
7th International Workshop on
Worst-Case Execution Time
Analysis

WCET 2007, July 3, 2007, Pisa, Italy

Edited by

Christine Rochange

OASIcs – Vo l . 6 – WCET 2007 www.dagstuh l .de/oas i c s

Editor
Christine Rochange
TRACE Group
IRIT, Université Paul Sabatier
118 Route de Narbonne
31062 Toulouse Cedex 9, France rochange@irit.fr

ACM Classification 1998
C.4 Performance of Systems, D.2.4 Software/Program Verification

ISBN 978-3-939897-05-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
November, 2007.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.WCET.2007.i

ISBN 978-3-939897-05-7 ISSN 2190-6807 http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

WCET 2007

2007 WCET Abstracts Collection
7th Intl. Workshop on Worst-Case Execution

Time (WCET) Analysis

Christine Rochange

Université Paul Sabatier, F
rochange@irit.fr

Abstract. The workshop on Worst-Case Execution Time Analysis is a
satellite event to the annual Euromicro Conference on Real-Time Sys-
tems. It brings together people that are interested in all aspects of timing
analysis for real-time systems. In the 2007 edition, 13 papers were pre-
sented, organized into four sessions: methods for WCET computation,
low-level analysis, system-level analysis and flow-analysis. The workshop
was also the opportunity to report from the 2006 WCET tool challenge.

Keywords. Worst-case execution time, real-time systems, timing anal-
ysis

2007 WCET Preface – Proceedings of the 7th Intl.
Workshop on Worst-Case Execution Time Analysis
(WCET’07)

Jan Gustafsson

The purpose of the WCET Tool Challenge is to be able to study, compare
and discuss the properties of different WCET tools and approaches, to define
common metrics, and to enhance the existing benchmarks. The WCET Tool
Challenge has been designed to find a good balance between openness for a wide
range of analysis approaches, and specific participation guidelines to provide a
level playing field. This should make results transparent and facilitate friendly
competition among the participants. This short report presents conclusions from
from the WCET Tool Challenge 2006 as well as some ideas for the WCET Tool
Challenge 2006.

Keywords: WCET’07, workshop proceedings, abstracts collection

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1198

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1238

http://drops.dagstuhl.de/opus/volltexte/2007/1198

2 Ch. Rochange

Automatic Amortised Worst-Case Execution Time
Analysis

Christoph A. Herrmann; Armelle Bonenfant; Kevin Hammond; Steffen Jost;
Hans-Wolfgang Loidl; Robert Pointon

Our research focuses on formally bounded WCET analysis, where we aim to pro-
vide absolute guarantees on execution time bounds. In this paper, we describe
how amortisation can be used to improve the quality of the results that are
obtained from a fully-automatic and formally guaranteed WCET analysis, by
delivering analysis results that are parameterised on specific input patterns and
which take account of relations between these patterns. We have implemented
our approach to give a tool that is capable of predicting execution costs for a
typical embedded system development platform, a Renesas board with a Renesas
M32C/85U processor. We show that not only is the amortised approach appli-
cable in theory, but that it can be applied automatically to yield good WCET
results.

Keywords: Amortisation, functional programming, performance measurement,
static analysis, type and effect systems, worst-case execution time

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1187

Clustering Worst-Case Execution Times for Software
Components

Johan Fredriksson; Thomas Nolte; Andreas Ermedahl; Mikael Nolin

For component-based systems, classical techniques for Worst-Case Execution
Time (WCET) estimation produce unacceptable overestimations of a compo-
nentsWCET. This is because software components more general behavior, re-
quired in order to facilitate reuse. Existing tools and methods in the context
of Component-Based Software Engineering (CBSE) do not yet adequately con-
sider reusable analyses. We present a method that allows different WCETs to
be associated with subsets of a components behavior by clustering WCETs with
respect to behavior. The method is intended to be used for enabling reusable
WCET analysis for reusable software components. We illustrate our technique
and demonstrate its potential in achieving tight WCET-estimates for compo-
nents with rich behavior.

Keywords: Worst-case execution time, Software components, Reuse, Analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1185

http://drops.dagstuhl.de/opus/volltexte/2007/1187
http://drops.dagstuhl.de/opus/volltexte/2007/1185

7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 3

Measurements or Static Analysis or Both?

Stefan M. Petters; Patryk Zadarnowski; Gernot Heiser

To date, measurement-based WCET analysis and static analysis have largely
been seen as being at odds with each other. We argue that instead they should
be considered complementary, and that the combination of both represents a
promising approach that provides benefits over either individual approach. In
this paper we discuss in some detail how we aim to improve on our probabilistic
measurement-based technique by adding static cache analysis. Specifically we
are planning to make use of recent advances within the functional languages
research community. The objective of this paper is not to present finished or
almost finished work. Instead we hope to trigger discussion and solicit feedback
from the community in order to avoid pitfalls experienced by others and to help
focus our research.

Keywords: Measurement based Approach, Static Analysis, Cache Analysis,
Proof, Overestimation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1188

A Framework for Static Analysis of VHDL Code

Marc Schlickling; Markus Pister

Software in real time systems underlies strict timing constraints. These are
among others hard deadlines regarding the worst-case execution time (WCET)
of the application. Thus, the computation of a safe and precise WCET is a key
issue1 for validating the behavior of safety-critical systems, e.g. the flight con-
trol system in avionics or the airbag control software in the automotive industry.
Saarland University and AbsInt Angewandte Informatik GmbH have developed
a successful approach for computing the WCET of a task. The resulting tool,
called aiT, is based on the abstract interpretation [3, 4] of timing models of
the processor and its periphery. Such timing models are hand-crafted and there-
fore error-prone. Additionally the modeling requires a hard engineering effort,
so that the development process is very time consuming. Because modern pro-
cessors are synthesized from a formal hardware specification, e.g., in VHDL or
VERILOG, the hand-crafted timing model can be developed by manually ana-
lyzing the processor specification. Due to the complexity of this step, there is a
need for support tools that ease the creation of analyzes on such specifi- cations.
This paper introduces the primer work on a framework for static analyzes on
VHDL.

Keywords: Timing Analysis, Worst-Case Execution Time, VHDL, Static Anal-
ysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1189

http://drops.dagstuhl.de/opus/volltexte/2007/1188
http://drops.dagstuhl.de/opus/volltexte/2007/1189

4 Ch. Rochange

Towards Symbolic State Traversal for Efficient WCET
Analysis of Abstract Pipeline and Cache Models

Stephan Wilhelm; Björn Wachter

Static program analysis is a proven approach for obtaining safe and tight upper
bounds on the worst-case execution time (WCET) of program tasks. It requires
an analysis on the microarchitectural level, most notably pipeline and cache
analysis. In our approach, the integrated pipeline and cache analysis operates on
sets of possible abstract hardware states. Due to the growth of CPU complexity
and the existence of timing anomalies, the analysis must handle an increasing
number of possible abstract states for each program point. Symbolic methods
have been proposed as a way to reduce memory consumption and improve run-
time in order to keep pace with the growing hardware complexity. This paper
presents the advances made since the original proposal and discusses a compact
representation of abstract caches for integration with symbolic pipeline analysis.

Keywords: WCET, worst-case execution time, hard real-time, embedded sys-
tems, abstract interpretation, pipeline analysis, cache analysis, symbolic state
traversal BDD

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1190

Finding DU-Paths for Testing of Multi-Tasking Real-Time
Systems using WCET Analysis

Daniel Sundmark; Anders Petterson; Christer Sandberg; Andreas Ermedahl; Hen-
rik Thane

Memory corruption is one of the most common software failures. For sequential
software and multi- tasking software with synchronized data accesses, it has
been shown that program faults causing memory cor- ruption can be detected
by analyzing the relations be- tween defines and uses of variables (DU-based
testing). However, such methods are insufficient in preemptive systems, since
they lack the ability to detect inter-task shared variable dependencies. In this
paper, we propose the use of a system level shared variable DU analy- sis of
preemptive multi-tasking real-time software. By deriving temporal attributes
of each access to shared data using WCET analysis, and combining this infor-
mation with the real-time schedule information, our method also detects inter-
task shared variable depen- dencies. The paper also describes how we extended
the SWEET tool to derive these temporal attributes.

Keywords: Testing, Real-time systems, WCET analysis, data flow

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1191

http://drops.dagstuhl.de/opus/volltexte/2007/1190
http://drops.dagstuhl.de/opus/volltexte/2007/1191

7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 5

Timing Analysis of Body Area Network Applications

Liang Yun; Abhik Roychoudhury; Tulika Mitra

Body area network (BAN) applications have stringent timing requirements. The
timing behavior of a BAN application is determined not only by the software
complexity, inputs, and architecture, but also by the timing behavior of the
peripherals. This paper presents systematic timing analysis of such applications,
deployed for health-care monitoring of patients staying at home. This monitoring
is used to achieve prompt notification of the hospital when a patient shows
abnormal vital signs. Due to the safetycritical nature of these applications,worst-
case execution time (WCET) analysis is extremely important.

Keywords: WCET analysis of Peripherals, Body Area Network applications

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1192

Data-Flow Based Detection of Loop Bounds

Christoph Cullmann; Florian Martin

To calculate the WCET of a program, safe upper bounds on the number of loop
iterations for all loops in the program are needed. As the manual annotation of
all loops with such bounds is difficult and time consuming, the WCET analyzer
aiT originally developed by Saarland University and AbsInt GmbH uses static
analysis to determine the needed bounds as far as possible. This paper describes
a novel data-flow based analysis for aiT to calculate the needed loop bounds
on the assembler level. The new method is compared with a pattern based loop
analysis already in use by this tool.

Keywords: WCET analysis, loop bound detection, flow analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1193

Loop Bound Analysis based on a Combination of Program
Slicing, Abstract Interpretation, and Invariant Analysis

Andreas, Ermedahl; Christer Sandberg; Jan Gustafsson; Stefan Bygde; Björn
Lisper

Static Worst-Case Execution Time (WCET) analysis is a technique to derive
upper bounds for the execution times of programs. Such bounds are crucial when
designing and verifying real-time systems. A key component for static derivation
of precise WCET estimates is upper bounds on the number of times different
loops can be iterated. In this paper we present an approach for deriving upper
loop bounds based on a combination of standard program analysis techniques.

http://drops.dagstuhl.de/opus/volltexte/2007/1192
http://drops.dagstuhl.de/opus/volltexte/2007/1193

6 Ch. Rochange

The idea is to bound the number of different states in the loop which can influence
the exit conditions. Given that the loop terminates, this number provides an
upper loop bound. An algorithm based on the approach has been implemented
in our WCET analysis tool SWEET. We evaluate the algorithm on a number of
standard WCET benchmarks, giving evidence that it is capable to derive valid
bounds for many types of loops.

Keywords: WCET analysis, loop-bound analysis, program slicing, abstract
interpretation, invariant analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1194

Analysing Switch-Case Tables by Partial Evaluation

Niklas Holsti

This paper describes ongoing work aimed at the construction of formal cost
models and analyses to yield verifiable guarantees of resource usage in the con-
text of real-time embedded systems. Our work is conducted in terms of the
domain-specific language Hume, a language that combines functional program-
ming for computations with finitestate automata for specifying reactive systems.
We outline an approach in which high-level information derived from source-code
analysis can be combined with worst-case execution time information obtained
from high quality abstract interpretation of low-level binary code.

Keywords: WCET, switch-case, partial evaluation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1195

Analysis of path exclusion at the machine code level

Ingmar Stein; Florian Martin

We present a method to find static path exclusions in a control flow graph
in order to refine the WCET analysis. Using this information, some infeasible
paths can be discarded during the ILP-based longest path analysis which helps
to improve precision. The new analysis works at the assembly level and uses the
Omega library to evaluate Presburger formulas.

Keywords: Flow-constraint, control flow graph, path exclusion

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1196

http://drops.dagstuhl.de/opus/volltexte/2007/1194
http://drops.dagstuhl.de/opus/volltexte/2007/1195
http://drops.dagstuhl.de/opus/volltexte/2007/1196

7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 7

WCET Analysis: The Annotation Language Challenge

Raimund Kirner; Jens Knoop; Adrian Prantl; Markus Schordan; Ingomar Wen-
zel

Worst-case execution time (WCET) analysis is indispensable for the success-
ful design and development of systems, which, in addition to their functional
constraints, have to satisfy hard real-time constraints. The expressiveness and
usability of annotation languages, which are used by algorithms and tools for
WCET analysis in order to separate feasible from infeasible program paths, have
a crucial impact on the precision and performance of these algorithms and tools.
In this paper, we thus propose to complement the WCET tool challenge, which
has recently successfully been launched, by a second closely related challenge:
the WCET annotation language challenge. We believe that contributions towards
mastering this challenge will be essential for the next major step of advancing
the field of WCET analysis.

Keywords: Worst-case execution time analysis, WCET, path description, an-
notation language challenge, expressiveness, convenience

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1197

http://drops.dagstuhl.de/opus/volltexte/2007/1197

Report from the WCET Tool Challenge 2006
Ideas for the WCET Tool Challenge 2008

Jan Gustafsson
Department of Computer Science and Electronics, Mälardalen University

jan.gustafsson@mdh.se

Abstract

The purpose of the WCET Tool Challenge is to be
able to study, compare and discuss the properties of
different WCET tools and approaches, to define com-
mon metrics, and to enhance the existing benchmarks.
The WCET Tool Challenge has been designed to find a
good balance between openness for a wide range of anal-
ysis approaches, and specific participation guidelines to
provide a level playing field. This should make results
transparent and facilitate friendly competition among
the participants.

This short report presents conclusions from from the
WCET Tool Challenge 2006 as well as some ideas for
the WCET Tool Challenge 2006.

1 Goals

The goals of the WCET Tool Challenge are the fol-
lowing:

• To exhibit the wide range of timing analysis tools
available today

• using static program analysis, or
• combining analysis and measurements,
• for various target processors,
• in various application domains,
• supporting various programming languages and

design tools,
• academic, commercial; free or at a charge.

• To illuminate the features, abilities and intended
uses of each tool

• in finding the feasible execution paths in the SW,
• in modelling complex processor and system HW,
• in deriving useful WCET bounds or estimates,
• in usability, scalability and adaptability,

• in the range of supported targets (processors,
compilers, ..)

• To collect and maintain a growing set of commu-
nity standard benchmark programs and related test
suites that

• contain typical (both easy and hard) program-
ming constructs,

• can be analyzed by several tools with comparable
results,

• test enough of the actual behaviour of each bench-
mark to satisfy measurement-based tools and to
validate results from static-analysis tools, and
ideally, have known exact answers (paths and
WCETs).

For more details, consult the Challenge web page
http://www.idt.mdh.se/personal/jgn/challenge/.

2 WCET Tool Challenge 2006

The first WCET Tool Challenge was performed dur-
ing the autumn of 2006. It concentrated on three as-
pects of WCET analysis:

1. flow analysis,
2. required user interaction,
3. performance.

Two companies (developing the commercial tools
aiT and Bound-T) and three research groups (develop-
ing the research tools SWEET, Chronos and MTime)
participated. The actual work with the tools was made
by an external user and the development teams. The
evaluation was targeted on a set of benchmark pro-
grams.

The report was presented at ISoLA 2006 as two sep-
arate papers. The first [1] was the main report; the
other [3] presented the experiences from the external
user. There is also a technical report available [2],
which contains more details.

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1198

2.1 Results from WCET Tool Challenge 2006

This first Challenge was performed successfully in
spite of some initial unclearness, debate and delay. We
noted that there is no common format of the results
from the different tests, and that different developers
have made different tests sometimes. We draw the fol-
lowing conclusions:

• The tests have been a real challenge to the partici-
pating WCET tools. We have a success range from
0% to 100% in terms of how many of the benchmark
programs that were analyzable by a certain tool.

• The tests have clearly pointed out problems existing
in the tools as well as in the benchmarks and the
used compilers.

• Most of the tools find more than half of the loop
bounds automatically. Only one tool finds infeasible
paths automatically.

• Several bugs in both the tools and the benchmarks
have been corrected during the Challenge.

• Actual WCET estimates cannot be compared this
time since the developers support different proces-
sors and compilers.

• The quality of WCET estimates is hard to judge
for all tools but aiT, since aiT was the only tool to
provide measurements for some of the benchmarks.
Chronos provided simulated values that indicate the
possible size of overestimation.

3 WCET Tool Challenge 2008

Since the work to perform the Challenge is extensive,
both for the work group and the developers, we decided
to make the event bi-annual. Another reason was to
have some tool development time between tests, so real
progress could be observed from one Challenge to the
next. This means that the next Challenge is to be
performed 2008.

A number of actions have to be made to enhance the
next Challenge compared to the first. Some of them
are:

• Update benchmarks and the setup of the Challenge
according to the feedback from the WCET Tool
Challenge 2006.

• Extend the active working group to 2 or 3 persons.
• Create a reference group which will act as a support

to the working group.
• Try to extend the number of participants. Tools

like OTAWA and Heptane, and measurement-based
tools (e.g., Rapita, SYMTA/P) should be invited
again. There are also some new tools entering the

WCET analysis scene (like TimeBounder from Ko-
rea).

• The procedure of identifying test data (inputs) nec-
essary for measurement-based based tools should be
defined.

• The inputs for the worst-case behavior of the bench-
mark programs should be defined.

• Be more detailed concerning tests and format of re-
sult reports.

• Exclude benchmark programs that are redundant in
terms of what is tested.

• Include industrial code, e.g. aero space and auto-
motive code (e.g., Daimler-Chrysler code).

• If possible, include more automatically generated
code.

• Try to focus on one common processor (ARM7?) to
be able to compare WCET estimates.

• Define hardware setup in detail so comparative low-
level analysis (e.g., cache and branch prediction
analysis) can be performed.

References

[1] J. Gustafsson. The worst case execution time tool
challenge 2006. In Proc. 2nd International Sympo-
sium on Leveraging Applications of Formal Methods
(ISOLA’06), Nov. 2006.

[2] J. Gustafsson. WCET challenge 2006 technical re-
port. MRTC report 1209, 2007. Technical Report
MRTC report 1209, 2007, Mälardalen University Real-
Time Research Centre, Mälardalen University Univer-
sity, Väster̊as, Sweden, 2007.

[3] L. Tan. The worst case execution time tool challenge
2006: The external test. In Proc. 2nd International
Symposium on Leveraging Applications of Formal Meth-
ods (ISOLA’06), Nov. 2006.

A Framework for Static Analysis of VHDL Code

Marc Schlickling
Saarland University & AbsInt GmbH

schlickling@cs.uni-sb.de

Markus Pister
Saarland University & AbsInt GmbH

pister@cs.uni-sb.de

Abstract
Software in real time systems underlies strict timing con-
straints. These are among others hard deadlines regarding
the worst-case execution time (WCET) of the application.
Thus, the computation of a safe and precise WCET is a key
issue1 for validating the behavior of safety-critical systems,
e.g. the flight control system in avionics or the airbag con-
trol software in the automotive industry.
Saarland University and AbsInt Angewandte Informatik
GmbH have developed a successful approach for comput-
ing the WCET of a task. The resulting tool, called aiT, is
based on the abstract interpretation [3, 4] of timing mod-
els of the processor and its periphery. Such timing models
are hand-crafted and therefore error-prone. Additionally
the modeling requires a hard engineering effort, so that the
development process is very time consuming.
Because modern processors are synthesized from a formal
hardware specification, e.g., inVHDL or VERILOG, the
hand-crafted timing model can be developed by manually
analyzing the processor specification.
Due to the complexity of this step, there is a need for sup-
port tools that ease the creation of analyzes on such specifi-
cations. This paper introduces the primer work on a frame-
work for static analyzes onVHDL.

1 Introduction
During the last years, embedded systems have become
nearly omnipresent in everyday life. Embedded processors
are used in a variety of application fields: health-care tech-
nology, multimedia applications, telecommunication, auto-
motive and avionics, weapon guidance, etc. Common char-
acteristics of many applications are that high computation
performance has to be obtained at low cost and low power
consumption. Moreover many applications have safety-
critical characteristics and must satisfy hard real-time con-
straints. This leads to an additional requirement to be re-
spected in embedded system design: the requirement of
predictable performance. It is not enough for micropro-
cessors to yield high peak performance, but it should also

1besides the functional correctness of the system

be possible to statically guarantee their worst-case perfor-
mance. Contemporary superscalar architectures are charac-
terized by deep complex pipelines, often with features like
out-of-order execution, branch prediction, and speculative
execution which make determining the guaranteed perfor-
mance of applications a difficult task [8].
The worst-case execution time analyzeraiT originally de-
veloped bySaarland UniversityandAbsInt Angewandte In-
formatik GmbHis a tool for computing safe and precise
upper bounds of the worst-case execution time (WCET)
of tasks. The computation is based on theabstract in-
terpretation[3, 4] of timing modelsof the processor core
and its system controller [18, 19]. The tool takes the exe-
cutable as input and performs several static analyzes on it.
The input is transformed into an intermediate representation
calledControl-Flow Representation Language(CRL)2 [13],
on which the analyzes are based. Further details about the
aiT tool-chain can be found in [6].
The computation of the WCET of a task mainly depends
on the so calledpipeline analysisin which the behavior of
the processor pipeline and the underlying system controller
are modeled. This is done by abstracting from everything
that is not needed for the timing behavior of the processor
pipeline. Further details about how to create a pipeline anal-
ysis can be found in [18].
As of today, these models are hand-crafted and only ob-
tainable with a hard engineering effort. Therefore, the de-
velopment of a pipeline analysis is a very time consuming
and error prone process. And the complexity dramatically
increases along with each new processor generation used
within embedded systems3.
A formal processor specification (usually coded in aHard-
ware description languagelike VHDL or VERILOG) can
be very helpful in the creation of a pipeline analysis. But
even then, one needs to manually analyze the specification
in order to find suitable abstractions. In order to ease this
we introduce a framework for static analyzes of VHDL de-

2In our framework we use the second version of this intermediate rep-
resentation, called CRL2.

