclaim gain times of the basic blocks of a task
code as early as possible. In [1], the use of gain point
can be grouped into four separate forms, including static
gain point for static code, dynamic gain point for loop
constructs, efficiency gain point for detecting hardware
speed-ups, and resource usage gain point for identify-
ing spare resources. Yet, Audsley et al.’s approach and
the previous two approaches do not take into account
object-oriented programming features and gain times
resulting from functional constraints impacting on the
program’s execution.

3 Previous Work

Our previous work, called Extended Real-Time Java
[13] (XRTJ), extends the current Real-Time Java ar-
chitecture [4] proposed by the Real-Time Java Expert
Group. The XRTJ architecture has been developed with
the whole software development process in mind: from
the design phase to run-time phases. For example, us-
ing our approach, the system can be evaluated during
the design, and the timing constraints of the applica-
tion can be validated during run-time. We integrate

our approach with portable WCET analysis, proposed
by Bernat et al. [3] and extended by Bate et al. [2],
for the WCET estimation. The portable WCET anal-
ysis uses a three-step approach: high-level analysis (i.e.
analysing the Java programs), low-level analysis (i.e.
performing platform-dependent analysis on Java byte
code instructions implemented for the target platform),
and conducting the combination of the high-level anal-
ysis with the low-level analysis to compute the actual
WCET bound of the analysed code sections.

In our previous approach [13], we have introduced
the Extensible Annotations Class (XAC) format, which
stores extra information that cannot be expressed in the
source code. The XAC format is an annotation struc-
ture that can be stored in files or as an additional code
attribute in Java Class Files (JCF). We have also ad-
dressed dynamic dispatching issues in object-oriented
real-time applications [12]. Here, minimum annotations
are provided to ensure the predictability of dynamic
binding methods and to estimate safe and tight WCET
for hard real-time applications. However, our previous
work mainly focused on analysing hard real-time object-
oriented tasks.

3.1 WCET Annotations

This section reviews three annotations proposed in
our previous work [12] to apply them in the rest of this
paper. We have introduced //@UseWCET() to address
dynamic dispatching problems of hard real-time tasks
in object-oriented real-time systems. This annotation is
applied to denote a specific method in the applications
and specifies the worst case value for execution of the
method. We have also introduced //@DefineScope ()
annotation to provide for defining a simple or nested
scope of program. This annotation may enable the
WCET analysis to indicate the complicated structure
of the applications.

Figure 1. An example of //@maxWCET () annota-
tion

Furthermore, to address more complicated class hier-
archies where there is more than one particular method

that may be invoked, the //@maxWCET() annotation
is introduced. It can suggest that the WCET of a
dispatching method should be considered to be the
maximum WCET of the class family' containing that
method. Subsets of the class family can also be speci-
fied. In this annotation, ”&” may be applied to denote
the whole class family of a class. In addition, ”+” and
”-” can also be used to express the union or subtraction
of a single class or a class family for the method. An ex-
ample of the use of //@maxWCET () annotations is given
in Figure 1.

4 Gain Time Reclaiming

In order to balance the tradeoff among the flexibility,
predictability and efficiency of the real-time systems,
gain time reclaiming needs to be applied. For the most
part, the gain time reclaiming in object-oriented pro-
gramming languages may be classified in three sections:
structural constraints reclaiming, functional constraints
reclaiming, and object constraints reclaiming. Further
details of each reclaiming mechanism are discussed be-
low. Note that the WCET annotations used in the
following examples to discuss the gain time reclaiming
mechanism can be added either manually by developers
or automatically by modified compilers or tools.

4.1 Structural Constraints Reclaiming

From the point of view of the syntax of the program-
ming languages, the real-time tasks allow construction
with a number of basic blocks, conditional branches,
and call procedures. These components of a real-time
task, in general, may be represented by a control flow
graph (CFG). It can be observed that the actual execu-
tion time of real-time tasks may vary, if the execution
paths of the task or iteration times are varied at run-
time. This section is mainly concerned with reclaiming
gain times, which depend on the structural constraints
of a specific real-time task.

Our approach is similar to Audsley et al.’s approach
[1], which is proposed for procedural programming lan-
guage. We have defined two annotations (Al & A2),
which are given in Table 1, to cope with structural con-
straints reclaiming. On the whole, the static gain time,
such as pre-calculated units or paths, can be annotated
with annotation Al, and the dynamic gain time, de-
fined for unknown iteration times, can be interpreted
with annotation A2. Essentially, pre-calculated units
can be represented with machine cycles of the target

LA class family of a class is a set of the classes including the
class itself and all the child classes inherited from it.

//@ GainTime(Units /Vectors /path /mode /method)
//@ dynGainTime(max Loopcount, Scope_N ame)
//@Q objGainTime(Object_Name)

Table 1. Gain Time Reclaiming Annotations

machine if the source code of the application is trans-
lated into machine code directly. However, it could be
difficult to estimate the exact machine cycles of Java
applications because of the portability of Java archi-
tecture. In this case, the concept of Worst-Case Exe-
cution Frequency (WCEF) vector [2], which represents
execution-frequency information about basic blocks and
more complex code structures that have been collapsed
during the high level timing analysis phase, may be used
instead of pre-calculated units. These WCEF vectors
may be used to calculate the exact gain time when the
information about the target machine is available. In
order more easily to understand our approach with a
straightforward example, the machine cycle units are
used in the rest of paper.

1o

2 public check_data() {

3 int i, morecheck, wrongone;

4 i=0; morecheck=1; wrongone=—1;

5

6 //Q DefineScope(checkLoop)

7 while (morecheck) {

8

9 if (data[i] < 0) { //Say WCET=20 cycles
10 //@ GainTime(100); (i.e. 120—20 cycles)
11 wrongone=i; morecheck=0;

12 //@ GainTime(Error_mode);

}
14 else { //Say WCET=120 cycles

16 if (++i >= DATASIZE)
17 morecheck=0;
18 }

}
20 //@ dynGainTime(50, checkLoop);
23 if (wrongone >= 0) { //Say WCET=10 cycles
24 //@ Mode(Error_mode);
26 return 0;

}
28 else { //Say WCET=50 cycles

29 //@ Mode(Noml_-mode);
30

31 return 1;

32}

33 }

Figure 2. An example of gain time reclaiming
[15]

As shown in Table 1, annotation Al may provide

various types of parameter, such as units (i.e. machine
cycles), vectors (i.e. WCEF vectors), paths, modes and
methods. As shown in Figure 2, the if-then-else ba-
sic block can reclaim 100 cycles at Line 10, if the con-
dition expression is TRUE (i.e. datal[i]<0) and the
while-loop is part of its worst case path. With respect
to the dynamic gain time, we can simply add an annota-
tion to a non-constant iteration loop, such as for-loop
or while-loop, in order to reclaim gain times at run-
time.

Essentially, the gain time can be reclaimed as soon
as the exact execution path of the task or iteration time
are identified. One should note that the dynamic gain
time reclaiming needs to be provided with the maxi-
mum loop bound. It may also note that either the run-
time system, such as the Virtual Machine, must support
a mechanism to count the exact iteration of the loop
at run-time or additional code must be introduced by
an annotation aware compiler to count the loops. The
structural constraints reclaiming of a specific task may
be represented with a Structural Gain Time Reclaiming
Graph (SGTRG), which illustrates the exact places (i.e.
offset number of the machine code or Java byte code)
and amounts (i.e. machine cycles or WCEF vectors) of
gain time that may be reclaimed. Note that it could
be possible that the actual reclaimed gain time is less
than the run-time overhead of the reclaiming. In this
situation, the gain time should be either neglected or
accumulated until it is worth reporting.

4.2 Functional Constraints Reclaiming

This section is mainly concerned with reclaiming
the gain times which suffer from functional constraints.
This covers the issues that remain from the previous
sections which did not take into account the functional
and data dependencies of the exclusive paths or modes
of the real-time task.

Identifying the ezclusive paths [15] or various modes
[6] in order to calculate the WCET estimation of the
real-time program is widely used in the WCET field.
Based on design knowledge, the annotations of the ex-
clusive paths or modes may be distinguished during the
design phase. Using these annotations, the WCET es-
timation of each exclusive path or mode may be calcu-

lated. However, one should note that it is possible that
the WCET estimations of the exclusive paths or differ-
ent modes are spread over a wide range, and the exact
execution path or mode cannot be determined during
the design phase. As a result, the WCET estimation
could be very pessimistic. In order to address this, we
propose a gain time reclaiming framework which takes
into account the functional constraints of the programs.

In our approach, we use the gain time annotation
(A1), given in Table 1, to identify where the exclusive
path or mode can be determined. As soon as the spe-
cific execution path or mode is determined or executed,
the associated gain time of the executed path or mode
can be reclaimed. Again using the previous example
in Figure 2, the Al annotation can be annotated at
Line 12 to reclaim the functional associated gain time
at run-time. It can be observed that using functional
constraints reclaiming may reclaim the gain time earlier
than the structural constraint reclaiming. The func-
tional constraints reclaiming of a specific task may be
represented with a Functional Gain Time Reclaiming
Graph (FGTRG), which illustrates the exact places and
amounts of gain time that may be reclaimed.

4.3 Object Constraints Reclaiming

So far, we have only discussed the gain time reclaim-
ing which may apply to both procedural and object-
oriented programming languages. We have argued for
the need to use dynamic dispatching and demonstrated
how to guarantee the deadline of hard real-time tasks
in our previous work [12]. Our previous approach has
shown that allowing the use of dynamic dispatching not
only can provide a more flexible way to develop object-
oriented hard real-time applications, but it also does
not necessarily result in unpredictable timing analysis.
Essentially, a //@maxWCET () annotation is used to in-
dicate the WCET of a dynamic dispatching method
call. However, we cannot avoid the fact that the use of
//@maxWCET () might have relatively pessimistic results
if the class family is too large or the WCET estimations
for different classes are spread over a wide range. In
order to compensate for the penalty of the flexibility of
the object-oriented programming, gain time reclaiming
is required.

Before discussing further details of the object con-
straints reclaiming, two technical terms are introduced
below.

e An Object Type Lifetime Graph (OTLG) is a dia-
gram which represents lifetimes of types of particu-
lar objects in a specific task. An OTLG is made of
two types of component: node and edge. A node
denotes a place where the type of the object is

changed, whereas an edge illustrates the lifetime
of a particular type of object between two nodes.

e An Object Gain Time Reclaiming Graph (OGTRG)
is a diagram which illustrates places where the ob-
ject constraint reclaiming may take place. The
OGTRG can be produced from the analysis of the
OTLG and CFG of a specific task.

[% koo Rk kR Rk ok oK
Assume that Class A is a parent
class. Class B, C and D extend A,
and override the m1() methd.

3k >k 3k >k 3k >k ok >k ok sk ok sk ok sk ok sk ok sk ook skok ko kok */

class App extends RealtimeThread {
public void run() {

//@ objGainTime(aa);
A aa= new A();
//@ objGainTime(bb);
B bb= new B();
C cc= new C();
D dd= new D();

/* >k 3k >k 3k ok 3k ok 3k ok Sk ok 3k ok Sk ok 3k ok koK Kok Kok kok
Initial values of x, y and z
are from the environment.

stk ok sk ok sk ok sk ok sk ok skok skok skok sk sk sk ook ok /

if(x > 5) {
cc = dd;
}
if(y == 5) {
aa = dd;
else {
aa = bb;
}
// type changing
bb = cc;

if (z == true) {
aa.ml;

aa.ml;
} else {

aa.ml;

bb.m1;

1t;;t;.ml;

Figure 3. An example of object gain time re-
claiming

Essentially, the value of the dynamic dispatching
gain time of each object can be calculated as follows:
//0GainTime ()= //@maxWCET()-//@UseWCET(). The

object bb

CFG

Object Gain Time

|
CEG Object Type Lifetime | o
Reclaimin
Graph (OTLG) ! Graph (OGTIgG)

|

object aa CFG i object aa

O metl i O
|
|
|
(‘aa=dd orbb) — 1
|
|
Z==trug Ty i —
T //@Gai@Time(?.nlql) *1

//@Gain}.'ime(?.mlf) *2 i
o i
- i

; object bb
i
|

O (Crunmethod > !
e (>

If there is no
invocation on object
bb until it is changed
to the cc type, gain
times of the object bb
can be reclaimed in
the first if-statement.

e

Figure 4. A diagram of producing OGTRG

annotations of the object gain time reclaiming may be
generated by using design knowledge or by producing
an OGTRG. In order to reduce the run-time overhead,
annotation A3 may be applied to define which object’s
gain times are going to be reclaimed. Considering the
example in Figure 3, two //QobjGaintime() annota-
tions are annotated in the run() method. This means
that only these two objects will be taken into account
while producing the OGTRG of the run() method. The
procedure of object gain time reclaiming is given as fol-
lows.

The CFG can be produced from the source code (or
Java class file) for each hard real-time task. Based on
the CFG, an OTLG for each object or those objects de-
noted with annotation A3 in the real-time task can be
produced. In the OTLG, symbolic references may be ap-
plied to represent the relationship between the dynamic
dispatching objects of the same class family during run-
time. Using the CFG and the OTLG of each object, the
exact places and amounts of gain time reclaiming can be
identified. These gain time reclaiming places can be il-
lustrated in the OGTRG for each object. Following this,
the gain time reclaiming of all objects in the real-time
task can be merged together and provided for the run-
time environment (or Java virtual machine) to reclaim
them. A diagram which illustrates the transformation

from CFG to OGTRG is given in Figure 4.

Solving the symbolic expression of an associated class
family can improve the reclaiming as early as possible.
As shown in figures 3 and 4, the gain time of the object
bb can be reclaimed as soon as the type of the object cc
is determined.

5 Conclusion and Future Work

This paper has demonstrated a novel gain time
reclaiming framework integrating WCET analysis for
object-oriented real-time systems. Our approach shows
that integrating WCET with gain time reclaiming not
only can provide a more flexible environment to develop
object-oriented real-time applications, but may achieve
high utilisation and high performance of the whole real-
time system.

Here, we have mainly discussed the dynamic be-
haviour of object-oriented features which is exclusively
restricted to a consideration of the language syntax and
semantic aspects. In order to cover as much dynamic
behaviour of the object-oriented programming features
as possible, our future work has to take into account:
memory management, dynamic loading and extension,
and remote method invocation (RMI) issues.

References

(1]

2l

(11]

(12]

N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms
for Enhancing the Flexibility and Utility of Hard Real-
Time Systems. In Proc. of the 15th IEEE Real-Time
Systems symposium (RTSS), pages 12-21, December
1994.

I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-
Level Analysis of a Portable Java Byte Code WCET
Analysis Framework. In 6th IEEE Real-Time Com-
puting Systems and Applications (RTCSA2000), pages
39-48, December 2000.

G. Bernat, A. Burns, and A. Wellings. Portable Worst-
Case Execution Time Analysis Using Java Byte Code.
In proc. 6th Euromicro conference on Real-Time Sys-
tems, pages 81-88, June 2000.

G. Bollella, J. Gosling, B. M. Brosgol, P. Dibble,
S. Furr, D. Hardin, and M. Turnbull. Real-Time Spec-
ification for Java. Addison Wesley, 2000.

G. Buttazzo. Hard Real-Time Computing Systems:
Predictable scheduling algorithms and applications.
Kluwer Academic Publishers, 1997.

R. Chapman, A. Burns, and A. Wellings. Integrated
Program Proof and Worst-Case Timing Analysis of
SPARK Ada. In Proc. of the Workshop on Language,
Compiler, and Tool Support for Real-Time Systems,
June 1994.

R. Davis and A. Wellings. Dual Priority Scheduling. In
Proceedings of 16th IEEE of Real-Time Systems Sym-
posium (RTSS), pages 100-109, December 1995.

R. I. Davis. On Ezploiting Spare Capacity in Hard Real-
Time Systems. Ph.d. thesis, Department of Computer
Science, University of York, UK, July 1995.

A. Dix, R. Stone, and H. Zedan. Design Issues for Re-
liable Time-Critical Systems. Technical Report YCS-
133, Department of Computer Science, University of
York, UK, 1990.

J. Gustafsson. Analysing Ezecution Time of Object-
Oriented Programs with Abstract Interpretations. Ph.d.
thesis, Department of Computer Systems, Information
Technology, Uppsala University, Sweden, May 2000.
D. Haban and K. Shin. Application of Real-Time Mon-
itoring to Scheduling Tasks with Random Execution
Times. IEEE Transactions on Software Engineering,
16(12), December 1990.

E. Y.-S. Hu, G. Bernat, and A. J. Wellings. Address-
ing Dynamic Dispatching Issues in WCET Analysis for
Object-Oriented Hard Real-Time Systems. Proceedings
of the 5th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing ISORC-
2002, pages 109-116, April 2002.

E. Y.-S. Hu, G. Bernat, and A. J. Wellings. A Static
Timing Analysis Environment Using Java Architecture
for Safety Critical Real-Time Systems. Proceedings
of the 7th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems WORDS-
2002, pages 77-84, January 2002.

(14]

(15]

(16]

(17]

(18]

(19]

J. Lehoczky and S. Ramos-Thuel. An Optimal Algo-
rithm for Scheduling Soft-Aperiodic Tasks in Fixed-
Priority Preemptive Systems. In Proceedings of 13th
IEEE of Real-Time Systems Symposium (RTSS), pages
110-123, December 1992.

Y. Li and S. Malik. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. ACM SIG-
PLAN Workshop on Language, Compilers and Tools
for Real-Time Systems, June 1995.

S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park,
H. Shin, K. Park, and C. Kim. An accurate worst
case timing analysis for RISC processors. IEEE Trans-
actions on Software Engineering, 21(7):593-604, July
1995.

F. Mueller. Static Cache Simulation and its Applica-
tions. Ph.d thesis, Department of Computer Science,
Florida State University, July 1994.

P. Persson and G. Hedin. An Interactive Environ-
ment for Real-Time Software Development. Proceedings
of the 83rd International Conference on Technology
of Object-Oriented Languages (TOOLS Europe 2000),
June 2000. St. Malo, France.

P. Puschner and A. Burns.
Case Execution-Time Analysis.
18(2/3):115-128, 2000.

A Review of Worst-
Real-Time Systems,

A Unified Flow Information Language for WCET Analysis

Andreas Ermedahl?

IT-Dept. Uppsala University
Box 337, SE-751 05 Uppsala
Sweden

andreas.ermedahl@it.uu.se

Abstract

In this paper we raise the question if it is possible
to create a unified flow information language that all
WCET research groups can agree upon, and that is in-
dependent of flow analysis and calculation methods.

We discuss desired characteristics of such a flow in-
formation language and describe the type of flows that
it should be able to express. We present our previ-
ously published flow fact annotation language and dis-
cuss how it fulfils the desired language properties.

1. Introduction

A correct WCET calculation method must take into
account the possible program flow, like loop iterations
and function calls. For expressing program flows nu-
merous annotation languages have been presented in
the WCET literature. The expressiveness and the type
of flows that can be handled by these languages mostly
depend on the characteristics of flow analysis meth-
ods used, rather than being targeted for the potential
WCET tool user.

To generate a WCET estimate, we consider a pro-
gram to be processed through the phases of program
flow analysis, low level analysis and calculation. Most
WCET research groups make a similar division nota-
tionally, but sometimes integrate two or more of the
phases into a single algorithm.

The program flow analysis phase determines pos-
sible program flows, and provides information about
which functions get called, how many times loops iter-

T This work is performed within the Advanced Software Tech-
nology (ASTEC, http://www.docs.uu.se/astec) competence
center, supported by the Swedish National Board for Industrial
and Technical Development (NUTEK, http://www.nutek.se).

* Friedhelm is a PhD student at C-LAB (www.c-1lab.de), which
is a cooperation of Paderborn University and Siemens.

Jakob Engblom
TIAR Systems AB
Box 23051, SE-750 23 Uppsala
Sweden

jakob.engblom@iar.se

Friedhelm Stappert*
C-LAB
Filrstenallee 11, 33102 Paderborn
Germany

friedhelm.stappert@c-lab.de

ate, if there are dependencies between if-statements,
etc. The information can be obtained by manual anno-
tations (integrated in the programming language [14]
or provided separately [6, 9, 19]). The flow informa-
tion can also be derived using automatic flow analysis
methods [7, 10, 13, 22].

In the calculation phase a program WCET estimate
is derived, combining the information derived in the
program flow and low-level analysis phases. There are
three main categories of calculation methods proposed
in literature: tree-based, path-based, and IPET (Im-
plicit Path Enumeration Technique).

In a tree-based approach the WCET is calculated in
a bottom-up traversal of a tree generally corresponding
to a syntactical parse tree of the program, using rules
defined for each type of compound program statement
(like a loop or an if-statement) to determine the exe-
cution time at each level of the tree [1, 2, 16, 20].

In a path-based approach the possible execution
paths of a program or piece of a program are explored
explicitly to find the longest path [10, 12, 22, 23]. The
path-based approach is natural within a single loop it-
eration or function.

In IPET, program flow and low-level execution time
are modeled using arithmetic constraints [6, 9, 15, 18,
21]. Each basic block and program flow edge in the
program is given a time (fensty) and a count vari-
able (Tentity), and the goal is to maximize the sum
Y icentities Ti * ti, subject to constraints reflecting the
structure of the program and possible flows.

2. Representing Program Flow

The program flow phase can be further divided into

three different subphases:

1. Flow analysis: Obtaining flow information. By
manual annotations or automatic flow analysis.

2. Flow representation: Representing the results of
the flow analysis.

3. Calculation: Using the control flow information (as
represented in the flow representation) in the final
WCET calculation.

Some WCET methods integrate two or more of the
phases. We believe that the separation of the flow anal-
ysis from the calculation reduces the complexity of each
stage. Also, by keeping the flow analysis phase separate
from the flow representation, results from several dif-
ferent flow analysis methods and manual annotations
can be integrated and used together in the calculation
phase.

When designing a language for expressing flow infor-
mation there are a number of choices to be made:

e FExpressiveness: What type of flows should be pos-
sible to express? What type of language constructs
should be used?

e Code relation: How is the information related to
different entities in the program code?

o Calculation conversion: How should the information
be used in the final calculation phase?

2.1. Expressiveness

We first note, that a natural way to give flow infor-
mation is by constraining the number of times different
program entities, e.g. loops, statement, nodes or edges,
can be taken. This can either be precise bounds, e.g.
that a loop is iterated exactly ten times, or upper or
lower bounds, e.g. that node A can’t be taken more
than five times. It is also beneficial if we can relate the
executions of different program entities, e.g. that node
A and node B will always be executed together.

The language can consist of named special rela-
tions between entities (e.g. using constructs like Parks
samepath(A,B) and nopath(4,B) [19]). An alterna-
tive is to use a more generic style based on math, like
our flow fact language [6]. The benefit of a generic
math-based language is that it can express flows that
are hard to put in words and that there is no obvious
limit to the types of flows that can be expressed. On
the other hand, a special purpose language is easier to
understand, but requires that new language constructs
are invented in order to express new flows.

The language must reflect the flows found in real-
world programs. Researchers have investigated em-
bedded software [4], the RTEMS operating system [3]
and common signal-processing algorithms [8]. The re-
sults are not in complete agreement on the properties
and flows typical for embedded software, showing that
more research and knowledge is needed here.

One observation is that flow information is mostly
local in its nature, specifying something valid for a
small part of a program or a particular invocation of
a function. Thus, it is not always suitable to specify

flow information once for each entity in the program.
E.g. we would like to be able to specify that some node
A can’t be executed during the first five iterations of a
loop or give a loop bound valid for just some particular
executions of a loop. A language should allow for such
local flow information to be expressed.

2.2. Code Relation

First we note that it is natural to express flow in-
formation in relation to the entities available in the
program code. Flow information can be provided in
relation to the source code, intermediate code in a
compiler, or the object code. If provided on source
code level, the information must be mapped to the ob-
ject code to be used in the WCET calculation. In the
presence of optimizing compilers, this problem is non-
trivial [5, 17].

Automatic flow analysis is probably easier to per-
form at the source code or intermediate code, since
variables and other entities of interest are harder to
identify in optimized object code. Also, for the po-
tential WCET-tool end-user manual annotations are
typically easier to provide at the source-code level.

Another issue is if the flow information should be
included as a part of the programming language or pro-
vided outside the program. The benefit of language in-
clusion is that it forces the programmer to write code in
an analysable manner. However, this requires compiler
support and makes it harder to try different scenarios.

Specifying the flow information outside the program
source allows it to free itself from the static structure
of the program. For example, by using a call-graph
representation, we can differ between invocations of the
same function when called from different places in the
code. An example of the extended version is our scope
graph represention [6].

A good language should provide stability in that pro-
gram changes not related to annotated code should not
force the annotations to change. For example, a prob-
lem with expressing flow information on the object code
level is that the information might need to be regener-
ated every time the program code changes.

An important issue is the ability to handle unstruc-
tured code, e.g. due to uses of goto and jumps into
loops. An optimizing compiler might produce unstruc-
tured object code from structured source code, and au-
tomatic code for state machines also tends to be un-
structured. A general purpose flow information lan-
guage must be general enough to express flows over
such unstructured code.

2.3. Calculation Conversion

Regardless of the flow information language used
the extracted flow information must be ”compiled” or

if(i < 10) A; // Stmt B and C for(i=0;i<10;i++)
else B; // can not be for(j=i;j<10;j++)
if(i <= 7) C; // taken together E;

else D;

// bound: 10 if(cond)

// local bound: 10 x = true; // stmt:F

// E executed at for(...) // Execution of G
// most 55 times if(x) G; // is implied by F

(a) Infeasible path
Figure 1. Example of Code with Different Type of Flows

(b) Triangular loop

”adapted” to the calculation method used. The adap-
tation must be safe: never exclude execution paths
which are considered possible by the flow information,
and tight: including as few extra execution paths com-
pared to the provided flow information. Figure 1 gives
example code showing that not all calculation methods
can take advantage of all types of flow information.

The tree-based method [1, 2, 16, 20] is conceptually
simple and computationally cheap, but has problems
handling flow information, since the computations are
local within a single program statement and thus can-
not consider dependencies between statements. For ex-
ample, the code and flow information in Figure 1(a)
causes problems in a tree-based calculation method
since the timing of the first if-statement will be cal-
culated in isolation from the second if-statement.

The path-based approach is natural within a sin-
gle loop iteration or other executions of one loop
[11, 23]. The method has problems with flow informa-
tion stretching over loop borders and/or flow informa-
tion on the total number of times entities are taken. For
example, the path-based method has problems han-
dling the “triangular” loop dependency in Figure 1(b).
If WCET calculation is performed locally, the WCET
calculation for the inner loop will assume 10 iterations,
and the WCET calculation for the outer loop will use
10 executions of the inner loop, leading to the body
of the inner loop being counted 100 times, when it is
actually never executed more than 55 times.

For IPET very complex flows can be expressed using
constraints, but all flow information needs to be given
on a global program level [6, 9, 15, 18, 21]. This con-
tradicts the need to specify flow information in a local
context. As shown in [6], local flows can be handled by
unrolling the program and lifting the information to a
global level. Since flow information is given as relations
over count variables some type of flow implications are
problematic to express. E.g. Figure 1(c) shows an ex-
ample of code where we would like to express an impli-
cation dependency like: “if F is taken once then (and
only then) G can be taken several times, but if F is not
taken then G can not be taken either”.

3. Our Flow Fact Language

This chapter describes our previously published flow
fact annotation language [6] and discusses how it fulfils
the desired language properties.

(c) Deeply nested dependency

do loopbound: 10
{ outer:<l..5>:X;=1
lcfic()"') A outer: []:Xz<55
{
if(..) B
... C
elsz D loopbound: 10
lf() E inner:<>:X. + Xp<1
... F inner:<6..10>:X.=0
else inner:[1..10]:X;=3
... G -
}
while(..) H .
else 2
soo U °
} 2
while(...) J 8
(a) Program code (b) Scopé graph with attached flow facts

Figure 2. Scopes with Attached Flow Facts

The program representation used is the scope graph.
It is a hierarchical representation of the dynamic struc-
ture of the program. Each scope corresponds to a
certain repeating or differentiating execution context
in the program, e.g. loops and function calls, and de-
scribes the execution of the object code of the program
within that context. Figure 2(b) shows the scope graph
generated for the code in Figure 2(a).

A scope consists of a number of nodes and edges. A
node belongs to exactly one scope, and represents the
execution of a certain basic block in the program in the
environment given by the scope and its ancestors. For
each scope, a header node must be given. If the scope
iterates, each iteration must pass the header node, and
a bound on the number of iterations has to be provided.