3As of today, these embedded processors are rather similar toand fea-
tureful as modern desktop processors.

1ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1189

scriptions. To this end, we developed a VHDL frontend
that transforms the specification into the intermediate lan-
guage CRL2 mentioned above. Different static analyzers
can be generated using theProgram Analyzer Generator
PAG based on a formal analysis specification.
The paper is structured as follows: Section 2 contains a de-
scription of PAG and CRL2. Section 3 then details the se-
mantics of VHDL. In Section 4, our analysis framework is
described and illustrated with an example in Section 5. Sec-
tion 6 shows some experimental results. Section 7 gives an
outlook on future work and Section 8 concludes.

2 Preliminaries
We use PAG to generate static program analyzers based on
a control flow graph. The next two sections introduce the
basics of the control flow representation language and the
Program Analyzer Generator.

2.1 CRL
The Control-Flow Representation Language (CRL2) was
developed to provide an intermediate format that simplifies
analyzes and optimizations on a control flow graph [13].
A control flow graph is a representation, using graph
notation, of all paths that might be traversed through a
program during its execution. Nodes in the graph represent
basic blocks, i.e. straight-line pieces of code. Directed
edges are used to represent jumps in the control flow.
Assuming that the control flow graph is always well-
formed, the structure of CRL2 is hierarchically organized
in instructions, basic blocks and routines. Thereby, the
former is always completely enclosed within the latter. A
sample control flow graph is given in Figure 1 showing two
routines (simul andenvironment). The edge between
the two routines indicates a call dependency, each routine
call is represented throughcall/return blocksin the callee’s
routine. The call/return blocks ease interprocedural control
flow analyzes [17] and are more or less placeholders for the
branch to the called routine.
CRL2 is a very flexible language by virtue of an attribute-
value concept, i.e. each element can be extended by
attributes coding arbitrary information. To process a
program represented by its control flow graph, PAG can be
used.

2.2 Program Analyzer Generator
PAG is a powerful tool for generating program analyzers.
Based on a high-level specification of a data flow problem,
PAG automatically generates a program analyzer4 which
can be used in arbitrary applications [14].
The triple (K , L, [[]]) is called adata flow problemfor a
complete lattice5 L and a control flow graphK , if [[]] : N →

4in ANSI-C
5A complete latticeis a partially ordered set in which all subsets have

both a supremum and an infimum. An example for a complete lattice is the

Figure 1: Sample CRL2-graph

(L → L) is a function assigning functions fromL → L to
the nodes ofK . These functions are calledtransition func-
tions and are used for updating the data flow value during
analysis.
More details on data flow problems can be found in [16], a
description of the specification language for PAG in [1].

3 VHDL Semantics
VHDL is an IEEE Standard defined in IEEE 1076 [2, 12].
The focus of the language ranges from specifying circuits
at wavefront level to describing large system behaviors with
high-level constructs. As a result, the standard is huge. The
focus of this paper only considers thesynthesizable subset
of VHDL, defined in [11].
A V HDL description of a circuit consists of an interface dec-
laration defining the in- and output signals of the circuit and
of one or more implementation(s). In VHDL, the first is
called anentity, the second anarchitecture. Figure 2 shows
a simple 3-bit counter.
The implementation is given in form of twoprocesses(P1
andP2). Each process executes its code, whenever one of
the signalscontained in the processessensitivity lists(clk
and rst for P1, cnt for P2) changes its value. After ex-
ecution of all statements, execution suspends until another

power set of a given set, ordered by inclusion. The supremum is given by
the union and the infimum by the intersection of subsets.

2

res
c

b

a

e n t i t y comb_log ic i s
port (a , b , c :in s t d _ l o g i c ; r e s :out s t d _ l o g i c) ;

end ;
a r c h i t e c t u r e r t l of comb_log ic i s

s i g n a l wire : s t d _ l o g i c ;
component and_ga te i s

port (u , v : in s t d _ l o g i c ;w:out s t d _ l o g i c) ;
end component ;
component o r _ g a t e i s

port (x , y : in s t d _ l o g i c ; z :out s t d _ l o g i c) ;
end component ;

begin
and_ga te port map (a , b , w i re) ;
o r _ g a t e port map (wire , c , r e s) ;

end ;

Figure 3: Composition of VHDL components

e n t i t y c o u n t e r i s
port (c l k : in s t d _ l o g i c ; r s t :in s t d _ l o g i c ;

v a l : out s t d _ l o g i c _ v e c t o r (2 downto 0)) ;
end ;
a r c h i t e c t u r e r t l of c o u n t e r i s

s i g n a l c n t : s t d _ l o g i c _ v e c t o r (2downto 0) ;
begin

P1 : p r o c e s s (c lk , r s t) i s
i f (r s t = ’1 ’) then

cnt <=" 000 " ;
e l s i f (r i s i n g _ e d g e (c l k)) then

cnt <= c n t + ’1 ’ ;
end i f ;

end ;
P2 : p r o c e s s (c n t) i s

va l <= c n t ;
end ;

end ;

Figure 2: 3-bit counter in VHDL

change of at least one signals value. Thus, the sensitivity
list of a process is an implicit wait-statement at its end.6

VHDL also supports component-based circuit specifica-
tions. Figure 3 gives an example for hierarchical circuit
composition. Here, the combinatorial functionres = a ∧

b ∨ c is modeled using a logical-and and a logical-or gate.
Having a hierarchical composed specification of a circuit,
elaborationhas to be performed in order to get a flat defi-
nition of it. Elaboration does all the required renaming for
unifying names, wires all structural descriptions, etc. The
result is one large entity consisting of a number of processes
and some locally defined signals.
A V HDL process consists of a set of localvariablesthat are
only accessible from inside the process. By contrast, local
signals can be accessed by more than one process, but only

6In VHDL, the use of explicit wait-statements and sensitivity listsis
exclusive. We assume, that the only place within a process, where wait-
statements may occur, is at the end of the body of a process.

one process is allowed to drive the value of a signal.7 Within
a process, execution of statements is done sequentially.
VHDL makes a distinction between the assignments to a
variable and to a signal. Assigning a value to a variable
takes effect immediately (i.e., the next reference of this
variable returns the newly assigned value), whereas the as-
signment of a value to a signal is onlyscheduledto be the
future value (i.e., the next reference returns the old value).
E.g., in Figure 2, the signal assignmentcnt<=cnt+’1’;
schedules the next value ofcnt to becnt plus one, but
the next referenceval<=cnt; schedules the next value of
val to be thecurrent value ofcnt. These future values
take effect as soon as all processessuspendtheir execution.
The semantics of a VHDL program, i.e. a set of processes,
can be described as follows:

1. Execute processes until they suspend.

2. If all processes are suspended, make all scheduled sig-
nal assignments visible at once.

3. If there is a process being sensitive on a signal having
changed its value, resume this process and go to step 1.

4. Otherwise, an external signal must change its value
(e.g., the clock signal). If this happens, resume all pro-
cesses waiting for this signal and go to step 1.

Thus, the semantics of VHDL can be seen as a two-level
semantics: sequential process execution at its first, signal
update and process revocation at its second level.

4 A VHDL analysis framework
As mentioned in the introduction, we present here a
framework for statically analyzing VHDL code using
abstract interpretation. The structure and data flow of
our framework is illustrated in Figure 4. As input, we
have the VHDL model that we want to analyze and a PAG

specification for a static analysis. We developed a tool

7In full V HDL, resolution functionscan be used for value computation
of signals being driven by two or more processes.

3

Figure 4: Structure of VHDL analysis framework

VHDL element CRL2 element
Process, Routine
Function,
Procedure,
Concurrent signal assignment,
Concurrent procedure call,
Loop
Function calls Routine calls
Procedure calls Routine calls
Sequential statement Instruction

Table 1: Mapping VHDL to CRL2

called Vhdl2Crl2 that transforms the VHDL into se-
mantically equivalent CRL2 constructs. From the analysis
specification, PAG generates a static analyzer that works on
the CRL2 description. And at the end, the analysis emits its
results. The mentioned components in our framework are
now detailed in the following subsections.

4.1 Mapping VHDL to CRL2
In order to express a VHDL description in semantically
equivalent CRL2 constructs, we need to give a mapping
from VHDL components to CRL2 components. Table 1
shows this mapping. Processes are transformed into
routines as well as functions, procedures, concurrent signal
assignments, concurrent procedure calls and loops. The
transformation of loops to routines roughly means, that the
whole loop body is moved into a newly created routine and
the original location of the loop is replaced by a call to
the new loop routine. This improves the quality of static
analyzes of loops. More details on this so calledLoop
transformationcan be found in [15].
The correspondence of function/procedure calls to routine
calls as well as the mapping of sequential statements to
instructions is rather intuitive.

4.2 VHDL as a sequential program
Regarding the special semantics of VHDL (cf. Section 3),
we need to express the input VHDL description as a
sequential program whose control flow is represented by
CRL2. The reason for this is that we want to generate the
analyzer itself from a concise PAG specification, where
PAG is an analyzer generator for programs (cf. Section 2).
As mentioned in Section 3, variables in VHDL are process-
local and processes run in parallel. Additionally signal
assignments only take effect after all processes have
finished their execution. These semantics directly induce
that there are no side effects between the different VHDL

processes. So, we can serialize their execution without
changing the semantics of the whole model.
In order to formulate a VHDL description as a sequential
program, we just need to choose an arbitrary execution
order among the processes and iteratively execute them in
this order. The program then consists of a routine, let’s call
it simul (cf. Figure 1), whose body contains routine calls,
where each called routine represents one of the former
VHDL processes. Additionally each such routine call for
an original process it guarded with a conditional statement
that evaluates the sensitivity list of the process. If at least
one of the signals in the sensitivity list has changed, the call
is taken. The result of such a transformation from a VHDL

model into a sequential program is shown in Figure 1. Here,
you can see thesimul routine, containing routine calls
for each VHDL process, namely forP1 andP2. The basic
blocksb38andb42contain an instructionsimul_if that
represents the guards for the sensitivity list evaluation.The
basic blockb49 containing the instructionsimul_wait
is the so called synchronization point. Here, the signal
assignments take effect and we can decide whether a signal
value has changed compared with the previous iteration.
In Figure 1 there is another call instruction not mentioned
so far, the simul_call_environment that calls
the routineenvironment. We need this routine for
analyzing open systems, which roughly are systems that
have external input signals. These signals have to be set
somewhere in the environment of the system modeled by
the VHDL description and they drive the behavior of the
whole system. One intuitive example for such an external
signal is thereset signal.

4.3 Modeling the clock
If we want to analyze synchronous designs, i.e. systems that
are synchronized with either the rising or the falling edge of
the clock signal, we need to model this signal somehow.
Unfortunately the synthesizable subset of the VHDL stan-
dard [11] does not enable us to model a clock signal8.

8In synthesizable VHDL, there are two main restrictions: a process can
not be sensitive on a signal it drives and there is no possibility to wait for a
timeout. Thus, there is no construct left for modeling the frequent change
of a clock signal.

4

Despite this, we can simulate the clock easily by intro-
ducing a new routine, calledclock, that calls the routine
simul twice. Before one call the clock signal is set to one
and before the other call the clock signal is set to zero. This
makes our approach rather flexible as we can analyze syn-
chronous designs as well as asynchronous ones.

5 Example: Constant Propagation
This sections describes, how the framework introduced in
Section 4 can be used to model a constant propagation anal-
ysis on VHDL.
A constant propagation analysisdetermines for each pro-
gram point, i.e. each statement, if a signal or variable has
a constant value, when execution reaches that point. To
model this, we introduce a mapping from identifier names
to their corresponding value and extend it by the usual bot-
tom and top elements to denote not yet considered program
points and unknown values respectively.

F ≡ (identifier→ (value∪ ⊤)) ∪ ⊥

As stated in Section 3, VHDL differs between signal and
variable assignments. Thus, the domain of the data flow
problem for constant propagation analysis has to covercur-
rent andfuturevalues of the identifiers used. Furthermore,
to evaluate the condition of process guards (simul_if,
see Section 4.2), it is necessary to decide, whether a signal
has changed its value or not. Therefore, the domain has to
be extended by theold values of signals. Thus, the domain
dfi for the constant propagation analysis is:

dfi ≡ F × F × F

The transition functions for updating an incoming data flow
value dfipre = (curpre, futpre, oldpre) to the output value
dfipost for the different nodes can be directly defined as fol-
lows:

• assignment node
The data flow value for an assignment can be computed
from the incoming value in case of a variable assign-
ment by updating the current and the future value of
dfipre with the newly assigned value or⊤, if this value
is statically not computable. In case of a signal assign-
ment, only the future value has to be updated.

• simul_if node
The guard encapsulates the sensitivity list of a process
and is responsible for the repeated execution of it. A
process is only re-executed, if one of the signals in its
sensitivity list changes its value. This can be checked
by comparingcurpre with oldpre. Based on this result,
the data flow value is propagated into the process or
not.

• sync node
At this node, all scheduled signal assignments take ef-
fect and are made visible at once. The new data flow

value is computed by copying the future values to the
current one and the current ones to the old ones.

dfipost = (futpre, futpre, curpre)

• environment node
Writing a special rule for this node allows us to an-
alyze the VHDL code with respect to special system
criteria. E.g., if we want to analyze the reset behav-
ior of the code displayed in Figure 2, we introduce
a rulecurpost = curpre\[rst → 0] and f utpost =

f utpre\[rst → 1] always setting the current and fu-
ture value ofrst to 0 and 1 respectively. This yields
to the perception, thatcnt and therewithval have
constant values during reset.

Using PAG and the rules above yields in a constant propa-
gation analysis on VHDL. The results can now be used for
further analyzes and transformations of the VHDL code as
described in Section 7.

6 Experiments
Despite the example given in the previous section, we
successfully9 tested our implementation with the complete
VHDL specification of the Leon2 processor core [7]. The
Leon2 is a synthesizable VHDL model of a 32-bit processor
compliant with the SPARC V8 architecture with a 5-stage
pipelined integer unit, data and instruction cache, hard-
ware multiply, divide and MAC units. The model is highly
configurable, and particularly suitable for system-on-a-chip
(SOC) designs. The VHDL specification of the Leon2 con-
sists of more than 80 modules containing about 75.000 lines
of code.

7 Outlook
The analysis framework described in this paper is only one
part of a much bigger task: The semi-automatically deriva-
tion of timing analyzers from a formal processor specifica-
tion.
With the work here, we are able to read VHDL specifications
and to perform static analyzes like constant propagation on
it. This eases the task of finding suitable abstractions for a
processor model, i.e. cropping the model to the parts that
are only relevant for the timing behavior.
As noted earlier, a VHDL design is too large to be used di-
rectly in timing analysis, thus we have to throw away things
not influencing the timing. This can be achieved by slic-
ing backwards from the place, where instructions leave the
pipeline, i.e. finish execution. Only external signals and
variables or those being assigned to in the slice can influ-
ence timing. Signals and variables used (i.e. read) but not
assigned in the slice do not change their values (i.e. have
fixed values) and can be omitted.

9Successfully here means, that we are able to create static analyzers
based on analysis specifications.

5

Even after this removal, the model may be too large for tim-
ing analysis. Thus, we approximate concrete components
by abstract ones (see [6] for more details) which are smaller
in size. An example can be found in [5].
For this, we want to develop support tools to incorporate
transformations on the VHDL model based on the analysis
results semi-automatically in order to derive abstract mod-
els.
From an abstract processor model, we need to generate a
C-code analysis fitting into the tool chain of theaiT tool.
At the end of the story, we want to derive a timing analyzer
from a formal hardware specification. This not only speeds
up the task a creating such a timing analysis but addition-
ally the generated analyzer is already validated due to the
derivation from the hardware specification.

8 Conclusions

Safety-critical applications as for example the flight control
software in avionics or the airbag control software in the au-
tomotive industry are underlying hard real-time constraints.
Therefore the computation of the worst-case execution time
(WCET) is the key issue for guaranteeing that a system sat-
isfies its timing boundaries.
The growing complexity of modern processor architectures
used within such safety-critical systems complicates the
task of creating a sound timing analysis. Currently, these
analyzes are based on hand-crafted abstract processor mod-
els. But this is a very time consuming and error-prone pro-
cess.
To ease the task of finding suitable abstractions, we intro-
duced a framework for static analyzes of formal processor
descriptions in VHDL. By transforming the VHDL model
into a sequential program, we can generate static analyzers
from a concise specification using theProgram Analyzer
Generator[14]. Our framework is very flexible because we
can analyze open designs as well as closed ones, i.e. sys-
tems that does or does not depend on external driven signals
respectively.
By using CRL2 as the intermediate representation, we can
combine several analyzes. This means that an analysis can
use the result of another one because the results are anno-
tated as attributes in our intermediate representation.
To illustrate the practicability of our framework, we showed
how to create a constant propagation analysis on a VHDL

description of a 3-bit counter.
In [9, 10] Charles Hymans gives a design for static analysis
of VHDL that uses abstract interpretation. Despite this and
to the best of our knowledge, our work presented here is
the first work concerning a framework for generating static
analyzers on VHDL code. Our results are currently going
to be used for the semi-automatically derivation of timing
analyzers from a formal processor description in VHDL.

Acknowledgments
This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS) and by EU net-
work of excellence IST-004527 ARTIST2 on Embedded
Systems Design.

References
[1] AbsInt Angewandte Informatik GmbH.The Program Ana-

lyzer Generator User’s Manual, 2002.
[2] P. J. Ashenden.The Designer’s Guide to VHDL. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.
[3] P. Cousot and R. Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction
or approximation of fixpoints. InPOPL, pages 238–252,
1977.

[4] P. Cousot and R. Cousot. Abstract interpretation and applica-
tion to logic programs.J. Log. Program., 13(2-3):103–179,
1992.

[5] C. Ferdinand.Cache Behavior Prediction for Real-Time Sys-
tems. PhD thesis, 1997.

[6] C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling,
I. Stein, S. Thesing, and R. Heckmann. New Developments
in WCET Analysis. In T. Reps, M. Sagiv, and J. Bauer, ed-
itors, Program Analysis and Compilation. Theory and Prac-
tice., volume 4444 ofLNCS, pages 12–52. Springer, 2007.

[7] J. Gaisler.Leon2 Processor User’s Manual - Version 1.0.30,
July 2005.

[8] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The Influence of Processor Architecture on the Design and
the Results of WCET Tools.Proceedings of the IEEE, 91(7),
July 2003.

[9] C. Hymans. Checking safety properties of behavioral vhdl
descriptions by abstract interpretation. InSAS, pages 444–
460, London, UK, 2002. Springer.

[10] C. Hymans. Design and implementation of an abstract inter-
preter for vhdl. In D. Geist and E. Tronci, editors,CHARME,
volume 2860 ofLNCS. Springer, 2003.

[11] Institute of Electrical and Electronics Engineers, New York.
IEEE Standard P1076.6 1999 VHDL Register Transfer Level
Synthesis, 1999.

[12] Institute of Electrical and Electronics Engineers, New York.
IEEE Standard P1076 2000 VHDL Language Reference
Manual, 2000.

[13] M. Langenbach. CRL – A Uniform Representation for Con-
trol Flow. Technical report, 1998.

[14] F. Martin. Generating Program Analyzers. PhD thesis, Saar-
land University, 1999.

[15] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis of
Loops. In K. Koskimies, editor,CC, volume 1383 ofLNCS.
Springer, 1998.

[16] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Pro-
gram Analysis. Springer, 1999.

[17] M. Sharir and A. Pnueli.Two approaches to interprocedural
data flow analysis. Prentice-Hall, 1981.

[18] S. Thesing.Safe and Precise WCET Determinations by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Saar-
land University, 2004.

[19] S. Thesing. Modeling a System Controller for Timing Anal-
ysis. InEMSOFT, pages 292–300, 2006.

6

Analysing Switch­Case Tables by Partial Evaluation

Niklas Holsti

Tidorum Ltd

Tiirasaarentie 32, FI 00200 Helsinki, Finland

niklas.holsti@tidorum.fi

Abstract

Tracing the flow of control in code generated from
switch­case statements is difficult for static program
analysis tools when the code contains jumps to
dynamically computed target addresses. Analytical
methods such as abstract interpretation using integer
intervals can work for some forms of switch­case code,
for example a jump via a table of addresses indexed
1 .. n, but fail when the target compiler encodes the
switch­case structure in a ROM table with a complex
format and uses a library routine to interpret the
table at run­time.

This paper shows how to extract the flow of control
from such switch­case tables by partial evaluation of
the table­interpreting routine. The resulting control­
flow graph allows accurate analysis of the execution
time and the logical conditions for reaching each case
in the switch­case statement.

The method is implemented in Tidorum's Bound­T
tool for worst­case execution­time analysis. The imple­
mentation builds on some basic Bound­T features for
modeling program states in the flow­graph and propa­
gating constant values through the graph.

1. Introduction

Static analysis of the worst­case execution time
(WCET) of a program usually begins by building the
control­flow graph (CFG). On the machine code
level, where most WCET tools work, the tool has to
find the possible successor instructions of each
instruction under analysis. This is easy when the
instruction defines its successors statically but hard
for control­transfer instructions with dynamic target
addresses, for example register­indirect jumps. Such
dynamic transfer of control (DTC) instructions often
result from switch­case statements [1, 6, 8].

The switch­case statement in languages such as
C or Ada is a very flexible control structure. The
programmer can choose the type of the switch
index, for example an 8­bit or a 32­bit number;
whether the cases are numbered densely 1 .. n or
are a sparse subset of a large range; whether each
case is reached by a unique index value or by a set
or range of values; and whether there is a default
case or not. Compilers often generate quite different

kinds of code to implement different kinds of
switch­case statements.

For small target processors such as the Intel 8051
or Atmel AVR some compilers try to reduce code
size by encoding the switch­case statement into a
ROM switch table and generating a call or jump to a
switch handler routine that interprets the table at
run­time. There may be several types of switch
table, for example depending on the index type,
each with its own switch handler.

This paper describes a way to find the full
control­flow graph for code that uses switch tables
and switch handlers. Section 2 defines a particular
switch­table structure and the corresponding switch
handler for use in examples. Section 3 states the
problem and the goals for the solution. Section 4
defines the suggested solution as a form of partial
evaluation. Sections 5 and 6 explain how this solu­
tion is implemented in the Bound­T WCET tool [2]
and section 7 shows an example. Section 8 summa­
rises the analysis method. Sections 9 and 10 report
experience from implementation and experiments,
respectively. Section 11 discusses related earlier
work and section 12 concludes the paper.

When discussing the Bound­T implementation I
will use the term “flow­graph” instead of the usual
“control­flow graph”. Section 5 explains why.

2. Example of switch table and handler

The switch­table structure in this example was
chosen to make the switch handler brief but not
trivial. The structure is not taken directly from any
compiler that I know of but is similar to real switch
tables for 8­bit processors. The structure assumes a
type of Atmel AVR processor with a 16­bit program
counter and at most 64 KB of program memory.

In this example a switch table is a sequence of
entries. An entry represents a set of 8­bit switch­
index values that lead to the same case in the
switch­case statement. An entry consists of four
octets: a mask octet, a match octet, and the low and
high octets of the 16­bit address for the case to be
taken when the bit­wise logical “and” of the switch
index and the mask octet equals the match octet.
The order of entries in the table is arbitrary but the
last entry always has a zero mask and match. This

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1195

represents the default case if there is one, else fall­
through to the statement after the switch­case.

Consider this C subprogram foo:

void foo (unsigned char k)
{

switch (k) {
case 4:

<statements for k = 4>
case 8: case 9: case 11:

<statements for k = 8, 9 or 11>
default:

<statements for other values of k>
}

}

The switch table for this switch­case statement is
shown in Table 1 below. It has four entries for a total
size of 16 octets. Note that the second entry matches
both k = 8 and k = 9 because the mask value 254
masks the least significant bit of k.

In this example a switch­case statement is
compiled into code that loads the switch index (the
parameter k in foo) into register r0 and calls the
switch handler SwHandler. The switch table is placed
in the program memory immediately after the call so
that the return address points to the first table entry.
SwHandler searches the table for an entry that
matches the switch index, then jumps to the address
of this entry.

SwHandler can be written in AVR assembly
language [3] as shown in Listing 1 below. For later
reference the left margin shows the assumed word
address of the instruction (in hex). Semicolons start
comments that extend to end of line.

Listing 2 below shows the AVR code for function
foo including the code for the switch­case statement
and the hex form of the switch table. Listing 2
assumes that k is passed to foo in register r16 and
some arbitrary amounts of code in the case branches.

Listing 1. Example switch handler Table 1. Example switch table

SwHandler:
; Switch­case handler. Entered by call with the
; switch index in r0 and the switch table in
; program memory after the call instruction. Exits
; to the chosen case. Changes r1, r2, and Z.

0100 pop r30 ; low octet of table address
0101 pop r31 ; high octet of table address

; Z = r31:r30 = word address of the switch table.
0102 add r30,r30 ; Multiply Z by two to make
0103 adc r31,r31 ; it an octet address for lpm.

loop: ; Z points at the next switch table entry.
0104 lpm r1,Z+ ; r1 := entry.mask
0105 lpm r2,Z+ ; r2 := entry.match
0106 and r1,r0 ; r1 := index and mask
0107 cp r1,r2 ; compare to entry.match
0108 breq found ; branch if entry matches index
0109 adiw Z,2 ; no match, point at next entry
010A rjmp loop ; try next entry

found: ; Entry matches. Z points at entry.address.
010B lpm r1,Z+ ; r1 := address low octet
010C lpm r31,Z ; r31 := address high octet
010D mov r30,r1 ; Z := whole address
010E ijmp ; DTC jump to address in Z.

mask match address points to:

255 4 the code for the case k = 4

254 8 the code for the case k = 8, 9 or 11

255 11 the code for the case k = 8, 9 or 11

0 0 the code for the default case

Listing 2. Example switch­case statement code

foo:
0200 mov r0,r16 ; r0 := k
0201 call SwHandler

; The switch table consists of the following
; 16 octets, shown in hex:

0203 FF 04 0B 02 ; k = 4, address = 020B
0205 FE 08 1C 02 ; k = 8 or 9, address = 021C
0207 FF 0B 1C 02 ; k = 11, address = 021C
0209 00 00 24 02 ; default, address = 0224
020B < code for the case k = 4 >
021C < code for the case k = 8, 9 or 11 >
0224 < code for the default case >
0229 ret ; return from foo.

3. Problem and goals

The problem is to find the full control­flow graph for
machine code that uses switch tables and switch
handlers, for example with the structure described in
section 2 but of course not limited to that example.
The machine code is given as a memory image that is
a mixture of code and data, not clearly demarcated.
The solution should:

• find all cases of all switch­case statements,

• not mix up different switch­case statements to
create false paths in the flow­graph,

• produce the sequence of instructions that leads to
each case, so that later steps in the analysis can
find an accurate WCET for each case,

• connect each case with the corresponding values of
the switch index, again for use in later analysis
steps (for example to find bounds for a loop that is
nested in a case and depends on the switch index),

• apply uniformly to several kinds of switch tables
and handlers and be robust to changes in their
structure as the compilers evolve.

2

The solution should also be easy to implement in the
generic, processor­independent parts of a WCET tool,
in my case Bound­T [2], with minimal changes to the
processor­specific parts, for example the parts of
Bound­T that decode AVR instructions.

Bound­T can analyse many aspects of a sub­
program in a (calling­) context­dependent way but
the flow­graph of a subprogram must be independent
of context. Analysing a switch handler (for example
SwHandler) as an ordinary, independent subprogram
cannot give a context­dependent resolution of the
DTC (the ijmp in SwHandler). Instead, a switch
handler must be analysed as an integral part of the
subprogram that contains the switch­case statement
(for example foo). This is similar to in­line expansion
of the call to the switch handler.

The target addresses for the DTC result from exe­
cuting the switch­handler instructions that access the
switch table. The analysis must thus simulate or
execute these instructions. Furthermore, the analysis
must unroll the table­scanning loop in the switch
handler. Each iteration of the loop leads to a different
case; unrolling the loop separates the paths to the
different cases for separate analysis.

4. The solution by partial evaluation

Partial evaluation is the execution of a program with
some inputs bound to concrete values but other
inputs not so bound (free input variables) [4]. The
result is therefore not a concrete output value but a
residual program that still depends on the unbound
inputs. The residual program is a specialization of the
original program: it is specialized to the domain
where the bound inputs have the given values.

The proposed analysis of switch tables and switch
handlers uses partial evaluation of subprograms as
follows. A switch handler is a subprogram with two
inputs: the switch index and the switch table. At
analysis time, in a given invocation of a switch
handler for a given switch­case statement the switch
index is usually unbound (has an unknown, dynamic
value) but the switch table is bound to a static
constant: the table generated for this switch­case
statement.

If we partially evaluate the switch handler under
this binding, the residual subprogram depends only
on the switch index and not on the switch table. The
partial evaluation resolves the DTC instructions into
control transfers with static target addresses, copied
or computed from the switch table.

For the switch handler shown in section 2 partial
evaluation with a known switch table means that we
know the value loaded by the execution of any lpm
instruction. Thus the target address of each possible
execution of the ijmp DTC instruction is known even
if the value of the switch index (r0) is unknown.

Within the Bound­T tool the partial evaluation is
implemented in a way that fits the Bound­T archi­
tecture, not as a general­purpose partial evaluator
such as the mix evaluator described in [4]. In
Bound­T the original, unevaluated subprogram (the

switch handler) is represented implicitly by its entry
address and the instructions in the target program
that can be reached from the entry address. The
residual subprogram (the switch handler specialized
to a given switch table) is represented as a part of the
flow­graph of the subprogram that contains the
switch­case statement. This part is a subgraph rooted
at the node that invokes the switch handler. The
nodes of the subgraph represent (executions of)
instructions in the switch handler; the leaves of the
subgraph represent the DTC leading to each case.

In the terminology of [4] the source language of
this partial evaluator is machine­code program­
memory images and the target language is Bound­T
flow­graphs. (As a part of Bound­T the implemen­
tation language is Ada, but this is not important.)

The next two sections explain how partial
evaluation is implemented in Bound­T and why it is a
natural extension of the way in which Bound­T builds
flow­graphs from machine code. This says more
about Bound­T than about the partial evaluation
method for switch­case analysis. Eager readers may
skip to section 7 for an example of the analysis.

5. Building flow­graphs in Bound­T

This section describes the structure of flow­graphs in
Bound­T and the iterative algorithm for building
flow­graphs from machine code. The next section
extends the algorithm to include partial evaluation.

First a definition of terms. The internal represen­
tation of a subprogram in Bound­T is a flow­graph
(FG). A flow­graph differs from a control­flow graph
(CFG) because (as defined in this paper) a CFG node
represents a given machine instruction in any
program state while an FG node represents a given
instruction in some subset of program states. Thus, a
given instruction is always represented in at most one
CFG node, but can be represented in several FG
nodes when this instruction is modeled separately for
different program states. Bound­T adopted the flow­
graph concept to model complex control mechanisms
such as nested zero­overhead loops in DSPs.

The abstraction of the program state that is used
for flow­graphs is called the flow­state. The program
counter (PC) is always a concrete part of the flow­
state; a flow­state implies a PC value. Each node in a
flow­graph is tagged with a flow­state. No other node
in this flow­graph is tagged with this flow­state.

Each flow­graph node has several attributes to
model the instruction in this node. For this paper the
main attribute is the computational effect: a set of
assignments of expressions to variables (registers or
memory locations). For example, the effect of the
AVR instruction lpm r1, Z+ is modeled by the
assignments r1 := pm[Z], Z := Z+1 where pm[Z]
stands for the value of the program memory octet at
address Z. (Ignore the fact that the 16­bit Z pointer is
composed of the two 8­bit registers r30 and r31. This
complication is nasty but not relevant here.)

Each edge in the flow­graph is provided with a
Boolean expression that is a necessary but perhaps

3

not sufficient condition for taking this edge. For
example, the condition for the branch­taken edge
after the AVR instruction breq is that the “zero” flag
be set, here written as zf = 1. The condition is
evaluated after the effect of the source node.

Bound­T starts the analysis of a subprogram by
building the flow­graph of the subprogram. This is an
iterative algorithm very like the algorithm in [6]. For
each new flow­state the algorithm first adds a blank
node to the flow­graph and then proceeds to fill in
the blank nodes with their attributes. The final flow­
graph contains all flow­states and instructions in the
subprogram that can be reached from the entry
address. The algorithm follows.

Building the flow­graph of a subprogram in Bound­T

Initialization. The flow­graph is initialized to consist of
one blank node tagged with the flow­state that represents
the entry address of the subprogram.

Iteration. The algorithm repeatedly executes the Fill node
step until there are no blank nodes in the flow­graph.

Fill node. Pick a blank node N from the flow­graph. The
flow­state of the node identifies (through its PC value) the
instruction executed in this state. Fetch this instruction
from the memory image of the target program and fill in
the attributes of node N from this instruction.

Determine all successor flow­states for node N. The
successor of a normal call instruction is the return point in
the caller. A normal return instruction has no successors.

For each successor state s of N, if there is not already a
flow­graph node S tagged with s then add such a new
blank node S to the flow­graph. Make a new edge from N
to S.

The analysis of normal subprogram calls in Bound­T
is not relevant to this paper because a call to a switch
handler will be analysed as if the call were in­lined. A
switch­handler call is analysed as a kind of jump
instruction by a simple variation of the above algo­
rithm: the successor of a call to a switch handler is
taken to be the first instruction in the switch handler,
instead of the return point in the callee.

For the example in section 2 the return point
contains the switch table, not AVR instructions, so
control never reaches the return point.

6. Partial evaluation in Bound­T

This section explains how the flow­state concept was
extended to implement partial evaluation during
flow­graph building in Bound­T.

First note that the flow­graph building algorithm
can already be viewed as partial evaluation. The
entry address (initial PC value) is one input for the
target program; building the flow­graph amounts to
partial evaluation of the target program with respect
to this input, keeping all other inputs unbound. The
partial evaluation of an instruction amounts to
finding the effect of the instruction on the PC, in
other words finding the successor instructions.

We can extend this partial evaluation simply by
adding more concrete state components to the flow­
state. Of course, this forces us to compute the effect of
each instruction on these new flow­state components to
find the successor flow­states of the instruction.

To implement this in Bound­T the flow­state type
is extended with a data­state component that is either
null or a pointer to a data­state object. A data­state
object models the values of program variables just
before executing the node tagged with this data­state.

For this paper a data­state object is a partial
mapping of variables to values. In other words a data­
state binds some variables to known values but leaves
all other variables unbound. For example, the data­
state on entry to SwHandler from the call in foo could
bind the variable holding the return address (the top
stack word) to the value 0203 (hex) and leave all
other variables unbound.

The flow­graph building algorithm is extended to
handle data­states as follows. When partial eva­
luation is not in progress the data­state is null and
the algorithm works as before. Otherwise the
algorithm uses the data­state to partially evaluate the
computational effects and edge conditions and uses
the residual effects and conditions to update and
propagate the data­state over nodes and edges.

Handling data­states while building the flow­graph

When filling a node for a given flow­state. If the given flow­
state has a non­null data­state, partially evaluate the
computational effect of the node on this data­state and
store the residual effect in the node. Also create the post­
state of the node as the given data­state updated by the
residual effect: assignment of a constant binds the target
variable, other assignments unbind it. The post­state
models the program state after executing the instruction
in this node.

If the given flow­state has a null data­state make the
post­state null too.

When adding an edge from a source node to a successor
flow­state. If the post­state of the source node has a non­
null data­state, partially evaluate the given edge condition
on this data­state and if the result is false discard the edge
as infeasible. Otherwise store the residual condition in the
edge. If the successor flow­state has a specified data­state
(whether null or not) use it as such (this happens when
starting or stopping partial evaluation). Otherwise use the
post­state of the source node but constrained by the
residual edge condition: if the condition implies a known
value for a variable then update the successor data­state
with this binding.

When filling a DTC node. If the node has a non­null data­
state then try to compute the target address from the
data­state. If this succeeds (ie. if the DTC target depends
only on variables bound to constants in the data­state)
then add the corresponding (static) edge; also, if this DTC
represents an exit from a switch handler then put a null
data­state in the target of the new edge, to stop partial
evaluation on this path.

The extensions to the algorithm use existing Bound­T
services for propagating constant values in flow­

4

graphs and computational effects. New code was
needed mainly for the container of data­state objects.

Most of the extensions for data­state handling are
implemented in the processor­independent parts of
Bound­T. The processor­specific modules only have to
start and stop the partial evaluation at suitable points
in the analysis. For this paper I assume that the
processor­specific modules detect when a call or
jump instruction enters a switch handler; at that
point these modules start partial evaluation by
putting the initial data­state for the switch handler in
the target of the edge that enters the switch handler.
Likewise, I assume that processor­specific modules
detect when a DTC is an exit from a switch handler.
Section 8 discusses these assumptions.

7. Example

This section shows how the partial evaluation works
for the foo function and the SwHandler from section 2
by a series of snapshots of the growing flow­graph.

Nodes and edges in the flow­graph are drawn as
follows:

The flow­state is shown in brackets [] at the top of
the box that depicts a node. The flow­state starts with
the instruction address (PC) in hex, followed by the
data­state bindings if any. For brevity only relevant
bindings are shown. The AVR instruction is shown
below the flow­state, followed by the relevant parts
of its residual computational effect. An edge with no
condition is unconditional (always taken). Blank
nodes are shown as a bare “[flow­state]” with no box.

The first figure below shows the flow­graph of foo
after the first two instructions are inserted (with null
data­states) and just after detecting that the second
instruction (the call) enters a switch handler. The
AVR­specific modules of Bound­T have accordingly
defined the successor of the call to be the first
instruction in SwHandler (PC = 0100 hex) with a
data­state that binds the return address (top of stack
word, tosw) to 0203 hex. There is one blank node
with this flow­state [0100, tosw = 0203].

As the flow­graph grows I will compress the figures
by showing several successive instructions in one box.

The next figure shows the flow­graph when the
first four instructions from SwHandler have been
inserted. Note how the partial evaluation of the pop
instructions transformed the tosw binding into a
binding for the Z pointer and how the evaluation of
the add and adc instructions doubled the value bound
to Z. (The asterisks indicate a computational effect
that was combined with a preceding instruction to

build a 16­bit operation from two or more 8­bit
operations.) The single blank node shows that the
next instruction to be added is the first instruction in
the loop in SwHandler, at address 0104, with a data­
state binding Z to 0406 hex, the octet address of the
first entry in the switch table.

The next figure shows the flow­graph when it
contains all the loop instructions and the first
possible exit from the loop (for k = 4). On the left
the loop exits when zf = 1. The ijmp DTC is resolved
to a static jump because the data­state binds Z to
020B hex. This identifies the first case of the switch.
Partial evaluation in this branch stops because the
successor flow­state [020B] has a null data­state.

On the right, when zf = 0, the loop is about to
repeat (rjmp loop). The successor flow­state contains
the address of the loop­head (0104) which is already
represented by a filled node, but it has a different
data­state: Z is bound to 040A, not 0406 as in the
existing node. The algorithm therefore creates new
nodes for the second iteration of the loop. In fact the
loop will be fully unrolled because the data­state
binds Z to a different value in each iteration of the
loop.

The third loop iteration is unrolled in the same way.
The figure below shows the flow­graph parts for the
fourth iteration which accesses the last switch­table
entry (the default case) at octet address 0412 (word
address 0209). The loop­repeating edge with the
original condition zf = 0 becomes infeasible because
the data­state binds zf to 1, making the residual con­

[flow-state]
instruction effect

[flow-state]
instruction effect

condition

[0200]
mov r0,r16

[0201]
call SwHandler [0100, tosw = 0203]

[0200]
mov r0,r16
call SwHandler

[0100, tosw = 0203]
pop r30 Z := 0203
pop r31 *

[0104, Z = 0406]

[0102, Z = 0203]
add r30,r30 Z := 0406
adc r31,r31 *

[0200]
mov r0,r16
call SwHandler

[0100, tosw = 0203]
pop r30 Z := 0203
pop r31 *
add r30,r30 Z := 0406
adc r31,r31 *

[0104, Z = 0406]
lpm r1,Z+ r1 := 255, Z := 0407
lpm r2,Z+ r2 := 4, Z := 0408
and r1,r0 r1 := r0
cp r1,r2 zf := r1 equals 4
breq found

[020B]

[010B, Z = 0408, zf = 1]
lpm r1,Z+ Z := 020B
lpm r31,Z *
mov r30,r1 *
ijmp

[0109, Z = 0408, zf = 0]
adiw Z,2 Z := 040A
rjmp loop

zf = 1

zf = 0

[0104, Z = 040A]

5

dition false. This ends the unrolling and also the
partial evaluation.

The last and largest figure, below, is an overview of
the final flow­graph of foo. The residual form of
SwHandler within this flow­graph is a tree of com­

parisons and conditional branches that explicitly
models the sequence of instructions leading to each
case. The edge conditions (not shown in the figure)
define the corresponding index values.

8. Summary

To summarise, this method for finding the flow of
control encoded in switch tables comes in three parts:

1. A flow­graph structure that can model the same
instruction separately in different states (the flow­
state in Bound­T).

2. A state abstraction and transfer functions for data
values (the data­state and computational effects in
Bound­T).

3. Means to detect entry to and exit from a switch
handler in order to start/stop partial evaluation.

The first two points enable partial evaluation of
machine code into parts of flow­graphs. The third
point applies partial evaluation to reveal the flow of
control in switch tables.

This partial­evaluation method largely achieves the
goals listed in section 3. The two main problems left
are processor­specific. The first problem is to model
the computational effects of all instructions so exactly
that the partial evaluation of the switch handler
resolves the DTCs. For example, no version of
Bound­T now models the “half carry” flag for BCD
arithmetic. If a switch handler uses this flag in a DTC
the partial evaluation will not resolve the DTC.

The second problem is to detect when a switch
handler is entered or exited. Bound­T now uses the
compiler­specific identifiers of the switch handlers
and works only if these identifiers are present in the
symbol­table of the program. An alternative could be
to use data­flow analysis or slicing as in [5­9] to
detect that a given DTC is “table driven”.

Other applications of partial evaluation in WCET
analysis can be imagined. For example, the printf
function in C is notoriously difficult for WCET

analysis because it is extremely data­dependent;
printf is really an interpreter driven by the contents of
the format string. Now, the great majority of printf
calls have a constant string as the format parameter,
for example:

printf (“%d and %f\n”, ivar, fvar);

Partial evaluation of such a printf call with respect to
the constant format string should transform the
interpretive loop over the format string into
sequential code in the residual flow­graph. It should
also transform most format­dependent conditional
branches into unconditional flow of control. In the
above example, the residual flow­graph should
contain one %d (decimal integer) formatting action,
followed by formatting of the constant string
“ and ”, followed by one %f (decimal floating­
point) formatting action, followed by a new­line

[0200] [0100, tosw = 0203]

[0104, Z = 0406]
1st loop iteration

[010B, Z = 0408]
exit for k = 4

[020B]
case k = 4

[021C]
case k = 8, 9 or 11

[0224]
default case

[0104, Z = 040A]
2nd loop iteration

[010B, Z = 040C]
exit for k = 8 or 9

[0104, Z = 040E]
3rd loop iteration

[010B, Z = 0410]
exit for k = 11

[0104, Z = 0412]
4th loop iteration

[010B, Z = 0414]
exit for default

[0229]

residual of SwHandler

[0104, Z = 0412]
lpm r1,Z+ r1 := 0, Z := 0413
lpm r2,Z+ r2 := 0, Z := 0414
and r1,r0 r1 := 0
cp r1,r2 zf := 1
breq found

[0224]

[010B, Z = 0414, zf = 1]
lpm r1,Z+ Z := 0224
lpm r31,Z *
mov r30,r1 *
ijmp

true

false

[0109, Z = 0410]
adiw Z,2 Z := 0412
rjmp loop

zf = 0

6

action. Thus, partial evaluation should resolve the
format­dependent aspect of the WCET for printf.