To express more complex program flow information
than just basic loop bounds each scope can carry a set
of flow facts [6]. The flow facts use constraints local
to a scope to describe the flow. The constraints can
be given for a range of iterations, or all iterations of
a certain loop. They can also be local within a single
iteration (“foreach facts”) or represent a total over all
iterations (“total facts”).

The scope graph in Figure 2(b) has been decorated
with some flow facts.

Flow fact inner:<>:xz¢ + ar < 1 is a foreach fact
and gives that the nodes C and F cannot be executed
on the same iteration of the scope inner (an infeasible
path), while the flow fact inner:<6..10>:2¢ = 0 gives
that for each entry of inner, during iterations 6 to 10
of inner, node C can not be executed.

Flow fact inner: [1..10] :x¢ = 3 is a total fact that
gives that, for each entry of inner, during the ten first

iterations, node G must be taken exactly three times.

Compared to the criteria given above, we note that
the flow facts language uses the math-based style and
allows us to give local information. The information is
given outside the code and uses an expanded version of
the call graph (and thus the control flow graph). In its
current version, it cannot handle all types of unstruc-
tured code due to the need for a header, and since it
relates to the object code, it is very sensitive to pro-
gram changes.

It has been used to perform both IPET- and path-
based calculations [6, 23], but not all facts could be
used in the path-based approach. It is interesting that
the path-based calculation recognized certain types of
facts as meaning “samepath” or “not samepath”, and
exploited these by rewriting the graph.

References

[1] R. Chapman. Program Timing Analysis. Dependable Com-
puting System Centre, University of York, England, May
1994.

[2] A. Colin and I. Puaut. Worst Case Execution Time Analysis
for a Processor with Branch Prediction. Journal of Real-
Time Systems, May 2000.

[3] A. Colin and I. Puaut. Worst-Case Execution Time Anal-
ysis for the RTEMS Real-Time Operating System. In
Proc. 18" Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[4] J. Engblom. Static Properties of Embedded Real-Time Pro-
grams, and Their Implications for Worst-Case Execution
Time Analysis. In Proc. 5" IEEE Real-Time Technology
and Applications Symposium (RTAS’99). IEEE Computer
Society Press, June 1999.

[5] J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating
worst-case execution times analysis for optimized code. In
Proc. of the 10t Euromicro Workshop of Real-Time Sys-
tems, pages 146-153, June 1998.

[6] J. Engblom and A. Ermedahl. Modeling Complex Flows
for Worst-Case Execution Time Analysis. In Proc. 21"
IEEE Real-Time Systems Symposium (RTSS’00), Novem-
ber 2000.

[7] A. Ermedahl and J. Gustafsson. Deriving Annotations for
Tight Calculation of Execution Time. In Proc. Euro-Par’97
Parallel Processing, LNCS 1300, pages 1298-1307. Springer
Verlag, August 1997.

[8] R. Ernst and W. Ye. Embedded program timing analysis
based on path clustering and architecture classification. In
International Conference on Computer-Aided Design (IC-
CAD '97), 1997.

[9] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Com-
piler Techniques to Cache Behavior Prediction. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), 1997.

[10] C. Healy, R. Arnold, F. Miiller, D. Whalley, and M. Har-
mon. Bounding Pipeline and Instruction Cache Perfor-
mance. [EEE Transactions on Computers, 48(1), January
1999.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. van
Engelen. Supporting timing analysis by automatic bound-
ing of loop iterations. Journal of Real-Time Systems, May
2000.

C. Healy and D. Whalley. Tighter Timing Predictions by
Automatic Detection and Exploitation of Value-Dependent
Constraints. In Proc. 5" IEEE Real-Time Technology and
Applications Symposium (RTAS’99), pages 79-88, June
1999.

N. Holsti, T. Langbacka, and S. Saarinen. Worst-Case
Execution-Time Analysis for Digital Signal Processors. In
Proceedings of the EUSIPCO 2000 Conference (X European
Stgnal Processing Conference), September 2000.

Raimund Kirner and Peter Puschner. Transformation of
Path Information for WCET Analysis during Compilation.
In Proc. 18" Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

Y-T. S. Li and S. Malik. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In Proc. of the
32:nd Design Automation Conference, pages 456461, 1995.

S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Ki. An Accurate
Worst-Case Timing Analysis for RISC Processors. IEEE
Transactions on Software Engineering, 21(7):593-604, July
1995.

S-S. Lim, J. Kim, and S. L. Min. A Worst Case Timing
Analysis Technique for Optimized Programs. In Proc. of
the fifth International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA); Hiroshima, Japan,
pages 151-157, Oct 1998.

G. Ottosson and M. Sjodin. Worst-Case Execution Time
Analysis for Modern Hardware Architectures. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), June 1997.

C. Y. Park. Predicting Program Execution Times by Ana-
lyzing Static and Dynamic Program Paths. Real-Time Sys-
tems, 5(1):31-62, March 1993.

P. Puschner and C. Koza. Calculating the Maximum Exe-
cution Time of Real-Time Programs. The Journal of Real-
Time Systems, 1(1):159-176, 1989.

P. Puschner and A. Schedl. Computing Maximum Task Ex-
ecution Times with Linear Programming Techniques. Tech-
nical report, Technische Universitat, Institut fiir Technische
Informatik, Wien, April 1995.

F. Stappert and P. Altenbernd. Complete Worst-Case Exe-
cution Time Analysis of Straight-line Hard Real-Time Pro-
grams. Journal of Systems Architecture, 46(4):339-355,
2000.

F. Stappert, A. Ermedahl, and J. Engblom. Efficient
Longest Executable Path Search for Programs with Com-
plex Flows and Pipeline Effects. In Proc. 4" International
Workshop on Compiler and Architecture Support for Em-
bedded Systems, (CASES 2001), November 2001.

Session |:

Tools

Jan Gustafsson

Presentations
Status of the BOUND-T WCET Tool

Niklas Holsti and Sami Saarinen
Space Systems Finland Ltd., Espoo, Finland

The author presented a WCET tool intended for the space industry to begin with, but
which now is being marketed in a larger market. The tool analyzes programs on object
code level. The author discussed a number of tricky analysis problems, for example due to
complex program sequencing logic in certain DSPs.

WCET Estimation from Object Code | mplemented in the PERF Envi-
ronment

Douglas Renaux, Joa o Goe’s and Robson Linhares
Laboratory of Embedded Systems Innovation and Technology, Brasil

The authors presented a WCET tool that presents the code in a number of windows. By
clicking on or selecting portions of the code, all other windows are updated simultaneously.
The tool shows the worst case path. The user had to annotate the code for loop bounds.

The analysis, which is taking place on the object code level, calculates WCET, BCET
(Best Case) and TCET (Typical Case).

Discussion

Q: Has the PERF tool been evaluated outside university?
A:No, it hasn’t been used outside the development team. It is only a prototype.

Q: What about loop annotations ?

A: To work, the tool need loop annotations. These are not checked. We plan to include
autmomatic data flow analysis so at least some of the annotations can be calculated auto-
matically.

Q: What about infeasible paths?
A: If the worst case path is infeasible, the user can (manually) exclude it from the calcula-
tion.

Q: The results you show are very tight. What type of code do you analyze?

A: We analyze "real” code which turns out to be simple (functions with 30 - 40 basic
blocks, nested loops with number of levels less or equal to 2). Switches are common, and
the analysis can be very complicated if they are implemented as tables.

Q: Are the results safe?
A: We have measured on real hardware, and all our results are safe.

Q: What hardware model do you use?
A: It is a computation model, not a mathematical model. There is a problem of correctness.

- Here followed a lengthy discussion on the hardware model used -

Q: How to build models that we can rely on? Is there a useful strategy to build correct
models?

A: We start with the manual. Then we examine the execution of a number of test functions
using an logic analyzer. However, we sometimes need to see what goes on inside the cache
(there is such an logic analyzer, too). When processors get more and more complicated,
this way of work will not function anymore. On the other hand, the processors used for
hard real-time should be simple also in the future.

Q: Do you trust the processor manufacturers?
A: No, we have to verify their numbers.

Q: Do you handle data caches?
A: Not yet.

Q: How do you handle function calls?
A: Each function call is handled independently. Function calls within functions are ana-
lyzed first.

Q: How are the times included in the Bound-T model?
A: We use the manufacturers numbers. We verify some of them using a simulator, but ba-
sically we trust the processor manufacturers.

e The only open processor architecture is the SPARC, since you can get an open desrip-
tion of what it really does. For other processors, they get more and more complicated,
and it gets harder and harder to understand what is really happening inside. We
should not accept this state of affairs! We should react!

e \We need some type of certification or similar for hardware, with demands for bet-
ter documentation. Otherwise it shouldn’t be allowed to be used in hard real-time
systems.

Q: How do we get out with our tools into the market?
A: The basic problem seems to be that our results are completely hidden! We need to get
out more, for example write articles in magazines outside academia.

e We need an agency of some sort to act as a facilitator. This agency should demand
certain standard, certifications or similar. It is necessary to persuade these agencies
of the value of WCET tools, not only the users! It is necessary to have some force,
since programmers are conservative! The gap is too wide! And there is no-one that
is strong enough on his own.

e There are other uses of a WCET tool that can make its way to the market, for example
control flow graph analysis. FAA, for example, demands CFG analysis for their
software.

The WCET values does not always have to be very exact. Sometimes less accuracy
is enough.

Maybe it will be most important to be able to prove that the WCET is safe. This
is the case for many critical applications. Also it has to be very simple to use, so
developers will really use it.

We need to persuade the managers!

There is a trend in for example ESA that timing figures are needed. It comes from
the top, not from bottom, and comes in the form of standards. Unfortunately, it takes
a lot of time.

WCET Estimation from Object Code
implemented in the PERF Environment

Douglas Renaux, Jodo Gdes, Robson Linhares
Laboratory of Embedded Systems Innovation and Technology — LIT
CEFET-PR
Brasil
{douglas, goes, robson}@lit.cpdtt.cefetpr.br

Abstract

“The estimation of the Worst Case Execution Time of a function produces results that are safe and that
have a low error, even in architectures using pipelines and caches.” This is our thesis; in this paper we
present results that indicate that this thesis is correct.

The two basic approaches to obtain WCET of a piece of code are estimation and measurement. At LIT, a
tool called PERF is under development. This tool uses both approaches to obtain the best of both worlds.
Measurement provides precise results, but requires that the target is already built and that the worst
possible scenario is being executed, which is often hard to determine. On the other hand, the precision of
estimation methods is highly dependent on the complexity of the estimation model. PERF is a design and
evaluation environment: a project can be defined, files can be edited, compiled, linked; the resulting code
can be analyzed from a timing perspective both via estimation and via measurement. In this way, we
intend to encourage the developer to perform time estimations as early as possible in the design cycle.
Any tool (commercial or academic) can be inserted in PERF via plug-ins. This was the case of the text
editor, the compiler and the linker. Hence, PERF is actually a framework to which many tools can be
added. PERF works with the object code generated by the integrated tools, in order to obtain execution
time limit estimations for functions that compose a real-time systems’ software project.

In this paper we present the PERF environment’s architecture, with emphasis on the integrated time
estimation model and the results obtained using this model.

1 Introduction

Any tool which intends to estimate execution times should take two different domains into
consideration: the source code, which the developer usually uses to develop his software project, and the
executable code, on which the time estimations are actually performed.

The problem of execution time estimation of a program is usually divided into 3 sub-problems:
execution path analysis on source level; source code and machine code correlation; and execution time
analysis for each individual machine instruction at each path of the object code.

A strategy based on these 3 sub-problems would search for existing paths in the source code and tries
to relate them with the corresponding paths in the object code. Meanwhile, this relationship may not be
easily determined, especially in cases where the code optimizations are enabled. The correlation between
source-code and object-code may not be trivial, specially for a tool which intends to do this automatically;
S0, it is possible to concentrate the estimation tool’s work on the object-code path’s determination and on
the estimation of each of its execution times, leaving to the compiler the responsibility of doing the
correlations and interpreting the results obtained through the analysis of object code. Another advantage
of this strategy comes from the possibility of analyzing object-code present in code libraries, to which the
source code is usually not available.

The resolution of the third sub-problem, concerning to the individual execution times of any machine
instruction, is affected by the quality of the model that expresses the hardware platform on which the code
is to be executed. In order to minimize the estimation error, when compared to the measured time values
for a given execution path, this model should consider internal architectural features that have any
influence over the execution times of the instructions, such as cache memories and pipelines (if available)
[Hennessy 95]. Moreover, it is useful for the model to be reconfigurable, so that the estimation tool is able
to address several target architectures of real-time systems. The reconfigurability feature can be available
to the tool’s user, in a way that allows him to adapt the estimation process to the architectures of his

interest, using configuration parameters; that requires the estimation algorithms to be generic and able to
use the configuration parameters of any architecture in a similar way.

2 The PERF environment

PEREF is a tool, under development at LIT, which intends to be a complete design and evaluation
environment. At PERF a software project can be defined, edited, each of its modules can be compiled and
linked; moreover, the resulting object code can be analyzed from a timing perspective both via estimation
and via measurement, which makes PERF suitable for development of software for real-time systems. In
this way, the use of PERF intends to encourage the developer to perform time estimations as early as
possible in the design cycle.

PERF’s architecture is composed of a central core, controlled through a graphical interface. This core
is intended to manage a set of integrated tools, each one performing a determined task in the development
process (editors, compilers, linkers, time analyzers, etc.) and configured via a plug-in. Any tool
(commercial or academic) can be inserted in PERF via plug-ins, allowing the developer to use only the
functionalities which are strictly needed for the target platform and the type of design /evaluation process

of interest.

The PERF environment is a result of a ten year long research in the area of timing analysis; several
approaches to determine the execution time of software have been tried and analyzed before the PERF
environment was defined. The table below highlights the milestones if this effort.

1992, 1993
[Renaux 93]
[Renaux-Dasiewicz 93]

The RTX-Parlog language was designed, based on the concurrent
logic programming language Parlog, to provide support for real-time
systems. The programming environment of RTX-Parlog included a
timing tool that was able to determine the execution time of program
segments (aka basic blocks or program blocks). Here the basic ideas of
timing analysis were put in practice: defining program segments,
building control flow graphs where the nodes represent program
segments, analyzing possible execution paths on a control flow graph
and combining the execution times of each block.

1994-1995 Use of a logic analyzer to measure the execution time of instrumented

[Renaux 95] software, i.e. software to which specific instructions were added that
produced signals on the processor’s bus that were detected and stored
by the logic analyzer

1998 To our built-in-house real-time kernel (PET) we added the capability

[Braga-Renaux 98]

of real-time tracing. The trace is stored in a limited area of the target’s
memory and uses the timer of the kernel as its time base (resolution of
1 ms). The trace is later downloaded to a PC and analyzed off-line.

1999
[Renaux-Braga-Kawamura 99]

PERF — Definition of the architecture

1999
[Braga 99]

TLM - Time-Line Monitor — TLM is a measurement system
consisting of a measurement device, physically connected to the
processor’s bus and a visualization software running on a PC. The
device stores large amounts of trace information and uses a
nanosecond-resolution clock. After an acquisition the trace is
downloaded to a PC and analyzed.

1999
{Kawamura 99]

FPTE — a tool for static analysis of the execution time of assembly
code. C and C++ code is analyzed after the compiler generates the
corresponding assembly code. The major drawback of this approach is
the analysis of libraries where usually only the object code is
available.

2000 PEREF analyzes object files

[Goes 2000]

2001 - 2002 PERF’s implementation can analyze object code for 80186 CISC
[Goes 01] microcontroller and for the PowerPC 860. The precision of the time

[Linhares 01]
[Goes-Linhares-Renaux 01]
[Linhares-Renaux 02]

estimation is very good.

2.1 Time estimation tool

PERF aggregates an execution time estimation tool, whose estimation process is shown in Figure 1.
This figure shows that an important design decision of PERF’s estimation tool was to analyze object
code, instead of source code or executable code. Object code has all the information that is relevant for
timing analysis and it may include debug information that relates the executable code to the source code.
Furthermore, by analyzing object code, all the libraries can have their timing information extracted,
including commercial libraries.

B-E-8-CD-f--@

Source Code Object Code Executable Target
(HLL) l Program !
1

Ejh

Reverse

Target

1
I
1
v Engineering Description
1
i Database
] !
1
1 D D
Q ! . Path e %%% e Hardware
User Analysis Model
|
' d ML graph Paths Execution
J | A Time Limits
| 1
Control X !
Flow eSS T’ ===

: Exclusion
Information

Figure 1 - Time estimation process used in Perf

Figure 2 shows how PERF presents the different views of a function to the developer. It is worth
noticing that the correlation between source and machine code can also be obtained through debug
information (as it is shown by the gray shaded areas on the source code, machine code and control flow
graph views); nevertheless, the developer can still be asked to provide data flow information necessary
for the estimation, such as number of loop iterations, so that the several execution paths found in the
control flow graph (CFG) are correctly estimated and the correct values for BCET, TCET and WCET are
shown in their respective view.

. stmcps(char fore const chor foisiLassenil.
5 stumcpy(char far*,const char far*,int) Disassembly 1 _—

i i Function: strmepy{char far’,const char far’,int)

oEse S5 push hp = e
& Perf - Receive(void far* unsigned int] azeo 88 EE o RE, 5p Soucs fle: D:\Projetohpet.opp
Fis) Edi View Pioret) Tosk. Window: Hel okl 2o DU ol Totd paths: 8
—|omec &7 push di
DEasHS| » BB (LR b 6% % % oo 39 26 00 OO erp [0000K] , Feasible paths: 8
= 071 77 08 12 oE7en Loops: 1

g~ ——| 0E7s 5400 00 00 00 call F_OVERFL
& ostiean 7 ——— 0E75 6B 46 06 wov ax, (bp+0 ,
gl §=E e o= 2 [optD Considering function call:
@ P2 OE7E 74 37 e 0EB7h 3
@ P oxs0 8B 46 0L nov ax, [bp+0 BEET: Wipweke = 870
& P | DES3 OB 46 OC or ax, [bp+0 TCET: 3035tcks = 25282us
? Putfchar void far’) OESE 74 28 je OEBOR WCET: BE3licks = 461.07us —
vatipo)]
it Dpnery omes 33 D2 xor dxax
ccsivelvoid farun o e dost, onflOEBR: Eb i up snore 0F Mot consideing furction calls
A Repbicharvad fars k oEsc c4 SE DL les b, [bp+0 BCET: T17hcks = 975ps
scan int 1
£ - OESF 26 A 07 nav ales:[n TCET. 294fcks = 2357u
chechie if (dest == NULL u
- ieﬁdfw‘a‘,’m far (returh, ! e o e U = DX, lopHd) WEET: 542dticks = 451.82ps
R if (stc 1='WULL) { |oEes 26 &8 07 nov es:[bx],
B rreviiiiile for (£ -0: (1 <lorom PP 46 O ine word per -
PO 3 OESE FF 46 06 ine ward per a a at far" co = | i)
PN * dest = N0 oEoE 2 ine ax Loops were detected in code and Pef was unable
iy 3 S e — = ta detect how many fimes they wil be execuled.
2 tecla = OER2 48 dec ax = toon 10r1
&Ry TimeValue ey 3B C2 crp ax, dx
Sy Time\alue:: Micrc ;7; [DELS 7E 09 ile DEBOR Best-case: 12 Times
Timel/ae:oper. OERL 26 80 3F 0O cnp byte per
o 0790 89 46 F2) v -
TinetecTme || 0790 5 OERE 75 pC e oEsCh Worst-case: 202] Times
g“me\/a‘ue e ||| PR OEBD c4 SE D6 les b, [bp+0 _
Time!/chas-orci oEB3 26 c6 07 Do wov byte per - -
imeaiuesoper, ||| 6742 s 46 FO 3 g Cancel
& Troise am o P s |
Ay Time\alue: Tme 0745 FA '
0EBE SE »op =1
@ Tinevalueoper. ||| 0726 ca 1E ok O& R 7 . =
@ Timevalue: apjd oma 2sesras oo [0PE % i ! » L 7
|y 2 f[loar 75 2e EE -
Classes] Files |RevEng [| Ll [T T 2l 4
—
= oo _test.oom el
[Turho Link Version 7.1.32.2. Copyright (c) 1987, 1996 Borland International
[E:\Projeto\Projeto.exe - 0 error(s), 3 warning(s) ’i
| [(EEZa5E), puita (TG FRAFTEET L4 L
For Help. press F1 [|Ln 572. Col 7 [D0S. [[[NUM|

Figure 2 - The PERF tool presenting several views of a function: source, machine code, control
graph and timing information

How does PERF obtain execution time estimations (Figure 1):
1) Analyze the object code and extract the control flow graph.

Each node of the graph represents a program block, i.e., a sequence of machine instructions in which
only the last instruction can be a branch (absolute jump, conditional jump, procedure call, software
interrupt,...) and only the first instruction is the target of a branch. Control flow graphs are obtained in a
function-by-function basis, even for commercial libraries. Each function can have its CFG presented, as
well as the possible correlation with the source code (if available).

2) All possible paths in a procedure are analyzed.

Loop structures require information from the user specifying the minimum, typical, and maximum
number of iterations. This information can be given in the form of comments in the source code or
requested interactively during the analysis (Figure 2).

3) For each path, a time estimate (BCET, TCET and WCET) is obtained based on the configured
hardware model for the target platform.

The hardware model is the main functionality of the execution time estimation tool. This model
addresses the third sub-problem of the execution time estimation problem (the analysis of the individual
execution times for each machine instruction) by considering internal architectural features of the target
platform’s hardware.

The computation model implemented at PERF is divided in two basic parts: the estimation algorithms,
which are generic and should work in a similar view, independent of the target platform; and the
architecture configuration parameters, obtained from an external plugin.

The generic estimation algorithms consider the influence, on machine instruction execution times, of
multi-stage pipelines, instruction caches of several sizes and associativity degrees and prefetch queues. It
is possible, considering the influence of these features in a correct way, to obtain time estimation values
with estimation errors lower than 10%, comparing to measured time values; this is valid not only for
RISC architectures but for CISC architectures too. The efficiency of the model’s work depends on a
correct configuration for the architectural parameters via the configuration plugin; it is conceived as a
series of data structures in C++ programming language, which can be configured by a developer using the
manufacturer information about the target platform.

For each of the program blocks constituting an execution path, a pre-categorization of the instruction
cache behavior for each instruction is performed. This categorization is based on the extended timing
schema algorithm, proposed by [Min 94][Lim 94], and adapted in order to address not only the cache but
also the pipeline behavior. For this purpose, each instruction’s categorization [Mueller 00] is stored in the
data structure, not only the total execution time for a program block as it is done in the original algorithm.
This approach allows a better precision for the generation of the pipeline information and the prefetch
queue behavior, provided that each instruction has its fetch time well determined.

The next step of the estimation process involves the concatenation of the cache categorizations for
each of the program blocks of the current path, generating the real cache state for that path. The pipeline
information for each path is then generated, using the real cache state and a reservation table for each
instruction of the considered architecture. The reservation tables are simplified, as proposed by [Healy
95], in order to describe not only the use of each pipeline stage (for structural conflict determination), but
also the register utilization (for data conflict determination).

Each of the instructions of a determined path is concatenated, to generate the pipeline utilization
scenario for that path. The concatenation is done according to some rules, which avoid the occurrence of
structural and data conflicts, including any bus conflict, which can occur between stages which perform
external memory accesses.

The model differentiates the values of BCET and WCET, for each analyzed path, by a pessimistic
factor introduced in the algorithms. For this factor to be correctly addressed, the best and worst case
execution time values for each machine instruction should be modeled during the configuration of the
model; moreover, pessimistic and non-pessimistic considerations are also made, according to the
following rules:

- Prefetch queues are optimistic for BCET calculation. Meaning that any instruction that begins its
execution (the fetch operation) is immediately removed from the queue; this allows other

instructions to fit into the released space, minimizing the probability of a prefetch contention. On
the other hand, the WCET calculation involves the consideration of a pessimistic queue, meaning
that the instructions are removed from the queue only when their execution is finished, increasing
the possibility of a prefetch contention.

- Bus contentions, due to simultaneous data read/write and prefetch operations, are not considered
in the calculation of BCET.

TCET values are obtained through typical-case annotation, provided by the user for the number of
loop iterations; in functions where no loop structure is present, the TCET value is the same as the WCET
value.

The loop processing, for any analyzed path, is performed using a strategy that eliminates loop
redundancies. This decreases the processing times for loops with a great number of iterations and is done
according to the following rules:

- the loop is processed and its program blocks are concatenated, generating a macro-block as
shown in Figure 3. This macro-block is then concatenated to the timing schema object
representing the path’s execution until this point; this concatenation represents the first iteration
of the loop.

1,2,4x(4,2),3,5 (a)

start

3
(0184
0187
v5
01a8
01d7
\4

end

(b) (©)

Figure 3 — Loop structure turned into a macro-block

- the second iteration is then processed, through a new concatenation of the macro-block
considering the cache and pipeline states after the first iteration.

- The cache and pipeline states after the last and the current iteration are compared. If there is any
difference between them, the macro-block is concatenated again and the number of remaining
iterations is decreased.

- In case there is no difference, it is presumed that the execution of the further iterations lead to a
steady state. It is not needed to concatenate each of the remaining iterations separately, but only
add the time of each iteration » times to the execution time until this point, where » is the number
of remaining iterations.

The loop processing of PERF addresses only the cases where any iteration of the loop is executed
through the same path, and the existence of multiple paths inside a loop is not completely addressed; for
example, in a case where the loop body contains an if-else structure and the then part is executed in even
iterations and the else part in odd iterations (Figure 4), the loop must be unrolled and the # initial number
of iterations should be turned to n/2, each of the iterations considering the test, the execution of the then
part, the test again and the execution of the else part.

‘then’ path

‘else’ path

Figure 4 — Loop structure with multiple paths

4) A report is generated to inform BCET, TCET and WCET of each function.

The execution time of called functions is included in the execution time of the caller, as long as the
execution time of the callee is known. Several iterations may be required to evaluate all these
dependencies.

2.2 Hardware model validation

Any processor hardware model, which is configured via a plugin of the time estimation tool, must be
validated in order to be used on the time estimation process for real projects.

The configuration process of a model depends on manufacturer’s documentation, especially
concerning to the instruction set. However, the available documentation is not always precise enough, and
that can make necessary the measurement of the execution times of some instructions. Thus, the model
must go through a validation process, at which possible inaccuracies can be detected. This step is done by
estimating the execution times of test functions, with the typical control structures found on real-time
tasks, and comparing those estimated times with times measured on a real platform. If the safety and
precision requirements are not satisfied, then the HW model must be revised and tested again.

3 Results

Two processor architectures were initially considered for the time estimation process and modeled,
using the proposed hardware model. The first one was a Intel 80C186EC processor, a CISC core with two
pseudo-pipelined stages, a 6-byte prefetch queue and no instruction cache memory [Intel 91]; the second
architecture was a Motorola PowerPC MPC860 processor, a RISC core with an §-stage pipeline and a 2-
set associative instruction cache memory of 4 Kb [Motorola 98].

The estimation tool was used to estimate the execution time of about a hundred functions, including
all the functions of a real-time kernel (PET — [Renaux 96]). For a set of test functions, with simple control
structures, the results are shown in Table 1.

The test functions contain loops with a fixed number of iterations, so the measured BCET and WCET
have the same value; another set of functions, with variable number of iterations, was also tested and
provided similar results. Test/ and Test2 contain one and two single loops, respectively, while Test3 and
Test4 have nested loops with two and three levels, respectively. Although this set of test functions does
not have any if-else structures, the change of control provided by the execution of the last iteration of each
loop and the execution of further instructions is similar to the change of control presented by an if-else
structure.

Table 1- Sample of the results for test functions

Measured time | Estimated BCET Estimated WCET
BOCIB6EC (clock cycles) (clock cycles) Error% (clock cycles) Error%
Testl 421 408 3.09 424 0.71
Test2 972 896 7.82 1005 3.4
Test3 2269 1760 22.43 2286 0.75
Test4 1796 1670 7.02 1812 0.89
Measured time | Estimated BCET Estimated WCET
MPC860 (clock cycles) (clock cycles) Error% (clock cycles) Error%
Testl 698 674 3.44 709 1.58
Test2 1208 1198 0.83 1238 2.48
Test3 1875 1771 5.55 1808 -3.57
Test4 2049 2062 -0.63 2102 2.59

The WCET estimation errors for the complete set of functions, compared to measured values, varied
from 1% to 7% for the 80C186EC architecture and from 0% to 15% for the PowerPC architecture,
depending on whether the instruction cache was enabled or not. Moreover, the results obtained from the
estimation tool are all safe (the estimated WCET is never lower than the actual), except for the cases of
WCET for Test3 and BCET for Test4 estimated for the MPC860 architecture. Safety and precision errors
in the PowerPC architecture are due to the inadequate equipment used to validate the model. This is one
of the difficulties that can be faced by the developer who intends to configure his own processor model,
since the information provided by the manufacturer for each instruction’s execution time are not always
accurate.