In general, partial evaluation could help the
context­specific analysis of any subprogram that has
control­flow that strongly depends on a parameter
that is often constant, or that can be resolved to a
constant by other analysis.

9. Implementation experience

So far Tidorum has implemented this method of
switch­case analysis in Bound­T for two target
processors: Atmel AVR and Intel 8051. The compilers
currently supported are the IAR and Keil compilers
for the 8051 and the IAR compiler for the AVR. The
method works as expected but the implementation of
course showed that some extensions were necessary.
This section briefly describes the extensions.

Firstly, on the AVR processor some switch handlers
use single­bit load and store instructions that work
with the dedicated “T” bit in the status register. As
foreseen in section 8 it was necessary to extend
Bound­T/AVR with models for this bit and these
instructions, in order to get good residual branch
conditions and to terminate the partial evaluation.

Secondly, some switch handlers call their own
subroutines, for example to load the next entry from
the switch table into registers, compare it to the
switch index, and execute a DTC when they match.
During partial evaluation all calls to these handler
subroutines also have to be in­lined in the flow­graph
of the subprogram that contains the switch­case
statement.

Thirdly, some switch handlers implement DTC by
pushing the target address on the processor stack and
executing a return instruction as if the target address
were a return address. Bound­T was extended to use
data­flow analysis of the stack contents to separate
such DTC “returns” from ordinary returns.

10. Experiments

Testing the method on several AVR and 8051
programs showed that the residual flow­graphs were
less complex than could be feared. The switch
handlers contain many conditional branches within
loops and so loop unrolling could create quite large
residual flow­graphs. However, the partial evaluation
resolves many branch conditions to constants, leaving
unconditional branches. This reduces the number of
basic blocks in the residual flow­graphs (note that
Bound­T allows unconditional branches within basic
blocks) but leaves an unusually large number of
instructions per basic block.

The IAR compiler for the AVR has an option that
controls the kind of code generated for switch­case
statements. This option can force the compiler to use
in­line comparison code, or a switch table with a call
to a shared switch handler, or a switch table with an
in­lined form of the switch handler. Comparing the
first two forms for some switch­case statements with
8­bit index values showed that the WCET for a switch

handler call is usually much larger (by a factor of 10
or so) than the WCET for in­line comparison code.
This is explained by the very general design of the
IAR switch tables and switch handlers. The ratio
would probably be less for multi­octet index­types
where the in­line comparison code must be larger.

11. Related work

Earlier work on switch­case control flow [5­8] uses
program slicing and constant propagation to find
dense tables of addresses or jumps, indexed by the
switch index. This is related to but not the same as
partial evaluation. Only the “hashing form” in [8]
involves run­time search in a table.

Bound­T analyses jumps through dense address
tables with a combination of instruction­pattern
matching, to find these jumps, and data­flow analysis
(based on Presburger Arithmetic) to find the bounds
of the address table. The instruction patterns in
Bound­T are currently target­specific and inflexible;
slicing methods and data­flow patterns as in [5­8]
would be an improvement.

De Sutter et al. in [5] start from a “super­
conservative” control­flow graph in which each DTC
is modeled as an edge to a special, unique “hell node”
that represents an unkown program point. The graph
also has edges from the hell node to every node that
could be the target of a DTC. Constant propagation
then prunes away some of these hell edges. Kästner
and Wilhelm present a similar top­down method [7];
however they identify address tables by their
assembly­language form (lists of label identifiers),
not by their usage.

The drawback of such top­down flow­graph
pruning methods [5, 7] is that they first need some
other method to find all the instructions in the
program. That is impractical in the analysis of
binaries for processors with instructions of different
sizes, because the common executable­file formats
such as ELF do not mark instruction boundaries in
the memory images. Some cross­compilers even
deliberately overlay instructions so that, for example,
the code can jump to the second octet of a 3­octet
instruction to use the last two octets as a 2­octet
instruction. The bottom­up flow­graph extension
methods in Bound­T and [6] work also for such
processors and compilers.

Another problem with some top­down methods is
that they assume that a subprogram consists of
contiguous code. This is is false for several cross­
compilers that implement optimizations such as
shared subprogram epilogues where the code for a
subprogram can jump into the middle of some other
subprogram far away in the address space.

Tröger and Cifuentes [9] use slicing to find calls of
virtual functions in the object code of C++ programs,
another form of DTC. They model the computational
effect of instructions in a “High­Level Register
Transfer Language”, HRTL, similar to the formulation
in Bound­T. The static part of their analysis does not
try to find the actual addresses of the callees. Instead,

7

an HRTL interpreter dynamically executes the
program and records the computed target addresses
of the virtual function calls. However, the interpreter
records only the executed paths, not all possible
paths as in partial evaluation, so the virtual function
tables may not be fully explored.

I know of no other analysis tool that creates
residual subprograms in flow­graph form. However,
this is much like context­specific optimization while
compiling an in­lined subprogram.

The “abstract execution” method in SWEET [10]
creates graphs of data­states (execution histories) but
does not expand the CFG. The current SWEET input
language, NIC, does not use switch tables.

12. Conclusion

I see this switch­case analysis as a small example of
cooperation between the two main approaches to
program analysis, the first being concrete state
enumeration by executing the program and the
second being state comprehension by abstracting the
program. Partial evaluation represents the first
approach. Bound­T uses the second approach to find
loop bounds. I believe that WCET analysis would
benefit from more use of state enumeration. The
problem, of course, is choosing which state compo­
nents to enumerate. Enumerating the states in switch
handlers was an easy instance of this problem.

References

[1] G. Bernat and N. Holsti. Compiler Support for
WCET Analysis: a Wish List. In Proc. of the 3rd
International Workshop on WCET Analysis
(WCET 2003), Porto, July 2003.

[2] Tidorum Ltd. Bound­T Execution Time Analyzer.
http://www.bound­t.com.

[3] Atmel Corporation. 8­bit AVR Instruction Set.
Rev. 0856D­AVR­08/02.

[4] N.D. Jones. An Introduction to Partial
Evaluation. ACM Computing Surveys, Vol. 28,
No. 3, September 1998, pp. 480­503.

[5] B. De Sutter, B. De Bus, K. De Bosschere,
P. Keyngnaert and B. Demoen. On the Static
Analysis of Indirect Control Transfers in
Binaries. In Proc. of the International Conference
on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, Nevada, USA,
June 2000, pp. 1013­1019.

[6] H. Theiling. Extracting safe and precise control
flow from binaries. In Proc. of the 7th Internatio­
nal Conference on Real­Time Computing Systems
and Applications, Dec. 2000, pp. 23­30.

[7] D. Kästner and S. Wilhelm. Generic Control
Flow Reconstruction from Assembly Code.
Proc. LCTES'02 – SCOPES'02, June 2002,
pp. 46­55.

[8] C. Cifuentes and M. Van Emmerik. Recovery of
Jump Table Case Statements from Binary Code.
In Proc. of the 7th International Workshop on
Program Comprehension, May 1999,
pp. 192­199.

[9] J. Tröger and C. Cifuentes. Analysis of Virtual
Method Invocation for Binary Translation.
In Proc. Ninth Working Conference on Reverse
Engineering (WCRE'02), 2002, pp. 65­74.

[10] J. Gustafsson, A. Ermedahl, C. Sandberg and
B. Lisper. Automatic Derivation of Loop Bounds
and Infeasible Paths for WCET Analysis Using
Abstract Execution. In Proc. of the 27th IEEE
International Real­Time Systems Symposium
(RTSS'06), December 2006, pp. 57­66.

8

http://www.bound-t.com/

Analysis of path exclusion at the machine code level

Ingmar Stein and Florian Martin

AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany

{stein,florian}@absint.com, http://www.absint.com

Abstract

We present a method to find static path exclusions in a

control flow graph in order to refine the WCET analysis.

Using this information, some infeasible paths can be dis-

carded during the ILP-based longest path analysis which

helps to improve precision. The new analysis works at the

assembly level and uses the Omega library to evaluate Pres-

burger formulas.

1 Introduction

A commonly used method to calculate worst-case exe-

cution times (WCET) for a program is to maximize

tG =
∑
n∈N

c(n) · t(n)

where G = (N,E, s, x) is the control flow graph represent-

ing the program, c(n) is the execution count of a basic block

n and t(n) is the runtime of n. This optimization problem

can be formulated as an Integer Linear Program (ILP) and

solved by widely available ILP solvers.

The result of an ILP-based path analysis is a path that

represents a safe upper bound of the execution time. How-

ever, it is possible that this path can never occur at runtime.

At a fork in the control-flow graph, the decision which of

the successor nodes will be executed next often depends on

the path that leads to the fork. Depending on the execu-

tion history, only one of two successors might be feasible.

Those dependencies are not accounted for in the ILP, and

the path analysis views both nodes as possible successors.

This situation can lead to a drastic overestimation of the real

WCET.

In this paper, we introduce an extension of the aiT [1]

analyzer that incorporates those dependencies into the ILP,

which in turn improves the WCET prediction. The analysis

produces additional ILP constraints that can exclude several

classes of infeasible paths.

The example in Figure 1 illustrates how flow facts can

be beneficial for the WCET computation. In this example,

the path analysis has to select the successor nodes with the

highest costs for both of the branches A and D. The result-

ing WCET is the sum of the costs associated with the edges

constituting the critical path, i.e. 100 + 100 = 200.

A

B C

D

E F

G

10 100

100 10

false true

false true

Figure 1. A control flow graph

However, if the analysis finds out that a positive outcome

of the branch condition at A implies a positive outcome of

the branch condition at D and vice versa, it creates a flow

fact which allows only the paths ACDFG and ABDEG.

As a result, the new critical path has a WCET of 100+10 =
110.

Such constructs as in the example often occur in code

generated by code-generators such as SCADE [2] or in

mode-driven code where many execution paths are con-

trolled via relatively few flags.

1ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1196

http://www.absint.com

2 Overview

The input for the flow constraint analysis is the control-

flow graph of the program. While traversing this graph,

each conditional branch is visited and an expression de-

scribing the branch condition is built. This step is trivial

for high-level programming languages where the conditions

are given in the source code, but as we are facing machine

code, we have to reconstruct this information. Using a slic-

ing component which operates on the assembly level, we

find a set of instructions and variables that contribute to the

branch conditions. If all instructions contained in that set

can be mapped to arithmetic or comparison operations, we

can build a boolean expression representing the branch con-

dition.

In a second step, the expressions are transformed into

another representation suitable for a solver library (Omega).

The solver is used to compare two expressions, i.e. to check

whether one expression implies the other or whether they

are even equivalent. Beforehand, we test whether the two

expressions can actually occur on the same path because

not every implication allows for a sensible statement about

the program.

The results of the comparisons are used to create new

ILP constraints that are added to the ILP for the path anal-

ysis. This leads to a higher precision of the WCET predic-

tion, i.e. a predicted worst-case execution time that is lower

than the predicted WCET without the flow constraint anal-

ysis, but still is a safe upper bound of the real WCET.

3 The Flow Constraint Analysis

The flow constraint analysis traverses the control-flow

graph and inspects all conditional branches, i.e. all inner

nodes with more than one successor that are not call nodes.

If value analysis finds the exact (singleton) value of the

condition register at a conditional branch, it marks one of

the two outgoing edges as infeasible, and additional flow

facts cannot improve the situation any more. Hence, only

those branches where value analysis cannot deduce the

value of the condition register are relevant for the flow-fact

generation; the ones whose outcome is already determined

by the value analysis are skipped.

A backward slice is computed for each considered con-

ditional branch using the condition register as the initial tar-

get. A slice is a set of program points that directly or indi-

rectly participate in the computation of the slicing criterion.

A method how to compute slices is presented in [5].

Definition 3.1. A slice is called linear iff the program

points contained in the slice can be ordered such that each

program point is dominated by its predecessor. A linear

slice that is ordered like that is called an ordered slice.

Example 3.1 (Linear slice). Figure 2 shows two control-

flow graphs. The instructions that constitute two different

slices are highlighted using a bold border. The left graph

represents a linear slice because the two basic blocks can be

ordered as A, D and block A dominates block D. In con-

trast, the right graph is non-linear because block C domi-

nates neither D nor A.

A

B C

D

A

B C

D

Figure 2. Linear slice (upper) and non-linear

slice (lower)

We now restrict the analysis to linear slices. This ex-

cludes exactly those conditions that are built up on several

different paths. The ordered slices are then transformed into

slice trees. The inner nodes of a slice tree represent instruc-

tions while the leaves are either registers, memory cells, or

constants (see for instance Figure 3).

Slice trees containing memory accesses whose target ad-

dresses cannot be determined statically cannot be used for

the following comparisons and are therefore discarded.

A slice tree is an intermediate representation that can

be transformed into other formats for different theorem

provers. This process is described in the following for the

Omega library.

The Omega Project is a collection of “Frameworks and

Algorithms for the Analysis and Transformation of Scien-

tific Programs” by William Pugh and the Omega Project

Team [4]. In particular, Omega offers a tautology test for

2

bc.gt

cmpi0xd 0x2c.t

0 add 0

r3 r4

Figure 3. A slice tree

Presburger formulas that we will use to compare the branch

expressions.

Definition 3.2. Presburger arithmetic is defined as an

arithmetic with the constants 0 and 1, a function +, a re-

lation = and the axioms

1. ∀x : ¬(0 = x+ 1);

2. ∀x∀y : ¬(x = y) =⇒ ¬(x+ 1 = y + 1);

3. ∀x : x+ 0 = x;

4. ∀x∀y : (x+ y) + 1 = x+ (y + 1);

5. If P (x) is a formula consisting of the constants

0, 1,+,= and a single free variable x, then the fol-

lowing formula is an axiom

(P (0)∧∀x : P (x) =⇒ P (x+1)) =⇒ ∀x : P (x).

Presburger arithmetic is a decidable fragment of arith-

metic and implementations of fully automatic decision pro-

cedures (such as Omega) are readily available.

Slice trees are translated into Omega trees by mapping

the semantics of the individual instructions to arithmetic or

comparison operations. Instructions with unknown seman-

tics are treated as symbolic functions. Several patterns are

used during the translation of instructions into Omega oper-

ators that allow for the combination of multiple instructions

into a single operator. While the inner nodes of Omega trees

represent operations, the leaves are translated as follows:

• Integer constants remain constants.

• Registers and memory cells become free variables. A

prefix of the variable name encodes the type of the

variable as shown in Table 1.

Prefix Type Suffix

r Register Register number

m Memory cell (word) Memory address

h Memory cell (halfword) Memory address

b Memory cell (byte) Memory address

Table 1. Omega tree leaves

>

+ 0

r3 r4

Figure 4. An Omega tree

Figure 4 shows the Omega tree resulting from the slice tree

of Figure 3 using a simplified notation.

If all conditional branches are annotated with Omega

trees, we can compare the branch conditions of two basic

blocks A and B by testing several boolean expressions us-

ing Omega: A =⇒ B, A =⇒ ¬B, ¬A =⇒ B,

¬A =⇒ ¬B and the same expressions with A and B
swapped. If Omega determines one of the expressions to

be a tautology, we can derive the flow constraints accord-

ing to Table 2. The names at, af , bt, and bf stand for the

true and false successors of the two basic blocks a and b,
and c(x) the execution count of basic block x. The table

includes expressions that are logically equivalent to cover

those cases where some of the successors at, af , bt, and bf
are unavailable.

Expression Flow constraint

A =⇒ B c
(
at

)
≤ c
(
bt
)

A =⇒ ¬B c
(
at

)
≤ c
(
bf
)

¬A =⇒ B c
(
af

)
≤ c
(
bt
)

¬A =⇒ ¬B c
(
af

)
≤ c
(
bf
)

B =⇒ A c
(
bt
)
≤ c
(
at

)
B =⇒ ¬A c

(
bt
)
≤ c
(
af

)
¬B =⇒ A c

(
bf
)
≤ c
(
at

)
¬B =⇒ ¬A c

(
bf
)
≤ c
(
af

)
Table 2. Implications and corresponding flow

constraints

3

4 Limitation to n bits

Omega operates on the domain of integers, therefore the

variables in the Presburger formulas have no range restric-

tions. However, the machine arithmetic works on n bits

and is thus not modelled correctly in the Omega expres-

sions. To resolve this problem, one can introduce modulo

operators in the expressions to simulate an n bit range. If

C is an expression whose result is an n bit value, C is re-

placed by C ′ = C mod 2n. Because Presburger expres-

sions don’t have a built-in modulo operator, another substi-

tution is needed:

If a term x mod c occurs in a constraint C ′, C ′ is replaced

by

∃γ : cγ ≤ x < c(γ + 1) ∧ C ′′

where C ′′ is derived from C ′ by replacing x mod c by x−
cγ.

5 Evaluation

In order to evaluate the effectiveness of the analysis, we

have analyzed a set of test programs. All tests were per-

formed using aiT for MPC755. Table 3 illustrates how the

WCET changes if path analysis is run without or with the

flow constraints (WCETfc). The last column shows the

number of generated flow facts. The runtime of the flow

constraint analysis on the test programs is presented in fig-

ure 5.

6 Outlook

With the main work done, we now look at possible fu-

ture enhancements and additional uses of the flow constraint

analysis.

6.1 Portability.

We plan to implement the analysis for further microar-

chitectures besides the PowerPC platform. The ARM plat-

form is a natural extension since the slicing component al-

ready exists for it.

6.2 Nonlinear slices.

Furthermore, it seems worthwhile to examine nonlinear

slices to find out whether new opportunities for optimiza-

tion arise if the linearity constraint is dropped. Nonlinear

slices may be handled by using a data-flow analysis that

propagates the node conditions and subsequently combines

all conditions associated with a node. However, the risk is

very high that the resulting expressions grow too large for

the Omega library and that the runtime increases by several

orders of magnitude.

6.3 Theorem-prover interface.

In addition to this, other theorem provers could be eval-

uated by providing an interface to the flow constraint anal-

ysis. An alternative prover could provide a performance su-

perior to Omega in some cases or offer more functionality

such as floating-point support.

6.4 Elimination of unreachable code.

With a simple extension, flow constraint analysis is able

to detect some cases of unreachable code and to exclude the

respective code blocks from the subsequent analyses, e.g.,

pipeline analysis. For that, a condition of a child node is

compared to that of its direct parent. If they are equivalent

or complementary, one of the two successors of the child

node can be marked as infeasible.

6.5 PAG.

Unreachable code elimination as described above is an

example how the information gathered by flow constraint

analysis can be used for additional purposes. Another use

case is PAG-generated analyzers [3] whose precision can be

improved by path exclusions.

7 Conclusion

We have presented a method to find path implications

within a given control flow graph for machine code pro-

grams. This information has been used to generate con-

straints which are then added to the ILP of the path analysis.

The so-called flow constraints contribute to an improvement

of the WCET prediction by excluding paths which cannot

occur at runtime.

A tool which implements the algorithm presented in this

paper has been successfully integrated into a WCET frame-

work. It represents another phase in the workflow of the aiT

WCET analyzer and fits seemlessly into the existing infras-

tructure. The tool has been used to conduct several tests

which show both the effectiveness of the flow constraint

analysis (ppcbrunch) on industrial programs as well as the

moderate runtime increase of the complete WCET analysis

as can be seen in figure 6.

References

[1] AbsInt Angewandte Informatik GmbH. ait: Worst-case exe-

cution time analyzers.

4

Program WCET WCETfc Improvement Constraints

Synth. example 1 1440 cycles 1154 cycles 19.9 % 4

Synth. example 2 1140 cycles 819 cycles 28.2 % 5

avionic 1 1480 cycles 1420 cycles 4.1 % 1

avionic 2 3178 cycles 3050 cycles 4.0 % 8

zlib 6706 cycles 5242 cycles 21.8 % 2

Table 3. Results for several test programs

Program Instructions Basic Blocks Size [Bytes] Type

Synth. example 1 44 13 912 Mach-O

Synth. example 2 38 13 792 Mach-O

avionic 1 764 40 26232192 ELF

avionic 2 523 14 433472 ELF

zlib 163 40 1700 Mach-O

Table 4. Sizes of the test programs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S1 S2 A1 A2 Z

R
u
n
ti
m

e
 i
n

 s

Program

Benchmark

Figure 5. Runtime of the flow constraint analysis for several test programs

5

56%

2%

2%

2%

8%

8%

2%

10%

5%

0%

2%

2%

1%

exec2crl

crl2crl

crl2crl

powerdaan (loop)

powerdaan (value)

ppcbrunch

crl2crl

ppcpipe

pathan

lp_solve

solve2chg

cr2crl

cr2gdl

Figure 6. Overall runtime of the WCET anal-

ysis for avionic 2 broken down into subpro-

grams

[2] Esterel Technologies. Scade suite – the standard for the devel-

opment of safety-critical embedded software in the avionics

industry.

[3] F. Martin. Pag - an efficient program analyzer generator. In-

ternational Journal on Software Tools for Technology Trans-

fer, 2(1):46–67, 1998.

[4] Omega Project Team. The omega project: Frameworks and

algorithms for the analysis and transformation of scientific

programs. 2007.

[5] M. Schlickling. Generisches slicing auf maschinencode. Mas-

ter’s thesis, Universität des Saarlandes, Saarbrücken, 2005.

6

Automatic Amortised Worst-Case Execution Time Analysis

Christoph A. Herrmann∗ Armelle Bonenfant† Kevin Hammond∗

Steffen Jost∗ Hans-Wolfgang Loidl‡ Robert Pointon§

Abstract

Our research focuses on formally bounded
WCET analysis, where we aim to provide ab-
solute guarantees on execution time bounds. In
this paper, we describe how amortisation can be
used to improve the quality of the results that
are obtained from a fully-automatic and formally
guaranteed WCET analysis, by delivering analy-
sis results that are parameterised on specific in-
put patterns and which take account of relations
between these patterns. We have implemented
our approach to give a tool that is capable of
predicting execution costs for a typical embedded
system development platform, a Renesas board
with a Renesas M32C/85U processor. We show
that not only is the amortised approach applica-
ble in theory, but that it can be applied auto-
matically to yield good WCET results.