Some weaknesses are still detected on PERF ‘s execution time estimation tool:

- The inefficiency of solving all kinds of jump tables, used for indirect branch operations (for example,
the compilation of most ‘switch’ structures). PERF is only capable at this moment to find jump tables
in architectures for which the base address is encoded in the instruction code (for example, the Intel
80C186EC architecture).

- For optimized code and for code for which the source is not available (for example, libraries), it can
be difficult for the developer to determine the exact number of some loops’ iterations, when asked by
the tool to provide those values.

4 Conclusions and future work

On going work in the PERF environment includes: improving the computational models for the
PowerPC architecture to reduce the estimation error, development of computational models of data
caches (currently only instruction caches are modeled) and a tool for scheduling analysis is also under
development. Also, the problem concerning to jump tables can be solved by allowing the user to interact
with the CFG construction; this interaction can include the possibility of creating edges, between program
blocks, which could not be automatically determined during the graph analysis.

Some improvements can also be done concerning to the graphical interface and presentation of results
to the user. These improvements include the presentation of intermediary steps on the execution time
estimation process, allowing the user to visualize the cache and pipeline states at any time.

The results obtained so far with PERF are very encouraging. Our previous work on timing analysis
included the analysis of source code, of the assembly listing produced by the compiler and of binary code.
Each one has strong aspects, but from our perspective, object code analysis is the best option.

5 References

[Braga-Renaux 98] Braga, André S.; Renaux, D. P. B. “Utiliza¢ @ de Linhas de Tempo para Depura¢
e Valida¢ 2 Temporal de Sistemas em Tempo Real”. In I Workshop de Sistemas em Tempo Real.
Rio de Janeiro, RJ, Brazil, May 1998.

[Braga 99] Braga, André S. “TLM — Uma Ferramenta de Apoio ao Teste de Restri¢c &s Temporais em
Sistemas Dedicados Operando em Tempo Real”. Master dissertation. CPGEI, CEFET-PR.
Curitiba, PR, Brazil, 1999

[Braga-Renaux 99] Braga, André S.; Renaux, D. P. B. “Teste de Restri¢ &s Temporais Através de
Técnicas Funcionais e Estruturais”. In II Workshop de Sistemas em Tempo Real p. 25-34.
Salvador, BA, Brazil, May 1999.

[Goes 00] Goes, Jodo Alexandre. Estimag @ de tempos de Execug @ de Programas a Partir de Arquivos
Objeto”. Internal Report — T.I. CPGEI, CEFET-PR. Curitiba, PR, Brazil, 2000

[Goes 01] Goes, Jodo Alexandre. “PERF: Ambiente de Desenvolvimento e Estima¢ & Temporal de
Sistemas em Tempo Real”. Master dissertation. CPGEI, CEFET-PR. Curitiba, PR, Brazil, July
2001

[Goes-Linhares-Renaux 01] Gdes, Jodo Alexandre; Linhares, R. R.; Renaux, D. P. B. “Estimag¢ @ de
Tempo de Execu¢® de Programas no Ambiente PERF”. In Workshop de Tempo Real do XIX
Simpdsio Brasileiro de Redes de Computadores. Florianopolis, SC, Brazil, May 2001

[Healy 95] Healy, C. A.; Whalley, D. B.; Harmon, M. “Integrating the Timing Analysis of Pipelining and
Instruction Caching”. In IEEE Real-Time Systems Symposium, pages 288-297, December 1995.

[Hennessy 95] Hennessy, J. L.; Patterson, D. A. Computer Architecture: A Quantitative Approach.
Second Edition. Morgan Kaufmann Publishers, Inc. San Francisco, CA, USA, 1995.

[Intel 91] 80CI186EC / 80C188EC User’s Manual. Intel Corporation. Mt. Prospect, IL, USA, 1991.

[Kawamura 99] Kawamura, Alexandre. “Analise estatica de Programas para Estimag¢ @ de Tempos de
Execug ”. Master dissertation. CPGEI, CEFET-PR. Curitiba, PR, Brazil, 1999.

[Linhares 01] Linhares, R. R. “Modelamento de Hardware Visando A Estimag ® do Tempo de Execu¢ D
de Programas”. Master dissertation. CPGEI, CEFET-PR. Curitiba, PR, Brazil, December 2001

[Linhares-Renaux 02] Linhares, R.; Renaux, D. P. B. “Estima¢ & de Tempo de Execu¢ 2 de Software
em Sistemas Em Tempo Real Executando em Plataformas com Pipeline e Cache”. In Workshop de
Tempo Real do XX Simpdsio Brasileiro de Redes de Computadores. Buzios, RJ, Brazil, May 2002.

[Lim 94] Lim, S-S Et Alli. “An Accurate Worst-Case Timing Analysis for RISC Processors”. In IEEE
Real-Time Systems Symposium, p. 97-108, December 1994.

[Min 94] Min, S. L. Et Alli. “An Accurate Instruction Cache Analysis Technique for Real-time Systems”.
In Proceedings of the Workshop on Architectures for Real-time Applications, April 1994

[Motorola 98] Power QUICC: MPC860 User’s Manual. Motorola, Inc., 1998.

[Mueller 00] Mueller, F. “Timing Analysis for Instruction Caches”. Real-Time Systems Journal, vol. 18,
number 2/3, p. 209-239, May 2000.

[Renaux 93] Renaux, D. P. B. “RTX-Parlog: A Concurrent Logic Programming Language for Real-Time
Systems”. Ph.D. Thesis, Department of Electrical and Computer Engineering, University of
Waterloo, Canada. December 1993.

[Renaux-Dasiewicz 93] Renaux, D. P. B. and Dasiewicz, P. “RTX-Parlog: Real-Time Extended Parlog”.
In Euromicro’93 Workshop on Real-Time Systems, p. 147-153. IEEE Computer Society Press,
June 1993.

[Renaux 95] Renaux, D. P. B. “Medi¢ 2 de tempos de execug D do software do MMA”. Internal Report .
LIT, CEFET-PR. Curitiba, PR, Brazil, 1995.

[Renaux 96] Renaux, D. P. B. “PET — A Small Real-Time Support Systems for Microcontrollers without
Virtual Memory”. Internal Report . LIT, CEFET-PR. Curitiba, PR, Brazil, 1996.

[Renaux-Braga-Kawamura 99] Renaux, D. P. B.; Braga, André S.; Kawamura, Alexandre. “PERF: Um
Ambiente para Avalia¢ Temporal de Sistemas em Tempo Real”. In Il Workshop de Sistemas em
Tempo Real, p. 76-87. Salvador, BA, Brazil, May 1999.

Status of the Bound-T WCET Tool

Niklas Holsti and Sami Saarinen
Space Systems Finland Ltd
Niklas.Holsti@ssf.fi, Sami.Saarinen@ssf.fi

Abstract

Bound-T is a tool for static WCET analysis from
binary executable code. We describe the general structure
of the tool and some specific difficulties met in the
analysis of the supported processors, which are the Intel
8051 8-bit microcontrollers, the Analog Devices ADSP-
21020 Digital Signal Processor, and the SPARC V7
processor. For the DSP, the problem is the complex
program sequencing logic using an instruction pipe-line
and nested zero-overhead loops with implicit counters
and branches. The solution is to model the full sequencing
state in the control-flow graph. For the SPARC, the
problems are the register-file overflow and underflow
traps, which may occur at calls and returns, and the
concurrency of integer and floating-point operations,
which may force the Integer Unit to wait when it interacts
with the Floating-Point Unit. The traps are modelled with
a whole-program analysis. The IU/FPU concurrency is
modelled by distributing the potential waiting times onto
flow-graph edges in a heuristically optimal way, also
using some inter-procedural analysis.

1 Introduction

The Bound-T tool analyses compiled and linked
executables to find the WCET, flow graphs, call graphs,
and stack usage. Space Systems Finland (SSF) developed
the tool with support from the European Space Agency
(ESA) for space applications [1][2][3]. SSF is developing
the tool further, aiming also at non-space applications.

The target processors currently supported are the
Analog Devices ADSP-21020 (a 32-bit floating-point
DSP architecture, forerunner of the SHARC), the Intel
8051 (a large family of 8-bit microcontrollers), and the
SPARC V7 (a 32-bit RISC general-purpose architecture).
All these processors are used in ESA space projects,
which is one reason why they were chosen for Bound-T.
The other reason was to implement some quite different
architectures in order to verify the adaptability of the tool
design. Since Bound-T uses only binary code, it is

independent of the source language of the program to be
analysed.

The most advanced feature of Bound-T is the
automatic analysis of loop-bounds, using a model of the
program3 arithmetic. The same analysis provides some
context-sensitivity by propagating actual parameter values
into the analysis of the called subprogram. To supplement
the automatic analysis, the user may state assertions on
loop bounds, variable ranges, and other useful facts.

The main limitations of Bound-T are currently the lack
of analysis of cache memories, a limited analysis of
aliasing and dynamic branching, and the difficulty of
high-level analysis based on low-level code, especially if
the machine word is short, for example a loop with a 16-
bit counter running on an 8-bit machine. The arithmetic
analysis for loop bounds is occasionally very time-
consuming and sensitive to the structure of the program.

The rest of this paper paper is organized as follows.
Section 2 discusses the architecture of the tool. Section 3
describes the modelling of the target processor and target
program thru abstract data types. Section 4 presents the
major analysis phases and methods. Sections 5 and 6
focus on some interesting and difficult problems: the
control-flow analysis of the ADSP-21020, and the
IU/FPU concurrency in the SPARC. Section 7 reports on
the commercialization and section 8 sketches future work.

2 Tool architecture

Bound-T is based on target-specific modules for
reading and decoding binary files, generic modules for
creating the control-flow graphs and call-graphs, a
Presburger Arithmetic package (Omega) [4] for modelling
the arithmetic of loop-counters, and an Integer Linear
Programming tool (/p_solve) [5] to find the worst-case
path.

The architecture of Bound-T was designed to be
adaptable to different target processors, extensible with
new kinds and methods of analysis, and portable to
different host platforms.

The easy part of adaptability is to isolate the target-
dependent parts into target-specific modules. The hard
part is to make the interface of these modules valid for all

targets. Our approach is to abstract the important aspects
of the target processor. This has worked well, as shown
by the range of supported targets.

Extensibility is provided in the conventional way by
dividing the analysis into phases, with the result of each
phase stored in the program-model. This method is
limited by the fact that the data structures of the program
model are hard-coded (as opposed to a data-base, for
example). However, there are hooks to target-specific
data and operations which have let us implement the new
SPARC analyses in the Bound-T framework.

For portability, we use a portable implementation
language (Ada). The current user interface, based on the
command-line and text inputs, is trivially portable.

3 Processor and program models

3.1 Processor model

The target processor is modelled by several abstract
data types. The most important type is the identifier or
address of a control-flow step. For a simple processor like
the Intel 8051, a step-address is just the address of an
instruction. For a processor with complex program-
sequencing, a step-address can contain much more
context (see section 5 for the ADSP-21020 example). The
step-address type is the basis for creating the control-flow
graphs, where nodes are identified by a step-address.

Another important abstract type models the registers,
flags and memories of the processor, or in general any
cell that can store an integer value. The cell type is the
basis for modelling the arithmetic computations and
branching conditions. Some cells are just an enumeration,
for example all the processor registers that are always
statically addressed. Other cells can represent storage
addressed in complex or dynamic ways, for example
parameters accessed relative to the stack pointer.

These two abstract types divide our model of program
state into a control state (step-address), modelled by the
control-flow graph, and a data state (values of cells),
modelled by Presburger input-output relations.

Our processor-model is essentially limited to single-
threaded processors, although synchronized internal
concurrency is possible. In other words, there may be
several functional units running concurrently, as long as
they all execute the same instruction stream as in VLIW
machines. In the SPARC, the IU and FPU are not that
strictly synchronized, and so this processor is in principle
out of scope for our model.

3.2 Subprogram model

A subprogram under analysis is represented by a
control-flow graph (CFG). A node in the CFG is a basic

block and contains a sequence of steps. A step usually
corresponds to a machine instruction, but in special cases
instructions may be split into several steps, or consecutive
instructions may be bundled into one step. For example,
the Intel-8051 may use two consecutive 8-bit immediate-
load instructions to load an immediate 16-bit value into
the 16-bit Data Pointer register, but the arithmetic
analysis is easier if the two 8-bit instructions are decoded
into one 16-bit load-step in the CFG.

Calls to other subprograms are represented by special
CFG nodes (steps) that refer to the callee.

3.3 Timing model

Each step in a CFG has an associated worst-case
execution effort which depends mainly on the
instruction(s) the step represents, but can also depend on
the context (via the step address). The effort is a target-
specific abstract type, as are the types for the total work to
execute a sequence of steps and edges, and the processor
power that determines the number of processor cycles
taken by some amount of work. Memory accesses and
wait-states are modelled in the effort, work, and power.

Each edge in a CFG has an associated worst-case
execution time which typically models two things: (1) the
extra time taken to actually branch from a conditional
branch instruction, and (2) interference between
consecutive instructions. For example, when an ADSP-
21020 instruction that uses an Address Generator unit is
immediately preceded by a load-register into this address
generator, it takes two cycles instead of one cycle. We
assign the extra cycle to the edge between the two
instructions.

Branch delays due to instruction pipe-lining, where a
branch takes effect only after some “delay slot” cycles,
are modelled in the step-address (sequencer model), not in
the execution time of the branch edge.

Since we use ILP to find the worst-case path in a CFG,
we assume that the total execution time of a path is at
most the sum of the times for the nodes and edges on the
path.

3.4 Arithmetic model

The arithmetic effect of a step is represented by a set of
assignments of expressions to cells. The expressions are
Presburger formulas, possibly conditional, operating on
constants and cell values. Thus, an unconditional formula
is a sum of terms where each term is a constant or a cell
or the product of a constant and a cell. A conditional
formula chooses one of two such sums depending on a
Presburger condition, which is a comparison between two
Presburger formulas. It is also possible to state that a cell
is set to an unknown value.

For example, consider a step (an instruction) that
increments the register 4 and sets the Z flag if the result is
zero. The effect is represented by the two assignments
A'=A+1 and Z' =ifA+1 =0 then 1 else 0, where a
prime indicates the new value of a cell, so 4’ = new value
of 4.

The Presburger formalism could in fact model any
Presburger relationship between the ‘before” and “after”
values of the cells, for example 4 = 4" — 1. We use only
the functional form (new value = function of old values)
to allow other analyses such as def-use chaining or
constant propagation.

Each CFG edge has a precondition that is a Presburger
formula that must be true when this edge is executed.
Thus, the precondition is a necessary condition for
executing the edge, but perhaps not a sufficient one. For
example, consider a step that decrements register B,
jumps to another step if the result is not zero, and
otherwise continues to the next step in address order. The
edge to the next step has the precondition B =0 while the
edge for the jump has the precondition BZ0. A
precondition that is unknown (or too complex to be
analysed) is represented by the constant frue.

Since our aim is only to find loop bounds (not, for
example, numerical errors such as division by zero), we
only model those instructions and storage-cells that are
likely to be used for loop counters. For floating-point
instructions we only model the side-effects on the integer
computation. On the ADSP-21020 for example, where
any 32-bit general register can be used for integer
computation or floating-point computation, a floating-
point computation is considered to yield an unknown
register value.

We generally assume that the computation does not
overflow or underflow. For the 8-bit Intel-8051 we
provide a command-line option to negate this assumption.
For example, if register 4 in the above example is 8 bits
wide, unsigned arithmetic is used and overflow is
considered, the effect of incrementing A would be
encoded as A" = if A = 255 then 0 else A + 1.
Unfortunately this creates many conditional assignments
which slows down the Presburger solver markedly.

Note that we use a symbolic model of the arithmetic;
we do not simulate the arithmetic by actually computing
expressions and assigning their values to simulated cells.
The analysis is static and based on solving or simplifying
the system of equations and constraints that represents the
joint arithmetic effect of all the analysed instructions.

3.5 Program model

The program model consists of all the subprograms
under analysis, starting from the ‘root” subprograms
named by the user and including all their callees. We will
use the term ‘call” to mean a specific step, in the CFG of

a caller subprogram, that represents a call to a specific
callee subprogram.

Each call is associated with a parameter-passing map
between the cells in the caller and the cells in the callee.
This map is used to propagate bounds on parameter
values from the caller to the callee, perhaps for several
call levels, in the hope that these parameters define loop
bounds. We do not track the other data-flow direction,
from callee to caller. The value of any cell that is
modified in the callee is considered unknown after the
return to the caller.

4 Analysis phases and methods

4.1 Overview

The analysis phases in Bound-T are, in order:

Reading the target program.

Instruction decoding and control-flow tracing.
Arithmetic analysis for dynamic branches.
Arithmetic analysis for dynamic data accesses.
Loop bounding analysis.

ILP analysis to find the worst-case path.

S ALN =

After reading in the binary program and its symbol
tables, Bound-T traces the control-flow starting at the root
subprogram entry-points. Each instruction is decoded,
entered in the CFG as a step (or many steps, or part of a
step), and the possible successors (new step addresses) are
found and decoded in turn. When a call instruction is
found, the callee is added to the set of subprograms to be
analysed. This phase terminates when all paths end with a
return instruction (a step with no successors) or a dynamic
branch (successors so far unknown).

For subprograms with dynamic branches, arithmetic
analysis is applied to try to resolve the target addresses of
each branch. If this succeeds, the exploration of the
control flow is resumed from these addresses. There may
be several iterations of flow-analysis and arithmetic
analysis.

When the CFGs of all subprograms are complete,
arithmetic analysis is applied to try to resolve dynamic
data accesses. Unresolved accesses are left as such, and
are considered to yield unknown values.

Loop bounding analysis tries to find cells that act as
loop counters, to find bounds on the values of these
counters, and thus to bound the number of loop iterations.

When loop-bounds in a subprogram are known, we use
the Implicit Path Enumeration Technique [6] to find the
worst-case path in the subprogram as the solution of an
ILP problem where the unknowns are the number of times
each CFG node or edge is executed, the constraints are
derived from the CFG and the loop-bounds, and the
objective is to maximise the total execution time of the
subprogram. Subprograms are processed in bottom-up

order so that the WCET of each call is known when the
caller is processed.

The following sections explain the arithmetic analysis
and the loop bounding analysis in more detail. The other
phases use conventional methods.

4.2 Arithmetic analysis

In the arithmetic analysis of a subprogram, the
arithmetic effects of several steps in the CFG are joined to
give the overall effect of some execution path. In
mathematical terms, the effect of a step is a relation
between the cell values before and after the step, called
the input-output relation. The input-output relation for a
sequence of steps (a path) is computed simply by joining
(chaining) the relations of the steps. The preconditions on
edges in the path are included as additional constraints in
the chain. In an acyclic part of a CFG, a simple one-pass
algorithm can compute the input-output relation between
any pair of steps. When there are several paths between
the steps, the ‘incoming” relations to a step where the
paths join are combined by set union (disjunction).

Loops are handled by a bottom-up traversal. The body
of an innermost loop is acyclic, so we can compute the
input-output relation of the body. From this relation, we
find the cells that must be loop-invariant (output value =
input value). The entire loop is then fused into one step
with an effect that approximates the effect of the loop as
an input-output relation that keeps the loop-invariant cells
constant and does not constrain the other cells, leaving
them with unknown values. (To be precise, the relation
does include the constraints created by the loop-
termination paths, from the loop-head to a loop-exit,
assuming unknown values at the loop-head.) The next
higher (containing) level of loops can then be analysed,
fused and approximated in the same way.

In some target processors every instruction sets many
flags. This creates many conditional assignments in the
effect of the instruction, but most of these are ‘dead”
because the flag is redefined by another instruction before
it is used. Before the actual arithmetic analysis as
described above, we do a live-variable analysis in the
normal way, and include only the live assignments in the
input-output relations.

The results of this arithmetic analysis are the input-
output relations from the subprogram entry-point to each
step in the subprogram, or along other interesting paths.
From these relations we compute bounds on the values of
cells at specific steps, for example bounds on the
addresses of dynamic branches and data accesses, or
bounds on the actual parameters in calls to lower-level
subprograms. Derived or asserted bounds on the
parameters of this subprogram, or on local or global
variables, can define or sharpen the computed bounds.

4.3 Loop bounding analysis

Loops are bounded with a “syntactic” method, to use
Gustafsson’ terminology [7]. This method is faster than
the abstract interpretation method proposed in [7] but
applies only to counted loops.

Each loop is analysed separately as follows, in top-
down and flow order. Let the repeat relation be the input-
output relation that represents repetition of the loop, in
other words all paths from the loop-head through the
loop-body back to the loop-head, with all inner loops
approximated as described in the preceding section. All
the non-invariant cells in the repeat relation are candidates
for loop counters. For each candidate cell, we compute
bounds on the candidate’ initial value before the loop, on
the repeat value implied by the repeat relation, and on the
change in the value implied by the repeat relation.
Consider for example this Ada loop:

j o= 3;

loop
o= 3+ 2;
if ... then j := j + 3; end if;
exit when j > 9;

end loop;

For the cell j, the initial value is strongly bounded to
j =3, the repeat value is bounded by j <9, and the change
is bounded to 2 <A j < 5. Together, these imply that j is
an up-counter and that the loop-head can be re-entered
from the loop-body at most ceil (9 =3 +1)/2) -1=3
times, for a total of 4 iterations of the loop.

In this way we can discover up-counters and down-
counters. By computing the complement (negation) of the
repeat relation we can discover counters that terminate the
loop on equality (‘“exit when j = 97), but only if 4/ is
exactly 1.

5 ADSP-21020 program sequencing

Digital Signal Processors often have special support
for loops, to speed up vector computation and digital
filtering. The ADSP-21020 has an instruction of the form
“DO address UNTIL condition” which dynamically
creates a loop that starts at the next instruction and ends at
the given address. The DO UNTIL instruction sets the
processor into a state where fetching the instruction at the
given address makes the processor decide whether to
repeat or terminate the loop at this address. In other
words, from this address control may either continue
onwards, or loop back to the instruction after the DO
UNTIL, depending on the value of the condition flag two
cycles earlier (due to pipe-line lag). Such loops can be
nested to six levels and can interact in interesting ways
with the delayed branch instructions.

For the ADSP-21020, we model in the step-address
type the entire three-stage instruction pipe-line (fetch,
decode, execute) and the whole six-level loop-nest. Since
CFG nodes are labeled by step-address, a CFG edge now
represents a transition from one specific pipe-line and
looping state to another such state, so the CFG can very
precisely model these transitions and their execution time.

An interesting side-effect is that a single instruction
can appear as several steps in a CFG. For example, an
instruction that follows a conditional delayed branch is
decoded twice and represented as two steps, because the
step-address for the branch instruction has two successor
step-addresses, one that represents the case where the
branch will be taken, and the other the case where it will
not be taken. These step-addresses differ in the ‘fetch”
stage of the pipe-line model. The delayed branch
instruction is thus converted into an immediate branch in
the CFG.

For another example, consider a block of instructions
that can be entered either through a DO UNTIL
instruction, or directly without a DO UNTIL. This whole
block is then decoded twice, once in a context with an
active loop-level for this DO UNTIL, and once without.
However, this case is unlikely to occur in a real program.

6 SPARC IU/FPU concurrency

In the past year and with ESA support, we completed
targeting Bound-T to the SPARC V7, including analysis
of the register-file overflow and underflow traps and of
the concurrency between the Integer Unit (IU) and the
Floating Point Unit (FPU). In this paper, we focus on the
IU/FPU concurrency.

6.1 The problem

In the SPARC V7, the IU is responsible for fetching all
instructions and for executing integer instructions. Each
floating-point (FP) instruction is forwarded to the FPU
which executes the instruction while the IU fetches and
executes new integer instructions. When a new FP
instruction is found, but the FPU is still busy, the IU must
wait until the FPU has finished the first FP instruction.
The delay depends on the execution time of the first FP
instruction, which increases the delay, and on the amount
of IU computation between the two FP instructions,
which decreases the delay. In the worst case, the delay
can be nearly 80 cycles. An integer instruction is typically
executed in one or two cycles.

One difficult aspect of this problem is that the delay
depends on the path taken by the IU between the two FP
instructions; this can be a large number (up to 80) of
integer instructions. The delay is not an interaction
between two consecutive instructions. Another difficult
aspect is that the integer-execution time appears with a

negative sign in the expression for the delay, which means
that we would need the best-case IU time for computing
the worst-case delay.

6.2 Finding delayed paths

The first phase in the IU/FPU analysis is thus to find
the (potentially) delayed paths between two FP
instructions (or from an FP instruction to itself), where the
intervening integer computation is too brief to ensure that
the first FP instruction has finished before the second one
should start. Delayed paths are found simply by depth-
first CFG traversals starting at each FP instruction and
propagating the maximum remaining FPU-busy time
along all paths, until another FP instruction is found or the
FPU is sure to have finished the first FP instruction.

We avoid the need for best-case IU times by a
principle we call “hurry up and wait”. If the [U executes
the path between the two FP instructions faster than the
worst-case bound, it will just have to wait longer for the
FPU to finish the first FP instruction. In fact, the WCET
of the first FP instruction is a worst-case estimate for the
whole path from the start of the first FP instruction to the
start of the second FP instruction, including the FPU-busy
delay before starting the second FP instruction. Thus, we
phrase the analysis in terms of the total time for each
delayed path, not in terms of the actual delays.

6.3 Assigning delays to edges

Our objective is to minimize the pessimism, so that the
FPU-busy delay is associated only or mainly with the
paths that really incur delay in execution. The simplest
approach would be to assign the worst-case delay time to
each edge that enters the second FP instruction and that is
part of a delayed path. This is pessimistic if this edge is
part of the overall worst-case path and the worst-case path
is not in fact delayed at this FP instruction, for example
because it does not execute the first FP instruction. It
could be less pessimistic to assign the delay to an edge
that leaves the first FP instruction, if this edge is used
only by the delayed path.

To avoid such pessimism, we use an ILP approach to
distribute the worst-case blocking delay from al/l delayed
paths onto all the edges in delayed paths so that the added
pessimism is minimized (using a heuristic goal function,
however). In this ILP problem, the unknowns are the
additional delays to be assigned to the edges on delayed
paths; the constraints are that the total execution time
(including these additional delays) of every delayed path
must be at least the WCET of the FP instruction at the
start of the path; and the objective is to minimize an
expression that estimates the pessimism.

6.4 Is it cheating?

When the FPU-busy delays have been distributed to
the edges of delayed paths, the subprogram timing model
— the CFG with times assigned to nodes and edges — is
no longer a worst-case model, since the time assigned to
the last edge and node of a delayed path is not necessarily
an upper bound on the actual execution time of this edge
and node. However, we can prove that the normal
Bound-T WCET analysis (which assumes a worst-case
model) still gives an upper bound on the execution of the
whole subprogram, thanks to the constraints imposed on
the distribution of the delays.

6.5 Inter-procedural aspects

To handle FPU-busy delays between FP operation
pairs that cross subprograms, a bottom-up inter-
procedural analysis assigns each subprogram a minimum
margin of pure IU execution time on entry (before the
first FP instruction is reached), and a maximum legacy of
remaining FPU execution time on return (due to the last
started FP instruction). These summary values are
associated with the call steps in the analysis of the calling
subprograms.

7 Marketing and commercialization

To commercialize Bound-T we have contacted a
number of potential development partners, tool
distributors and tool users, but the progress is very slow.
WCET analysis is still poorly known, and it is often hard
to make people understand what it does and how it differs
from debugging, simulation and testing.

Partly because of the marketing delays, and partly
because of staff shortages, no technical development is
currently under way. SSF will itself use the SPARC V7
version in a major project that develops the on-board
platform software for the ESA GOCE satellite (Gravity
and Ocean Circulation Explorer). This will test the
specific SPARC analysis methods described above, as
well as the generic abilities of the tool.

We still hope to make Bound-T a commercially
available tool, but the near-term plans are vague and
depend on finding partners or users. We will gladly
supply evaluation copies of Bound-T. The host platforms
are Sun Solaris, Intel Linux, and Intel Windows (using
CygWin and a command-line interface).

8 Future work

It is evident that the range of target processors should
be increased and updated. Candidates for new targets
include ARM, MIPS, AVR, and other microcontrollers.

We also have plans for several generic technical
improvements. The derived loop-bounds could be used to
sharpen the resolution of dynamic data accesses and
dynamic branching, and the latter two should be iterated
when needed, since some dynamic branching depends on
dynamic data addressing (switch tables).

In the loop-bound analysis, it would be better to
compute bounds on the difference between the initial
value and the repeat value of a counter cell, instead of
separate bounds on the two values. This would let us
bound loops of the form “for j in n .. n + 10” even when
the value of n cannot be bounded statically.

Nested loops where the bounds of the inner loop
depend on the counter of the outer loop will currently
yield pessimistic WCETSs, because the worst-case bounds
on the inner loop are assumed to hold for all executions of
the outer loop. We dont have a clear idea how this
analysis could be improved in the Presburger method.

Better aliasing analysis and optional levels of aliasing
analysis will probably be necessary for large target
programs. Finally, while the current command-line
interface is quite workable, a GUI would be convenient
for browsing the analysis results of large programs.

9 References

[1] ESTEC/Contract No.
Execution Time Estimation”.

[2] N. Holsti, T. Langbacka and S. Saarinen, “Worst-
Case Execution Time Analysis for Digital Signal
Processors”, X European Signal Processing Conference,
EUSIPCO 2000.

[31 N. Holsti, T. Langbacka and S. Saarinen, “Using a
Worst-Case Execution Time Tool for Real-Time
Verification of the DEBIE Software”, Proceedings of the
DASIA 2000 (Data Systems in Aerospace) Conference
(ESA SP-457, ISBN 92-9092-669-4, September 2000),
pp- 307-312.

13362/77/NL/FM, “DSP

[4] W. Pugh et. al., The Omega Project: Frameworks
and Algorithms for the Analysis and Transformation of
Scientific ~ Programs, University of Maryland,
http://www.cs.umd.edu/projects/omega.

[5] M. Berkelaar, ftp://ftp.ics.ele.tue.nl/pub/Ip_solve.

[6] Y-T.S. Liand S. Malik, “Performance Analysis of
Embedded Software Using Implicit Path Enumeration”.
In Proc. of the 32:nd ACM IEEE Design Automation
Conference (DACYS5) , 1995, pp. 456-461.

[71 J. Gustafsson, Analyzing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation,
Uppsala University (Ph.D. Thesis, DoCS 00/115, ISSN
0283-0574) and Mailardalen University (MRTC 00/10,
ISSN 1404-3041), May 200.

Session |1

Industrial views

Peter Puschner

Presentations

This session started with three talks on very complementary views of WCET analysis.

In the first presentation ”You Can’t Control what you Can’t Measure, OR Why it is
Close to Impossible to Guarantee Real-Time Software Performance on a CPU with On-
chip Cache” Nat Hillary discussed different strategies to measure the performance of soft-
ware. He stated that the measurement strategy to be used for assessing the performance
of a piece of code depends on the application and its timing requirements, in particular
the temporal accuracy demanded by the application. Depending on the application needs
the choice of analysis tools mentioned ranges from logic analyzers to in-circuit emulators,
hardware-assisted software performance monitors, and software-assisted software perfor-
mance profilers. He argued that cycle-accurate measurements are really not necessary for
every application.

Second was a talk by Christian Ferdinand about ”Validation by Static Analysis and Ab-
stract Testing” for software to be executed on high-performance processors like the Cold-
fire 5307 or the PowerPC 755. He mentioned that it is mainly the cache that makes WCET
analysis difficult. Switching off the cache in order to make the prediction easier is not an
option as this would slow down computations by a factor of 30. The analyses get even more
complicated due to timing anomalies, e.g., due to prefetching a cache miss on a memory
access does not necessarily cause a worst-case scenario wrt. execution time. The second
part of the talk comprised a WCET tool description and an illustrative demo of the tool.

In the third presentation Tullio Vardanega summarized the involvement and interest of
ESA in WCET analysis. ESA considers WCET analysis as part of their efforts in build-
ing reliable real-time systems for space applications. WCET analysis is considered of one
of the important issues besides the specification and design, scheduling analysis and test-
ing of real-time software. To achieve their aim, ESA funds the development of pracitices
and prototype tools. The results from these project are evaluated and find their way into
recommendations issued by ESA.

Discussion

The following discussion centered around the static analysis vs. measurements issue. It
was repeatedly stated that the two techniques complement each other and that both must be
used together. Neither testing (measurements) nor static analysis alone are sufficient to get
certainty that a piece of code meets its deadlines under all circumstances.

In the early phases of software development measurements are considered as a simple
way to get a coarse idea about the performance of a section of code. In the later phases of
the software development cycles, measurements are important to validate the results of the
static analysis on the real target.

Static analysis is seen to be a means to obtain WCET estimates early in the software
development cycles, when the target system is possibly not yet available or the application
software is not yet ready to run in its entirety. Later on, the detailed information about
the flow facts of the worst-case paths give important hints for the generation of input data
for the measurements. These measurements are then, in turn, used to validate the static
analysis.

In the future, on-chip trace facilities of modern processors will allow programmers and
software testers to get more information out of measurement runs than was possible in the
past. On-chip real-time trace units with a small memory (e.g., 8 to 16Kbyte on the ARM)
will log important event and trace information about execution paths. This information can
be downloaded for further evaluation once a measurement series has been completed, thus
reveiling the execution details of the observed executions.

You Can’t Control what you Can’t Measure, OR
Why it’s Close to Impossible to Guarantee Real-time Software Performance on a
CPU with on-chip cache

Nat Hillary
Manager of Technical Marketing
Applied Microsystems Corp.
nath@amc.com

Ken Madsen
Manager, Product Marketing
Wind River Systems, Inc.
ken.madsen@windriver.com

June 3, 2002.

1. Abstract

Seady increases in CPU core speeds continue to
extend the range of applications for computer-based
solutions, resulting in the creation of ever more
responsive systems. At these higher core speeds, on-chip
cache architectures are used to prevent the CPU from
stalling when accessing relatively slow off-chip memory.
In normal operation, most fetch-execute cycles occur
internally, guaranteeing the execution of the maximum
instructions per second. However, this also servesto hide
the state of executing code from the user. Given the fact
that it is not possible to directly monitor the execution of
code within such a CPU when running at full speed, is it
possible to guarantee and control the performance of
Real-Time software on cache-based CPU architectures?

This paper investigates this issue by first offering a
definition of Real-Time software, together with a
discussion on what must be measured to prove that the
system will meet its performance objectives in all
circumstances. The range of currently available software
performance monitoring technologies and techniques
currently available will be discussed, together with a
summary of the pros and cons of each measurement
technique.

Aswith all measurementsin science, it isimpossible to
measure the execution time of Real-Time software without
affecting the system. Nevertheless, a range of
technologies and techniques are available for monitoring
the execution speed of Real-Time software, ensuring that
software performance deadlines when executing on a
CPU utilizing on-chip cache can be achieved and
controlled.

2. Real-Time Software

Real-Time software is simply code for which the
time at which the output is produced is significant. Thisis
usually because the input corresponds to some movement
in the physical world, and the output has to relate to that
same movement. The lag (delay) from the input time to
output time must be sufficiently small for acceptable
timeliness.

Because Real-Time software has performance criteria
included in its specifications, it is essential that software
execution performance be monitored at every step during
development, from the writing of Interrupt Service
Routines (interrupt service routines) to time-critica
sections of application code. So what technologies and
techniques may be used to measure software execution
performance, and what are the implications of using them
with a cache-based CPU?

Starting from board bring-up, the technologies most
commonly employed for measuring software execution

speeds are:

Q Logic Analyzers

O InCircuit Emulators

O Hardware-assisted software performance monitors
Q Software-assisted software performance profilers

In general, these technologies are applied to Real-
Time software performance monitoring using one or more
of the following fundamental measurement methods:

Q Determining where the system is spending its time

(e.g. profiling)

O Monitoring the ability of critical sections of code to
meet their deadlines
O Measuring a systems response to external events.

3. Logic analyzers

Typically used to monitor multiple digital hardware
signals simultaneously, logic analyzers may also be used
to make high-resolution software performance
measurements, normally for measuring the systems
response to external events, or for monitoring the
execution speed of critical sections of code. Although it
is not their forte, they may also be used for performance
profiling.

For CPUs utilizing on-chip cache, these types of
software performance measurements, when made with
logic analyzers, require external CPU signal lines to be
asserted when particular lines of code are reached. This
resultsin very high-resolution timing measurements.

An example of measuring the systems response to
external events is monitoring interrupt latency times. The
technique for this is farly straightforward; a single
command is placed at the entry to the ISR that asserts a
signal on an external CPU pin (e.g. a spare chip select or
programmable 1/0 pin, which will not stall the CPU).
The logic analyzer is then used to measure the interval
between an interrupt occurring and the CPU signal
marking entry to the software routine being asserted.

A typical technique for making high-resolution timing
measurements of critical sections of code requires that a
signal assertion command be inserted at the entry and exit
points of the critical section of code. The Logic Analyzer
is then used to measure the interval between the two
signal assertions. Modern Logic Analyzers (such as the
TLA series from Tektronix) extend this technique,
allowing specific networking signals (such as Ethernet
packets or ATM cell contents) to be used as hardware
trigger events.

By using more extensive instrumentation (e.g. adding
assertion statements to salient points in code such as
function entries, exits, branch points, etc.), logic analyzers
may also be used for performance profiling.

For most applications, a prohibitive number of unique
off-chip signals are required in order to correctly identify
each unique point in code. In this case, externa memory
writes may be used to ensure that enough unique
instrumentation points are used for the measurements to
be meaningful. However, as this profiling technique
requires external memory writes, it is more intrusive than
the techniques described above. It is therefore not
recommended that this profiling method be used for
making the type of deadline measurements described
earlier for applications with extremely tight deadlines.

Logic Analyzers typically do not gather performance
data over a satigtically long period. It is therefore

necessary to use analytical techniques to ensure that the
correct conditions are created so that particular
measurements accurately reflect the worst-case execution
time of a particular section of code.

In some rare cases, inserting additional code into an
application degrades the performance to a point where the
system’s Real-Time characteristics are not being met. In
this case, ‘black box’ performance testing techniques are
required, where measurements are made at points external
to the CPU. E.g. the response time between a particular
Ethernet packet arriving and the system responding might
be measured using a Tektronix TLA Logic Analyzer.

4. In circuit emulators

Typically used in the early debug stages of target
board bring-up, In Circuit Emulators (ICEs) may also be
used for software performance measurements.
Traditionally, the Real-Time bus trace capability was the
most significant feature of an ICE for non cache-based
CPUs. Real-Time bus trace may be used for measuring
the systems response to external events, or for monitoring
the execution speed of critical sections of code.

Asides from the lack of profiling data, this Real-Time
bus trace is the ideal solution for performance monitoring
of true Real-Time software. However, it requires an off-
chip fetch-execute cycle to occur in order to monitor
what’s going on.

Modern cache-based CPUs tend not to have full ICE
solutions available. Instead, CPU serial Test Access
Points (TAPs) are used for processor emulation control.

Most TAP emulation solutions do not have Trace
measurements. Triggering timing measurements with a
TAP emulator requires the use of hardware or software
breakpoints, which are intrusive. In addition, serial TAP
buses are slow (typically 33 MHz) by comparison to
processor speed and events are detected asynchronously
to their occurrence. Any timing measurements made via
this bus are going to be subject to inaccuracies;
monitoring the execution speed of a 400 MHz CPU core
by sending information through a significantly slower
serialized communications bus is not an ideal solution.

Traditionally the ideal solution for making software
performance measurements on the fly, contemporary ICE
solutions rarely support the features required to make
deterministic timing measurements of code.

5. Hardware-Assisted Software Perfor mance

M onitors

An extenson of in circuit emulation technology,
hardware assisted software performance monitors, such as
the CodeTEST product from Applied Microsystems, are
designed specifically to measure software performance.

This technology requires the combination of software
instrumentation and hardware data collection. It may be
used to monitor low-level code (such as interrupt service
routines), application level code and also RTOS activity.
In addition, time stamping may be triggered by externa
events, making the timing of hardware/software
interactions (such asinterrupt latencies) possible.

The source code instrumentation technology is used
during compilation to add tags to salient points in code.
Each instrumentation point equates to a single 32 bit off-
chip write to memory. This introduces the same profiling
inaccuracies as with the Logic Analyzers above, so it is
not recommended that this level of instrumentation be
used for measuring the performance of critical sections of
code.

As with the Logic Analyzer solution, monitoring the
performance of critical sections of code requires that an
instrumentation tag be placed only at the entry and exit
points of the critical section of code (in some instances,
such as an infinite loop forming the basis of a task, a
single instrumentation point may be used). During code
execution, the hardware data collection agent makes high-
resolution measurements of the time spent between the
two instrumentation points.

Any measurements made using this technology may be
gathered over a significant period of time, with the
automatic collation of minimum, maximum and average
execution times. When used to measure the performance
of critical sections of code, the overhead of each off-chip
write is minimal and easy to calculate, making the
measurements that this technique provides highly
accurate and deterministic.

This technology also provides the best method for
general code optimization, by providing application level
profiling data that identifies where the system is spending
its time, ensuring that optimization efforts are focused on
the right areas.

The ‘call-pair’ data provided by this technology may
also be used to improve software performance. ‘Call-
pairs’ measurements identify highly inter-dependent
functions that make good candidates for either inlining,
fixing in cache, or being located close to one another in
the link map of the application (increasing the probability

of highly interdependent functions being simultaneously
co-located in cache).

6. Software-Assisted Softwar e Perfor mance Profilers

Worthy of mention because of their dominance in the
desktop marketplace, software-assisted performance
profilers use a variety of techniques for monitoring where
an application is spending its time. If this technology is
ever used during the development of a Real-Time system,
it is used to aide optimization efforts, and not to measure
any of the Real-Time characteristics of the code.

Typically consisting of an in-target data collection
agent and either code instrumentation or stack/IP
sampling, the potential of this technology is intriguing for
two reasons. First, these techniques do not require any
off-chip accesses in order to make their measurements.
Secondly, solutions based on these techniques tend to be
extremely easy to use.

On the other hand, these techniques rely on a target
based data collection agent, which is intrusive. Any
techniques based on stack/IP sampling are also prone to
aliasing, and in require higher levels of intrusion to
improve their accuracy.

7. What Level of measurement accuracy isrequired?

For Real-Time systems, ‘Real-Time’ does not
necessarily equate to ‘real-fast’. The environment in
which a system must operate dictates the performance
criteria of Real-Time software. A pacemaker, for
instance, must respond to specific physiological events
within a specific time period before permanent damage to
the heart ensues (response times in the 100’s of mS).
Meanwhile, a commercial flight control system must
process and respond to thousands of inputs a second, from
pilot commands to air data (response times in the mS).

With modern CPUs capable of processing in excess of
2 billion instructions per second, is it really necessary to
measure software performance on a per instruction basis?

The simple answer is no, provided that:

» Worst-case response/execution times of a system

are monitored, verified and managed

e Enough information is to hand during software

creation to ensure that the system performance
objectives can be met.

From this, then, the question then arises whether this is
achievable with CPUs utilizing on-chip cache.

For extremely high accuracy software performance
measurements of worst-case execution time (e.g. nS
accuracy), Logic Analyzers must be used. Alternatively,
if uS accuracy of software performance is required, then

hardware assisted software performance monitoring
technologies show the most promise. The only question
is whether the performance impact of the off-chip writes
that these technologies require is prohibitive, or not. This
isworth a more detailed consideration.

When measuring the worst-case execution time of a
critical section of code (e.g. the main loop in a control
function) using thistechnology, a single write statement is
required. Timing is started when the write occurs the first
time, and then the interval to the next occurrence is timed.
But what overhead does this introduce?

Consider a typical environment where a target system
is using a 100 MHz external CPU bus that requires 3
clock cycles to complete a write operation. In this
instance, the delay imposed by each write operation
would be adeterministic 30 nS.

The impact of a 30nS delay per cycle in the time
critical code of a Real-Time system is negligible. The
impact of being able to deterministically measure the
worst-case execution time of the software under
development with uS accuracy, however, is not. This
lends great credence to the power of hardware assisted
software performance monitoring technologies, especially
when these technologies may be used to gather timing
information on the critical sections of code over a
significant period of time, ensuring the true worst-case
execution time is understood.

8. Conclusion

It is an age-old dilemma in science; how can you
measure something without affecting it? When it comes
to measuring the performance of Real-Time software, the
simple answer to this is — you can’t. Add a CPU that
utilizes on-chip cache, and the situation only gets worse.
It is imperative, therefore, that the right performance
measurement technique be used for the software being
created. If the Real-Time nature of the software under
development requires a timing accuracy in the nS range,
then a Logic Analyzer must be used for software
performance measurements. It must be understood,
however, that data can only be gathered over a limited
measurement period. Therefore, careful consideration
must be made in the creation of the stimulus or
circumstances to make sure that the worst case scenarios
are represented for measurement and analysis.

Traditionally, Logic Analyzers required intimate
knowledge of memory implementations on the target
hardware, thus they provided very little functionality for
software engineers. However, new products such as LA
Trace from Wind River Systems abstracts the bus
implementation from the user making it easy for software

engineers to configure the circuitry of a Logic Analyzer to
make complex timing measurements. Furthermore, Wind
River’s LA Trace is able to leverage RTOS knowledge to
present acquired information relative to RTOS threads
and events.

On the other hand, if you want information in the uS
range, use the type of hardware assisted software
performance monitoring technology available with the
CodeTEST product from Applied Microsystems. This
not only provides accurate one-shot timing information,
but it also gathers performance information over an
indefinite period of time, ensuring that the worst-case
execution time of the software being measured is
encountered. In addition, the same technology provides
function profiling data that greatly enhances optimization
efforts, and call-pair information that enables immediate
performance improvements through in-lining or prudent
link-map ordering.

Real-Time bus trace data from in circuit emulators
have traditionally the fall back solution for Real-Time
software performance measurements. Most modern
CPUs utilizing on-chip cache, however, only have serial
Test Access Point emulation solutions without Real-Time
bus trace capabilities. Emulators do not, therefore,
provide the performance information that they once did.

Software only profiling solutions, popular in the
desktop market, are too intrusive and/or inaccurate to
make accurate worst-case execution time measurements
for Real-Time systems. However, they do provide the
profiling information that may be used to yield significant
performance improvements during code optimization.

As with all measurements in science, it is impossible
to measure the worst-case execution time of Real-Time
software without affecting the system. Nevertheless,
technologies are available that are appropriate for the
required level of accuracy, ensuring that the Real-Time
nature of software executing on a CPU utilizing on-chip
cache can be controlled.

9. References

[Clement02] Marc Clement, Integrating & Expanding Embedded Design Toolset,
Tektronix White Paper

[DeMarco98] Tom Demarco, Controlling Software Projects: Management,
Measurement, and Estimates, Prentice Hall PTR/Sun Microsystems Press, 1998
[Grehan98] Rick Grehan, Robert Moote, Ingo Cyliax, Real-time Programming: a
guide to 32-bit embedded development, Addison Wesley, 1998

[Heath98] Steve Heath, Embedded Systems Design, Newnes, 1998

[Hillary01} Nat Hillary, Guaranteeing the Performance of Real-Time Systems,
Applied Microsystems White Paper, 2001

[Hillary02] Nat Hillary, Gaining Control of Software Performance, Applied
Microsystems White Paper, 2001

[Smith98] Connie U. Smith, Lloyd G. Williams, Software Performance
Engineering for Object Oriented Systems: A Use Case Approach, Performance
Engineering Services, 1998

[Wettersten96] Erik Wettersen, Implementing Performance Engineering,
Presentation from InterWorks Technical Users Forum of Interex Conference April
21-24, 1996

Wor st Case Execution Time Prediction

Marc Langenbach *
mlangen@cs.uni-sh.de

Abstract

Computers controlling potentially hazardous machin-
ery and systems are expected to always execute in time.
Consequently, for the modeling and planning of embedded
systems it is essential that the worst case execution time
(WCET) of all programtasks is known.

Modern processor components like caches and pipelines
complicate the task of determining the WCET considerably,
since the execution time of a single instruction may depend
on the execution history. The safe yet almost never valid as-
sumption of a cache hit never occurring resultsin a serious
overestimate of the WCET. Overestimates of the WCET in
turn result in an overscaled hardware design.

Our approach to WCET prediction includes a static pre-
diction of cache and pipeline behavior, enabling a much
better upper limit to be computed for the WCET. The re-
sult is that safety-critical systems can be designed smaller
and more cost-effectively.

1 Introduction

Hard real-time systems have specified deadlines for their
tasks. It is the duty of the developer to guarantee that the
tasks making up the system will always meet these spec-
ified deadlines. When it comes to processors with caches
and complex pipelines, computing sharp upper bound on
the worst-case execution time (WCET) is of critical impor-
tance.

There is a tremendous gap between the cycle times
of modern microprocessors and the access times of main
memory. Caches are used to overcome this gap in virtu-
ally all performance-oriented processors (including high-
performance microcontrollers and DSPs). Pipelines enable
acceleration by overlapping the executions of different in-
structions. The consequence is that the execution behavior

*FR Informatik, Universitaet des Saarlandes, Postfach 15 11 50,
66041 Saarbruecken

TAbsint Angewandte Informatik GmbH, Stuhlsatzenhausweg 69,
66123 Saarbruecken

Christian Ferdinand f

ferdinand@absint.com

Reinhard Wilhelm *

wilhelm@cs.uni-sbh.de

of the instructions cannot be analyzed separately since it de-
pends on the execution history.

Cache memories usually work very well, but under some
circumstances minimal changes in the program code or pro-
gram input may lead to dramatic changes in cache behavior.
For (hard) real-time systems, this is undesirable and pos-
sibly even hazardous. The widely used classical methods
of predicting execution times are not generally applicable.
Software monitoring or the dual loop benchmark change the
code, what in turn has impact on the cache behavior. Hard-
ware simulation, emulation, or direct measurement with
logic analyzers can only determine the execution time for
one input. This can not be used to infer the cache behavior
for all possible inputs in general. Making the safe—yet for
the most part—unrealistic assumption that all memory ref-
erences result in cache misses results in the execution time
being overestimated by several hundred percent.

2 Timing Validation

Real-time systems are typically composed of a set of
tasks with specified deadlines (mostly dictated by the sur-
rounding physical environment). A schedulability analy-
sis has to be performed in order to guarantee that all tim-
ing constraints will be met (timing validation). All exist-
ing techniques for schedulability analysis require the worst-
case execution time of each task in the system to be known
prior to its execution. Since this is not computable in gen-
eral, estimates of the WCET have to be calculated. These
estimates have to be safe, i.e., they must never underesti-
mate the real execution time. Furthermore, they should be
tight, i. e., the overestimate should be as small as possible.

3 WCET Computation
The determination of the WCET of a program task is
composed of several different tasks:

Value Analysis: computation of address ranges for in-
structions accessing memory

Cache Analysis: classification of memory references as
cache misses or hits

Value Analyzer

Cache/Pipeline
Analyzer

Executable
program
CFG Builder
Loop Trafo

ILP-Generator
LP-Solver

WCET
Visualization

Figure 1. The structure of the analysis. The AIP file contains parameters for the analyses, the PER
file the results obtained from the combined cache/pipeline analysis.

Pipeline Analysis: prediction of the behavior of the pro-
gram on the processor pipeline

Path Analysis: the determination of a worst-case execu-
tion path of the program.

Many of these tasks are quite complex for modern mi-
croprocessors and DSPs.

The arrangement of the tasks is described in Figure 1.
The results of the value analysis are used by the cache ana-
lysis to predict the behavior of the (data) cache. The results
of the cache analysis are fed into the pipeline analysis al-
lowing the prediction of pipeline stalls due to cache misses.
The combined results of the cache and pipeline analyses
are used to compute the execution times of program paths.
The separation of WCET determination into several phases
has the additional effect that different methods tailored to
the subtasks can be used. In our case, the value analysis,
the cache analysis, and the pipeline analysis are done by
abstract interpretation [3], a semantics-based method for
static program analysis. Path analysis is done by integer
linear programming.

3.1 Reconstruction of The Control Flow from Bi-
nary Programs

The starting point of our analysis framework (see Fig-
ure 1) is a binary program and additional user-provided in-
formation about numbers of loop iterations, upper bounds
for recursion, etc.

In the first step a parser reads the compiler output and
reconstructs the control flow [18, 19]. This requires some

knowledge about the underlying hardware, €. g., which in-
structions represent branches or calls. The reconstructed
control flow is annotated with the information needed by
subsequent analyses and then translated into CRL (Control
Flow Representation Language)®. This annotated control
flow graph serves as the input for microarchitecture analy-
ses.

3.2 Value Analysis

The value analysis determines ranges for values in regis-
ters and by this it can resolve indirect accesses to memory.

3.3 Cache Analysis

The cache analysis classifies the accesses to main mem-
ory, i. e., whether or not the needed data resides in the cache.
The following categories are used:

always hit (ah) The memory reference will always result
in a cache hit.

always miss (am) The memory reference will always re-
sult in a cache miss.

persistent (ps) The referenced memory block will be
loaded at most once

not classified (nc) The memory reference could neither be
classified as ah nor am.
The cache analysis used here is based upon [4].

1CRL is a human-readable intermediate format designed to simplify
analyses and optimizations at the executable/assembly level.

Instruction
IAG Address
Generation T
c1 Instruction Address [31:0]
Fetch Cycle 1
Instruction
Ic2 Fetch Cycle 2
Instruction
Fetch
Pipeline ED Instruction L
(IFP) Early Decode
B FIFO
Instruction Buffer
< \
bSoC Decode & Select, Data[31:0]
Operand Operand Fetch
Execution >
Plcp;él:: . Address
() AGEX Generation,
Execute
[

Figure 2. The MCF 5307 Pipeline

3.4 Pipeline Analysis

The pipeline analysis models the pipeline behavior to de-
termine execution times for a sequential flow (basic block)
of instructions, as done in [16, 17]. It takes into account
the current pipeline state(s), in particular the resource oc-
cupancies, the contents of prefetch queues, the grouping of
instructions, and the classification of memory references as
cache hits or misses. The result is an execution time for
each instruction in each distinguished execution context.

3.5 Path Analysis

Following from the results of the microarchitecture anal-
yses, the path analysis determines a safe estimate of the
WCET. The program’s control-flow is modeled by an in-
teger linear program [21, 20], so that the solution to the ob-
jective function is the predicted worst-case execution time
for the input program. A special mapping of variable names
to basic blocks in the integer linear program enables execu-
tion and traversal counts for every basic block and edge to
be computed.

3.6 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest,
since programs spend most of their runtime there. Treating

sei(a) /siop [
"addr(a) wait
cancel [fetch(a),
i < hold
await (a) | wait B
Y
% IC2 |2 code(a) U
put(a) |wait S
cancel 4
IED
- - U
instr wait
cancel ,—Y N
| IB
- |
next "start
ead (A) / write(A) | T
EX [« —
< data / hold
sel (a) / stop store wait /
Y
SST

Figure 3. Map of formal pipeline model

them naively when analyzing programs for their cache and
pipeline behavior will result in a high loss of precision.

The following observation can be made frequently: the
first execution of the loop body usually loads the cache and
subsequent executions find most of their referenced mem-
ory blocks in the cache. Hence, the first iteration of the
loop often encounters cache contents quite different from
those of later iterations. This has to be taken into account
when analyzing the behavior of a loop on the cache. A naive
analysis would combine the abstract cache states from the
entry to the loop and from the return from the loop body,
thereby losing most of the contents. Therefore, it is useful
to distinguish the first iteration of loops from the others.

A method has been designed and implemented in the
program analyzer generator PAG [1], which virtually un-
rolls loops, the so-called VIVU? approach. Memory refer-
ences are now considered in different execution contexts,
essentially nestings of first and non-first iterations of loops.

4 WCET Analyzer for the M CF5307

The ColdFire family of microcontrollers is the succes-
sor of the well known M68k architecture of Motorola. The
ColdFire 5307 [11] is an implementation of the Version 3
ColdFire architecture. It contains an on-chip 4K SRAM and
a unified 8K data/instruction cache.

2Virtual inlining, virtual unrolling

It implements a subset of the M68K opcodes, restricting
opcodes to two, four, or six bytes, thereby simplifying the
decoding hardware. The CPU core and the external memory
bus can be clocked with different speeds (e.g. 20MHz bus
clock and 60MHz internal core clock).

The MCF5307 has two pipelines decoupled by a in-
struction buffer (see Figure 2): a fetch pipeline fetches in-
structions from memory, partially decodes them, performs
branch prediction, and places the instructions into an in-
struction buffer, consisting of a FIFO with eight entries
(complete instructions). The execution pipeline consists of
two stages that obtains complete instructions from the in-
struction buffer, decodes and executes them.