1 Introduction

Worst-case execution time (WCET) analysis is
required for a variety of embedded systems appli-
cations, especially those with safety- or mission-
critical aspects. Common examples include
avionics software and autonomous vehicle con-
trol systems [14]. Our work aims to construct
fully automatic source-level static WCET analy-
ses, that are correlated to actual execution costs.
Since we must provide formal, automatically-
produced guarantees on WCET bounds, we base
our work on a high-quality abstract interpreta-
tion approach (AbsInt GmbH’s aiT tool [5]), to
give low-level timing information for bytecode in-
structions. We combine this with an equally for-

∗School of Computer Science, University of St An-
drews, North Haugh, St Andrews, Scotland, KY16 9SX.
email: {ch,kh,jost}@cs.st-and.ac.uk.

†IRIT, Université Paul Sabatier, Toulouse, France.
email: bonenfant@irit.fr

‡Ludwig-Maximilians Universität, München.
email: hwloidl@informatik.uni-muenchen.de

§Heriot-Watt University, Edinburgh.
email: rpointon@macs.hw.ac.uk

mal, type-based approach that lifts this informa-
tion to higher-level language constructs so that it
can be applied to source programs. The problem
is to maintain the strong WCET guarantees we
need, while giving good quality information. In
this paper, we consider a new approach to con-
structing WCET analyses, based on the idea of
amortisation [16]. This represents the first at-
tempt of which we are aware to provide an auto-
matic amortised WCET analysis. We have pro-
duced a prototype implementation using our ap-
proach, and we report here on some preliminary
results obtained using this analysis tool.

2 Amortised Time Analysis

Amortised cost approaches [3] allow costs to be
averaged according to use. The basic intuition is
that by amortising over the time costs incurred
by common usage patterns (e.g. that for a stack,
every pop is balanced by a push), we can con-
struct timings that reflect more accurately real
worst-case times. Typically, amortised analysis
is performed by hand to determine the complex-
ity of programs that involve complex data struc-
tures [13]. We have previously, however, applied
the approach to give automatically derived, and
provably correct, upper bounds on space costs for
heap allocations [10]. In both cases, since alter-
native program execution paths may have very
different costs, by amortising over common pat-
terns we can avoid the needless over-estimation
that would otherwise occur.

In this paper, we consider how the same ap-
proach can be applied to WCET. Our thesis
is that such an approach can potentially re-
duce over-estimation without losing formal guar-
antees that the analysis yields a genuine WCET.
We will show below that our amortisation-based
WCET analysis can obtain WCET bounds that
are close to the actual execution time. We first
consider a simple example to illustrate the prin-
ciples of our approach.

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1186

(4)(3)(2)(1)

↑

G

F

E

HGDCD

↓FE ↑E

EFF

DGG

Figure 1: Queue implemented by two stacks

2.1 Example: Implementation of a
Queue by Two Stacks

An example that is often used when teaching
data structure abstraction and encapsulation is
the implementation of a queue as two stacks. We
will use this here to illustrate our amortised ap-
proach. Figure 1 shows a sequence of four queue
configurations, in each of which the left stack is
used to enqueue items and the right one to de-
queue them. A queue abstraction can be built
directly in terms of push and pop operations on
the underlying stacks without needing to break
the stack abstraction.

Enqueuing to a stack and dequeuing from a
non-empty stack takes constant time. When the
dequeuing stack becomes empty after popping C
in (1), the contents of the enqueuing stack in
(2) are popped in turn, and pushed onto the de-
queuing stack as shown in (3). This then allows
element D to be dequeued. Finally, new elements
can be enqueued as shown in (4).

Reversing the stack by elementwise copying
((2)→ (3)), however, takes time proportional to
the number of items on the stack.

There are thus two worst cases. Firstly, the
stack could become as large as the total number
of elements, n, if the final element is enqueued
before the first one is dequeued. The cost for
the reversal would then be proportional to n.
Secondly, each dequeued element could require
a stack reversal if it is dequeued before the next
one is enqueued. This would mean n stack rever-
sals in total. Combining both worst cases would
yield a worst-case estimation proportional to n2.
However, both cases cannot occur at the same
time: as there are more stack reversals, the sizes
of the stacks to be reversed decrease in size.

Amortised analysis treats these two extreme

worst-cases quantitatively: we distribute the cost
for the stack reversal equally among all the ele-
ments. The costs incurred by each element are:
(1) a push for enqueuing; in the stack reversal (2)
a test and (3) a pop followed by (4) a push; and
for dequeuing (5) a test and (6) a pop. To pro-
cess all elements, it follows that 6n basic stack
operations are required.

By considering the queue structure as a whole
rather than the operations of its components
(stacks) in isolation, we have been able to amor-
tise the worst-case cost, and reduce it from a
quadratic cost to a linear cost. We can exploit
this in an automatic analysis by using a model
in which a potential [16] is given to each kind
of data element. This potential represents the
amortised worst-case cost per element of the
structure. In the model (but not, of course, in
an actual execution!), one unit of potential is re-
leased for each operation on an element. The
potential must be sufficient to cover all opera-
tions. In our example, if we take into account
only the stack operations, the potential would
be 6 for each element.

2.2 Type-Based WCET Analysis

Our approach [11] is to analyse source-level con-
structs by building on standard type-checking al-
gorithms. By doing this, we are able to gain
information about programming constructs that
may be lost through a compilation process, and
so to obtain a better quality of analysis. Types
also allow us to construct a compositional analy-
sis, where functions/expressions/modules can be
analysed independently. The flip-side is that we
must have the program source available at anal-
ysis time. However, because we have a composi-
tional analysis, previously obtained analysis in-
formation can be attached in the form of meta-
data to binary programs or library code, and this
will reveal nothing about the source implementa-
tion, apart from its WCET. In order to analyse
source functions that use this code, it is not nec-
essary to be able to read the binary file, or even
to possess it, but only to see the meta-data.

Our work is undertaken in the context of the
domain-specific programming language Hume,
which embeds purely functional expressions in
a powerful automaton-based process notation [9,
8]. We have constructed formally-correct type-
based automatic analyses for determining worst-

2

case execution-time costs, based on the amor-
tised cost approach described above [11], and
implemented our rules in a prototype implemen-
tation (available from http://www.embounded.
org). We will show some results that can be ob-
tained from our analysis below.

The analysis works as follows: each construct
in the source program is given a type using a nor-
mal type-inference algorithm. At the same time,
the usage of potential is calculated for that ex-
pression. (Internal) cost variables are automati-
cally associated with each (sub-)expression, and
the analysis will generate a set of constraints over
those variables that give an upper bound on the
WCET. The constraint set is solved using a lin-
ear equation solver, and concrete cost solutions
are mapped back to the source program. In this
way, WCET costs are associated with each ex-
pression and each function that is used in the
program.

Note that, while Hume deliberately simpli-
fies the problem of constructing cost models and
analyses, in order to allow us to focus on key
research questions, rather than worrying about
specific complexities, of e.g. C programming, the
methods we are developing are, in fact, gener-
ally applicable. Hofmann and Jost have shown,
for example, how a formally bounded heap anal-
ysis could be applied in an object-oriented set-
ting such as Java [10]. Note also that, although
our focus is on formally guaranteed WCET, and
we have therefore built on abstract interpreta-
tion and types, amortisation can also, in princi-
ple, apply to other WCET approaches such as
probabilistic approaches [1].

3 Obtaining WCET Bounds
for HAM Instructions

The problem now is one of obtaining reliable
WCET information for simple expressions so
that costs for complex expressions can be con-
structed from the type-based analysis. We do
this by first introducing an abstract machine
(the Hume Abstract Machine or HAM [6]). We
may then systematically determine WCET costs
for each HAM instruction. Having determined
the cost of each HAM instruction for a given
architecture, and knowing how the Hume com-
piler will translate expressions to HAM instruc-
tions, we are able to analyse Hume programs for

that architecture without needing to perform any
compilation (even to HAM code), or any further
analysis on the target machine. This yields a
flexible and highly portable analysis.

The approach can yield an acceptable upper
bound on WCET: we have shown in a previ-
ous paper [2] that composing costs of individual
HAM instructions delivers a WCET result that
can be within 2% of the cost of the WCET for
a sequence of HAM instructions for the Rene-
sas M32C/85U [4] architecture that we will also
use in this paper. Processors such as the M32C,
which have predictable time behaviour and low
power consumption are especially of interest for
use in embedded systems such as automotive ap-
plications. The processor therefore represents an
important class of processor architectures that is
employed in safety- and mission-critical systems.

3.1 Low-Level WCET Analysis

In this paper, we distinguish between measured
WCETs, that are obtained in the obvious way,
and guaranteed WCETs, that provide a formally
guaranteed upper bound on WCET. Probabilis-
tic approaches [1] extend the basic measurement
approach by extrapolating from a set of mea-
sured WCETs to provide a probability function
for the WCET.

Although it can be relatively simple to obtain
time information by measurement, even for com-
plex architectures such as a Pentium IV, this can
be time-consuming, and it is not always straight-
forward to determine that the actual worst-case
has been covered by the test input. Conversely,
for guaranteed WCET obtained by static analy-
sis, it is necessary to formalise the behaviour of
the target processor. It can clearly be costly to
construct such a model, especially where cache
and pipeline effects are involved. For unpre-
dictable architectures, such as the Pentium IV,
even if it is feasible to model such a complex sys-
tem, it may not be possible to construct a model
that gives a tight WCET: the WCET could, in
some cases, be one or two orders of magnitude
greater than the typical execution time. How-
ever, once a model and analysis has been con-
structed, it can be applied repeatedly, and usu-
ally without significant programmer effort. A
more detailed comparison of WCET approaches
up to early 2007 can be found in the paper by
Wilhelm et al. [17].

3

http://www.embounded.org
http://www.embounded.org

3.2 WCET Information for Indi-
vidual HAM instructions

Our type-based approach can exploit informa-
tion obtained using either measured or guar-
anteed WCETs for single HAM instructions.
However, we can only formally guarantee upper
bound times for source programs, if we use a
correspondingly guaranteed approach to obtain-
ing low-level WCET information. In this paper,
we investigate both measured and guaranteed
WCETs of HAM instructions for the Renesas
M32C/85U, using machine code generated from
HAM instructions by the IAR C compiler [15].

Guaranteed WCETs for each HAM instruction
have been obtained using AbsInt GmbH’s aiT
tool [7]. This gives the WCET for each machine
code fragment that is generated for a HAM in-
struction, using a static analysis approach that
computes safe approximations for all possible
cache and pipeline states that can occur at any
given point in the program.

Measured WCETs for each HAM instruction
have been obtained by repeated measurement
of the instruction execution time, taking the
worst case from 10000 runs, and using the cycle-
accurate timer on the M32C to obtain software
timings. To ensure accuracy, we use a “two-
loop benchmarking” approach, which measures
the time required for auxiliary measurement op-
erations separately and subtracts this time from
the measurement of interest. In this way, we
avoid including measurement costs in the worst-
case measurement. In order to guarantee that we
measure the WCET for the program, we must, of
course, provide an input which incurs the WCET
during normal fault-free operation.

4 Example: Drilling Robot

We will now consider a slightly more in-depth
example, to show how our amortised approach
can be exploited to give WCET results and com-
pare the outcome of the analysis with measured
WCET times on the M32C processor.

4.1 Problem description

Our case study here is the simulation of a robot
for drilling printed circuit boards. The robot can
move a drilling head in fixed-sized increments
(here represented as integers) in two dimensions.

pos_ok (xpos, ypos) = if xpos==0 && ypos==0

then 1 else 0;

step (xpos,ypos,actions,dps) =

case actions of

[] -> (dps, pos_ok (xpos, ypos))

| (A:as) -> step (xpos, ypos, as,

((xpos,ypos):dps))

| (L:as) -> step (xpos-1,ypos, as, dps)

| (R:as) -> step (xpos+1,ypos, as, dps)

| (U:as) -> step (xpos, ypos-1, as, dps)

| (D:as) -> step (xpos, ypos+1, as, dps);

Figure 2: Hume code for Drilling Robot

At each position, the drilling head can perform a
drilling action. After all holes have been drilled,
the drilling head is to be moved to its starting
point. A similar application example would be a
camera that can be turned around two axes and
can take photo shots at particular orientations.

The robot can perform five operations: A is
the drilling action; the other actions move the
head by one position: L leftwards, R rightwards,
U up and D down. Operations are described by
the user-defined data type OP in Hume:

data OP = A | L | R | U | D

For example, if the action list is the four-element
list R:(D:(A:(L:(U:[])))) (where [] repre-
sents the empty list and (U:[]) constructs the
one element list with U at the start of the list and
an empty remainder), and the robot starts at po-
sition (0,0), it will move right to (1,0), down
to (1,1), drill, move left to (0,1) and finally up
to (0,0), the starting position.

The Hume function step (Figure 2) simulates
each operation carried out by the drilling robot∗.
step takes four arguments: the current X- and
Y-positions of the (xpos and ypos); the list of
remaining actions to perform (actions); and an
accumulating list that records the positions at
which a drilling action has happened (dps). We
perform case discrimation on the list of actions,
where the list may be either empty, i.e. [], or
else a non-empty list whose first element is some
action (A, L, . . .), and whose remainder is the list
of unprocessed actions (as). The second case
is shown as the pattern (A:as) etc., which de-
constructs the list with A as the first element,

∗Of course, it would not be a major exercise to change
this definition to actually drill a board.

4

case [] (A:) (L:) (R:) (U:) (D:)

measured 2512 1563 1533 1728 1932 2137

manual 2970 1891 1855 2109 2363 2617
/measured 1.182 1.210 1.210 1.220 1.223 1.225

automatic 3075 2033 2006 2269 2532 2795
/manual 1.035 1.075 1.081 1.076 1.072 1.068

/measured 1.224 1.301 1.309 1.313 1.311 1.308

Table 1: WCET Measurements and Analysis for each Case

binding the variable as to the rest of the list.
The action list is processed element by element.
There are three basic cases:

[] – the action list has been completely pro-
cessed – we return the accumulated list of
drilling positions, dps, paired with a control
flag (calculated using the pos ok function)
that indicates whether or not the robot has
returned to its initial position;

A:as – the current action is a drilling operation
– having done this, we move on to the next
action by calling step recursively on as, us-
ing the ((xpos,ypos):dps)) expression to
place the current position, (xpos,ypos), at
the front of the list of drilling positions, dps;

L:as, R:as, U:as, D:as – the current action
is a move – either xpos or ypos is changed
as required, and we move on to consider the
rest of the actions (as) recursively.

In the example above, there will be five recursive
calls to step†, starting with the R case, and end-
ing with the [] case. The result will be the list
of drilling positions, ((1,1):[]), paired with an
indicator that the final position is OK.

4.2 Amortised WCET Analysis

As in the queue example, amortisation allows
us to avoid calculating the worst case cost of
a list of actions as the length of the list mul-
tiplied by the worst case cost of any individual
action. Our amortised analysis gives a bound for
the worst-case execution time TWCET in clock cy-
cles depending on the number of occurences #X
of each action constructor X in the input, which

†The compiler will actually optimise these to be tail-
recursive; effectively introducing a goto analogously to
the implementation of an iterative loop in C, so there is
no significant cost associated with this recursion.

is TWCET ≤ 3075+2033∗#A+2006∗#L+2269∗
#R + 2532 ∗ #U + 2795 ∗ #D. This information
is even more precise than expressing the WCET
in terms of the list length, but if we wanted to
reduce the information to this form, we could as-
sume that #U=#D when the robot returns to its
initial position, i.e., TWCET ≤ 3075+b2663.5∗nc
for a list of length n.

Table 1 compares the bound for each construc-
tor with (a) the corresponding bound obtained
from a manual analysis of a trace of the func-
tion step, summing the costs of all HAM instruc-
tions; and (b) the measured WCET. The abso-
lute values given in the table refer to times in
terms of clock cycles on the Renesas M32C/85U
processor. Even for the prototype implementa-
tion of our analysis, we achieve manual analysis
results within 23% of the measured WCET and
automatic analysis results within 8% of our man-
ually obtained results.

5 Conclusions

Amortised WCET analysis offers a way to con-
struct costs that abstract over individual opera-
tions, and also to specialise WCET costs for par-
ticular input cases. Using our amortised WCET
analysis approach for source-code analysis com-
bined with information from the AbsInt aiT tool
for machine-code analysis, we have been able to
produce guaranteed WCET bounds that are rea-
sonably close to measured WCETs (and indeed
average-case times) for a real embedded systems
platform. We are now working on tightening the
bounds on WCET by improving the output of
the automatic analysis and the quality of the
code that is generated for HAM instructions. We
are also applying the analysis to larger exam-
ples, e.g. ones taken from image processing or
autonomous vehicle control [12]. Finally, we are

5

working on exploiting high-level control flow in-
formation to guide the aiT analysis of the low-
level compiled code, and so to obtain improved
bounds.

We have explained our approach in terms of
Hume, and have developed our initial analyses
in the same context. Hume is a research no-
tation that allows us to focus on core cost is-
sues without distraction by many of the features
that are found in production languages. How-
ever, now that the fundamentals have been prop-
erly worked out in this setting, the general static
analysis techniques used here could, in princi-
ple, be applied to any other high-level language,
including C. Moreover, the principle of amorti-
sation could be applied to many forms of WCET
analysis, not just the guaranteed WCET analysis
we have described here.

Acknowledgements

This work is generously supported by EPSRC
grant EP/C001346/1, by EU Framework VI IST-
510255 (EmBounded) under the FET-Open pro-
gramme, by an SOED support fellowship from
the Royal Society of Edinburgh, and by the
Systems Engineering for Autonomous Systems
(SEAS) Defence Technology Centre established
by the UK Ministry of Defence.

References

[1] G. Bernat, A. Colin, and S.M. Petters. WCET
Analysis of Probabilistic Hard Real-Time Sys-
tems. In Proc. 23rd IEEE RTSS 2002, Austin,
TX. (USA), December 2002.

[2] A. Bonenfant, C. Ferdinand, K. Hammond, and
R. Heckmann. Worst-Case Execution Times for
a Purely Functional Language. In Proc. IFL
2006, LNCS 4449. Springer-Verlag, 2007. To
appear.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[4] Renesas Corp. http://www.renesas.com. 2007.

[5] AbsInt GmbH. http://www.absint.com. 2007.

[6] K. Hammond. Exploiting Purely Functional
Programming to Obtain Bounded Resource Be-
haviour: the Hume Approach. In Proc. First
Central European Summer School, CEFP 2005,
LNCS 4164, pages 100–134. Springer-Verlag,
2006.

[7] K. Hammond, C. Ferdinand, R. Heckmann,
R. Dyckhoff, M. Hofmann, S. Jost, H.-W. Loidl,
G. Michaelson, R. Pointon, N. Scaife, J. Sérot,
and A. Wallace. Towards formally verifiable
resource bounds for real-time embedded sys-
tems. ACM SIGBED Review— Special issues,
ITCES06, 3(4):27–36, October 2006.

[8] K. Hammond, G. Michaelson, and P.B. Vascon-
celos. Bounded Space Programming using Fi-
nite State Machines and Recursive Functions:
the Hume Approach. ACM TOSEM, 2007, un-
der revision.

[9] K. Hammond and G.J. Michaelson. Hume: a
Domain-Specific Language for Real-Time Em-
bedded Systems. In Proc. Intl. Conf. on Gen-
erative Programming and Component Engineer-
ing (GPCE ’03), LNCS 2830, pages 37–56.
Springer-Verlag, 2003.

[10] M. Hofmann and S. Jost. Type-Based Amor-
tised Heap-Space Analysis. In ESOP 2006,
LNCS 3924, pages 22–37. Springer-Verlag, 2006.

[11] S. Jost, H.-W. Loidl, K. Hammond, M. Hof-
mann, and A. Bonenfant. Generic amortised re-
source analysis for higher-order functional pro-
grams. In Preparation, 2007.

[12] G. Michaelson, A. Wallace, K. Hammond,
I. Wallace, A. Bonenfant, and Z. Chen. Towards
resource certified image processing software. In
SEAS DTC Annual Technical Conference, July
2006, Edinburgh, Conference Proceedings, page
A15. UK MoD, 2006.

[13] C. Okasaki. Purely Functional Data Struc-
tures. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1996.

[14] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu,
G. Borios, and R. Heckmann. Computing the
worst case execution time of an avionics pro-
gram by abstract interpretation. In Proc. 5th
Intl Workshop on WCET Analysis, pages 21–
24, 2005.

[15] IAR Systems. http://www.iar.com. 2007.

[16] R. E. Tarjan. Amortized Computational Com-
plexity. SIAM Journal on Algebraic and Dis-
crete Methods, 6(2):306–318, 1985.

[17] R. Wilhelm, J. Engblom, A. Ermedahl, N. Hol-
sti, S. Thesing, D. Whalley, G. Bernat, C. Fer-
dinand, R. Heckmann, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström.
The Determination of Worst-Case Execution
Times—Overview of the Methods and Survey
of Tools. Accepted for ACM TECS, 2007.

6

Clustering Worst-Case Execution Times for Software Components

Johan Fredriksson∗, Thomas Nolte, Andreas Ermedahl, Mikael Nolin

Dept. of Computer Science and Electronics

Mälardalen University, Västerås, Sweden

Abstract

For component-based systems, classical techniques for

Worst-Case Execution Time (WCET) estimation produce

unacceptable overestimations of a components WCET. This

is because software components more general behavior, re-

quired in order to facilitate reuse. Existing tools and meth-

ods in the context of Component-Based Software Engineer-

ing (CBSE) do not yet adequately consider reusable analy-

ses.