The WCET analyzer [5] consists of a value analysis, an
integrated cache and pipeline analysis and a path analysis.

The implementation of the pipeline analysis is based on
a formal model of the pipeline (see Figure 3). In this for-
mal model, a concrete pipeline state consists of several units
with inner states that communicate with one another and
the memory via signals, and evolve cycle-wise according to
their inner state and the signals received.

The decomposition into units accounts for reduced com-
plexity and easier validation of the model. Units often map
directly to pipeline stages, but also may represent more than
one stage or introduce virtual pipeline stages that are not
present in hardware but facilitate the design of the pipeline
model (cf. the store stall timer).

Signals may be instantaneous, meaning that they are re-
ceived in the same cycle as they are sent, or delayed, mean-
ing that they are received one cycle after they have been
sent. Signals may carry data with them, e.g. a fetch ad-
dress. Note that these signals are only part of the formal
pipeline model. They may or may not correspond to real
hardware signals.

The inner states and emitted signals of the units evolve in
each cycle. The complexity of this state update varies from
unit to unit. It can be as simple as a small table, mapping
pending signals and inner state to a new state and signals to
be emitted, e. g. for the IAG unit. It can be much more com-
plicated, if multiple dependencies have to be considered,
e.g. the instruction reconstruction and branch prediction in
the IED stage. In this case, the evolution is formulated in
pseudo code.

Full details on the model can be found in [8] and [12].

The output of the pipeline analysis is the number of cy-
cles a basic block takes to execute, for each context. These
results are then fed into the path analysis to obtain the
WCET for the whole program.

The WCET analyzer gets as input:

e an executable (in ELF format). The code is gen-
erated with Diab Data C compiler from a restricted
subset of ANSI-C (no dynamic data structures, no
setjmp/longjmp),

2|[a
Analysis | Dptions |
 Executable —
I]emofdata.f’mlmnax elf PBrowse. .. | CFG | !
|
Start at: | main :I !
Bhout Analyze Visualize Cancel

Figure 4. WCET analyzer: Selection of the ex-
ecutable and start points.

e user annotations, giving the call targets for indirect
function calls and upper bounds on the iteration counts
of all loops,

e adescription of the (external) memories and buses (i. e.
a list of memory areas with minimal and maximal ac-
cess times), and

e a task (identified by a start address). A task denotes
a sequentially executed piece of code, no threads, no
parallelism, and no waiting for external events. This
should not be confused with a task in a operating sys-
tem which might include code for synchronization or
communication.

The WCET analyzer computes an upper bound of the
runtime of the task (assuming no interference from the out-
side). Effects of interrupts, 10 and timer (co-) processors
are not reflected in the predicted runtime and have to be
considered separately (e. g. by a quantitative analysis).

In addition to the raw information about the WCET, sev-
eral aspects can be visualized by the aiSee tool [9] to view
detailed information delivered by the analysis (see Figures
5-11).

5 Conclusion

We presented a tool for the determining of the worst-case
execution time for the Motorola ColdFire 5307. In con-

Figure 10. The timely development of pipeline states at a point in a program.
trees correspond to the 3 incoming pipeline states at this program point. Each

The roots of the
layer in the trees

corresponds to one CPU-cycle. Branches in the trees corresponds to unknown options, e.g. a cache

hit and a cache miss at a memory access.

tlata_1

]

—_R\-_

—_,—"7—

Figure 11. Detailed view pipeline states.

il
Bl

Worst Case Execution Time: 8B6

routine: _main

—_—]

- w
routine: _max

routine: _min

w -w -w
routine: _swap

Figure 5. WCET analyzers results: Graphical
representation of the call graph. The calls
(edges) that contribute to the worst-case run-
time are marked by the color red. The com-
puted WCET is given in CPU cycles.

trast to other approaches (e.g. [2, 6, 7, 10, 13, 14, 15]) our
tool takes into account the combinenation of all the differ-
ent hardware characteristics while still obtaining tight up-
per bounds for the WCET of a given program in reasonable
time. The tool was developed in the DAEDALUS project®
and has been applied to a real-life benchmark containing
realistically sized code modules. As recent trends, e. g., in
automotive industries (X-by-wire, time-triggered protocols)
require the knowledge of the WCET of tasks, such tools are
of high importance.

We are currently finishing the pipeline analysis tool for
the PowerPC 755, a processor that features out-of-order ex-
ecution, speculation and superscalarity. Also, our technique
opens the perspective to a generative approach, where anal-
yses are generated from the specification of a model.

3The DAEDALUS project aims at introducing static program analy-
sis methods into the airplane software validation process. Partners include
Airbus France, Abslnt Angewandte Informatik GmbH, PolySpace and var-
ious academic partners, e. g. ENS, Saarland University, etc.

e

*
e | info crifalee

c"*.ruo o1 fales - orLnornal M

1'#%

ol nurum erlnormal crican [nm] erllocal

erizall [infe cr'l local [infe] erloen [info] cr'l acal w. orlnormal [info]
=
Cf‘],llmal nto cri_normal i

orl_normal

=

or J\oru i

1t 30 30

crl_fales irfo crl_trua
* [n 20 h 23
erl nornal erlnornal

Figure 6. Basic block graph with runtime in-
formation for each block.

eri_nornal infa

Figure 7. Unfolded basic block. For each
instruction, the set of all possible pipeline
states can be shown on demand.

state_1576

Figure 8. Cache/pipeline states for Motorola
ColdFire 5307.

routine: _main

Figure 9. The worst case path trough the ba-
sic block graph of a routine is marked by the
color red.

6 Contact

For more information please contact:

AbsInt Angewandte Informatik GmbH
Stuhlsatzenhausweg 69

D-66123 Saarbruecken

Germany

Phone: +49 681 8318317

Fax: +49 681 8318320
http://www.AbsInt.com
info@AbsInt.com

References

[1]

(2]

3]

[4]

[5]

(6]

[7]

(8]

(9]
[10]

[11]

M. Alt and F. Martin. Generation of Efficient Interprocedu-
ral Analyzers with PAG. In Proceedings of SAS 95, Static
Analysis Symposium, volume 983 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1995.

A. Colin and I. Puaut. Worst Case Execution Time Analy-
sis for a Processor with Branch Prediction. Real-Time Sys-
tems, Special issue on worst-case execution time analysis,
18(2):249-274, 2000.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construc-
tion or Approximation of Fixpoints. In Fourth ACM Sympo-
siumon Principles of Programming Languages, pages 238—
252, Los Angeles, California, 1977. ACM Press, New York.
C. Ferdinand. Cache Behavior Prediction for Real-Time
Systems. PhD thesis, Universitdt des Saarlandes, 1997.

C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and precise WCET determination for a real-life pro-
cessor. In Proceedings of EMSOFT 2001, First Workshop
on Embedded Software, volume 2211 of Lecture Notes in
Computer Science, 2001.

C. A. Healy, R. D. Arnold, F. Mueller, D. B. Whalley, and
M. G. Harmon. Bounding Pipeline and Instruction Cache
Performance. 1EEE Transactions on Computers, 48(1):53—
70, January 1999.

C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the Timing Analysis of Pipelining and Instruction Caching.
In Proceedings of the IEEE Real-Time Systems Symposium,
pages 288-297, Dec. 1995.

R. Heckmann and S. Thesing. Cache and Pipeline Analy-
sis for the ColdFire 5307. Technical report, Universitét des
Saarlandes, 2001.

http://www.aisee.com. aiSee Home Page.

Y. Hur, Y. H. Bae, S.-S. Lim, S.-K. Kim, B.-D. Rhee, S. L.
Min, C. VY. Park, M. Lee, H. Shin, and C. S. Kim. Worst
Case Timing Analysis of RISC Processors: R3000/R3100
Case Study. In Proceedings of the | EEE Real-Time Systems
Symposium, pages 308-319, Dec. 1995.

M. Inc. MCF5307 ColdFire Integrated Microprocessor
User’sManual. Motorola Inc., Aug. 2000. MCF5307UM/D,
Rev. 2.0.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Langenbach, S. Thesing, and R. Heckmann. Pipeline
Modeling for Timing Analysis. Proceedings of the 9th In-
ternational Static Analysis Symposium, 2002.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Kim. An Accurate
Worst Case Timing Analysis Technique for RISC Proces-
sors. |EEE Transactions on Software Engineering, 21(7),
July 1995.

T. Lundqvist and P. Stenstrom. An Integrated Path and
Timing Analysis Method based on Cycle-Level Symbolic
Execution. Real-Time Systems Journal, 17(2/3):183-207,
November 1999.

K. Narasimhan and K. Nilsen. Portable Execution Time
Analysis for RISC Processors. 1994.

J. Schneider and C. Ferdinand. Pipeline Behavior Prediction
for Superscalar Processors. Technical report, Universitét des
Saarlandes, May 1999.

J. Schneider and C. Ferdinand. Pipeline Behavior Predic-
tion for Superscalar Processors by Abstract Interpretation.
In Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems, vol-
ume 34, pages 35-44, May 1999.

H. Theiling. Extracting Safe and Precise Control Flow from
Binaries. In Proceedings of the 7th Conference on Real-Time
Computing Systems and Applications, Cheju Island, South
Korea, 2000.

H. Theiling. Generating Decision Trees for Decoding Bi-
naries. In Proceedings of the ACM SIGPLAN Workshop
on Language, Compiler and Tools for Embedded Systems,
Snowbird, Utah, USA, June 2001.

H. Theiling. ILP-based Interprocedural Path Analysis.
In Proceedings of the Workshop on Embedded Software,
Grenoble, France, October 2002.

H. Theiling and C. Ferdinand. Combining Abstract Interpre-
tation and ILP for Microarchitecture Modelling and Program
Path Analysis. In Proceedings of the 19th |IEEE Real-Time
Systems Symposium (RTSS), Madrid, Spain, 1998.

The European Space Agency's involvement and
interest is WCET and scheduling analysis

Extended Abstract

Morten Rytter Nielsen, ESA (morten.nielsen@esa.int)
Eric Conquet, ESA (eric.conquet@esa.int)
Jean-Loup Terraillon (jean-loup.terraillon@esa.int)

Abstract

We consider the use of scheduling analysis as not being a standalone exercise but a
system-level activity, congruent with the conscious decision for a 'correctness by
construction' development model. We describe how ESA have incorporated the ideas
of scheduling analysis into our required standard practices; how we have ensured that
the enabling technology is available; and where we see the future of WCET
technology and scheduling analysis.

The development approach

The traditional development model, which is used in software space projects under
the responsibility of ESA, follows the classical waterfall V-model [ESA-PSS-05]. In
this development model the User Requirements are ESA's requirements towards
industry and the Software Requirements (or Technical Requirements) are industry's
refinement of these. These Software Requirements are then followed by Architectural
Design, Detailed Design and coding. On the ascending part of the V-model Unit Tests
(verifies Detailed Design), Integration Tests (verifies Architectural Design), System
Tests (verifies Software Requirements Definition) and Acceptance Tests (verifies
User Requirements) are performed. The testing effort is usually 50-60 percent of the
total development effort. Each phase of the development model is finalized with
reviews and acceptance together with associated payments.

Historic Space Systems

The V-model has proven its value through many years and projects. Traditionally
onboard software-systems have been quite simple and with well separated functional
blocks. The utilized software technology centered on fixed cyclic schedulers and
dedicated proprietary kernels and very often the I/O mechanism was polling or well
characterized interrupts. The required method in the ESA standards for controlling the
performance behavior was limited to requirements for CPU utilization at the different
stages of development (projects typically used 50% at Architectural Design, 60% at
Detailed Design and 70% on final acceptance of the software code). Real-time
requirements in the form of reactivity/responsiveness and jitter where either non-
existent or at best occasional. The CPU utilization was typically acquired by
estimation and later by measurement performed on the final code.

Current Space Systems

The new generation of onboard space systems is significantly richer in functionality
and complexity, with much more interaction between functional blocks than
traditional onboard systems. Among other reasons, this trend originates from:

e Added throughput (dedicated services)

e More intelligent Autonomy and Failure, Detection, Isolation and Recovery
(FDIR) functionality

e Intelligent instruments that sporadically interrupt the main computer

e Added capability of the onboard system in general

Many real-time requirements are now part of the requirement baseline to ensure
reactivity and enable different units of the satellite to be developed to lesser
tolerances.

Several new problems have surfaced in the new generation of onboard systems [ESA
STR-260]. Many of these problems occur in the real-time behavior area. Since CPU
utilization is not a sufficient way to ensure real-time behavior, the development
approach has to be adapted. ESA have thus sponsored and funded a number of
initiatives and supported (and still supports) the introduction of scheduling analysis in
the ways outlined in the following paragraphs. For us it is clear that the use of
scheduling analysis have major repercussions on the implementing technology as well
as on the process standards and associated development approach. This altogether
raises a clear demand for better tools support, not limited to the extraction of WCET
and the scheduling analysis but also extending to the specification of the real-time
attributes and properties of the system.

Standards

The new European generation of space standards, the ECSS standards, allows more
flexible development approaches to be used (e.g. spiral models and rapid prototyping)
[ECSS-E40B-July2000 and ECSS-E40B-Feb2002]. However, they also require that
the used computational model of the system be identified. This explicitly includes the
component types (e.g. active-periodic, active-sporadic, protected, passive, actors and
process), the assumed scheduling type and model (e.g. fixed priority or dynamic
priority) and the accompanying analytical model under which the model is executed
(e.g. Rate-Monotonic Scheduling or Deadline-Monotonic Scheduling).

This evolution shows that the previously informally used CPU utilization is now
being replaced by much more stringent requirements on the chosen architecture and
the rationale behind this choice.

Projects may decide to waive requirements in the standards if this implies too much
effort. Thus the enabling technology is very important to lower the entrance to
applying scheduling analysis.

Enabling technology

Specification and Design level

In order to be able to really harvest the benefits of the scheduling technology early in
the development process, ESA saw the need to accommodate the computational
model already at design level. The result of this effort is the HOOD derived HRT-
HOOD method [HRT-HOOD)]. Currently, TNI (France) and Intecs Sistemi (Italy)
have commercial tools supporting this specification and design method.

Implementation technology

ESA have supported the Ada Ravenscar definition from a user perspective.
Furthermore we have funded the development of the GNAT/ORK kernel and
compilation system and the port of Aonix Raven to the space processor ERC32. Also
CNS have an Ada Ravenscar system for the ERC32. Ravenscar compilation systems
are now used for Beagle2 and GOCE.

WCET extraction
In some projects the extraction of the WCET profile have been done by hand.
However, for scheduling analysis to be used widely and systematically in the space
domain, we believe that tools supporting this process are needed. Various ways of
acquiring the WCET have been tried, including:
e Instrumentation: Logic analyser (Tektronik) and embedded instrument code
(Aonix and VxWorks/Tornado) plus user developed instrument code
e Source level analysis with the support of the compiler: a prototype based on
the Adaworld compiler have been developed by Aonix
e Static Analysis on image code: Bound-T from SSF (Finland) have been
developed for both the DSP 21020 and the ERC32

Scheduling analysis

Tools to help apply different scheduling analysis techniques have been developed and
are now available from Spacebell (Belgium). These tools assist in margin analysis and
enables persons less fluent in the logic behind the analysis to interpret and evaluate
the results.

Test cases

A standardization of core onboard services has taken place in the form of the Packet
Utilization Standard [ESA-PSS-05]. OBOSS [OBOSS] is a reference implementation
of selected services, which have been used as a guinea pig for scheduling analysis and
the Ada Ravenscar profile. Furthermore, the development approach using scheduling
analysis and thereby moving the verification of real-time properties from the typical
integration testing phase to the specification and design phase have been applied with
great success on the European Robotic Arm (ERA) which is a safety critical module
to be used on the International Space Station.

Future of Space Systems

The new draft ECSS standards for onboard space engineering require that scheduling
analysis must be performed. Several proposals for new onboard systems are base-
lining Ada Ravenscar as the implementation technology and the awareness of
scheduling analysis is increasing. Together with standards that require a strong
development baseline and a consolidation of the tools assisting in the scheduling
analysis in all relevant phases of the development process, the entry barrier for the
application of this development approach will be continuously lowered.

ESA continues to fund and promote the development of the enabling technology and
the support for the development approach referenced in this paper. The near future
evolution is the new space processor LEON, which like the current ERC32 has a
Sparc instruction set. The transition to LEON, which has cache, raises new challenges
that will require 'expert support' in addressing.

The movement and activities described in this paper has been triggered by problems
encountered in space projects using the current development approach. These
activities focus on a single computation platform with embedded software. As space
onboard systems are moving from synchronous to asynchronous behavior, the need to
extend the scheduling analysis to system level is surfacing. ESA is participating in
organizations supporting the AADL (Avionic Architecture Description Language)
standard. The aim of this work is to define a common language for the design and
verification of complex avionic systems. We expect from such a standardization effort
the emergence of an open framework that can incorporate various design languages
and verification tools able to trap performance and behavioral issues in early design
phases.

Conclusion

We have in this extended abstract explained the context and the support of the WCET
and scheduling analysis in ESA and the problems that we have encountered which let
to this. In the full paper we will include experiences of the different areas outlined
above and expand on the future as ESA sees it. This will include specific activities
started or foreseen to be started in the area of distributed scheduling analysis.

References:

[ESA-PSS-05] ESA PSS-05-0 Issue 2, February 1991: ESA Software Engineering
Standards

[ESA-PSS-07-101] ESA PSS-07-101 issue 1, May 1994: Packet Utilisation Standard
[ECSS-E40B-July2000] ECSS-E-40B Draft 1, 28 July 2000: Space Engineering.
Software

[ECSS-E40B-Feb2002] ECSS-E40B Draft 1, 15 February 2002: Space Engineering.
Software

[HRT-HOOD] Burns, A. and Wellings, A.: HRT-HOOD: A Structured Design
Method for Hard Real-Time Ada Systems, Elsevier, 1995.

[OBOSS] OBOSS home page: http://spd-web.terma.com/Projects/OBOSS/Home_Page
[ESA STR-260] Vardanega, V.: Development of On-Board Embedded Real-Time
Systems, ESA STR-260 October 1999

Session |V:

Low Level Analysis

Stefan Petters

Presentation

This session was focussed on analysis issues of high performance processors. Isabelle
Puaut started with a discussion of the advantages of locking data and code in the cache
compared to using cache modelling techniques in her paper ““Cache Modelling vs Static
Cache Locking for Schedulability Analysis in Multitasking Real-Time Systems™. The main
results of this paper are that substantial gain in analysis complexity and time can be ob-
tained and the WCET bound can be reduced considerably.

“A Framework to Model Branch Prediction for WCET Analysis™ was presented by Tu-
lika Nitra. This model in this paper focusses on the direct effects, i.e. the modelling of
correct and incorrect predictions. Secondary effects like, for example, the preemption of a
cache line due to a missprediction is left as an open issue for future work.

The paper “Difficulties in computing the WCET for Processors with Speculative Execu-
tion” of Pascal Sainrat describes the problems arising with speculative execution. Special
focus is set on the fact that speculative execution dissolves the strict seperation of high level
path analysis and low-level timing analysis utilised in static WCET analysis. Finally hints
by which means this problems can be avoided are provided.

1 Discussion

As most embedded processors support cache locking the discussion on this issue circled
around to what extend cache locking slows down or even speeds up the average execution
of a task system. In small and highly critical systems the memory accesses and therefore
the potential cache hits misses may be prefectly known. It was generally aggreed that the
benefit of caches outweights the problems of it by far and therefor the caching processors
should receive special attention in the research.

The branch prediction and corresponding speculative execution received a lot of atten-
tion in the discussion. The miss prediction ratio is usually less then 10 % and therefore the
question arose whether the odd effects of a missprediction as, for example, cache lines bee-
ing displaced by a missprediction are really worth the effort of detailed analysis or whether
a more global view on things could improve the results.

An overall agreements was reached on the fact that the analysis of low-level effects for
WCET analysis could be used to identify the hot spots of the code and therefore optimize
the code to accelerate average execution times and make it better predictable.

Cache analysisvs static cache locking for schedulability analysis
in multitasking real-time systems

Isabelle Puaut
INSA/IRISA, Campus de Beaulieu, 35042 Rennes Cédex, FRANCE
e-mail: puaut@irisa.fr

Abstract

Cache memories have been extensively used to bridge
the gap between high speed processors and relatively slow
main memories. However, they are source of predictabil-
ity problems and need special attention to be used in hard
real-time systems. A lot of progress has been achieved in
the last 10 years to model caches, in order to determine
safe and precise boundson (i) tasks WCETs in the presence
of caches; (ii) cache-related preemption delays. An alter-
native approach to cope with caches in real-time systems
is to statically lock their contents so as to make memory
access times and cache-related preemption times entirely
predictable. This paper describeswork in progress aiming
at evaluating qualitatively and quantitatively the pros and
cons of both classes of methods.

1 Cachesand real-time systems

Extensive studies have been performed on schedulabil-
ity analysis to guarantee timing constraints in hard real-time
systems. Schedulability analysis methods assume that task
worst-case execution times (WCETSs) are known. While
many schedulability analysis methods consider that the cost
of task preemption is zero to simplify the analysis, some
methods account for task preemption costs (e.g. manipula-
tion of task queues, cache-related preemption delays).

Caches are small and fast buffer memaories used to speed
up the memory accesses. They contain memory blocks that
are likely to be accessed by the CPU in the near future. Al-
though the caches are a very effective means of speeding up
the memory accesses in the average case, they are a source
of predictability problems, due to intra-task and inter-task
interferences:

o Intra-taskinterferences occur when a task overrides its
own blocks in the cache due to conflicts.

e Inter-task interferences arise in multitasking systems
due to preemptions. The inter-task interferences imply
a so-called cache-related preemption delay to reload
the cache after a task is preempted.

Caches raise predictability issues in hard real-time sys-
tems because they are designed to speed up the system av-
erage case performance rather than the system worst-case
performance which is of prime importance in hard real-time
systems. As a consequence, the designers of hard real-time
systems may choose not to use cache memories at all, or
may choose to use on-chip static RAM — scratchpad memo-
ries — instead of caches [2]. The simple approach consisting
in assuming that every access to memory results in a cache
miss causes the tasks WCETS to be largely overestimated,
which may cause the schedulability analysis to fail while
the system may actually be feasible. The main issue is then
to estimate tasks WCETS and cache-related preemption de-
lays in a safe but not overly pessimistic manner.

Two classes of approaches, described hereafter, can be
used to deal with caches in real-time systems.

Cache analysis methods. A first class of approaches to
deal with caches in hard real-time systems is to use them
without any restriction, and resort to static analysis tech-
niques to predict their worst-case impact on the system
schedulability.

At the intra-task level, static WCET analysis techniques
have been extended to predict the impact of caching on the
WCETSs of the tasks. They achieve a classification of the
memory accesses regarding the instruction or data caches
(e.g. hit when it can be proved that the access always results
in a cache hit, miss otherwise). Techniques to predict the
worst-case task behavior regarding the instruction cache can
use data-flow analysis on each task control flow graph [12],
abstract interpretation [1], integer linear programming tech-
niques [10], or symbolic execution [11].

At the inter-task level, work has been undertaken to ob-
tain safe and precise estimates of the cache-related preemp-
tion delay [9]. In [9], at every possible preemption point, the
blocks that will be used by each task after that point are de-
termined by static analysis, thus avoiding considering that
the whole memory accessed by the task has to be reloaded
in the cache after a preemption.

Cache partitioning and cache locking. A second class
of approaches to deal with caches in real-time systems is to
use them in a restricted or customized manner, so as to adapt
them to the needs of real-time systems and schedulability
analysis.

Cache partitioning techniques [8, 5, 14] assign reserved
portions of the cache (partitions) to certain tasks in order to
guarantee that their most recently used code or data will re-
main in the cache while the processor executes other tasks.
The dynamic behavior of the cache is kept within parti-
tions. These techniques eliminate the inter-task interfer-
ences, but need extra-support to tackle intra-task interfer-
ence (e.g. static cache analysis) and reduce the amount of
cache memory available for each task.

Another way to deal with caches in real-time systems is
to use cache locking techniques, which load the cache con-
tents with some values and lock it to ensure that the contents
will remain unchanged [6]. This ability to lock cache con-
tents is available on several commercial processors. The
cache contents can be loaded and locked at system start for
the whole system lifetime (static cachelocking), or changed
during the system execution, like for instance when a task
is preempted by another one (dynamic cache locking). The
key property of cache locking is that the time required to
access the memory is predictable.

Schedulability analysis for systemswith caches. Some
schedulability analysis methods have been extended to cope
with cache-related preemption delays. They add the param-
eter «y;, upper bound on the cache-related preemption delay,
to the formulas in charge of verifying the system feasibility.

In [3], Rate Monotonic Analysis (RMA) is extended to
cope with cache-related preemption delays. The utilization
of a set of periodic tasks that takes the cache-related pre-
emption delays into account is introduced (see equation 1
below).

In the equation, n is the number of tasks. C; and P; are
the WCET and period of task number i. For static priority

systems with priorities assigned along the rate monotonic
policy, a sufficient condition given in equation 2 below can
then be used to verify the system schedulability [3].

U<n@2r —1))

Response Time Analysis (RTA) has been extended by
Busquets-Mataix et al [4] to take cache-related preemption
delays into account, leading to the exact schedulability con-
dition named CRTA. The principle of CRTA, for a task 773,
is to consider the interferences produced by the execution
of the higher priority tasks on an increasing time window
w]. The response time R; of task T; is the fixed point of
the sequence given in equation 3 below, with ~; the cache-
related preemption delay and hp(%) the set of tasks that have
a higher priority than 7.

0
w;

o
Ci+ > [%?-‘(Cj+’7j)_>Ri ©)

jehp(i) 7

w?+ 1

. C;
These series converge when > senpiyutiy B < 1 The
response time R; of task T; can then be compared against

its deadline to determine the schedulability of T;.

2 Cacheanalysisvs static cachelocking

In the following, we give some elements that allow to
choose between using statically locked caches or using the
dynamic features of the caches together with static cache
analysis techniques to bound accurately tasks WCETSs and
cache-related preemption delays. A static cache locking
strategy with a frozen cache contents for all tasks is con-
sidered hereafter.

2.1 Qualitative comparison

Static cache locking is attractive from several point of
views. First of all, it improves the system performance com-
pared to a system that does not use caches, with respect to
both average and worst-case system performance.

In addition, with static cache locking, the time required
to perform a memory access is predictable (it is either a hit
or a miss depending on whether the value is locked in the
cache or not). While WCET analysis is still required, it alle-
viates the need for using complex cache analysis techniques
for computing WCETSs and cache-related preemption de-
lays, and results in more simple WCET analysis tools. In

particular, it eliminates the issue of integrating cache anal-
ysis techniques with the analysis techniques for the other
architectural features (pipelines, branch prediction, etc).

Static cache locking can also be used when no cache
analysis method can apply, due for instance to non-
deterministic or poorly documented cache replacement
strategies (e.g. pseudo-random replacement policies).

Another important benefit of static cache locking is that
the technique addresses both intra-task and inter-task inter-
ferences, which is unique among the cache management
techniques presented above. Concerning inter-task inter-
ferences, since in static cache locking schemes the cache
blocks are statically partitioned among the tasks, the cache-
related preemption delay is null, or is constant and equal to
the time required to reload the processor prefetch buffer if
the processor is equipped with such an architectural feature.
This low cache-related preemption delay is particularly im-
portant for large caches (see section 2.2).

Finally, implementing cache locking turns out to be a
light task once the contents of the locked cache are selected.
No maodification of the compilation process is required to
implement static cache locking. In particular, the addresses
of values (instructions/data structures) need not be modi-
fied, contrary to schemes that use static on-chip RAM to
speed up memory accesses. To be implemented, static cache
locking only requires to execute a small routine at the sys-
tem start-up to load the contents of the cache with the se-
lected values and lock the cache so that its contents remain
unchanged during the whole system execution.

However, statically locking the contents of caches re-
duces the amount of cache memory available for each task.
In addition, it raises the issue of selecting the cache con-
tents. Since we are interested in hard real-time systems, the
main objective of the cache selection algorithm is to im-
prove the worst-case system behavior according to some of
the metrics used by schedulability analysis methods, such
as CPU utilization or interferences between tasks. The main
issue is then to avoid performing an exhaustive search of all
possible cache contents, which would require an untractable
computation cost. For instance, for a direct-mapped cache,
if up to 4 program lines can me mapped onto a given cache
block, checking the feasibility of the system with all possi-
ble cache contents would require 42 feasibility tests, with
B the number of cache blocks. This complexity led [6] to
select a genetic algorithm for the selection of the cache con-
tents and [13] to base the selection of cache contents on ac-
tual traces of the system execution.

Another potential benefit of static cache locking, al-
though not proved yet by any study, is that it can easily

apply to data caches, or to unified caches or to multi-level
caches.

2.2 Quantitative comparison

Since the primary focus in hard real-time systems is to
prove that all deadlines are met, the key performance met-
ric to be considered when comparing cache management
schemes is the worst-case performance of the system. In
this section, we compare the worst-case performance of a
small task set made of periodic tasks using a state of the art
cache analysis technique with its worst-case performance
obtained using static cache locking. In this performance
evaluation, we focus on instruction cachesonly.

2.2.1 Experimental setup

Target architecture and simulator. The target architec-
ture considered in the experiments is the simplified MIPS
processor used by the Nachos operating system. Nachos*
is a simple operating system for an emulated MIPS CPU,
designed for teaching purposes. Nachos has been extended
for the purpose of this study with an instruction cache with
blocks of 16 bytes, and with a prefetch buffer of 16 bytes (4
MIPS instructions) to speed up sequential access to instruc-
tions. The instruction cache can be parametrized so that the
cache size ranges from 512 bytes to 16Kbytes, and so that
the associativity degree W ranges from 1 (direct-mapped
cache) to 32 (set associative cache). The timing model con-
sidered for the processor is very simple: an instruction is
assumed to execute in tp;; = 1 clock cycle in the case of a
cache hit, and ¢,,,;5s = 10 clock cycles otherwise.

Static cache locking. The algorithm designed to select
the contents of the locked cache (see [13] for more details)
applies to task sets made of periodic tasks. It aims at opti-
mizing the task set schedulability, by minimizing the CPU
utilization (as defined in equation 1, U = "7 | %)

As the worst-case execution path required to compute the
WCET C; is not known unless the contents of the locked
cache are known, the minimization of the utilization U is
achieved thanks to the knowledge of an actual execution
path for the tasks, which is not necessarily the worst-case
path. This execution path is obtained through a simulation
of the execution of the tasks using Nachos.

On the considered architecture, when static cache lock-
ing is used, the cache-related preemption delay +; is con-
stant and equal to the delay required to refill the processor
prefetch buffer (v; = timsss).

Lhitp://www.cs.washington.edu/homes/tom/nachos/

| | Formulas for WCET computation: W (.S) |

S = Sl; ,Sn

WCET(S) = WCET(S:) + ... + WCET(S,)

S = if (¢st) then S else Sz

WCET(S) = WCET (Test) + max(WCET(S1), WCET(S2))

S = loop(tst)S1

WCET(S) = maxiter x (WCET(Test) + WCET(S1)) + WCET (Test)
where maziter is the loop maximum number of iterations.

Table 1. Simplified equations for tree-based WCET computation

Task name | Description Code size | WCET- | Period
(Bytes) miss

qurt Computation of roots of quadratic equations 1824 21474 59697

minver Matrix inversion 4320 36701 70098

jfdctint JPEG integer implementation of the forward DCT 3440 29324 127559

fftl FFT (Fast fourier transform) Cooly-Turkey algorithm 3620 115152 | 601093

Table 2. Task set characteristics

WCET analysis and static cache analysis. Worst-case
execution times (WCET) are obtained using the Heptane
tree-based WCET analysis tool [7]. Heptane computes
WCETSs through a bottom-up traversal of the syntax tree
of the analyzed programs. Table 1 gives a flavor of the
formulas used in Heptane to compute WCETSs (these for-
mulas are overly simplified since they assume constant and
context-independent execution times for the leaves of the
syntax tree).

Heptane includes hardware modeling capabilities so as
to estimate safely but precisely the WCETSs on architectures
with instruction caches, pipelines and simple branch predic-
tors. Here, Heptane’s pipeline and branch prediction mod-
eling modules have been switched off since our focus is on
instruction caches only.

The technique used in Heptane to estimate the instruc-
tion cache behavior is based on F. Mueller’s so-called static
cache simulation [12]. The cache analysis technique com-
putes abstract cache states (representation of all possible
cache contents considering all possible execution paths in
the program), computed using data-flow analysis on the pro-
gram control flow graph. Abstract cache states are then used
to classify the instructions according to their worst-case be-
havior regarding the instruction cache (e.g. hit when it is
certain that there are no conflict for a cache block, miss
when no better classification can be found, and intermedi-
ate categories when there are conflicts inside loops). In the
case of set-associative caches, when a given instruction ap-
pears in different blocks of the same set of an abstract cache
state, different categories can be obtained for the different
instances of the instructions. In this situation, in order for
the analysis to be safe, the instruction is classified with the

most pessimistic category.

Heptane has been modified so as to offer the possibil-
ity to replace the cache analysis module by a module that
takes into account the presence of locked caches. This new
module classifies instructions into two categories: missand
hit. An instruction is classified as a hit if it is locked in the
instruction cache, and is classified as a miss otherwise.

When Heptane is configured to be used with its cache
analysis capabilities, no attempt is made to bound the cache-
related preemption delay ; precisely (it is assumed that all
program lines of a given task have to be reloaded after a
preemption, with a maximum of N reloads where N is the
number of cache lines).

Task set. The worst-case performance evaluation has
been achieved on a small real (non synthetic) task set,
whose characteristics are given in table 2.

The table gives for every task: its name, a short descrip-
tion, the size of its code in bytes, its WCET assuming that
all instruction fetches cause a cache miss, and its period.
The delays in the table are expressed in number of proces-
sor cycles. The periods of tasks have been selected so that
the CPU utilization (3°7, €i42%) equals 1.3 (i.e. the task
set is not feasible if no instruction cache is used).

2.2.2 Worst-case performance analysis

The worst-case system performance of the considered task
set is given in Table 3. Each cell indicates whether the task
set is feasible or not according to CRTA (equation 3, de-
tailed in [4]). A ’+’ sign means that the task set if feasible,
whereas a -’ sign means that it is not. The CPU utilization

S8 | 5108 | 1IKB | 2B | 4KB | 8KB | 16KB
Asso
1 Locking -1.188 | -1.073 | +0.936 | +0.774 | +0.740 | +0.740
Analysis +0.785 | +0.605 | +0.550 | +0.565 | +0.567 | +0.567
2 Locking -1.174 | -1.039 | +0.881 | +0.699 | +0.551 | +0.516
Analysis +0.833 | +0.701 | +0.588 | +0.575 | +0.567 | +0.567
4 Locking -1.169 | -1.022 | +0.844 | +0.678 | +0.506 | +0.395
Analysis +0.935 | +0.806 | +0.687 | +0.620 | +0.577 | +0.567
8 | Locking -1.177 | -1.030 | +0.823 | +0.644 | +0.495 | +0.393
Analysis +0.943 | +0.954 | +0.813 | +0.718 | +0.623 | +0.577
16 | Locking -1.177 | -1.052 | +0.825 | +0.641 | +0.489 | +0.393
Analysis +0.921 | -0.997 | -1.025 | +0.840 | +0.721 | +0.623
32 | Locking -1.176 | -1.044 | +0.817 | +0.625 | +0.487 | +0.393
Analysis +0.904 | -1.031 | -1.113 | -1.057 | +0.842 | +0.721

Table 3. Compared worst-case performance of static cache locking and static cache analysis

of the task set (as defined in equation 1) is also given in each
cell. These two pieces of information are given for different
cache sizes (Bytes), degrees of associativity, and this with
static cache analysis (label Analysis in the table) and with
static cache locking (label Locking in the table).

"Analysis"

CPU utilization (CRMA) "Locking"

1.2
11

2

4 16K

Associativity

325128

Figure 1. Worst-case CPU utilization

Figure 1 depicts the CPU utilization obtained on the task
set from the contents of table 3. It compares the CPU uti-
lization obtained when using cache locking and static cache
analysis.

Performancefor small cachesizes. It can be noted from
the contents of figure 1 and table 3 that for small cache
sizes, static cache analysis performs better than static cache
locking, both from the standpoint of the task set feasibil-
ity and from the standpoint of CPU utilization. This comes

from the fact that for small caches, there is a high degree
of intra-task and inter-task conflicts for every cache block.
By construction, the static cache analysis used in the WCET
analyzer is not sensitive to inter-task interferences because
tasks are considered separately. Thus, the WCET of tasks
with cache analysis is lower than with cache locking. More-
over, the comparatively lower WCETs of cache analysis
come with a higher cache-related preemption delay. How-
ever, the impact that this higher cache-related preemption
delay has on the system schedulability and CPU utilization
is negligible for small caches.

Impact of the cachesize. It can be noted that for a given
degree of associativity, the performance of both static cache
locking and static cache analysis increases with the cache
size, because of the decrease of the number of conflicts for
cache blocks. However, the performance increase of static
cache locking is higher than the one of static cache analysis
when the cache size increases. For instance, for a 4-way
associative cache, the task set exhibits better (i.e. lower)
CPU utilization when using static cache locking than when
using cache analysis for caches larger than 8KB, whereas
static cache locking performs better for caches smaller than
8KB. This is because the cache-related preemption delay in-
creases linearly with the cache size for the static cache anal-
ysis method, whereas it stays constant for the static cache
locking method.

Impact of the degree of associativity. For a given cache
size, the performance of static cache locking scales better
than the one of static cache analysis with an increasing de-
gree of associativity W. Indeed, static cache locking takes

benefit of the increasing degree of associativity to eliminate
both intra-task and inter-task interference, which explains
that the CPU utilization increases with . In contrast, the
static cache analysis method we have used does not scale
well with W. This comes from the pessimistic way the in-
structions are classified (see § 2.2.1).

3 Open issues

The key benefits of static cache locking is to make the
time required to perform memory accesses predictable, and
to be a unified technique to take into account both intra-
task and inter-task conflicts for cache blocks. This class of
techniques alleviates the need for using complex static anal-
ysis techniques for computing WCETSs and cache-related
preemption delays. In addition, it can be applied in situa-
tions where static cache analysis cannot be used at all (e.g.
when the instruction cache has a non deterministic or non
documented cache replacement policy). While algorithms
already exist for selecting the contents of statically locked
caches [6, 13], we think that further work is required:

— to study their performance on larger real (non syn-
thetic) benchmarks, in particular in task sets whose
size is much larger than the cache size. For large pro-
grams, a possible direction is to explore more dynamic
cache locking strategies (for instance, to select differ-
ent contents of the locked cache changed at statically-
defined points in order to cope with the tasks dynamic
behavior while staying predictable)

— to study the impact of statically locked caches on the
system average case performance

— to study the applicability of static cache locking tech-
niques to data/unified/multi-level caches

— to address implementation issues on actual embedded
processors

— to compare the use of statically locked caches with the
use of on-chip static RAMs (benefits wrt predictability,
issues to be addressed)

Acknowledgements
Thanks to David Decotigny (IRISA) and Jérn Schneider

(Saarland University) for pointing out errors in earlier drafts
of this paper.

References

[1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache
behavior prediction by abstract interpretation. In SAS 96,

Satic Analysis Symposium, volume 1145 of Lecture Notesin
Computer Science, pages 51-66. Springer, September 1996.

[2] O. Avissar, R. Barua, and D. Stewart. Heterogeneous mem-
ory management for embedded systems. In Proc. of the
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, Atlanta, GA, USA, Nov.
2001.

[3] S. Basumallick and K. Nilsen. Cache issues in real-time
systems. In ACM S GPLAN Workshop on Languages, Com-
pilers, and Tools for Embedded Systems, June 1994.

[4] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulabil-
ity analysis of preemptive real-time systems. In Proceedings
of the 1996 Real-Time technology and Applications Sympo-
sium, pages 204-212. IEEE Computer Society Press, June
1996.

[5] J. V. Busquets-Mataix and A. Wellings. Hybrid instruc-
tion cache partitioning for preemptive real-time systems. In
Proc. of the 9th Euromicro Workshop of Real-Time Systems,
pages 56-63, Toledo, Spain, June 1997.

[6] M. Campoy, A. P. lvars, and J. V. Busquets-Mataix. Static
use of locking caches in multitask premptive real-time sys-
tems. In |EEE/IEE Real-Time Embedded Systems Workshop
(Satellite of the | EEE Real -Time Systems Symposium), Lon-
don, UK, Dec. 2001.

[7] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based wecet analysis. In Proc. of the 13th
Euromicro Conference on Real-Time Systems, pages 37-44,
Delft, The Netherlands, June 2001.

[8] D. B. Kirk. Smart (strategic memory allocation for real-
time) cache design. In Proceedings of the 10th |IEEE Real-
Time Systems Symposium (RTSS39), pages 229-237, Santa
Monica, California, USA, Dec. 1989.

[9] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE Transactions on Computers, 47(6), June 1998.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for
real-time software: Beyond direct mapped instruction cache.
In Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium (RTSS96), pages 254-263. IEEE, IEEE Computer So-
ciety Press, Dec. 1996.

[11] T. Lundgvist and P. Stenstrom. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time Systems, 17(2-3):183-207, Nov. 1999.

[12] F. Mueller. Timing analysis for instruction caches. Real-
Time Systems, 18(2):217-247, May 2000.

[13] I. Puaut and D. Decotigny. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems.
Submitted to publication - available on demand, May 2002.

[14] J. E. Sasinowski and J. K. Strosnider. A dynamic pro-
gramming algorithm for cache/memory partitioning for real-
time systems. | EEE Transactions on Computers, 42(8):997—
1001, Aug. 1993.

A Framework to Model Branch Prediction for WCET Analysis

Tulika Mitra
Department of Computer Science
School of Computing
National University of Singapore
Singapore 117543
tulika@comp.nus.edu.sg

In this paper, we present a framework to model
branch prediction for Worst Case Execution Time
(WCET) analysis. Our micro-architectural modeling
is completely generic, and parameterizable w.r.t. the
currently used branch prediction schemes. It auto-
matically derives linear constraints on the total mis-
prediction count from the control flow graph of the
program. These constraints can be solved by any
integer linear programming (ILP) solver to estimate
the WCET.

Current generation processors perform control flow
speculation through branch prediction, which pre-
dicts the outcome of branch instructions. If the pre-
diction is correct, then execution proceeds without
any interruption. For incorrect prediction, the spec-
ulatively executed instructions are undone, incurring
a branch misprediction penalty between 3-19 clock
cycles. If branch prediction is not modeled, all the
branches in the program must be conservatively as-
sumed to be mispredicted for finding the WCET.
This pessimism results in as much as 60 — 70% over-
estimation for some of the benchmarks in this paper,
even assuming a 3 clock cycle branch misprediction
penalty.

A classification of branch prediction schemes ap-
pears in Figure 1. Branch prediction can be static or
dynamic. Static schemes associate a fixed prediction
to each branch instruction via compile time analy-
sis. Almost all modern processors, however, predict
the branch outcome dynamically based on past exe-
cution history. Dynamic schemes are more accurate

Abhik Roychoudhury
Department of Computer Science
School of Computing
National University of Singapore
Singapore 117543
abhik@comp.nus.edu.sg

Branch pred. schemes

Static Dynamic
Local Global
GAg gshare gselect ...
Figure 1: Classification of Branch Prediction

Schemes. At each level, the more widely used cat-
egory is underlined.

than static schemes, and in this work we study only
dynamic branch prediction. The first dynamic tech-
nique proposed is called local branch prediction [4],
where each branch is predicted based on its last few
outcomes. This scheme uses a 2"-entry branch predic-
tion table to store the past branch outcomes, which
is indexed by the n lower order bits of the branch ad-
dress. In the simplest case, each prediction table en-
try is 1-bit and stores the last outcome of the branch
mapped to that entry. When a branch is encountered,
the corresponding table entry is looked up and used
as the prediction. When a branch is resolved, the cor-
responding table entry is updated with the outcome.
A more accurate version of local scheme uses k-bit
counter per table entry.

Most modern processors however use global branch
prediction schemes [4] (also called correlation based
schemes), which are more accurate. Examples of pro-
cessors using global branch prediction include Intel
Pentium Pro, AMD, Alpha as well as embedded pro-
cessors IBM PowerPC 440GP and SB-1 MIPS 64. In
these schemes, the prediction of the outcome of a
branch I not only depends on [I’s recent outcomes,
but also on the outcome of the other recently exe-
cuted branches. Global schemes can exploit the fact
that behavior of neighboring branches in a program
are often correlated. Global schemes uses a single
shift register, called branch history register (BHR) to
record the outcomes of n most recent branches. As
in local schemes, there is a global branch prediction
table in which the predictions are stored. The various
global schemes differ from each other (and from local
schemes) in the way the prediction table is looked up
when a branch is encountered.

Little work has been done to study the effects of
branch prediction on WCET. Effects of static branch
prediction have been investigated in [1, 3]. However,
most current day processors (Intel Pentium, AMD,
Alpha, SUN SPARC) implement dynamic branch
prediction schemes, which are more difficult to model.
To the best of our knowledge, [2] is the only other
work on timing estimation under dynamic branch
prediction. However, their technique only models the
effects of local prediction schemes.

The starting point of our analysis is the control flow
graph (CFQ) of the program. Let v; denote the num-
ber of times block 7 is executed, and let e; ; denote the
number of times control flows through the edge i — j.
As inflow equals outflow, v; =3, eji =27, €.
We provide bounds on the maximum number of it-
erations for loops and maximum depth of recursive
invocations for recursive procedures. These bounds
can be user provided, or can be computed off-line for
certain programs.

Let cost; be the execution time of basic block 7
assuming perfect branch prediction. Given the pro-
gram, cost; is a fixed constant for each ¢. Then, the
total execution time of the program is) (cost; *v; +
penalty * m;) where penalty is a constant denoting
the penalty for a single branch misprediction; m; is
the number of times the branch in block ¢ is mispre-

dicted. By maximizing this objective function we can
get WCET.

Modeling Prediction Schemes To determine
the prediction of a block 7, we first compute the index
into the prediction table. We define v] and m[: the
execution count and the misprediction count of block
i when branch in 7 is executed with index = w. By
definition:

mi <of omi =) mi vi=3]

The prediction schemes differ from each other pri-
marily in how they index into the prediction table.
To predict a branch I, the index computed can be a
function of: (a) the past execution trace (history) and
(b) address of the branch instruction I. In the GAg
scheme, the index computed depends solely on the
history and not on the branch instruction address.
Other global prediction schemes (gshare, gselect) use
both history and branch address, while local schemes
use only the branch address.

Our modeling is independent of the definition of
the prediction table index w. Hence it can apply to
any branch prediction scheme that uses a single pre-
diction table. To model the effect of different branch
prediction schemes, we only alter the meaning of m,
and show how 7 is updated with the control flow.

In the case of GAg, this index is the outcome of
last k& branches before block i is executed. These k
outcomes are recorded in the Branch History Register
(BHR). To model the change in history due to control
flow, we use the left shift operator ; thus left(r,0)
shifts pattern 7 to the left by one position and puts
0 as the rightmost bit. We define:

Definition 1 Leti — j be an edge in the control flow
graph and let m be the BHR content at basic block i.
The change in history pattern on executing i — j s
given by T(m,i — j) = if i — j is an unconditional
gump. If i — j is a taken (non-taken) branch then
T(m,t — j) is left(m,0) (left(m,1)).

In the popular gshare [4] scheme, the BHR is XOR-
ed with last n bits of the branch address to look
up the prediction table. Usually, gshare results in

Pgm. gshare GAg local
Mispred Mispred Mispred
Obs. [Est. || Obs. | Est. || Obs. | Est.
check 3 3 3 3 198 | 198
matsum 204 | 204 204 | 204 200 | 200
matmul 223 | 223 223 | 223 200 | 200
fdct 7 7 7 7 4 4
fft 3678 | 6165 || 3398 | 5175 || 4129 | 5154
isort 9687 | 9952 587 | 598 399 | 399
bsearch 9 9 9 10 6 7
eqntott 203 205 202 206 203 204

Table 1: Observed and estimated misprediction count with gshare, GAg, and local schemes.

a more uniform distribution of table indices com-
pared to GAg. We define the index 7 as =
history,, ® address,(I) where m,n are constants,
n > m, @ is XOR, address,(I) denotes the lower
order n bits of I’s address, and history,, denotes the
most recent m branch outcomes (which are XOR~ed
with higher-order m bits of address, (I)). And,

Tyshare(m,i — j) = T'(historym,,i — j)®address, (I)

In local schemes, the index 7 for branch instruction
1 is the least significant n bits of I’s address, denoted
address,(I) (n is a constant). Here 7 is indepen-
dent of the past execution history of other branches.
The update of m due to control flow is given by
Tiocai(m,i — j) = address,(J), where address,(J)
denotes the least significant n bits of the last instruc-
tion J in basic block j.

Bounding Mispredictions Given the definition
of m and T", we derive inflow and outflow constraints
on the flow of 7 through the control flow graph to de-
rive upper bounds on v]. To bound m], we note the
following. Suppose there is a misprediction of the
branch in block ¢ with history «. This means that
certain blocks (maybe i itself) were executed with
history 7, the outcome of these branches appear in
the wth row of the prediction table, and the outcome
of these branches must have created a prediction dif-
ferent from the current outcome of block i. To model
mispredictions, we therefore capture repeated occur-
rence of a history 7 during program execution with

differing outcomes; we provide constraints to bound
such occurrences. Details of our modeling appear in
[5] and are ommitted here for space considerations.

Experimental Results We selected eight different
benchmarks for our experiments. We assumed zero
cache misses and a perfect processor pipeline with
no stalls except for penalty due to misprediction of
conditional branches. These assumptions, although
simplistic, allow us to separate out and measure the
accuracy of our estimation technique. We assumed
that the branch misprediction penalty is 3 clock cy-
cles (as in the Intel Pentium processor). We used the
SimpleScalar architectural simulation platform in the
experiments. By changing SimpleScalar parameters,
we could change the branch prediction scheme for the
experiments.

To evaluate the accuracy of our branch prediction
modeling, we present the experiments for three dif-
ferent branch prediction schemes: gshare, GAg and
local. Since finding the worst case input of a bench-
mark (which produces the actual WCET) is a hu-
man guided and tedious process, we only measured
the actual WCET assuming a 4-entry prediction ta-
ble. The results appear in Table 1. In this table, we
have shown only the observed and estimated mispre-
diction counts to enable clear understanding of the
accuracy of our technique (which models the effect
of branch prediction). Even though not shown here
due to space shortage, the estimation accuracy was
independent of the prediction table size. Our esti-

mation technique obtains a very tight bound on the
WCET and misprediction count in all benchmarks
except £fft. The reason is that the number of it-
erations of the innermost loop of fft depends on
the loop iterator variable value of the outer loops.
This problem can be solved by providing expressions
on the loop iteration counts instead of constants, as
shown in [2].

Using CPLEX, a commercial ILP solver dis-
tributed by ILOG, on a Pentium IV 1.3 GHz pro-
cessor with 1 GByte of main memory, our timing es-
timation technique requires less than 0.11 second for
all the benchmarks with prediction table size varying
4-1024 entries.

One major concern with any ILP formulation of
WCET is the scalability of the resulting solution. To
check the scalability of our solution, we formulated
the WCET problem for the popular gshare scheme
with branch prediction table size varying from 4-1024
entries. Recall that in gshare, the branch instruction
address is XOR-ed with the global branch history
bits. In practice, gshare scheme uses smaller num-
ber of history bits than address bits, and XORs the
history bits with the higher order address bits [4, 6].
The choice of the number of history bits in a pro-
cessor depends on the expected workload. In our
experiments, we used a maximum of 4 history bits
as it produces the best overall branch prediction per-
formance across all our benchmarks. As Figure 2
shows, the number of variables generated for the ILP
problem initially increases and then decreases. With
increasing number of history bits, number of possible
patterns per branch increases. But with fixed history
size and increasing prediction table size, the number
of cases where two or more branches have the same
pattern starts to decrease. This significantly reduces
the number of ILP variables.

References

[1] K. Chen, S. Malik, and D.I. August. Retargatable
static software timing analysis. In IEEE/ACM
Intl. Symp. on System Synthesis (155S), 2001.

Number of variablesin ILP formulation

64 . 256 X 1K
Number of prediction table entries

Figure 2: Change in ILP problem size with increase
in number of entries in the branch prediction table
for gshare scheme

[2] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Journal of Real time Systems, May 2000.

[3] S-S. Lim, J.H. Han, J. Kim, and S.L. Min.
A worst case timing analysis technique for in-
order superscalar processors. Technical report,
Seoul National University, 1998. Farlier version
published in IEEE Real Time Systems Sympo-
stum(RTSS) 1998.

[4] S. McFarling. Combining branch predictors.
Technical report, DEC Western Research Labo-
ratory, 1993.

[5] T. Mitra and A. Roychoudhury. Effects of branch
prediction on worst case execution time of pro-
grams. Technical Report 11-01, School of Com-
puting, National University of Singapore, 2001.

[6] S. Sechrest, C-C. Lee, and T. Mudge. Correla-
tion and aliasing in dynamic branch predictors.
In ACM International Symposium on Computer
Architecture (ISCA), 1996.

Difficulties in Computing the WCET
for Processors with Speculative Execution

Christine Rochange and Pascal Sainrat
Institut de Recherche en Informatique de Toulouse, France
{rochange, sainrat}@irit.fr

Abstract

In real-time applications, the Worst-Case Execution
Time often needs to be estimated to check that deadlines
will be respected. With the trend of using up-to-date
processors, WCET computation techniques continuously
have to evolve in order to take into account the most
recent hardware features. In this paper, we show that
ignoring speculative execution can lead fto
underestimated execution times, and we explain why
modelling it is not straightforward. We feel that pure
static analysis might not allow safe WCET computation,
due to the fact that speculative execution prevents the
decoupling between the high-level (path) analysis and the
low-level (timing) analysis.

1. Introduction

For a large class of applications, embedded software
has to satisfy hard real-time constraints. This requires to
be able to tightly estimate the worst-case execution time
(WCET) of programs.

WCET analysis has received much attention these ten
last years. Dynamic methods involve measurements on
real hardware or on cycle-level simulators. All the
possible execution paths have to be explored in order to
obtain the longest execution time. This poses two
problems: (i) the number of possible paths is generally
high and then the measurement time is prohibitive;
(ii) for each path, the corresponding input data set has to
be defined, which is usually difficult. In response to the
drawbacks of dynamic methods, several static approaches
have been proposed. They consist in three steps. First, the
high-level analysis considers the program code in order to
identify the possible execution paths, where a path is a
list of basic blocks. Second, the low-level analysis
estimates the execution time of each basic block. It is
carried out in two phases: the global low-level analysis
takes into account hardware components the behaviour of
which depends on the global history of execution (e.g.
cache memories); the local phase models components
that only depends on the recent history (e.g. pipeline).
Third, the execution times of paths are computed and the
WCET is the longest one.

However, embedded systems tend to use modern
processors featuring advanced architectural mechanisms
that might be hard to model. Among these mechanisms,

branch prediction, sometimes coupled with speculative
execution, is implemented in most of the recent
processors.

Estimating the WCET for processors with speculative
execution does not present any special difficulty when it
is based on dynamic measures: either the real target
hardware is available (with speculative execution
activated), or a cycle-level simulator is used, and
speculative execution is not harder to model than other
advanced features. However, current dynamic
measurement methods often require to explore a too large
number of execution paths and, for this reason, static
analysis is generally preferred.

In this paper, we will show that estimating the WCET
when a processor implements speculative execution is not
straightforward. We suggest that usual static analysis
techniques might not allow safe WCET computation,
highlighting situations where they would lead to
underestimation of the execution time.

Section 2 gives an overview of branch prediction and
speculative execution techniques, and presents the work
of Colin and Puaut [1] that takes branch prediction (but
not speculative execution) into account within static
WCET analysis. Section 3 shows why it is important to
carefully model speculative execution to obtain a safe
WCET. Section 4 discusses the difficulties of doing it
within pure static WCET analysis, and section 5
concludes the paper.

2. Branch prediction and
execution

speculative

2.1 Overview

Modern processors are designed around longer and
longer pipelines. Whenever a branch instruction is
encountered in the instruction flow, the correct execution
path is not known until the branch is executed. To avoid
interrupting the instruction fetching, one of the two
possible paths is speculatively selected by a branch
predictor and instruction processing continues along this
path. When the branch is resolved and if the speculative
path is not the correct one, recovery actions are taken
(e.g. the pipeline is flushed) and instruction processing
restarts from the branch along the right path. Processing
along a speculative path means fetching instructions from

the memory hierarchy, decoding and dispatching them to
the reservation stations where they wait for their
operands. For a processor that implements out-of-order
execution, instructions belonging to the speculative path
might also be executed before earlier instructions, and in
particular before unresolved branches. This is what is
called speculative execution. In that case, recovery from
branch misprediction is a bit more complicated and
generally requires mechanisms to restore the correct
architectural state. Note that recovery is only required for
components that must have a safe behaviour: the effects
of a branch prediction error on other components, like
cache memories or the branch predictor itself do not
endanger correct functional results, they only might lower
the system performance.