We present a method that allows different WCETs to

be associated with subsets of a components behavior by

clustering WCETs with respect to behavior. The method

is intended to be used for enabling reusable WCET anal-

ysis for reusable software components. We illustrate our

technique and demonstrate its potential in achieving tight

WCET-estimates for components with rich behavior.

1 Introduction

In this paper we present a method that allows reuse of

components with rich behavior in contexts where not all

functionality of the components is needed. Typically, soft-

ware components with rich behaviour have a worst-case ex-

ecution time that may be drastically overestimated when the

component is applied in a specific context. For these con-

texts it is imperative to be able to analytically reduce the es-

timated resource usage in order to achieve tight predictions

of high quality. Thus increasing accuracy of predictions.

The work presented in this paper is intended to facilitate

reusable WCET analysis for software components, e.g., in

the framework presented in [1, 2].

Components are often reused over product boundaries,

i.e., they are part of product lines and it is desirable to use

the same component without re-analysis or recompilation.

However, different products offer different contexts or us-

age of components; thus a component used in, e.g., a truck,

may use different parts of the component compared to the

same component used in a caterpillar. Using a context in-

∗contact author: johan.fredriksson@mdh.se

sensitive WCET analysis may be very inaccurate compared

to the actual WCETtruck or WCETcaterpillar (WCETs of

the truck and caterpillar respectively), leading to a poor uti-

lization of the system resources because of large differences

between predicted behavior and actual behavior.

Resource constraints and predictability requirements are

especially common in embedded-systems sectors, such as

automotive, robotics and other types of computer controlled

equipment. Because of the intrinsically non-linear behavior

of software, it is often hard to make accurate predictions of

the WCET of a piece of software. The problem is wors-

ened in component-based development where components

are kept independent of context to facilitate reuse. It is de-

sirable to have an accurate analysis, allowing for the im-

plementation of a system with less resources. This can be

achieved by considering the context in which the software

is used.

The contribution of this paper is a method for increas-

ing the accuracy of a component’s WCET by clustering

execution-times with respect to usage. We use binary search

heuristics to efficiently create clusters of similar execution-

times. We describe and formalize the method, and exem-

plify with an illustrative example. Finally we use a simple

academic case study and create clusters of two components.

The outline of the rest of this paper is as follows; in Sec-

tion 2 we discuss related works. Usage scenarios are dis-

cussed in Section 3. In Section 4 component WCET analy-

sis and the WCET clustering method are presented. In Sec-

tion 5 we evaluate the method. In Section 6 we discuss the

applicability of the method, and finally, Section 7 concludes

the paper and future work is discussed.

2 Related work

Static WCET analysis is the only safe method for esti-

mating WCETs for hard real-time systems [3]. However,

traditional static WCET analysis does not consider usage.

Software components designed for reuse are often more

general compared to application specific code, leading to

that parts of the component are only used in specific us-

ages; in turn leading to greater variance of execution times.

For component-based systems, where reuse is in focus, it is

1ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1185

desirable to not being forced to reanalyze components for

each usage, at least within the same platform.

One approach to solve similar problems is parametric

WCET. This has been proposed by many researchers within

the WCET community but there is still very few paramet-

ric WCET methods developed. In [4] Björn Lisper outlines

a technique for fully automatic parametric WCET analysis,

which is based on known mathematical methods. In a MSc

thesis [5, 6] a method inpired by Lispers work has been de-

veloped and tested with the aiT tool [7]. However, the focus

of this work is not reusable WCET analysis, and reanalysis

is required for different usages. A program representation

for parametric WCET analysis has been suggested by Colin

and Bernat [8]. Vivancos et. al. [9] propose an iterative

method for computing WCET for loops parameterized in

the number of loop iterations.

The main differences between the method proposed in

this paper compared to parametric WCET is that we try to

find execution-times for given input domains with the aim

to create clusters of inputs that result in similar execution-

times. Hence, a cluster is repersented by conditions on

the inputs and a execution-time. A usage profile (limita-

tions on inputs) is subsequently applied to the clusters to

assess which clusters, and thereby which execution-times,

that must be considered to be the WCET.

In [10] each basic block of a program is analyzed with

respect to execution times and probability distributions of

the execution times are derived. This method is, in com-

parision to our method, based on measurements. In [11] a

framework has been developed that considers the usage of

a system; however, neither software components nor reuse

is considered. In [12] the source code is divided in modes

depending on input, and only modes that are used in a given

context is analyzed. In [13] a framework for probabilistic

WCET with static analysis is presented. The probabilities

are related to the probability of possible values of exter-

nal and internal variables. All mentioned methods have the

drawback of requiring reanalysis for every new usage.

Recent case-studies show that it is important to consider

mode- and context-dependent WCET estimates when ana-

lyzing real sized industrial software systems [14, 15].

There are several WCET tools that support assertions

and conditions to make the WCET tighter, e.g., aiT [7],

RapiTime [16], Bound-t [17] and SWEET [18].

3 Usage scenario

In the “real” physical world, distinct modes exist and are

often engineered into systems, for example, as modes of

operation. We hypothesize that modes are significant dis-

criminators of WCET and can be utilized for more accurate

WCET modeling.

In [19] usage scenarios are probability distributions for

so-called modes. Probabilities are estimated using large

number of long program runs. To guarantee statistical prop-

erties (for example relative independence of input order),

the program runs are divided into short runs, for example

cycles in periodic real-time systems, transaction in transac-

tion processing systems, and if necessary sampled. Modes

are then defined as sets of similar runs based on input

classes or other context parameters.���������� � � � � 			
���

Figure 1. Input variable I.

Thus we define a usage scenario as U =
〈X0, ..., Xn−1〉, where the Xi(0 ≤ i < n) are input

variables, each with bounds on values, a given type,

and a probability distribution Pi : Xi → [0, 1] for the

occurrence of these values in the input. We assume

that these variables (and hence their distributions) are

chosen to be statistically independent and either have

small domains naturally or model discredited partitions of

real input variables. (See Figure 1 for an illustration of

these concepts). The input domain M is then defined as

M := X0 × · · · × Xn−1. The probability distributions

Pi(0 ≤ i < n) extend uniquely to a probability distri-

bution P : M → [0, 1] on the input domain, defined by

P (x0, . . . , xn−1) = P0(x0) × · · · × Pn−1(xn−1).����������
������ ����� �����

� � � ���� ��
Figure 2. Usage scenario.

Furthermore we assume that 0 ≤ pt < 1 is a given prob-

ability threshold for ignoring low probability inputs (and

consequently later their times). This will permit predictions

of the form “with 0.99 probability WCET< 500ms.” Inputs

over the threshold are called active and the ratio of active in-

puts over all inputs is called the usage-scenario utilization.

See also Figure 2 for an illustration of the concept.

2

4 Component WCET analysis

Components are reused in different products and differ-

ent contexts. A different usage profile can substantially

change the behavior of a component. To predict the exe-

cution time of a complex component with high accuracy,

components must today be reanalyzed for every new usage

profile – a very costly activity. Furthermore, it is not cer-

tain that the source code is available for components as they

may be delivered by sub contractors. In this case analyses

become even more costly [20].

Our method overcomes the problem by analyzing the ex-

ecution times and their probability as a function of the input

of the component. We assume that execution time varies

with different inputs and their associated modes.

We define an input domain I for a set of input variables

{X0, X1, . . . , Xn−1} as I = X0 × X1 × · · · × Xn−1.

Each element q in I is associated with an execution time

ET (q) ∈ W, where all execution times of the component

are represented in the set W. The longest execution time

max(W) = WCETabs is the absolute WCET. A traditional

static WCET tool will only find an estimate WCETest ≥
WCETabs; however, we want to find the WCET for a spe-

cific usage. Because I often is very large, we can not per-

form WCET analysis for every element in I (every possible

usage), instead we perform static WCET analysis with an-

notations on the input parameters, and perform a number of

systematic runs with different bounds on the input param-

eters. When WCET analysis is performed with restrictions

on the input parameters, not all input elements are consid-

ered, but rather a set of clusters {Dl|Dl ⊆ I}, such that

D0 ⊕ D1 ⊕ · · · ⊕ Dn−1 = I, where A = B ⊕ C means

B ∩ C = ∅ ∧ A = B ∪ C. Thus, a cluster is a subset of

all possible inputs, and a WCET tool can produce a WCET

considering only that subset of inputs. Each cluster Dl is

analyzed and associated with two execution times etmax
l =

max(ET (d))d∈Dl
and etmin

l = min(ET (d))d∈Dl
. The

time etmax
l is the result of running the WCET tool with the

inputs represented in Dl with respect to WCET. The time

etmin
l is the result of running the WCET tool with the inputs

represented in Dl with respect to best-case execution time

(BCET).

As with all static WCET analyses all execution time es-

timates are safe over-estimations.

4.1 Clustering WCETs

To handle the size of the input domain I clusters need

to be expressed with bounds or other operators, where each

bound is associated with a WCET. It is often unfeasible to

make a list of all inputs that are associated with one cluster;

furthermore, WCET-tools often uses bounds to restrict the

inputs. With the mathematical operators {≤, >} ranges of

inputs can be expressed. The clusters Dl should be chosen

in such a way that similar execution times are grouped and

can be expressed as restrictions on the inputs. A challenge is

to find the right clusters Dl such that accuracy of execution

times become high.

4.2 Finding clusters

When the input domain I is too large to perform WCET

analysis for every single input combination it is necessary

to divide I into clusters of input combinations and analyze

each cluster with respect to execution time. As the relation

between inputs and WCET is not known a priori, the input

space must be searched to find clusters such that all input

combinations within the cluster produces similar execution

times. In order to find such clusters it is necessary to have a

way of evaluating clusters.

Theoretically, each single input combination has only

one fixed execution-time. The difference between etmax
l

and etmin
l of a cluster Dl shows the greatest difference be-

tween two execution times within the cluster. This in turn

is an indicator of how similar the execution times are in the

cluster. The sum of the difference between etmax
l and etmin

l

of all clusters
∑

l(et
max
l − etmin

l) should be minimized to

get the highest accuracy. In the extreme, each cluster con-

tains one element; a good solution is a trade-off between

acceptable difference and max number of clusters. If the

difference between etmax
l and etmin

l of the cluster is larger

than the required accuracy the cluster is not evaluated as a

good cluster. Thus, the allowed difference between etmax
l

and etmin
l of the cluster depends on the required accuracy

of the cluster.

It is desired to create as few clusters as possible and

yet acquire as high accuracy as possible. Clusters are ef-

fectively annotations (input restrictions) to a WCET-tool.

Hence, we need methods to find annotations for WCET-

tools.

To find accurate clusters with the least effort we propose

a binary tree search approach, recursively dividing the in-

put space into two clusters until the required accuracy has

been found for all branches. Finding the clusters is a blind

search problem. The only data initially known is the longest

and shortest execution time for the entire search space (the

WCET and BCET). This lack of knowledge depends on the

nature of most WCET-tools, they provide a WCET and a

BCET given a program and annotations; we want a large

number of execution times considering different input com-

binations. The more the input space is divided the more data

become available. There are several possible approaches

to solve blind search problems, where binary search, simu-

lated annealing and evolutionary search, are a few possible

candidates.

Consider a simple example (Figure 3) with a function

foo having two input variables x and y, where x can take

the values [0..9] and y can take the values [0..4]. All possi-

3

ble execution times given this simple example are summa-

rized in Table 1. In this small example there are only 50

possible input combinations, and it is trivial to make an ex-

haustive search to find all combinations that give the same

execution time. In a larger example, this is not possible. We

have chosen such a simple example to simplify the visual-

ization of the method.

Figure 3. Example code.

#i x y cond. etmax
l etmin

l

4 [3, 4] [1, 2] 170 170

2 [3, 4] [0] 130 130

12 [0, 2] [0, 4] x 6= y 140 140

15 [5, 9] [0, 2] 130 130

2 [1, 2] [1, 2] x = y 60 60

1 [0] [0] 20 20

14 [3, 9] [3, 4] 1 1

Table 1. Clustered WCETs with respect to the

example code shown in Figure 3. #i is the
number of input combinations. x and y are

the limitations on the inputs. Cond is a log-

ical condition on the inputs and etmax

l
and

etmin

l
are the longest and shortest execution

times produced by the inputs.

One set of values produce the worst-case execution time

WCET. In the example in Figure 3 the WCET is produced

by inputs represented by the first row in Table 1. All other

input combinations lead to lower execution times. Consider

an example where the usage scenario defines x = {3..6}
and y = {3..4}, the WCET will never occur. A WCET

topology of the example is shown in Figure 4. For the case

of a 2-dimensional input domain, the WCET topology is

visible in an execution time matrix as shown in Figure 5.

The initial knowledge of the matrix is only the highest

and lowest values (Figure 6.a). Since the knowledge of

� ! " �#! " � !$" �#!$" � !%" �#!%" � !&" �#!&" � !'" �#!'" �(!'"
$) $* $' $% $) * ' % +,-.

/,-.
01234 567891:4961; �<!="

497> 5?3;4>@ A

Figure 4. WCET topology with respect to the
example code shown in Figure 3.

the execution times is limited we need a search method to

localize areas with the similar execution times. One ap-

proach is to make a binary search for similar WCETs. In

Figure 6 binary search is shown, dividing the search space

into smaller and smaller clusters until the desired accuracy

has been reached. The accuracy is defined as the distance

between the highest and lowest values etmax
l and etmin

l for

each cluster. In Figure 6, clusters that have reached their

desired accuracy are marked with “*”.BC DEC DEC DEC DECDEC FC DEC DEC DECDEC DEC FC DEC DECDGC DHC DHC D DDGC DHC DHC D DDGC DGC DGC D DDGC DGC DGC D DDGC DGC DGC D DDGC DGC DGC D DDGC DGC DGC D D
I J K L MIJKLMNOPQR

S T

Figure 5. Matrix of the inputs {x,y} with cor-

responding execution times with respect to

the example code shown in Figure 3. The dot-
ted line shows the cluster Dl as shown in Fig-

ure 4.

If the input space is divided into too few clusters accu-

racy will be lost; consider the extreme case of only using

one cluster (all inputs), then the accuracy will be the same

as standard WCET analysis. Due to large input spaces it

is often infeasible to make an exhaustive search; therefore,

even when the input domain is divided into a relatively large

number of clusters it is still important how these are chosen

4

to maximize accuracy. Since the analysis is supposed to be

reused, the effort of the analysis itself is of less concern.

UVW XYZU[\ XZX]̂_̀aYbc
Z X] ^ _ UVW XYZU[\ XUVW X ẐU[\ X

ZX]̂_̀aYbc
Z X] ^ _

UVW X_Z UVW X_ZU[\]Z U[\ X_ZUVW XYZ UVW XU[\ X Ẑ U[\ XUVW X Ẑ UVW XU[\ X Ẑ U[\ X
ZX]̂_̀aYbc

Z X] ^ _UVW XYZ UVW X_ZU[\]Z U[\ XUVW X Ẑ UVW XU[\ X Ẑ U[\ X
ZX]̂_̀aYbc

Z X] ^ _
d e
f g

hi hi
hihi

Figure 6. Binary search with respect to the

input matrix shown in Figure 5. An ’*’ indi-
cates that a cell does not need to be further

divided. Max indicates the WCET reported by

the tool given the annotations, and min the
BCET dito.

5 Evaluation

We have performed a small evaluation with the SWEET

WCET-tool [18]. SWEET has an annotation language to

give restrictions on input parameters. Hence, it is very suit-

able for the approach presented in this paper. The annota-

tions are described by the clusters.

Two components from an academic adaptive cruise con-

troller (ACC) have been analyzed, “loggerOutput” and

“SpeedControl”. Both components have three input vari-

ables. We have a performed a guided binary search on both

components. The guidance consisted of limitations on the

input variables to 8 values for each input; these limitations

were chosen based on the source code. The result of the

guidance was an input domain of 83 = 512 input combina-

tions on each of the components. It required 12 clusters of

the input domain of the “LoggerOutput” component to par-

tition the execution times and produce 3 WCET expressions

called contracts. The execution times were more scattered

in the “SpeedLimit” component and it required 25 clusters

to isolate all execution times into three contracts, The final

contracts derived from the clusters for the “LoggerOutput”

and “SpeedLimit” components are shown in Tables 2 and 3.

Expression WCET

1 i2 ≤ 0 ∧ i3 ≤ 0 239

2 (i2 > 0∧ i3 ≤ 0)∨ (i2 ≤ 0∧ i3 > 0) 433

3 other 627

Table 2. LoggerOutput component “contract”

from 12 clusters.

Expression WCET

1 i1 ≤ 0 105

2 i2 > 0 ∧ ((i1 = 0 ∧ i3 < 0)∨
(i1 > 0 ∧ i3 ≥ 0))

384

3 other 263

Table 3. SpeedLimit component “contract”
from 25 clusters.

The derived contracts are used with a usage scenario on

the input parameters. Depending on the usage the contracts

will give the WCET corresponding to the usage.

We see that for many usages we get substantially lower

WCETs for both components. Using a traditional usage

independent analysis would produce much to pessemistic

WCET for many usage scenarios.

6 Applicability

The method described in this paper is a general cluster-

ing method that is well suited for creating contract based

WCETs for components. Each cluster can also be aug-

mented with more information, e.g., scheduling parameters

and information on energy consumption. In this way clus-

ters can be created with respect to several parameters and

trade-offs between them can be made.

Furthermore, the proposed method is useful for both hard

and soft real-time systems. In this paper we have only de-

scribed the application for hard real-time systems.

The methods as described in this paper indirectly per-

form an exhaustive WCET analysis because all input com-

binations are represented. This will result in safe overesti-

mations and the “real” WCET is guaranteed to be included

in the analysis.

For soft real-time systems, a number of input com-

binations (not clusters) can be analyzed with respect to

execution-time and clusters can be created through, e.g., the

least square method.

5

The focus of the method is still to create tight and ac-

curate reusable WCET estimations through expressing the

WCET as usage parameterized contracts.

6.1 Hardware effects

It should be noted that the contracts specified for the

clusters only consider input data limits. The timing of the

code in the cluster will also be dependant on the hardware

upon which the code is executed and where in memory the

code is located. Assuming that a simple 4-, 8- or 16-bit CPU

is used, which is common in a large segment of the embed-

ded domain, and that the code is forced to reside in and

access memory areas with the same timing properties as as-

sumed in the WCET analysis, the WCET estimates derived

should also be valid in the new context. However, if a more

advanced CPU is used, maybe with a cache or some other

performance enhancing features, and/or if the compiler and

linker change the code structure, and/or if some other hard-

ware timing properties are changed, the derived component

WCET estimates should be used with caution. Thus, in the

latter case the contract for a component might also need to

include information upon the hardware, compiler and linker

configuration. This is something not yet considered in our

work.

7 Conclusions and future work

Component-Based Software Engineering (CBSE) is a

promising development method to reduce time-to-market,

reduce development costs, and to increase software quality.

One main characteristic of CBSE that enable these benefits

is its facilitation of software component reuse, i.e., the same

software component can be used in different contexts. Un-

fortunately for resource constrained systems, reusable com-

ponents with rich behavior increase resource consumption

by decreasing the tightness of analyses.

In this paper we have presented a method for clustering

Worst-Case Execution-Times (WCETs) with respect to be-

havior for reusable software components. The purpose of

the method is to associate different WCETs with subsets of

the component behavior to achieve tight WCET estimates.

The presented method is intended to be used for facilitating

reusable WCET analysis for reusable software components

as presented in, e.g., [1, 2]. We have illustrated the method

and demonstrated its potential in a small case study.

Future work includes case studies on large components

to evaluate the feasibility of the approach. Also case stud-

ies on industrial code is planned to evaluate the industrial

appropriateness of the proposed method. We also plan to

investigate augmentation of clusters with additional param-

eters, e.g., scheduling parameters.

References

[1] Fredriksson, J., Nolte, T., Nolin, M., Schmidt, H.:

Contract-based reusable worst-case execution time es-

timate. In: Proc. of the 13th International Conference

on Embedded and Real-Time Computing Systems and

Applications (RTCSA’07), Daegu, Korea (2007)

[2] Fredriksson, J., Land, R.: Reusable component anal-

ysis for component-based embedded real-time sys-

tems. In: Proc. of the 29th International Conference

on Information Technology (ITI 2007), Cavtat near

Dubrovnik, Croatia (2007)

[3] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N.,

Thesing, S., Whalley, D., Bernat, G., Ferdinand,

C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,

Puschner, P., Staschulat, J., Stenström, P.: The worst-

case execution time problem — overview of meth-

ods and survey of tools. Accepted for publication in

ACM Transactions on Programming Languages and

Systems (2007)

[4] Lisper, B.: Fully automatic, parametric worst-case ex-

ecution time analysis. Technical report, Mälardalen

Real-Time Research Centre (2003)

[5] Altmeyer, S.: Parametric wcet analysis, parametric

framework and parametric path analysis. Master’s the-

sis, Saarland University, Department of Computer Sci-

ence (2006)

[6] Humbert, C.: Parametric wcet analysis, parameter

analysis and parametric loop analysis. Master’s thesis,

Saarland University, Department of Computer Science

(2006)

[7] aiT: (ait execution time analyzer) Absint:

http://www.absint.com/ait/.

[8] Colin, A., Bernat, G.: Scope-tree: A program repre-

sentation for symbolic worst-case execution time anal-

ysis. In: ECRTS ’02: Proceedings of the 14th Euromi-

cro Conference on Real-Time Systems, Washington,

DC, USA, IEEE Computer Society (2002) 50

[9] Vivancos, E., Healy, C., Mueller, F., Whalley, D.:

Parametric timing analysis. In: LCTES ’01: Proceed-

ings of the ACM SIGPLAN workshop on Languages,

compilers and tools for embedded systems, New York,

NY, USA, ACM Press (2001) 88–93

[10] Bernat, G., Colin, A., Petters, S.: pWCET, a Tool for

Probabilistic WCET Analysis of Real-Time Systems.

In: WCET. (2003) 21–38

6

[11] Lee, J.I., Park, S.H., Bang, H.J., Kim, T.H., Cha,

S.D.: A hybrid framework of worst-case execution

time analysis for real-time embedded system software.