Many algorithms exist to predict the issue of branch
instructions. The most recent ones include three kinds of
structures:

- the PHT (Pattern History Table) is used to predict the
direction of conditional branches: each of its entries
reflects a recent history (often as a 2bit saturating
counter). The PHT is usually not tagged and it can be
indexed by the instruction address (PC) alone or
combined with a global or a local history recorded in
one or several BHR (Branch History Register). Thus,
several branches share the same counter and, on the
contrary, the behaviour of a branch depends on several
counters according to the history.

- the BTB (Branch Target Buffer) is used to predict the
target address (except for subroutine returns)

- the RAS (Return Address Stack) is used to predict
subroutine returns.

2.2 Computing the WCET for processors with
branch prediction

As far as we know, branch prediction has been
considered within WCET analysis only for in-order
processors: this work has been presented by Colin and
Puaut [1]. They consider the Intel Pentium, which
features a simple branch predictor based on a single table
referred to as BTB. The proposed method includes
several stages.

First, the control-flow graph is analysed to build an
abstract state of the BTB for each basic block: it
indicates which instructions might be contained in each
entry of the BTB before and after the execution of the
basic block. The input abstract state of a basic block is
computed from the output abstract states of the possible
preceding basic blocks. Then, the abstract states are used
to classify the branch instructions and to determine, for
each of them, if it will be correctly predicted or not.

When ever this cannot be statically decided, the
instruction is assumed to be mispredicted, which is
supposed to be the worst case.

The WCET is then computed in two steps. First, a
perfect branch predictor is assumed, and the WCET is
estimated from the syntax tree and a set of formulas that
express the maximum execution time of algorithmic
structures. Then the timing effects of prediction errors are
evaluated for a real branch predictor: a penalty delay is
associated to each possibly mispredicted branch
instruction. A second set of formulas is used to
recursively build delay sets for each algorithmic structure
of the syntax tree. The sum of these delays is then added
to the WCET previously computed with perfect branch
prediction.

3. Possible effects of speculative execution

When a processor implements speculative execution,
processing along the wrong path may have two kinds of
effects on the system. In this section, we describe these
effects and show why ignoring them can lead to
underestimate the WCET.

3.1 Dynamic instruction scheduling

Instructions of the wrong path occupy hardware
resources, like functional units. Now, some flushing
policies implemented for branch prediction error recovery
do not immediately free the functional units. Thus, an
instruction of the wrong path might continue its execution
in a multi-cycle functional unit after the flushing of the
pipeline (but its result will then be simply discarded). If
the functional unit is not pipelined, the execution of later
instructions belonging to the correct path might be
delayed. Then the misprediction penalty would be longer
than the strict recovery time.

Moreover, inserting wrong path instructions in the
pipeline can modify the scheduling of previous
instructions. For example, an instruction belonging to the
wrong path that has its operands ready can be scheduled
before a preceding instruction that is waiting for one of
its operands. This might completely modify the overall
scheduling, and then the execution time as mentioned
in [3].

If speculative execution is not taken into account, the
pipeline reservation tables produced by the local timing
analysis might not be correct and the computed WCET
could be underestimated.

3.2 Memory contents

Processing along the wrong path can also change the
content of memories. If instructions of the wrong path
miss in the instruction cache, they are fetched from the
upper level of the memory hierarchy. This can have a
detrimental effect on the program execution time if
instructions of the wrong path replace in the cache
instructions belonging to the correct path: when the
execution later restarts along the right path, those
replaced instructions will miss in the cache, thus
requiring longer fetch times. This detrimental effect is
often referred to as cache pollution. Note that fetching
instructions along the wrong path can also have a
beneficial effect, as reported in [4]: some instructions of
the wrong path can later be found on the correct path, and
then processing along the wrong path acts as a prefetch
mechanism.

The same effects can be observed on data accesses,
provided that instructions of the wrong path are executed
(not only fetched), which is only allowed in dynamically-
scheduled processors.

Processing along the wrong path may also have a
beneficial or detrimental impact on the memories of the
branch predictor (BTB, BHR, PHT and RAS) if they are
updated speculatively in the earlier stages of the
pipeline [2]. Only few parts are checkpointed for cost
reasons (e.g. checkpointing the BTB is probably not
affordable). If recovery is not implemented, the branch
predictor tables might be polluted by the execution of the
wrong path.

Now, let us assume that, ignoring speculative
execution, the global low-level analysis is able to
statically determine the real behaviour of all instruction
and data cache accesses (hit or miss) and of all branches
(well- or wrong- predicted). To understand why the
possible pollution of memories due to wrong path
execution should not be ignored, let us consider the
following example:

for (i=0 ; 1<10 ; i++)

{
s[i] = 0;
for (j=0 ; j<10 ; J++)

{

s[i] = s[i] + t[i]l[3];

m[i] = s[i] / 10;

This program may be compiled as:

LO i=0;
Ll if i==10 then branch to L7
L3 s[i]=0

j =0
L4 if j==10 then branch to Lé
L5 s[i] = s[i] + tl[i] [j]

J++

branch to L4
L6 m[i] = s[i] / 10

1++
branch to L1
L7

If we consider a branch prediction algorithm based on
2-bit saturating counters, initialised to “weakly-taken”,
the branch instructions of basic blocks L1 and L4 are
mispredicted in the first iteration of loops i and j, and
correctly predicted in the other iterations, while those of
basic blocks L5 and L6 are always well predicted. As far
as data accesses are concerned, the first reference to s [1]
is determined to miss in the data cache while the other
ones should hit.

Now, what does really happen if the processor
implements speculative execution? At the first iteration
of loop i, since the branch of basic block L1 is
mispredicted, some instructions belonging to the wrong
path are processed. In particular, access tom[i] might be
executed. If m [1] happens to fall in the same cache line as
s [i] then, when the branch is resolved and the execution
restarts along the correct path, s[i] misses in the data
cache, contrarily to the conclusion of the global low-level
analysis. As a result, the actual execution time might be
longer than the estimated WCET, which is not
acceptable.

In the same manner, the possible pollution of other
memories (instruction cache, branch prediction
tables,...) can increase the execution time. Ignoring
speculative execution might again lead to an erroneous
classification of instructions (branches or memory
accesses) in the global low-level analysis step, which
may result in an underestimated WCET.

4. Towards a safe WCET estimation for
processors with speculative execution

We have shown why the execution of the wrong path
has to be carefully taken into account in order to obtain a
safe WCET. In this section, we discuss the difficulties of
modelling speculative execution as part of static WCET
analysis.

The possible effects of speculative execution on the
dynamic scheduling of instructions can probably be taken

into account without excessive complexity. For example,
the delaying of the execution of later instructions due to
the occupation of hardware resources by wrong path
instructions could be included in the WCET estimation
by systematically adding to the misprediction recovery
penalty the longest functional unit latency. An other
solution would consist in assuming in-order instead of
out-of-order execution, but it would lead to a very
pessimistic WCET estimation.

The effects of speculative execution on the content of
memories may be harder to take into account within a
purely static WCET analysis. We have seen that it can
invalidate the results of the global low-level analysis:
memory accesses (either to instructions or data) classified
as “cache hits” might actually miss due to the pollution of
the cache by the execution of the wrong path; branches
classified as “well predicted” might actually be
mispredicted due to the pollution of branch predictor
tables. This means that, in order to produce a safe
classification of instructions, the global low-level
analysis should take into account the instructions of the
wrong path. Now, we feel that considering wrong paths
within static analysis is not straightforward, since it
probably requires new algorithms for syntax tree or
control-flow graph traversal. Moreover, the number of
instructions or basic blocks to include in a wrong path
depends on the processor state (occupancy of hardware
resources) and can only be determined during the local
low-level analysis. Thus, it appears that a correct
modelling of speculative execution would require a very
close interaction between the high-level (flow) and low-
level (timing) analyses, which are usually carried out
independently.

While decoupling the analyses of different
components (caches, branch predictor, pipeline, ...)
probably makes static WCET computation feasible, we
wonder if the requirement of more interaction between
these analyses to be able to take into account more and
more advanced hardware features can be satisfied. If not,
growing emphasis should be put on dynamic
measurement (on real systems or simulators) to obtain
accurate timing information while the static part of
WCET estimation would focus on selecting the execution
paths to explore with the goal of minimizing the
measurement requirements.

5. Conclusion

A lot of work has been done these last ten years to
allow static estimation of the WCET for processors with
advanced features like cache memories, pipelined
execution, branch prediction. The most recent
dynamically-scheduled processors implement speculative
execution: when a branch instruction is predicted, the
instructions belonging to the predicted path can be
executed before that the branch is resolved. In this paper,
we discussed the possible effects of executing the wrong
path whenever a branch is mispredicted.

We have shown that wrong path execution can modify
the scheduling of the correct path instructions and/or
change the content of memories (instruction and data
caches, branch predictor tables, ...). Then we have
explained why ignoring these effects in WCET analysis
can lead to an underestimated WCET, which can be
dramatic for hard real-time systems.

We feel that usual static WCET computation
techniques cannot accurately take speculative execution
into account, since it would require a too complex
interaction between global and local low-level analysis.

The next step of our work will consist in quantifying
the effects described in this paper, with the goal of
evaluating the probability that speculative execution
increases the WCET. This measure will indicate whether
new methods are to be investigated to take speculative
execution into account within WCET analysis.

6. References

[1] A. Colin, L. Puaut, “Worst-Case Execution Time Analysis
for a Processor with Branch Prediction”, Real-Time
Systems, 18(2):249-274, May 2000.

[2] S. Jourdan, T.-H. Hsing, J. Stark, Y. Patt, “The Effects of
Mispredicted-Path Execution on Branch Prediction
Structures”, Int. Conf. On Parallel Architectures and
Compilation Techniques, Octobre 1996.

[3] T. Lundqvist, P. Stenstrém, “Timin% Anomalies in
Dynamically Scheduled Processors”, 20" IEEE Real-Time
Systems Symposium, December 1999.

[4] J. Pierce, T. Mudge, “Wrong-Path Instruction Prefetching”,
IEEE Int. Symp. On Microarchitecture, December 1996.

Session V:

Issuesin WCET Analysis

Niklas Holsti

This last session of the workshop provided three presentations followed by discussion.

Presentations

In the first presentation, Jorn Schneider noted that the execution time of an RTOS call often
depends greatly on the application-defined context such as parameter values. Moreover,
the execution time of application code can depend on the context set up by earlier RTOS
calls, for example to disable preemption. These interactions decrease the accuracy of a
WCET analysis done separately for the application and for the RTOS. Schneider proposed
a combined WCET-and-schedulability analysis that considers such “meta-state informa-
tion”. Similar problems arise for software libraries and their clients ("library syndrome”).

In the second presentation, Stefan Petters explained how statistical analysis gives a
WCET estimate that is not an absolute upper bound but for which we know the risk of
exceeding the estimate. If this risk is small enough in relation to other causes of system
failure, the whole system is shown to be reliable enough. The approach resembles HW
failure analysis and uses extreme value statistics.

Peter Puschner’s final presentation suggested a radical change in HW and SW design
to simplify timing analysis. Speculative HW mechanisms such as caches are replaced by
deterministic ones such as SW-controlled prefetching. Code transformations reduce the
number of SW execution paths to one. The time for this single path can be found by
measurement or simple static analysis.

Discussion

The presenters listed several questions for discussion. Schneider asked for more problems
in application-RTOS interaction; how WCET researchers approach the library syndrome
and serve cache-sensitive, pipeline-sensitive and RTOS-aware schedulability analysis; and
why industry is still measuring execution times. Petters asked if less than 100% WCET
guarantee is acceptable; whether execution times can reasonably be described statistically;
and what other sources of proof could enlarge confidence in a statistically derived failure
rate. Puschner wanted to discuss the speed/quality trade-off in WCET analysis; whether
current analysis is good and fast enough; and whether alternative approaches are needed,
as his presentation suggested. Since this was the last session, the discussion also touched
on general topics. The summary below is organized by issue rather than time order.

Both measurement and analysis are needed. Analysis is hampered by the need to build a
model, while measurement uses the real system, which (as Bernat remarked) is its own best
model. The misshapen mirror of the Hubble Space Telescope was brought up as an exam-
ple of a costly failure that could have been prevented by measurement (Hillary). However,

the problem here was a faulty measurement (Vardanega). This risk also exists in measuring
execution times, since SW engineers do not understand that measurement is like testing: it
cannot show the absence of errors (Schneider) and may miss the critical case (Puschner).
SW engineers should think about what they measure (Petters) and should combine mea-
surement with analysis (Renaux) to validate the analysis (Schneider).

Vardanega remarked that typical applications use only a few RTOS services. In one
example, only 27 of 256 services were used. This suggests that the interface between ap-
plication and RTOS could be simplified, perhaps reducing the timing interactions as well.

The statistical approach presented by Petters was not much discussed. Hillary noted
that it should fit in well with the reliability analysis already required for aircraft.

Puschner’s proposals received a mixed reception. Petters said that the WCET re-
searchers have no chance to influence processor design. Puschner acknowledged that the
current designs will be continued for a decade, but called for optimism and suggestions
for solutions. Holsti suggested that Puschner’s approach could work with options added
to current processors, while Bernat felt that the present pessimism of WCET results might
simply be accepted. Vardanega stated strongly that the community should insist on open
processor designs where the software engineer knows what will happen and how to model
it.

Replying to Puschner’s question, Gustafsson said that current WCET analysis is of
course not good enough, but that we should not aim for “one best WCET analyser”. Com-
paring WCET analysers to compilers, where there is a choice of hundreds of compilers,
he felt that there will be a need for many different WCET analysers and methods, includ-
ing the ”single path” approach. However, Vardanega warned that compiler vendors are not
seeing enough demand for WCET analysis to develop such tools within their R&D budgets.

Overall, the session showed that the research community is not ignoring practical prob-
lems, such as the application/RTOS interface, and is not stumped by the growing complex-
ity of processors, but has at least two alternative approaches in addition to the straight-
forward (and still workable) approach of evolving more complex models.

Why You Can’t Analyze RTOSswithout Considering Applications and Vice
Versa*

Jorn Schneider

Dept. of Computer Science, Saarland University, Germany
E-mail: jsecs.uni-sb.de

Abstract

Traditionally worst case execution time (WCET) analysis
tools are designed for the analysis of application code. The
execution time of Real-Time Operating System (RTOS) ser-
vices and the interaction between RTOS and application are
usually not considered. When performing an RTOS aware
schedulability analysis the WCETs of RTOS services are
needed. At first sight the application of existing WCET ana-
lyzers on RTOS code should be straightforward and should
deliver the same accuracy as for application code. The pa-
per explains why this is not the case, and why the presence
of an RTOS diminishes the accuracy of application code
WCET analysis.

In addition to explaining why RTOSs should not be
analyzed without considering application code and vice
versa, the underlying problems are identified as well as
enlightened by some examples and possible solutions are
sketched. Eventually a comprehensive approach for WCET
and schedulability analysis is proposed. The comprehensive
approach solves almost all of the identified problems. Ad-
ditionally, the synergetic approach opens the road towards
very promising, novel possibilities, like automatic trouble
spot identification.

1 Introduction

To assure that the timing constraints of a hard real-time
system are met it is of paramount importance to consider
the temporal impact of all parts of the system. Provided
that the temporal behavior of the environment is given, the
main parts of many contemporary real-time systems are the
hardware (e. g. a microprocessor with caches and pipelines),
the real-time operating system (RTOS), and the application
software. The research community addressed the problem

*Thiswork has been partly supported by DFG (German Research Foun-
dation), Transferbereich 14, and by the European Commission, ARTIST
Project (Advanced Redl-Time Systems Information Society Technologies).

from two sides in the past. Considering the real-time oper-
ating system behavior has been gradually introduced in con-
tinously improved schedulability analysis approaches. The
temporal parameters of application software are predicted
by worst case execution time (WCET) analysis. The hard-
ware influence was initially captured by the WCET analysis
part alone. For simple hardware there is no need to con-
sider microarchitectural effects at the schedulability analy-
sis level. More recent work considers the impact of mod-
ern microarchitectural features like caches and pipelines at
the schedulability analysis level [13]. However, this did not
close the last gap yet. One remaining gap is the computation
of worst case execution times of RTOS services. Ideally,
these times should be obtainable with the WCET analyz-
ers designed for analyzing application code without further
measures. Certainly this is possible, but at what costs? A
recent study of Colin and Puaut exemplifies that the results
of such an approach are poor [4].

This paper shows that analyzing the WCET of RTOSs
without considering the application, inevitably leads to poor
results. Additionally, it is shown that the presence of a mul-
titasking RTOS diminishes the accuracy of application code
WCET analysis. The underlying problems of these phe-
nomena are identified and explained by examples. Further-
more, possible solutions are sketched. The found solutions
point towards a direction that leads to the following obser-
vations: 1. Combining schedulability analysis and WCET
analysis in a straightforward way means that these two tech-
niques work independently but not jointly. 2. Deploying
WCET analysis and schedulability analysis in a comprehen-
sive framework leads to synergies that are a remedy for the
diagnosed problems and open further very promising possi-
bilities. Therefore, a comprehensive framework for WCET
and schedulability analysis is proposed.

The paper is organized as follows. The next section
presents related work from the fields of WCET and schedu-
lability analysis. Section 3 identifies the problems encoun-
tered when analyzing the WCET of RTOSs and sketches
possible solutions. The case of analyzing the WCET of ap-
plications in presence of a multitasking RTOS is discussed

in Section 4. Section 5 briefly describes the proposed com-
prehensive analysis framework. Section 6 provides conclu-
sions. The last section reflects some related results of the
discussions at the WCET workshop.

2 Redated work

Current WCET analyzers aim at analyzing application code.
The execution time of RTOS services and the interaction
between RTOS and application are usually not consid-
ered. However, they are capable to consider the timing
impact of modern microarchitectural features. The work
of Ferdinand [5] shows how to consider the impact of set-
associative instruction and data caches. Later joined work
with the current author extends this approach to superscalar
pipelines [14]. More recent work of the USES (University
of the Saarland Embedded Systems) group augments the
method to unified instruction and data caches [6] and dy-
namic branch prediction, speculative execution as well as
out-of-order execution [16].

Colin and Puaut published a first study on program anal-
ysis based WCET estimation of RTOS primitives [4]. They
analyze twelve system calls (including the scheduler) of the
RTEMS kernel [11] for the Pentium | CPU and report sev-
eral problems in applying their WCET analysis. The main
problems were due to applying WCET analysis without
considering schedulability analysis and application code.
For instance the loop bound of the RTEMS scheduler could
not be derived because it depends on the number of task
arrivals during its execution (the scheduler loops until no
further arrivals are noticed). The average WCET overesti-
mation reported is 86%.

Besides the publications on WCET analysis the area of
schedulability analysis, especially on fixed priority schedul-
ing is related. Several publications in this area demon-
strate how to consider many RTOS features within schedu-
lability analysis. Katcher et al. provide utilization based
schedulability tests for four different scheduler implemen-
tations [8], two for event driven and two for time driven
scheduling (tick scheduling). The paper is restricted to
non-communicating tasks in periodic task sets. Burns and
Wellings show for the attitude and orbital control system
of the Olympus satellite how features like context-switch
times, sporadic tasks, system clock (tick scheduling of pe-
riodic tasks), and release jitter can be considered in re-
sponse time analysis [2]. These publications tend to neglect
the effect of microarchitectural features. Katcher et al. do
not mention cache and pipeline behavior at all. Burns and
Wellings switch off the cache and ignore pipeline effects by
making pessimistic assumptions.

Other publications show how to consider microarchitec-
tural preemption costs in schedulability analysis. Most of
them incorporate cache-related preemption costs by adding

fixed cache reload costs for each preemption (with the ex-
ception of [13], which is the basis of the author’s current
work). Thereby, it is impossible to consider the compen-
sation of cache misses by pipeline effects. Therefore, these
methods are referred to as isolated methods. Pipeline effects
are often completely ignored. Basumallick and Nilsen de-
scribe an extension of the utilization based rate monotonic
analysis (RMA) of Liu and Layland [10], which considers
cache-related preemption costs [1]. The WCET of a task is
increased by the worst case cache refill costs that this task
may impose on any preempted task. These additional costs
can be either the size of the cache or the size of the mem-
ory area occupied by the preempted task. Busquets-Mataix
et al. show that the RMA-method is worse than a compa-
rable response time analysis method [3] because of its pes-
simistic assumptions on the schedulable workload. Their
CRTA (cached version of RTA) [3] adds cache reload costs
for each preemption of a task. The authors mention five
ways to estimate this cache related interference. CRTA sup-
ports two of these five ways: either the costs for refilling
the entire cache or the time to refill all cache lines possi-
bly displaced by the preempting task can be used. Lee et
al. [9] present a sophisticated isolated approach. The ap-
proach considers the phasing of tasks. For each program
point of each task an upper bound on the worst case cache-
related preemption costs at this program point is calculated.
These results are used in a second phase to derive an upper
bound on the overall worst case cache related preemption
costs during the response time of the preempted task. The
second phase uses a linear programming technique that ex-
ecutes in each iteration of the response time analysis. As
in [13] the relationship between the preempting task and
the set of tasks that is possibly running when the preemp-
tion occurs is taken into account.

All three approaches [1, 3, 9] are isolated methods and
do not consider pipeline-related preemption costs. In con-
trast to them the isolated method presented in [13] consid-
ers pipeline-related preemption costs. No isolated approach
is able to take into account the overlapping of preemption
caused cache effects with pipeline hazards. To overcome
this drawback in [13] an integrated method was presented.
The integrated method considers cache-related preemption
costs implicitly and pipeline-related preemption costs ex-
plicitly. Among these approaches only [9] and [13] partly
considered the influence of RTOSs by regarding the sched-
uler overhead.

3 Analyzing RTOSs
3.1 What arethe problems?

The WCET of RTOS services is highly dependent on the
application using them. Table 1 gives a systematic list of

such dependences. Examples of such dependences can for

Determining factors of the
WCET of RTOS services
Non-constant call parameters
in application code

Examples

Any service with call
parameter dependent
control flow

Static, application dependent
configuration parameters

Any service with loop
bounds depending on
no. of RTOS objects
(e. g. tasks, resources)
Cache state Replacement of RTOS
owned cache sets by
application code

Calling history of RTOS
services

Scheduler execution
after disabling
preemptions
Calling context Call to system service
from task, interrupt or
operating system level

Table 1. Sources of WCET variations of RTOS
services.

instance be found in the RTEMS code, and in the code of
0sCAN (an OSEK [12] implementation by Vector Infor-
matik).

3.2 How can these problems be addressed?

Non-constant calling parameters When system calls are
analyzed as part of the application, any knowledge about
parameter values (e. g. obtained by a value analysis [15, 6])
can be used to derive sharper bounds on the WCET.

Static configuration parameters The configuration pa-
rameters (e.g. number of tasks and memory mapping of
tasks) are fixed for a particular application. Therefore,
they can be considered either manually or automatically by
WCET analysis as well as schedulability analysis.

Cache state If the cache is not partitioned in a special
way, application code or data might displace cache sets oc-
cupied by the RTOS. Therefore, no isolated WCET analysis
of the RTOS can benefit from positive cache effects caused
by previous runs of RTOS services. It might even be im-
possible to consider the positive intrinsic cache effects of
RTOS services. RTOSs are usually designed to minimize

the number and duration of non-interruptible code sections.
It is impossible for an isolated analysis to predict the nega-
tive impact of application interrupts outside these few code
sections, unless all positive cache effects are ignored. In the
case of a combined analysis it is possible to bound the ef-
fect of application caused cache replacements as it has been
shown in [13] for the application analysis. This is reached
by considering the preemption related cache effects within
the WCET analysis. Whether this approach delivers bet-
ter results than traditional ones depends on the application.
For a high number of preemptions the novel approach is
superior, for systems with a low workload the traditional
methods are better (cf. [13]). In [13] it is also shown that
for certain modern microprocessor types this approach is
imperative in order to avoid underestimations of response
times.

Calling history of RTOS services It not only affects the
WCET of RTOS services, but often has an immediate im-
pact on the task response time as well (e. g. an RTOS service
called to disable preemption eliminates the subsequent in-
terference by other tasks). A good schedulability analysis
should consider these effects. Therefore, the history infor-
mation should be statically predicted anyway and can also
be used by WCET analysis.

Calling context When using a combined analysis, the
calling context can easily be regarded. The WCET anal-
ysis can for instance ignore paths that become infeasible
because of the specific calling context.

4 Analyzing applications

This section discusses problems arising in presence of mul-
titasking RTOSs. The two subsections treat the problems
in the same order. First the problem domain of data values
is considered. Issues that arise due to isolated analysis of
application and RTOS code come second. Not all of these
issues can be addressed by a mere integration of application
and RTOS WCET analysis. The last parts of either subsec-
tion and Section 5 cope with this enigma.

4.1 What arethe problems?

The data values used in application code can play a large
role in computing the WCET.! Examples are: loop bounds,
addresses of memory references and infeasible paths. For
the WCET analysis to profit from this fact a static predic-
tion of value ranges is necessary. The value analysis de-
scribed in [15, 6] provides this functionality for instance.

1This holds for RTOS code also. Nevertheless the subject is discussed
in this section because that is where WCET analysis comes from and be-
cause applications are usualy more data-driven than RTOSs.

However, tools of this kind are—like any available WCET
tools—designed for sequential programs. The following is-
sues arise in presence of a multitasking RTOS:

Shared application memory Accesses by other tasks may
change the value of data in such areas.

RTOS data structures Any RTOS data structure not
unique to the analyzed task might be changed by RTOS
services called in other tasks. Even data structures
unique to a task might be manipulated by other (user
or RTOS) programs.

Memory mapped 1/O The values read from those areas
are mainly determined by the environment and ac-
cesses are non-cachable.

The WCET analysis of application code should consider
the WCET of the system calls used. A seemingly attrac-
tive approach is to initially ignore the system calls within
the application WCET analysis and thereafter add system
call WCETs obtained by an isolated analysis of the RTOS.
However, there are good reasons not to do so (see Table 2).

No. | Problem description
1 RTOS WCETSs are systematically overestimated
(shown in Section 3)

2 Information about correlation of worst case paths
and number+context of RTOS calls is destroyed
= only a pessimistic approach can still deliver
conservative WCETs

3 Cache and pipeline effects caused by RTOS calls
cannot be considered in application WCET

4 It is impossible to consider positive effects of
concepts existing only in presence of multi-
tasking RTOSs, for instance RTOS calls
dynamically raising the application priority
(e.g. by disabling preemption or interrupts,
or by occupying resources)

Table 2. Problems of analyzing applications
isolated from the RTOS.

There is a significant difference between problem de-
scriptions 1 through 3 and the classes of problems alluded
to by description 4 of Table 2. The former difficulties oc-
cur also together with the isolated WCET analysis of library
functions, the latter not.

4.2 How can these problems be addressed?

Because of shared application memory and RTOS data
structures, a value analysis has either to ignore such data,
or has to be enhanced to a multi-task-analysis. The latter is
not trivial. Memory mapped I/O areas have to be excluded
from the value analysis since they are volatile.

Section 3 shows that the WCET of RTOS services de-
pends on the call situation. This call situation subsumes the
factors given in Table 1. Some aspects of the call situation
are not unique to applications running on RTOSs. These
aspects can be identified already, when stand-alone applica-
tions with calls to library routines are considered (one could
replace the word RTOS with library in the problem descrip-
tions number 1 through 3 of Table 2 and the statements
would still be true to some extent). Aspects like these can be
addressed by embedding the analysis of library/system calls
within the application WCET analysis. The embedding can
be implicitly or explicitly. Embedding implicitly means that
the calls are treated like ordinary function calls. The input
data structure (e. g. the control flow graph) of the WCET an-
alyzer has to contain all needed information to analyze such
calls. If the WCET analyzer uses machine code as input
(e. g. the one described in [6]), this can even be done with-
out providing the user with the library/RTOS source code.
Embedding explicitly means that two independent WCET
analyzers (or two instances of the same analyzer) are used,
one for the application and one for the RTOS. The RTOS
WCET analyzer can be a black box that takes the code of the
RTOS service as well as collected information about calling
parameters, static configuration parameters, cache state and
calling context as input (see Subsection 3.2).