In: Aerospace Conference, IEEE (2005) 1–10

[12] Ji, M.L., Wang, J., Li, S., Qi, Z.C.: Automated

wcet analysis based on program modes. In: Proc. of

AST’06, Shanghai, China, ACM (2006)

[13] David, L., Puaut, I.: Static determination of proba-

bilistic execution times. In: Proc. of the 16th Euromi-

cro Conference on Real-Time Systems (ECRTS’04).

(2004) 223–230

[14] Sehlberg, D., Ermedahl, A., Gustafsson, J., Lisper, B.,

Wiegratz, S.: Static wcet analysis of real-time task-

oriented code in vehicle control systems. In: Proc.

of the 2nd International Symposium on Leveraging

Applications of Formal Methods (ISOLA’06), Paphos,

Cyprus (2006)

[15] Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.:

Applying static wcet analysis to automotive commu-

nication software. In: Proc. of the 17th Euromicro

Conference of Real-Time Systems, (ECRTS05), Mal-

lorca, Spain (2005)

[16] RapiTime: (Rapitime execution time analyzer) Rapita

Systems: http://www.rapitasystems.com/.

[17] Bound-t: (Bound-t execution time analyzer) Tidorum

Ltd: http://www.tidorum.fi/bound-t/.

[18] SWEET: (Swedish execution time tool) SWEET:

http://www.mrtc.mdh.se/projects/wcet/.

[19] John D. Musa, A.I., Okumoto, K.: Software Reliabil-

ity - Measurement, prediction, application. McGraw-

Hill, New York (1987)

[20] Korel, B.: Black-box understanding of cots compo-

nents. In: Proc. of the 7th International Workshop

on Program Comprehension (IWPC ’99), Washington,

DC, USA, IEEE Computer Society (1999) 92

7

Data-Flow Based Detection of Loop Bounds

Christoph Cullmann and Florian Martin

AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany

{cullmann,florian}@absint.com, http://www.absint.com

Abstract

To calculate the WCET of a program, safe upper bounds

on the number of loop iterations for all loops in the program

are needed. As the manual annotation of all loops with such

bounds is difficult and time consuming, the WCET analyzer

aiT originally developed by Saarland University and AbsInt

GmbH uses static analysis to determine the needed bounds

as far as possible.

This paper describes a novel data-flow based analysis

for aiT to calculate the needed loop bounds on the assem-

bler level. The new method is compared with a pattern

based loop analysis already in use by this tool.

1. Introduction

To calculate the WCET for a program, safe upper bounds

for the iterations of all included loops must be known. To

get a precise WCET estimation, lower bounds should be

known, too.

As programs tend to contain many loops with bounds de-

pending on the call sites of the surrounding routine, relying

on user annotations for loop bounds would cause too much

work for the user. Beside that, there is also the inherent

danger that user-annotated bounds could contain errors, as

they need to be kept up to date while the application code is

changing. Therefore aiT aims at deriving safe loop bounds

automatically by using a static analysis.

Until now, a pattern-based approach for loop bound de-

tection is used. This method needs adjustments for all sup-

ported compilers and in some cases even different optimiza-

tion levels. While experience has shown that this works

well for many simple loops, no bounds are detectable for

more complex loops with multiple modifications of the loop

counter inside one iteration.

To overcome these restrictions, we introduced a new

method for loop bound detection that uses an interproce-

dural data-flow analysis to derive loop invariants from the

semantics of the instructions. This new analysis does not

depend on the used compiler or optimization level but only

on the semantics of the instruction set for the target ma-

chine. It is able to handle loops with multiple exits and

multiple modifications of the loop counter per iteration in-

cluding modifications in procedures called from the loop.

Additional, it detects and handles overflows of size limited

datatypes.

In this section, we describe the techniques behind the

old and new loop analyses, compare their results, and pro-

vide insight on how the new analysis will be used in aiT.

First we start in Section 2 with introducing the common ba-

sis of both analyses. In Section 3 two small examples for

loops are shown that will be used later as running exam-

ples to illustrate the application of both analyses. Section 4

will cover the pattern-based approach. Then we introduce

the new data-flow based approach in Section 5 and com-

pare both analyses in Section 6. Finally we show how the

new analysis is integrated into the WCET Analyzer aiT in

Section 7.

2. Common Basis for Both Analyses

As both loop analyses have been developed to be used

as part of the WCET Analyzer aiT, they are using the aiT

framework presented in [3]. In particular, they operate on a

control flow graph which is reconstructed from the machine

executable (see [10]) and in which all loops have been trans-

formed to tail-recursive routines by a loop transformation

(described in [7]). The next section will show two example

loop routines, which are used in the subsequent description

of both analyses. A loop iteration equals one execution of

the loop routine.

While the aiT framwork and the presented loop analy-

ses work on the compiled executables, there are other ap-

proachs that work on the level of the programming lan-

guage. For example in [6] and [5] a framework is described

that works on the C sources of a program to calculate a

WCET and the therefore needed loop bounds.

To avoid code duplication, the analyses use the existing

value analyzer of the framework to query the addresses of

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1193

while (r31 < 16) // 0x100044

{

r31 = r31 + 1; // 0x10004c

}

Figure 1. A loop with one loop test and single increment

memory accesses and to obtain knowledge about the con-

tents of accessed registers and memory cells. As the value

analysis produces integer intervals as approximations for

addresses and memory contents, both loop analyses use in-

tervals for their calculations, too. Beside this, the loop

analyses query the value analysis for infeasible control-flow

edges, i.e. edges that are not taken in any run of the pro-

gram. This information is used in both analyses to exclude

unreachable loops from loop bound detection. For more de-

tails about the value analysis please refer to [9]. The value

analysis information allows separate analysis of the loops

for each calling context and monitoring the loop counter

even if it is a global variable, a function parameter or modi-

fied over a pointer, which is important as shown in [8].

The analyses take into account that programs often con-

tain nested loops for which the iteration bounds of the inner

loops depend on the iteration bounds of outer loops. There-

fore both analyses sort the loops by their nesting depth and

analyze them from the outside to the inside. After handling

one nesting depth, value analysis is restarted with the new

derived loop bounds as input to get more precise informa-

tion while looking for the bounds of the inner loops.

As value analysis gets more precise if it also knows the

lower bound of a loop, both analyses output not only the

safe upper bounds needed to calculate any WCET, but in-

tervals that are guaranteed to contain all possibilities for the

number of loop iterations.

3. Running Examples

To illustrate the working of the two loop analyses, two

simple loops found in programs for the PowerPC architec-

ture are chosen as examples. Figures 1 and 2 show the cor-

responding loop routines.

Both loops use machine register 31 as their loop counter.

We assume for the upcoming calculations and analyses that

this register contains the value zero before the first loop it-

eration.

The loop in Figure 1 is a simple loop incrementing its

loop counter in each iteration by exactly one. The loop is

first entered with counter value 0, then with value 1, etc. un-

til it reaches 16. When it is entered with counter value 16,

the test r31 < 16 fails for the first time so that there are no

further loop iterations. Therefore, there are exactly 17 loop

iterations. The loop analysis should thus return the inter-

val [17, 17] (the most precise answer) or any larger interval

containing 17 (correct, but imprecise).

The loop in Figure 2 is similar, but a counter increment

of one or two is possible, as the control flow forks into two

branches inside the loop routine. The safe upper bound is

still 17 as in the first example, but the lower bound is now

only 9. The result of the loop analysis should thus be [9, 17]
or any larger interval.

4. The Pattern-Based Approach

The current loop analysis in aiT uses patterns to detect

the loop bounds for common loop variants. These patterns

are handcrafted for the supported compilers and their dif-

ferent optimization levels. Some intraprocedural analyses

are used to handle the matching, like intraprocedural slic-

ing and dominator/postdominator analysis.

A typical loop pattern to detect loops generated by C

compilers from for-loops consists of the following con-

ditions:

• The loop is only left by one conditional branch;

• the same compare of a register with a constant sets the

condition for this branch in each iteration;

• the register that is compared is incremented by a con-

stant value at the same instruction in each iteration;

• the start value of the register is known by the value

analysis.

2

while (r31 < 16) // 0x100048

{

if (r30 == 0) // 0x100050

{

r31 = r31 + 1; // 0x100058

}

else

{

r31 = r31 + 2; // 0x100060

}

}

Figure 2. A loop with one loop test and two different increments

To match even such a simple pattern, multiple internal

subanalyses must be performed. For this example pattern,

the following steps would be needed:

• Check for a conditional branch instruction that domi-

nates and postdominates the recursive call of the loop

routine;

• slice backwards from the branch inside the loop rou-

tine to find the compare instruction modifying the con-

dition flag evaluated by the branch instruction;

• test whether it is a compare of a register with a con-

stant;

• slice backwards from the compare instruction to find

all instructions modifying the registers/memory cells

used in the compare instruction;

• test whether only one instruction is found in the last

step and whether it is a constant addition/subtraction;

• test whether this one instruction dominates and post-

dominates the compare instruction;

• query the value analysis for the start value of the used

register;

• calculate the bounds by using the now known start/end

value and increment.

If we apply this pattern to our example loop of Figure 1,

we get a match, as this loop is left only by a conditional

branch after the compare of the loop counter with some con-

stant and the loop counter is incremented in each round by

one. The resulting bound would be [17, 17], which is in this

case the optimal solution.

The slightly more complex loop of Figure 2 is not

matched by this pattern, as the loop counter is not incre-

mented in each iteration by the same instruction, but by

two different addi instructions in two different control-

flow branches. Therefore no loop bound can be determined

and thus no WCET is obtained.

Given how many steps are already needed for this sim-

ple pattern and that all this needs to be done by handwritten

code, it is clear that bigger patterns to handle more complex

loops, like the one shown above, are time consuming to im-

plement correctly and to maintain. This illustrates the need

3

for a new kind of loop analysis, which will be presented in

the next section.

5. Improved Loop Analysis Based on Data-

Flow Analysis

To enhance the loop bound detection for more complex

loops and to avoid the dependencies on compiler versions

and optimization levels, a new loop bound analysis based

on data-flow analysis was designed. The following provides

a brief introduction to this new method. More information

can be found in [2].

A run of the new analysis consists of the following

phases:

1. Classification of all loops;

2. Detection of possible loop counters;

3. Data-flow analysis to derive the invariants;

4. Analysis of the loop tests to calculate the loop bounds.

5.1. Loop classification

In the first phase, loops are classified using informa-

tion obtained from value analysis. Loops that can never

be reached are excluded from further analysis and get the

safe bound [0, 0] as the corresponding loop routines are

never called. For the remaining loops, the algorithm checks

whether value analysis already knows after how many re-

cursive calls their loop routine cannot be called again. If

this number is known, it can be taken as a safe upper bound

for the loop, even if the further stages fail to produce results.

5.2. Search for possible loop counters

For the loops that still need to be analyzed, a simple

intraprocedural analysis is run to search all registers and

memory cells accessed inside the loop routine. Then it is

checked whether value analysis knows their start value, i.e.

their value before the first call of the loop routine. The reg-

isters and memory cells with known start value are consid-

ered as potential loop counters. They are further examined

by a data-flow analysis to derive loop invariants (see be-

low). Loops without any detected loop counter must remain

unbounded.

Our first example loop (Figure 1) only accesses register

31. For our second example (Figure 2), the intraprocedu-

ral analysis would find registers 30 and 31. Assuming that

value analysis only knows the start value of register 31, this

register would be the only potential loop counter in both

loops.

5.3. Invariant analysis

This data-flow analysis is the core of the improved loop

analysis. For each potential loop counter detected in the

previous phase, it calculates for each program point of the

loop routine a set of expressions, called invariants, that indi-

cate how the counter is modified from the entry of the loop

routine to this point in each iteration.

The analysis uses a special language for the expressions,

IVALA. Variables in IVALA expressions describe registers

or memory cells, including information about the register

number or memory address and the data size in bytes. The

loop counter in our examples would be expressed in IVALA

as (register , 31, 4), as it is register 31, which is 4 byte wide.

The language allows to express assignment between

variables, assignment of a constant integer interval to a vari-

able, and modification of a variable by adding a constant

integer interval. This seems to be very restrictive, as other

modifications like non-constant addition or any kind of mul-

tiplication are not supported, but the evaluation in the next

section will show that it is sufficient to detect most loop

bounds in a program, as the most common loops are count-

ing loops. Besides, this restriction serves to keep the com-

plexities of invariant analysis and of the subsequent bound

calculation within reasonable bounds.

For the loop routine of our first example shown in Fig-

ure 1 the analysis would e.g. calculate the following expres-

sion set for the ingoing edge of the recursive call of the loop

routine:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 1]}

where (register , 31, 4)◦ is a placeholder for the value of

(register , 31, 4) at the beginning of the loop iteration. The

expression indicates that register 31 is incremented by ex-

actly one in each iteration. For the example in Figure 2 the

analysis would calculate:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 2]}

This provides the information that the register is incre-

mented by one or two.

5.4. Evaluation of the loop tests and bound
calculation

In this phase, for each loop all existing loop tests will be

evaluated. A loop test is a basic block with a conditional

branch leaving the loop routine. For each test a bound will

be calculated. All these bounds are then combined to one

bound for the whole loop. The following steps are needed

to calculate the bound for a loop test:

• The branch type is determined;

4

• the compare instruction evaluating the condition used

by the branch is searched;

• the variables used in the compare instruction are de-

tected;

• the flow-analysis results are used to get expressions for

the found variables;

• an equation system is built and solved to get the con-

crete loop bound.

A detailed description of this process can be found in [2].

For our first example (Figure 1), this process would look

as follows:

• Inspection of the branch in basic block 0x100044

yields that the loop is left on greater-equal.

• A search for the corresponding compare instruction

finds the first instruction in the block.

• As variable (register , 31, 4) and the constant integer

16 are used, the exit expression is (register , 31, 4) ≥
16.

• The flow-analysis will yield that (register , 31, 4) is in-

cremented by one in each iteration.

• The solver will compute the concrete bound [17, 17],
which is the optimal solution.

The handling of the second example is analogous, ex-

cept that the flow-analysis delivers an increment of [1, 2]
and therefore the solver would calculate the bound [9, 17].

Both examples show comparisons with integer constants

as loop test but comparisons of two variables are supported,

too, as long as the value analysis is able to detect a constant

interval for one of them.

6. Practical Evaluation

While the new analysis is more generic by design, we

still need to demonstrate that it is applicable to real-world

programs. Therefore an extensive evaluation with both code

from a compiler benchmarks suite and with real software

from the embedded-system world was performed in [2].

The results show that the new analysis method works

for most loops equally well or better than the pattern-based

method. Only in some corner cases, the old analysis takes

the lead, as it has special patterns for them.

The runtime costs of both analyses are comparable: the

new analysis is slower than the pattern-based approach only

by a constant factor of at most three for some tests. Table 2

shows measured runtimes of both analyses for four differ-

ent tasks out of industrial real-time software for a PowerPC

test optimal old analysis new analysis

do char 001 [1,∞] [1,∞] [1,∞]
do char 008 [16] [16] [16]
do char 009 [16] [16] [1,∞]
do char 010 [1, 16] [1, 16] [1,∞]
for char 001 [17] [1,∞] [17]

for char 017 [17] [17] [17]
for char 049 [1] [1, 17] [1, 17]
for char 058 [17] [1,∞] [17]

for char 061 [9] [1,∞] [9]

for char 062 [17] [1,∞] [17]

for int 001 [17] [1,∞] [17]

for int 017 [17] [17] [17]
for int 049 [1] [1, 17] [1, 17]
for int 058 [17] [1,∞] [17]

for int 061 [9] [1,∞] [9]

for int 062 [17] [1,∞] [17]

Table 1. Single loop synthetic tests, DiabData

test old analysis new analysis

mpc755 1 43.54 63.75

mpc755 2 3.82 9.25

mpc755 3 0.53 0.77

mpc755 4 0.47 0.69

Table 2. Runtimes of analyses in seconds

MPC755. The runtimes were measured on a 3.2 GHz Pen-

tium 4 with 2 GB RAM running Linux.

To show that the new analysis is compiler-independent,

Tables 1 and 3 present the results of both analyses for

code generated by the DiabData ([11]) and GNU C com-

piler ([4]), respectively. While both analyses work reason-

ably well for the DiabData compiler, only the data-flow

based analysis works for the GNU C compiler without ad-

justments. To obtain comparable results, the pattern-based

analysis would require additional effort to develop loop pat-

terns adapted to the code generated by the GNU C compiler.

7. Summary and Outlook

As the evaluation has shown, both analyses have some

benefits in their own areas. While the pattern-based analysis

can keep the lead for special cornercases where handcrafted

patterns can play out their strength, the data-flow based

analysis works best for typical loops occurring in standard

programs. This flexibility of the new analysis is reached

by it’s expressions, which are powerful enough to handle

loops with multiple exits, multiple/conditional changes of

the loop counter and overflows of the used datatypes.

As aiT is aimed to provide the best loop bound detection

possible, both analyses will be used in combination. First

5

test optimal old analysis new analysis

do char 001 [1,∞] [1,∞] [1,∞]
do char 008 [16] [1,∞] [16]

do char 009 [16] [1,∞] [16]

do char 010 [1, 16] [1,∞] [1, 16]

for char 001 [17] [1,∞] [17]

for char 017 [17] [1,∞] [17]

for char 049 [1] [1,∞] [1, 17]

for char 058 [17] [1,∞] [17]

for char 061 [9] [1,∞] [9]

for char 062 [17] [1,∞] [17]

for int 001 [17] [1,∞] [17]

for int 017 [17] [1,∞] [17]

for int 049 [1] [1,∞] [1, 17]

for int 058 [17] [1,∞] [17]

for int 061 [9] [1,∞] [9]

for int 062 [17] [1,∞] [17]

Table 3. Single loop synthetic tests, GNU

the fast pattern-based analysis is applied, and only for the

loops it is not able to handle, the more generic new anal-

ysis is run. This avoids any slow down for the analysis

of programs for which the old analysis already detected all

bounds, and enables the calculation of the WCET for pro-

grams with more complex loops.

This combined strategy is already in use for the PowerPC

and M32 architectures, with plans to extend it to the VAMP

architecture (described in [1]) in the near future.

References

[1] S. Beyer. Putting it all together - Formal Verification of the

VAMP. PhD thesis, Saarland University, Saarbrücken, 2005.

[2] C. Cullmann. Statische Berechnung sicherer Schleifengren-

zen auf Maschinencode. Diploma Thesis, Universität d.

Saarlandes, 2006.

[3] C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling,

I. Stein, S. Thesing, and R. Heckmann. New Developments

in WCET Analysis. In T. Reps, M. Sagiv, and J. Bauer, edi-

tors, Program Analysis and Compilation, Theory and Prac-

tice: Essays dedicated to Reinhard Wilhelm, volume 4444

of LNCS, pages 12–52. Springer Verlag, 2007.

[4] GNU Project. GCC Version 3.3, 2006.

[5] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo. A

tool for automatic flow analysis of c-programs for wcet cal-

culation. In B. Werner, editor, In Eight IEEE International

Workshop on Object-Oriented Real-Time Dependable Sys-

tems, pages 106 – 112, Guadalajara, Mexico, January 2003.

IEEE.

[6] J. Gustafsson, B. Lisper, C. Sandberg, and L. Sjöberg. A

prototype tool for flow analysis of c programs. In G. Bernat,

editor, WCET 2002 Workshop, Vienna, June 2002.

[7] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis

of Loops. In Proceedings of the International Conference

on Compiler Construction (CC’98). Springer-Verlag, 1998.

[8] C. Sandberg. Inspection of industrial code for syntactical

loop analysis. In WCET 2004 Workshop, Catania, July 2004.

[9] M. Sicks. Adreßbestimmung zur Vorhersage des Verhaltens

von Daten-Caches. Diploma Thesis, Universität d. Saarlan-

des, 1997.

[10] H. Theiling. Extracting Safe and Precise Control Flow from

Binaries. In Proceedings of the 7th Conference on Real-

Time Computing Systems and Applications, Cheju-do, South

Korea, December 2000.

[11] Windriver. DiabData C Compiler Version 4.4, 2006.

6

Finding DU-Paths for Testing of Multi-Tasking Real-Time Systems

using WCET Analysis

Daniel Sundmark, Anders Pettersson, Christer Sandberg, Andreas Ermedahl, and Henrik Thane

Department of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden

{daniel.sundmark,anders.pettersson,christer.sandberg,andreas.ermedahl,henrik.thane}@mdh.se

Abstract

Memory corruption is one of the most common
software failures. For sequential software and multi-
tasking software with synchronized data accesses, it has
been shown that program faults causing memory cor-
ruption can be detected by analyzing the relations be-
tween defines and uses of variables (DU-based testing).
However, such methods are insufficient in preemptive
systems, since they lack the ability to detect inter-task
shared variable dependencies. In this paper, we propose
the use of a system level shared variable DU analy-
sis of preemptive multi-tasking real-time software. By
deriving temporal attributes of each access to shared
data using WCET analysis, and combining this infor-
mation with the real-time schedule information, our
method also detects inter-task shared variable depen-
dencies. The paper also describes how we extended the
SWEET tool to derive these temporal attributes.

1 Introduction

Software complexity, and especially that of embed-
ded real-time systems, is rapidly increasing. Conse-
quently, the task of finding faults is getting more dif-
ficult. Among the most common software failures is
memory corruption, e.g., out-of-bound writes, pointer
failures, and usage of uninitialized variables. For
multi-tasking systems, failures also encompass non-
synchronized reads and writes, and non-reentrance fail-
ures. There exist several methods that address these
problems, typically in terms of static define and use
analysis (DU analysis), or DU-based testing methods.
However, the majority of these methods only address
systems with a single thread of non-preemptive execu-
tion [7, 9, 8], or multi-tasking systems with task inter-
ference restricted to synchronous interference [3, 4].