However, introducing an RTOS in the considered sce-
nario adds completely new qualities to the problem of
WCET analysis (represented by item no. 4 of Table 2).
These are issues that cannot be addressed by a mere inte-
gration of application and RTOS WCET analysis. Rather a
high-level view is needed to consider them in WCET and
schedulability analysis. Several such high-level concepts
can be identified that co-determine the temporal behavior
of the tasks of an RTOS-based system. These concepts
are for instance the effective priority of tasks, the RTOS
mode (e. g. initialization or normal operation mode), appli-
cation modes, task states, and the system level (task, in-
terrupt or RTOS level). Those high-level concepts have a
certain meaning when viewing the system as a whole rather
than as a bunch of independent programs at a microarchi-
tectural level. At run-time the properties of these concepts
have a defined state at each point in time. We define the
meta-state of a task to be the set of these states. In a static
approach, at best partial knowledge of the meta-state of a
task can be obtained. To address the RTOS specific prob-
lem domain, partial knowledge can be collected that allows

to compute the worst case response time of tasks more ac-
curately. This includes exploiting meta-state information
to compute sharper bounds on WCETs of tasks as well
as sharper bounds on microarchitecture-related preemption
Costs.

5 Proposal for a comprehensive WCET and
schedulability analysis approach

The authors present work on a comprehensive WCET and
schedulability analysis approach exploits meta-state infor-
mation to compute sharper bounds on WCETS of jobs (tasks
and interrupt service routines) and interesting code sections
and on microarchitecture-related preemption costs. The
framework exploits the following aspects of the meta-state
of a job: effective priority of a job (determined by: locked
interrupts, preemption lock, occupied resources), RTOS
mode and current system level. The meta-state information
is exploited as follows:

1. Extrinsic cache effects are considered by the cache
analysis (which is a part of the WCET analysis) in
dependence of the effective priority at each program
point of the analyzed job.

2. Pipeline-related preemption costs are individually
computed for each job, again in dependence of the ef-
fective priority, and are considered during the schedu-
lability analysis.

3. The WCET of jobs and code sections is computed for
the proper RTOS mode (initialization mode or normal
operation mode) and for each RTOS mode a separate
schedulability analysis is undertaken.

4. The current system level is considered when the
WCET of system calls is computed.

Similar to the cache- and pipeline-sensitive schedulabil-
ity analysis described in [13] the cache-related preemption
costs are incorporated in the WCET while the pipeline-
related preemption costs are explicitly considered during
the schedulability analysis.

The above sketched framework uses the WCET analysis
tool described in [6]. The WCET analyzer is loosely cou-
pled with the surrounding tools. It is guided with the help
of the obtained meta-state information in order to compute
sharper bounds on the WCET and the microarchitecture-
related preemption costs. A detailed explanation of this
method is beyond the scope of this paper.

The described approach yields a valuable side effect.
With only little more effort information highly esteemed by
system developers can be derived. For instance, the individ-
ual latency of each interrupt together with the causing code
section(s), code sequences dominating the WCET of jobs

due to destroyed cache contents and the causing memory
references of higher priority tasks, and critical code sections
dominating blocking time of tasks. This opens the door to-
wards precisely aimed optimization efforts to make infeasi-
ble task sets schedulable or provide “space” for additional
tasks, without requiring expert knowledge.

6 Conclusion

The paper showed that analyzing WCETs of RTOS-based
real-time systems—whether of RTOS services or of ap-
plication code—requires other than the established ap-
proaches. The underlying problems were explained by ex-
amples and classified. Additionally, it was sketched how
the individual problems can be addressed. Finally a com-
prehensive approach for WCET and schedulability analysis
was proposed. The proposed approach shows how it is pos-
sible to overcome most of the obstacles obstructing the path
toward comparative results of WCET analysis for RTOS-
based systems.

As far as the author knows this is the first proposal
to consider static computable information about the meta-
state of jobs. This information can be used to guide the
WCET analysis of jobs and interesting code sections to
achieve more accurate WCETSs and to sharpen the results of
the analysis of microarchitecture-related preemption costs.
Therefore, the proposed approach has a much higher po-
tential for good results than any combination of traditional
methods, which consider either RTOS or microarchitecture
related costs.

The comprehensive method yields a valuable side effect.
With only little more effort information highly esteemed by
system developers can be derived. For instance the individ-
ual latency of each interrupt together with the causing code
section(s), code sequences dominating the WCET of jobs
due to destroyed cache contents and the causing memory
references of higher priority tasks, and critical code sections
dominating blocking time of tasks. This opens the door to-
wards precisely aimed optimization efforts to make infeasi-
ble task sets schedulable or provide “space” for additional
tasks, without requiring expert knowledge.

7 Discussion Results

Several related topics were discussed at the WCET Work-
shop in Vienna. Some of them raised by the workshop ver-
sion of this paper. The industrial representatives appreciated
especially the comprehensive approach and acknowledged
its benefit for industrial practice. The growing importance
of schedulability analysis solutions has been emphasized by
the industrial as well as the research community.

The infeasibility of the traditional approaches, especially
measuring in presence of caches and pipelines [7], has been

acknowledged by the industrial representatives. The steady
progress of microprocessors with caches and complicated
pipelines into the real-time area has been reported from
many participants. Together this means that at the moment
no solution exists that allows to guarantee hard real-time be-
havior and to benefit from modern hardware in the presence
of RTOSs. Therefore, the proposed comprehensive frame-
work is urgently needed. The surplus of the solution, e.g.
the possibility to identify trouble spots and thus allow pre-
cisely aimed optimizations, was appreciated especially by
the industrial representatives.

Acknowledgements

Many members of the compiler design group at the Univer-
sity of the Saarland, especially the members of the USES
(University of the Saarland Embedded Systems) group,
deserve acknowledgement. Reinhard Wilhelm, Daniel
Kaéstner, and Stephan Diehl carefully read draft versions
of this work and provided many valuable hints and sugges-
tions.

I want to express my gratitude to the company Vector
Informatik for making available their implementation of the
OSEK real-time operating system standard.

I would like to thank the anonymous reviewers for their
helpful comments and the workshop participants for their
comments during insightful discussions.

References

[1] S. Basumallick and K. Nilsen. Cache Issues in Real-Time
Systems. ACM SIGPLAN Workshop on Language, Compiler
and Tool Support for Real-Time Systems, 1994.

[2] A. Burns and A. Wellings. Engineering a Hard Real-time
System: From Theory to Practice. Software—Practice and
Experience, 25(7):705-726, 1995.

[3] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding Instruction Cache Effect to Schedu-
lability Analysis of Preemptive Real-Time Systems. In Pro-
ceedings of the IEEE Real-Time Technology and Applica-
tions Symposium, pages 204-212, June 1996.

[4] A.Colinand I. Puaut. Worst-Case Execution Time Analysis
of the RTEMS Real-Time Operating System. In Proceed-
ings of the 13th Euromicro Conference on Real-Time Sys-
tems, pages 191-198, Delft, The Netherlands, June 2001.

[5] C. Ferdinand. Cache Behavior Prediction for Real-Time
Systems. Dissertation, Universitdt des Saarlandes, Sept.
1997.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and Precise WCET Determination for a Real-Life Pro-
cessor. In Embedded Software Workshop, Lake Tahoe, USA,
Oct. 2001.

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N. Hillary and K. Madsen. You Can’t Control what you
Can’t Measure, or Why it’s Close to Impossible to Guaran-
tee Real-Time Software Performance on a CPU with On-
Chip Cache. In Proceedings of the WCET Workshop of the
14th Euromicro Conference on Real-Time Systems, Vienna,
Austria, June 2002.

D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering
and Analysis of Fixed Priority Schedulers. IEEE Transac-
tions on Software Engineering, 19(9):920-934, 1993.

C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Enhanced Analysis of
Cache-Related Preemption Delay in Fixed-Priority Preemp-
tive Scheduling. In Proceedings of the IEEE Real-Time Sys-
tems Symposium, pages 187-198, Dec. 1997.

C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Jour-
nal of the ACM, 20(1):46-61, 1973.

On-Line Applications Research Corporation, Huntsville,
AL, USA. RTEMS Applications C User’s Guide. Edition
4.0, Oct 1998. http://www.oarcorp.com/RTEMS/
rtems.html.

OSEK/VDX - Open systems and the corresponding in-
terfaces for automotive electronics. OSEK/VDX Operat-
ing System. V\ersion 2.2, Sept. 2001. http://www.
osek-vdx.org.

J. Schneider. Cache and Pipeline Sensitive Fixed Priority
Scheduling for Preemptive Real-Time Systems. In Proceed-
ings of the 21st IEEE Real-Time Systems Symposium 2000,
pages 195-204, Nov. 2000.

J. Schneider and C. Ferdinand. Pipeline Behavior Predic-
tion for Superscalar Processors by Abstract Interpretation.
In Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems, vol-
ume 34 of ACM SIGPLAN Notices, pages 35-44, May 1999.
M. Sicks. AdreRbestimmung zur Vorhersage des Verhaltens
von Daten-Caches. Diplomarbeit, Universitét des Saarlan-
des, Nov. 1997.

S. Thesing, M. Langenbach, and R. Heckmann. Pipeline Be-
havior Analysis for Real-Time Systems by Pipeline Model-
ing. In Proceedings of the Work-in-Progress Session of the
14th Euromicro Conference on Real-Time Systems, pages
73-76, Vienna, Austria, June 2002.

How much Worst Case is Needed in WCET Estimation? *

Stefan M. Petters
Department of Computer Science
University of York
United Kingdom
Stefan.Petter s@cs.york.ac.uk

Abstract

Probabilistic methods provide probability density or mass
distributions for the execution time or the assumed worst
case execution time instead of a single WCET value.
While the resulting probability tends to fall towards zero
quickly, the actual zero value, i.e. the 100 % guarantee, is
reached only with unreasonable overestimation of the real
WCET. In order to cope with this, this paper proposes to
use similar techniques to hardware dependability analy-
sis, where a 100 % guarantee is physically impossible and
a certain, usually very small amount of risk is acceptable.

1 Motivation

Modern high performance processors include many fea-
tures which usually make cycle true simulation infeasible,
impose impractical limitations on the code or operating
system, or the methods used to capture these effects have
to introduce simplifications that lead to results which may
be up to an order of magnitude beyond the physical pos-
sible WCET.

One possibility to get around this problem is the de-
ployment of statistical methods. Throughout this paper
the validity of these methods is assumed. Additionally it

*The work presented in this paper is supported by the European
Union as part of a research programme on “Next TTA”

has to be assumed that the methods provide a description
of the program behaviour which correctly bounds the exe-
cution time for all modi of operation. This has to be espe-
cially considered for systems in red button mode, where
this critical mode has to receive seperate and close con-
sideration. A major problem of such approaches is that
they result in approximations of the (worst case) execu-
tion time, whose probabilities are non-zero, but very small
for a long way beyond the physical WCET. The question
now is, whether one has to go for the zero-probability of
an error, which tends to be as pessimistic as the simplified
WCET analysis, or if a probabilistic guarantee suffices.
While the first case, gains no real advantage, the second
has an open issue, which probabilistic guarantee to accept
as good.

2 Probabilistic WCET Analysis

Research in probabilistic WCET analysis can be divided
in two categories:

e Approaches using observed test cases to reason
about the probability of an execution time not ob-
served during the tests.

e Approaches analysing small parts of the program
in order to reason about the probability of different
combinations of the results of the smaller units.

As there are currently no publications in the second
area, we will focus on an example of the first reserach
area. Stewart Edgar uses a black box approach in [1]. The
description of the method here can only be very coarse
and the reader should have a look at the original papers
on this topic (e.g. [1, 2]).

The program is run several times, with random input
data and the end-to-end execution time of the program
runs are measured. As it is obvious, the measurements
will not likely cover the physical WCET of the program
on that processor, extreme value statistics are deployed to
reason about the execution time longer than any experi-
enced during measurement. Extreme value statistics are
concerned with modelling the left and/or right hand tail
of a probability distribution, as opposed to the modelling
of the average case with conventional statistics. This in-
duces that outliers in the measurement data, which are
usually disregarded with conventional statistics, have con-
siderable impact on the modelling parameters of extreme
value probability density functions.

Extreme value statistics are well known in the area of
financial risk assessment and civil engineering. In the lat-
ter case the assessment of maximum wind speeds or flood
levels is computed utilising these technique in order to
dimension the statics of buildings. There are three type
of extreme value probability density functions, described
with a theorem which corresponds to the central limit the-
orem of the normal distributions. As a necessary precon-
dition to apply this technique, the underlying random vari-
ables have to be independent and identically distributed.

For the approach the most simple solution of a Gumble
distribution has been chosen. This model only uses de-
viation and mean of the random variable, in our case the
observed execution time. The following equation show
the Gumble probability density function and the cumula-
tive Gumble probability density function:

—p t—
o o
_t=m
exp (—e G)

M
O]

"l‘<emel denswt)‘/"

0.0025 | L B

0.002 -

0.0015 |-

0.001 -

0.0005 -~

)

L 1 1 1
1627500 1628000 1628500 1629000 1629500

Figure 1: Sample Measurement Data and Extreme Value
Approximation.

The cumulative variant expresses the probability of an ex-
ecution time below the value t.

An example execution time measured and the corre-
sponding Gumble distribution is given in figure 1. The
measured times are given in a kernel density transformed
representation. The transformation is used to display dis-
crete data as a continuous curve and thus allowing the
comparison by inspection with the extreme value approx-
imation.

A major drawback of using the Gumble distribution
to approximation is the non-zero probability for execu-
tion times, except for +o0o0. While the probability of the
execution time exceeding 200 beyond the mean is only
2.06 E~?, the “risk” is still there. As experiments show,
this probability reaches quickly 1.0E£2° and less with an
overestimation of some 10% (cf. [3]). As an important
aspect it has to be noted, that the probabilities targeted in
this paper, correspond to execution times beyond anything
observed during the tests.

Useful Life Wear out

|
Burnin |
:
T

Failure rate

Time

Figure 2: Typical Variation of Fault Ratio of Hardware
Components over Time [4].

3 Hardware Considerations

This section will give a short introduction in the mecha-
nisms to risk assessment of hardware components. Fig-
ure 2 shows the typical distribution of hardware faults in
electronic equipment over time.

During the period of burn in the probability of hard-
ware failure is higher, due to faults in the productions of
the components. A good example for such a behaviour are
errors due to the statistic deviation in the doting of semi-
conductors. To avoid the high probability of failures in the
burn in period, the components are in general case run for
a time before deployment in a dependable system to weed
out bad components. This process is in most cases sped
up by undertaking this testing phase under more extreme
circumstances than the system has to endure in real oper-
ation (e.g. heat, cold, mechanical stress). Thus a produc-
tion error that might show up only after months or years
down the line is uncovered after a few hours or days of
operation.

After the burn in time, the hardware components reach
a more or less constant failure rate of A. Usually this use-
ful lifetime is quite long. In the end the wear out sets
in, where, for example, saturation effects® in the semicon-

10ne problem in the semiconductor industry is that the doting of

ductor set in. The failure rate A after burn in as well as
the average life time of a given hardware component is
usually known. The reliability R(t) of a component not
to fail is given in equation 3.

®)

For the computation of system failure usually the mean
time to failure (MTTF) (i.e. X)) is taken to compute the
overall systems failure rate. Since the usual failure rate is
less the one failure in the lifetime T}z of a product, the
failure rate can be transformed into a failure probability
for the lifetime pye Of the system. This failure probability
can be computed using equation 4.

Tiite

Dife = R(t)dt 4)

0

A similar reasoning may also be applied to software
components. The major difference between software and
hardware components is the discrete nature of failures of
the software components as opposed to the continuous na-
ture of failures of the hardware components. Assuming
the program has no algorithmic errors, exceeding a com-
putation time alloted to the program can be considered
a software failure in real-time systems. A basic neces-
sity for this is the assumption that the probability for an
overrun of the alloted time for an individual run peycess iS
known and constant for all runs. Additionally the max-
imum amount of task releases for any given time is es-
sential for the computation. This is usually defined as a
minimal inter arrival time Tiasx

The probability of a failure over the lifetime of the
product is computed using equation 5.

Tlife

1- (1 - pexcess) Trask

Dife =)

Defining an acceptable failure probability during the
lifetime, which would be in the order of magnitude of

semiconductors may be done by diffusion and these donated atoms tend
to start drifting inside the semiconductor.

the failure probability of an hardware failure, it is easy
to compute an acceptable pexcess transforming equation 5
into:

Task

1- P.;ﬂ"’ (6)

Dexcess =

4 Conclusion

While the number of publications in the area of prob-
abilistic WCET estimation is quite limited up to now,
the number of people working on this issue is becoming
larger. Interpreting an overrun of an assumed value for
the WCET of a program as a software fault, similar prob-
abilistic techniques as for hardware component failures
may be used. This is particular useful whenever proba-
bilistic methods are utilised to reason about the WCET,
as these methods tend to provide probability density or
mass distributions to describe the WCET instead of a sin-
gle value. Special care has to be taken for emergency sce-
narios, as a failure in such a scenario is usually less ac-
ceptable than during normal execution. The validity and
applicability of this method is subject to discussion.

References

[1] A.Burnsand S. Edgar, “Statistical analysis of WCET
for scheduling,” in Proc. of the IEEE Real-Time Sys-
tems Symposium (RTSS’01), (London, United King-
dom), Dec. 4-6 2001.

[2] A. Burnsand S. Edgar, “Predicting computation time
for advanced processor architectures,” in Proceedings
of the 12th Euromicro Conference on Real-Time Sys-
tems, (Stockholm, Sweden), June 19-21 2000.

[3] S. M. Petters, Worst Case Execution Time Estimation
for Advanced Processor Architectures. PhD thesis,
Institute of Real-Time Computer Systems, Technis-
che Universitat Minchen, Munich, Germany, 2002.

[4] N. Storey, Safety-Critical Computer Systems.
Addison-Wesley Publishing Company, 1996.

Is Worst-Case Execution-Time Analysis a Non-Problem? — Towards New
Software and Hardware Architectures *

Peter Puschner
Institut flr Technische Informatik
Technische Universitat Wien
A1040 Wien, Austria
E-mail: peter@vmars.tuwien.ac.at

Abstract

Despite the scientific advances in the research area
of worst-case execution-time (WCET) analysis, there
is hardly any industrial impact of the research solu-
tions presented so far. This seems to be due to the
high complexity of implementing and using the pro-
posed WCET approaches.

This paper discusses what makes WCET analysis
complex and proposes to use adequate hardware and
software architectures to improve the predictability of
program timing, thus simplifying WCET analysis.

1 Introduction

Research in worst-case execution-time (WCET)
analysis has been around for one and a half decades.
During this period a number of different approaches
to WCET analysis, including solutions for modelling
hardware features and characterizing possible execu-
tion paths of real-time tasks have been found [5]. Still,
the results of WCET-analysis research have hardly any
impact on the industrial practice of timing analysis.
This seems to be due to the high complexity of the
implementation and use of WCET analysis tools. In
addition, WCET research always seems to lag one step
behind the advances in micro-processor technology —
whenever WCET research manages to deal with the
features of one hardware generation the next genera-

*This work has been supported by the IST research project
“High-Confidence Architecture for Distributed Control Applica-
tions (NEXT TTA)” under contract 1IST-2001-32111.

tion of processor and hardware architectures, equipped
with novel speedup features, are already there.

This paper proposes to use new, adequate hardware
and software architectures to improve the temporal
predictability of programs, and thus reduce the com-
plexity of WCET analysis. Hardware architectures
for future real-time systems must allow to determine
instruction execution times locally by inspecting sin-
gle instructions and only a small number of instruc-
tions preceding them. Software architects have to in-
vestigate into programming techniques that reduce the
number of input-data dependent branching decisions
in the software, thus reducing the number of different
execution paths of a program.

The further sections present our considerations in
more detail and propose possible solutions. Section 2
argues about the main issues of WCET analysis and
explains why the analysis is complex. Section 3
presents two possible ways to reduce the complexity of
WCET analysis, one using special-purpose hardware
features and the other based on the so-called single-
path programming paradigm. Section 4 concludes the

paper.

2 The Complexity Dilemma of WCET
Analysis

There is no doubt that WCET analysis as it is cur-
rently used is a complex problem. It has been shown
that, in general, the number of paths to be analyzed for
an exact WCET analysis of a piece of code grows ex-
ponentially with the number of consecutive branches
in the control flow of the analyzed code. This state-

ment assumes that the code (a) is coded in traditional
style (i.e., not applying programming techniques that
focus on ease of WCET prediction) and (b) is to be
executed on a modern high-performance processor ar-
chitecture that includes caches and pipelines. Except
for very simple programs this high complexity makes
the full path enumeration needed for an exact WCET
analysis intractable [3].

Current approaches to WCET analysis deal with
this complexity in two ways:

e Calculate a high-quality WCET bound by accept-
ing long computation times for the analysis.

e Trade the feasibility or speed of analysis for qual-
ity, by using simplified but pessimistic models of
the possible software behaviours and the hard-
ware timing.

The dilemma of WCET analysis is that neither of these
approaches is acceptable in a commercial setting. On
the other hand, using current hardware and software
architectures does not allow for a better solution —
the complexity of the problem simply is there. This
raises the question if the current approaches to WCET-
analysis are the correct answer to the problem of task
timing analysis, or if current WCET research is fo-
cussing on the wrong problem.

2.1 Sources of Complexity

Puschner and Burns [5] identified two central fac-
tors that determine the WCET of a program in a given
application context:

1. the possible sequences of program actions in a
given application, and

2. the time needed for each action in each of these
possible sequences.

Clearly, both factors do not only determine the WCET
of the code, but also the complexity of WCET anal-
ysis. Possible sequences of actions (instructions) de-
pend on the algorithm that has been chosen to imple-
ment a solution to a problem and the code manipula-
tions the compiler performs during compilation. The
time needed for each action (instruction) depends on
the features and configuration of the machine (hard-
ware) on which the actions are executed. A number

of principles applied in typical modern hardware and
code design can be made responsible for WCET com-
plexity. In the following we focus on two such princi-
ples, one for hardware and one for software.

Hardware Speedup by Speculation: This is the prin-
ciple found in hierarchical memory architectures, e.g.,
cache. Instructions or data are loaded into (and kept
in) small buffers (caches) with short access times —
these access times are typically much shorter than the
access times of the larger store that holds larger por-
tions of instructions and data — with the intention to
speed up future memory accesses. The decisions about
which items are to be loaded, kept, and replaced in
cache are usually guided by heuristics, i.e., specula-
tion about which items might be accessed in the near
future.

The use of speculative decision mechanisms leads
to variable memory access times. The duration of each
particular memory access, in turn, depends on the state
in which the preceding (and potentially very long) se-
quence of operations have left the cache. Both effects
(the fact that memory access times vary and the depen-
dency of actual memory access times on the execution
history) taken together contribute to the complexity of
WCET analysis.

Software Optimization for Frequent Scenarios: Real-
time programmers use algorithms and programming
techniques that have proven to be effective for non
real-time applications. In non real-time applications,
speed optimization for the most probable (i.e., fre-
quent) scenarios is the primary goal. Temporal pre-
dictability is not an issue. In order to favour frequent
cases, non real-time algorithms choose the actions to
be performed based on input data. Input-data depen-
dent control decisions, however, cause programs to ex-
ecute on different execution paths with different exe-
cution times. As a consequence the number of differ-
ent cases to be considered by the WCET analysis is
potentially high.

3 Possible Ways Out of the WCET Dilemma

This section illustrates the potential of alterna-
tive hardware and software architectures to simplify
WCET analysis significantly. It provides alternatives
to each of the two mentioned design principles.

3.1 Hardware Speedup: Control Instead of Spec-
ulation

In contrast to non real-time applications, (hard)
real-time applications primarily require temporal pre-
dictability. Appropriate hardware designs therefore
support WCET analysis via predictability. This can
be achieved by using memory hierarchies that exer-
cise absolute control on the contents of fast buffers in-
stead of relying on speculation. Rather than hoping
that future memory accesses result in a cache hit, ade-
quate prefetching strategies make the contents and thus
access times of high-speed memory easy to predict.
A memory architecture that achieves predictability by
prefetching has been proposed a number of years ago
[2]. Unfortunately, alternative memory architectures
have not been further explored to this date.

3.2 Software: Getting Rid of Input-data Depen-
dencies

The second problem we mentioned is that tradi-
tional algorithm design and optimization yields code
that behaves differently for different input data. To cir-
cumvent this problem and allow for a simple analysis,
program behaviour must be less dependent on input-
data values. By reducing input-data dependencies the
number of paths to be considered during WCET analy-
sis gets smaller and, as a consequence, the complexity
of the analysis decreases.

Following this concept we developed the single-
path paradigm [6]. The single-path paradigm yields
programs that are fully temporally predictable. The
central idea of the paradigm is to generate programs
whose behaviour is completely independent of input
data and which thus always execute on the one and
only possible execution path.

Single-path programming builds upon a code trans-
formation that removes data-dependent branching
statements from the code. This code transformation is
capable of transforming every WCET-analyzable piece
of code into code with a single path. The transforma-
tion uses two different strategies to convert statements
with if-then-else and loop semantics, respectively. If-
then-else and other sequential branching statements
with an input-data dependent branching condition are
transformed into strictly sequential code by using if-

conversion, [1]. Loops with input-data dependent ter-
mination are replaced by new loops with a constant —
the maximum — iteration count. After an input-data
dpendent loop construct has been replaced, the conver-
sion incorporates the original termination condition of
the loop into the condition of a new if statement that
it places around the body of the loop. As a last step,
if-conversion is applied again to eliminate the newly
generated if statement from the body of the new loop,
see [4].

The fact that programs only have a single execution
path makes WCET analysis trivial: First, path anal-
ysis is superfluous: observing the execution path of
any code execution with any input data yields the sin-
gleton execution path. Second, the analysis does not
need complex and accurate hardware timing models
for static WCET analysis. Since programs following
this paradigm only have a single path, this singleton
path is necessarily the worst-case path. Thus, obtain-
ing the WCET by measurements is possible (either
by measurements on the target or on a cycle-accurate
hardware simulator) and there is no need to build any
specific tools for static analysis. The latter also pro-
vides a solution to dealing with new hardware features
in the analysis (see above). As the WCET analysis of
single-path programs does not require hardware mod-
elling, software developers do not have to wait until
tool vendors incorporate the new features into their
models in order to perform WCET analysis for their
new platforms.

4 Conclusion

“Is WCET analysis a non-problem?” is the question
posed in the title. To answer this question we inves-
tigated whether highly sophisticated WCET analysis
techniques are the correct way to deal with the com-
plexity of task timing analysis. We discussed hardware
and code design practices that cause complexity and
proposed an alternative memory architecture and the
single-path programming paradigm as possible ways
out.

The answer to the original question seems to be
“Yes and No”: As long as real-time code is coded
for speed rather than temporal predictabiliy and hard-
ware manufacturers continue to use memory hierar-
chies that rely on speculation then the answer is "no”

— and we will certainly have to deal with such sys-
tems for at least one more decade. On the other hand,
if people become aware of the importance of temporal
predictability and build systems correspondingly, then
WCET analysis indeed becomes trivial. So the new
question to ask is if it will be possible to convince both
hardware manufacturers and code designers to change
their way of thinking and put temporal predictability
first.

Acknowledgments

The author would like to thank Raimund Kirner for
his valuable comments on an earlier version of the pa-
per and the participants of the 2nd Euromicro WCET
workshop for their valuable feedback and discussions.

References

[1] J. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of Control Dependence to Data Depen-
dence. In Proc. 10th ACM Symposium on Principles of
Programming Languages, pages 177-189, Jan. 1983.

[2] M. Lee, S. Min, C. Park, Y. Bage, H. Shin, and C. Kim.
A Dual-mode Instruction Prefetch Scheme for Im-
proved Worst Case and Average Case Program Exe-
cution Times. In Proc. 14th Real-Time Systems Sym+-
posium, pages 98-105, 1993.

[3] T. Lundgvist and P. Stenstrém. Timing Anomalies
in Dynamically Scheduled Microprocessors. In Proc.
20th |IEEE Real-Time Systems Symposium, pages 12—
21, Dec. 1999.

[4] P.Puschner. Transforming Execution-Time Boundable
Code into Temporally Precdictable Code. In Proc. IFIP
World Computer Congress, Stream on Distributed and
Parallel Embedded Systems, Aug. 2002.

[5] P. Puschner and A. Burns. Guest Editorial: A Review
of Worst-Case Execution-Time Analysis. Real-Time
Systems, 18(2/3):115-127, May 2000.

[6] P. Puschner and A. Burns. Writing Temporally Pre-
dictable Code. In Proc. 7th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Sys-
tems, pages 85-91, Jan. 2002.