In our previous work we have addressed testing of
multi-tasking real-time systems where input and out-

1. a:=b+4

2. if expression is true then

3. result:=a+1

4. else then

5. result:=a*2

Figure 1. Example of defs and uses.

put from a task is given and produced at the beginning
and at the end of the task’s execution respectively [15].
We relaxed the model to encompass systems where task
communication could be performed within semaphore
guarded critical sections [14], and later also by non-
synchronized shared variables anywhere in the execu-
tion of the tasks [13]. In this paper, we extend previ-
ous results and show how to derive all DU-paths from
a preemptive real-time system using WCET analysis.

2 Background

Classic data-flow unit testing, for single thread exe-
cution programs, tests read and write accesses to pro-
gram variables [12]. Data-flow is identified in terms of
definitions and uses of data, where a definition is an
assignment of a value to a variable. A use is an action
of reading a variable or container. One classic DU rela-
tion is the DU-path. A definition d (write) and a use u
(read) of variable x constitutes a DU-path (d,u) if and
only if there exists a control-flow path p from d to u,
such that p contains no other definitions of x. E.g., in
Figure 1, uses are enclosed in a selection statement,
yielding the following DU-paths: {(a1, a3), (a1, a5)}.
Here, a is the identity of the variable and the index
corresponds to the line number in the code.

When testing using the all-DU-path coverage crite-
rion [17], DU-paths define test items that should be
covered. Hence, should the software contain any unin-
tended, and erroneous, DU-paths, these will be discov-
ered by a full all-DU-path coverage testing. Coverage
(i.e., the ratio between identified test items and exer-

1
ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1191

a:=b+4
…P

 R
 I

O
 R

 I
T

 Y

T I M E

B

a:=0

…
result:=a+1

A

a:=b+4
result:=a+1P

 R
 I

O
 R

 I
T

 Y

T I M E

B

a:=0A

b)

result:=1

a)

result:=b+5

Figure 2. Shared variable communication (as-
suming that the conditional expression is
true in task B).

cised test items) is the state-of-the-practice metric for
test thoroughness. A 100% coverage describes a fully
tested software with respect to a certain test criterion
(e.g., branch, path, or DU-path coverage).

When moving from unit-level DU-based testing to
system level testing of preemptive real-time systems,
a whole new dimension of complexity is added - con-
current access to shared resources. Figure 2 shows an
example execution of two concurrently executing tasks,
A and B. B consists of the code from Figure 1. A has
a higher priority than B, and contains a definition of
variable a. In B there is a definition (a:=b+4) and
two uses (result:=a+1 and result:=a*2) of the same
variable a. Hence, at task level, A only has a defi-
nition and no DU-paths. B has the following set of
DU-paths: {(aB1, aB3), (aB1, aB5)}, here indexed with
the task identity and line number. Assume that, for
correct intended behavior, B shall always complete the
definition and the use in a sequence, i.e., A is not al-
lowed to preempt B in between the definition and the
use. Figure 2a illustrates the case without preemp-
tion and in-between definition of a. In Figure 2b, A

preempts B and redefines the variable, thus corrupting
the value. Using the task level DU-path sets for testing
on system level will leave out scenarios as in Figure 2b
where more paths evidently exist. In order to cap-
ture system level DU-paths, it is necessary to consider
all scenarios (i.e., where the definition in A executes
strictly before, strictly after, and where it preempts
the definition and use in B). The resulting DU-paths
are: {(aB1, aB3), (aB1, aB5), (aA, aB3), (aA, aB5)}. In
Figure 3, the scenarios from Figure 2 are revisited, but
here, the focus is on the exact times when the accesses
are executed. E.g., in Figure 3a definition a:=b+4 is
executed at def 1 and overwritten at rd1. In Figure 3b,

P
 R

 I
O

 R
 I

T
 Y

T I M E

B

A

a)

result:=b+5

result:=a+1

a:=0

a:=b+4
def1 rd1

def3 rd3

use2

P
 R

 I
O

 R
 I

T
 Y

T I M E

B

A

b)

result:=1

result:=a+1

a:=0

a:=b+4
def4 rd4

def6 rd6

use5

Figure 3. Shared variable access attributes.

a:=b+4 is executed at def 4 and overwritten at rd4.
Generally, for each access x, there is an interval with
extremal values x.min and x.max within which x can
be executed. Furthermore, for each definition d, there
is a point in time d.rdMax , where d is safely overwrit-
ten. Hence, to derive feasible shared variable DU-paths
on system level, we require (1) task-level information
of when shared variables may be accessed by each task
in the system, and (2) system-level information of how
these tasks are scheduled and temporally interfere.

In this paper, we derive all system-level shared vari-
able DU-paths by extending the method presented
in [13]. The contributions of this article are:

• An extension to the SWEET WCET tool [6], able
to derive task-level shared variable access times.

• The use of task-level shared variable access times for
deriving system-level shared variable DU-paths.

• An experimental evaluation of the effectiveness of
the approach.

We assume a uni-processor real-time system S.
The operating system and application software (im-
plemented as a set of tasks WS) operates to control
an external environment (e.g., a vehicular or industrial
mechatronic control system). We assume strictly peri-
odic tasks that follow the single shot semantics [2]. The
tasks are scheduled using the fixed priority scheduling
policy [1], and each task is assigned a unique priority.

In this paper, we represent a task as a 7-tuple,
〈 T, O, P, D,ET ,D,U 〉, where T is the periodicity of
the task. The task’s release time for each period is cal-
culated by adding the offset O to T . The scheduling

2

...

A. i := 1;

B. p := INIT;

C. do {

D. i := i + 1;

E. if(i <= MIN)

F. g := g + INCR;

G. p := p * g;

H. } while(i < MAX)

I. return;

i := i + 1

while(i < MAX)

return

exit

#C <= 10

p := p * g

g := g + INCR

if(i <= MIN)

i := 1

p := INIT

t
A

=1

t
B

=1

t
C

=2

t
12

=3

t
E

=2

t
F
=5

t
G

=2

t
H

=8

A

B

C

D

E

F

G

H

i := i + 1

while(i < MAX)

return

exit

p := p * g

g := g + INCR

if(i <= MIN)

i := 1

p := INIT

A

B

C

D

E

F

G

H

#C <= 10

#H = 0

i := i + 1

while(i < MAX)

return

exit

p := p * g

g := g + INCR

if(i <= MIN)

i := 1

p := INIT

A

B

C

D

E

F

G

H

#H = 0

#C <= 10

(a) Code example (b) CFG with flow (c) CFG for g use (d) CFG for p rdMax
and timing info timing analysis timing analysis

Figure 4. Example of timing analysis for defs and uses.

mechanism determines which released task will execute
based on the task’s priority, P . The task’s latest com-
pletion time is determined by its deadline, D. Further,
a task encompass information regarding the best- and
worst-case execution time of the task, ET , as well as
two sets of shared data accesses, defined in terms of de-
finitions (D) and uses (U) of the data. For each least
common multiple of the tasks’ period times (LCM),
the system schedule performs a recurring pattern of
task instance releases (jobs). In each LCM, each task
can spawn one or more jobs. The release time R and
deadline D of a job are calculated using the task T , O,
and D properties respectively.

3 System-Level DU Analysis

In this section, we show how to derive information
of when shared variables may be accessed by each task
in the system (Section 3.1), and how to combine this
information with the real-time schedule in order to de-
rive all system-level DU-paths (Section 3.2).

3.1 Task-Level Analysis

The task-level analysis derives the temporal proper-
ties for each shared variable access (definition or use)
in each task w ∈ WS . Three properties (min, max ,
and rdMax) are derived for each definition, and two
properties (min and max) are derived for each use. As
min and max are analogous for definitions and uses,
we will focus on the definition properties. Assuming a
definition d that defines a variable x, the d .min prop-
erty describes the shortest possible time from the start
of the task to the statement containing d. The d .max
property describes the longest possible time from the
start of the task to the statement containing d. The
d .rdMax property describes the longest possible time

for a path p, starting at task start s and ending at a
statement e, such that d is on p, e contains a state-
ment that redefines x, and no other redefinitions of x

are made between d and e. Intuitively, this property
describes the time (relative to the start of a task) where
a definition d is safely overwritten.

The SWEET tool (SWEdish Execution time
Tool) [5] is a research prototype WCET tool devel-
oped at Mälardalen University [10]. SWEET consists
of three distinguished phases: a flow analysis where
bounds on the number of times different entities in the
code can be executed is derived, a low-level analysis
where bounds of the execution times for instructions
are derived, (taking into account the effects of pipelines
and potentially instruction caches), and a final calcu-
lation phase where the flow and timing information is
combined to yield a WCET estimate.

We have modified SWEET to, except the “normal”
program WCET and BCET estimates, also produce
estimates upon the above mentioned min , max , and
rdMax values. Initially, we perform the flow- and low-
level analysis of the program, but not the calculation.
The result can be seen as a control-flow graph (CFG)
containing both flow- and timing bounds and with two
extra start and exit nodes. Figure 4(a) depicts an
example code with two globals g and p. Figure 4(b)
illustrates the CFG for the code. The flow analysis
has derived a loop bound of 10, expressed as an upper
bound on the number of times node C could be exe-
cuted. Each node is also given a timing bound by the
low-level analysis, valid each time the node is executed.

Secondly, we perform a reaching definition (RD)
analysis for global variables [11]. The analysis derives,
for each global variable, where in the program it may
be used and defined as well as how far each definition
may reach. Since pointers could be used to update
globals, the RD takes the input of a pointer analysis.

3

We derive the different estimates using IPET calcu-
lation [5]. In IPET each node and/or edge in the CFG
is given a time (tentity), and a count variable (xentity),
the latter denoting the number of times that block or
edge is executed. The WCET is found by maximis-
ing the sum

∑
i∈entities

xi ∗ ti, subject to constraints
reflecting the structure of the program and possible
flows. There are, e.g., constraints specifying that the
start and exit nodes each must be taken exactly once,
and constraints specifying that that each node must be
entered the same number of times as it is exited. The
estimate is normally derived using integer linear pro-
gramming (ILP). The BCET is found by minimizing
the same sum, subject to the same constraints.

Our analyses start from the above mentioned graph.
Depending on what timing values to derive, we modify
the graph by adding extra edges and flow contraints.
E.g., the graph for deriving min, max for a use u is con-
structed by adding en extra edge from the node holding
u to the exit node. Additionally, for all other edges go-
ing to the exit node we add a flow constraint specifying
that its source node cannot be taken. Thus, we force
the IPET calculation to exit through our newly created
exit-edge, thereby deriving the best-case and worst-
case estimates for u, instead of the “normal” BCET
and WCET. Figure 4(c) shows the CFG for calculat-
ing min and max for the use of g in node F. For each
global use and def derived in the RD analysis, we con-
struct a corresponding graph. The resulting graphs are
given as input to SWEET to derive the corresponding
min and max values.

To derive rdMax for a def d we first use the RD
analysis to derive the set of nodes which d may reach.
From these nodes we add an extra edge to the exit
node. Additionally, for all other exit-edges going from
a node which d cannot reach, we add a flow constraint
specifying that its source node cannot be taken. Thus,
we force the IPET calculation to exit through one of
the nodes d may reach. The rdMax value is derived
by a WCET calculation upon the resulting graph. Fig-
ure 4(d) shows the graph for calculating the rdMax
value of the p := INIT definition in node B.

3.2 System-Level Analysis

The algorithm for deriving system-level DU-paths
is based on the algorithm deriving Execution Order
Graphs (defined 1999 by Thane and Hansson [15] as
directed reachability graphs of all possible execution
orderings from a scheduled set of task instances dur-
ing a periodically repeated FPS schedule). Basically,
the EOG algorithm simulates the behaviour of a real-
time FPS scheduler, considering all interleaving pat-
tern alternatives caused by task execution time varia-

tions. As an example, Figure 2 displays two different
execution orderings of the same system caused by ex-
ecution time variations in task B. In our analysis, we
modify the EOG algorithm such that it given our ex-
tended task model (with D and U properties) instead
generates all possible DU-paths of the system. The al-
gorithm simulates the behaviour of the system by ex-
haustively searching all task interleaving patterns, and
acting upon shared variable accesses in the tasks at var-
ious times. Throughout the analysis, each access holds
a certain state (dead, active or live). An active access
has been executed, or can be executed at any time until
it has become live or dead. A live access has safely been
executed, and not been safely overwritten by another
access. A dead access is neither active nor live (i.e.,
the access has safely not yet been executed, is safely
overwritten, or has safely passed the time where it can
affect the result of the analysis). The rules for making
the transitions between these access states constitute
the foundation of the system-level analysis:
Definition rules:

1. At d.min , d makes a transition from dead → active .

2. At d.max , d makes a transition from active → live .

3. At d.rdMax , d makes a transition from live → dead .

Use rules:

1. At u.min, u makes a transition from dead → active .

2. At u.max , u makes a transition from active → dead .

DU-path rules:

1. At d.min , all DU-paths (d, u), such that u.var =
d.var and u is currently active, are derived.

2. At u.min, all DU-paths (d, u), such that u.var =
d.var and d is currently live or active, are derived.

These seven rules are implemented in the DuA-

nalysis algorithm. This algorithm (Figure 5) is a
slight variation1 of the original EOG algorithm [16],
built upon the manipulation of two data structures.
Throughout the analysis, an abstract state of type
State propagates through the execution of the sys-
tem. For each execution of a job, the abstract state
is changed according to the Transition created by ex-
ecuting the job. State represents the current abstract
state of the execution, and contains information of cur-
rently live definitions, active definitions, active uses,
and encountered DU-paths:

State : {liveDefs , activeDefs , activeUses , duPaths}

Transition represents a change of state incurred by
the execution of a (partial) job. Thus, Transition
contains new active definitions, killed live definitions,
killed active definitions, killed active uses, and the

1Changes to the original algorithm are blackened in Figure 5.

4

DuAnalysis (state, transition, rdy, RI , SI)
{

// When is the next job(s) released?
1. t =NextRelease(SI)
2. if rdy = ∅
3. rdy = MakeReady(t, rdy)
4. if rdy 6= ∅
5. DuAnalysis(state, transition, rdy, RI , (t, SI .r])

6. else state = SwitchTask(transition, state, RI)

7. else
// Extract the highest priority job in rdy.

8. J = Dispatch(rdy)
9. [α, β) = [max(J.R, RI.l), max(J.R, RI.l) + J.WCET)

10. a′ = α + J.BCET

11. b′ = β

12. state = SwitchTask(transition, state, RI)

13. transition = Execute(state, J, [α, β), RI)

// Add all lower prio jobs released before J’s termination,
// or before a high priority job is preempting J.

14. while((t < β) ∧ (Prio(t) < J.P))
15. rdy = MakeReady(t, rdy)
16. t = NextRelease((t, SI.r])

// Does the next scheduled job preempt J?
17. if ((t < β) ∧ (Prio(t) > J.P))

// Can J complete prior to the release of the next job at t?

18. if t > a′

19. DuAnalysis(state, transition, rdy, [a′, t), [t, SI .r])
20. if rdy = ∅
21. DuAnalysis(state, transition, MakeReady(t, rdy), [t, t), (t, SI .r])

22. else if t = a′

23. DuAnalysis(state, transition, MakeReady(t, rdy), [t, t), (t, SI .r])

// Add all jobs that are released at time t.
24. rdy = MakeReady(t, rdy)

// Best and worst case execution time prior to preemption?
25. J.BCET = max(J.BCET − (t − (max(J.R, RI.l)), 0)
26. J.WCET = max(J.WCET − (t − (max(J.R, RI.r)), 0)

27. Preempt(J, (t − (max(J.R, RI.l)), (t − (max(J.R, RI.r)))

28. DuAnalysis(state, transition, rdy ∪ {J}, [t, t], (t, SI.r])

// No preemption.
29. else if t = ∞ // Have we come to the end of the analysis?

30. DuAnalysis(state, transition, rdy, [a′, b′), [∞, ∞]) // Yes

31. else // More jobs to execute.
// Is there a possibility for a high priority job to succeed
// immediately, while low priority jobs are ready?

32. if (rdy 6= ∅ ∧ t = β)
33. DuAnalysis(state, transition, MakeReady(t, rdy), [t, t), (t, SI .r])

34. if a′ 6= b′ // And one branch for the low priority job.
// The regular succession of the next job

35. DuAnalysis(state, transition, rdy, [a′, b′), [t, SI .r))
}

Figure 5. The DuAnalysis algorithm.

WCET of the executed job:

Transition : {newActiveDefs , killedLiveDefs,

killedActiveDefs , killedActiveUses ,

wcet}

Intuitively, the combination of a State a1 and a Tran-
sition a′

1
yields a new State a2, representing the orig-

inal state affected by the changes in a′

1. E.g., if a1

contains a set of liveDefs {d1, d2, d3}, and a′

1
contains

a set of killedLiveDefs {d2}, then a2’s set of liveDefs
will look as follows: {d1, d3}. In the algorithm, this
process is formalized by the functions Execute and
SwitchTask, where

Execute : State × Job × Ivl × Ivl → Transition

SwitchTask : Transition× State × Ivl → State

In essence, the Execute function produces a change
of abstract state (Transition) incurred on original ab-
stract state by executing a certain job. The Switch-

Task function produces a new abstract state (State),

based on the original abstract state and the changes de-
scribed by Transition. The implementation of these
functions are directly based on the Definition, Use, and
DU-path rules shown above. Two more structures (Ivl
and Job) are used in the analysis. Ivl defines a time
interval by its extremal values l and r. Job represents
a task instance and contains definitions, uses, job pri-
ority, release time, BCET and WCET:

Job : {D,U ,P ,R,BCET ,WCET }

Roughly, the DuAnalysis algorithm starts with an
empty State at time 0 by scheduling the highest pri-
oritized ready job j. Using the Execute function,
j’s Transition is derived. Next, if j is always finished
before the next higher priority job is released, Switch-

Task combines the Transition with the old State to
a new State. The algorithm increments the time and
schedules the next job. Else, if j is certainly preempted
by a higher priority job, SwitchTask combines the
Transition with the old State to a new State - but
only regards the events that predate the preemption,
stores the remainder of j, increments the time, and
schedules the higher prioritized job. Else, if j might
be preempted, the algorithm splits into two recursive
branches, one of which considers the case with a pre-
emption, and the other considers the case with no pre-
emption. This behaviour is repeated until all jobs in
the LCM are analysed. In order to derive the Transi-
tion created by executing a job j, the Execute func-
tion works through all shared variable accesses in j in
a chronological order. Each access is treated according
to its corresponding definition or use rule. Switch-

Task creates a new State by adding the changes in
j’s Transition to the State prior to the execution of
j. If j is not preempted, all changes in Transition are
considered when creating the new State. Otherwise,
only those changes prior to the preemption time are
considered.

4 Evaluation

As an experimental evaluation of our method,
we provide analysis results from five different multi-
tasking real-time systems (S1-S5), each scheduled in
three different ways (Cfg1-3). All systems comprise
control-oriented code (e.g., calculation of planet orbits
(S1), a control system for a forklift able to solve the
Towers Of Hanoi problem (S2), etc.), and include inter-
task communication via shared variables. In Table 1,
Ts and GVar refer to the number of tasks and global
variables respectively. CDU refers to the number of
combinatorially feasible DU-paths (i.e., each definition
d and use u of the same shared variable may naively

5

Sys Ts GVar CDU Cfg1 Cfg2 Cfg3

FDU FDU / CDU rt(ms) FDU FDU / CDU rt(ms) FDU FDU / CDU rt(ms)

S1 4 18 216 155 71.6% 4282 147 68.1% 676 134 62.0% 19
S2 4 27 183 N/A N/A N/A 176 96.2% 3750 163 89.1% 30
S3 4 22 34 32 94.1% 217 32 94.1% 107 27 79.4% 4
S4 3 7 44 34 77.3% 137 37 84.1% 24 24 54.5% 1
S5 2 4 236 204 86.4% 422 196 83.1% 248 180 76.3% 12

Table 1. Evaluation Results.

form a DU-path (d, u)). FDU refers to the number
of DU-paths found feasible by the DuAnalysis algo-
rithm, and rt refers to the analysis time (in millisec-
onds). Hence, 1 - (FDU / CDU) describes the percent-
age of DU-paths that safely do not have to be consid-
ered during testing. As for the configurations, Cfg3
completely separates all tasks in time and suffer no
preemptions. In contrast, Cfg1 maximizes the number
of task preemptions. Cfg2 is an in-between configura-
tion of Cfg1 and Cfg3. Generally, with a less complex
scheduling, more DU-paths are found infeasible (except
for Cfg1 and Cfg2 of S4). Note also that the system-
level analysis of Cfg1 of S2 proved too complex to ex-
ecute. Since all other configurations finished within a
few seconds, we will investigate this problem further.

5 Conclusion

For multi-tasking real-time systems, failures at sys-
tem level caused by concurrently executing tasks can-
not be revealed by tests at task level. In this pa-
per, we have presented and evaluated a method that
derives all possible DU-paths, enabling system-level
testing of task inter-dependency failures. Our system
model is restricted to a model suitable for small em-
bedded real-time systems. In our future work we plan
to show how our method can be used on a more re-
laxed system model, e.g., a system model based on
transactions of tasks instead of strictly periodic tasks.
Our method however requires a finite (periodically or
non-periodically) repeated system behaviour. Further,
semaphores and critical sections for shared variable ac-
cess protection can be added to our method without
major efforts as described in [14].

References

[1] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell.
Fixed priority pre-emptive scheduling: A historical perspec-
tive. In Real-Time Systems journal, volume 8(2/3). Kluwer
A.P., March/May 1995.

[2] T. Baker. Stack-based scheduling of real-time processes.
In Real-Time Systems Journal, volume 3(1), pages 67–99,
1991.

[3] R. H. Carver and K.-C. Tai. Replay and testing for con-
current programs. In IEEE Software, volume 8(2), pages
66–74, 1991.

[4] S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and B. S. Lee.
Testing of concurrent programs based on message sequence
charts. In Proceedings IEEE International Symposium on
Software Engineering for Parallel and Distributed Systems,
pages 72–82, Vol., Iss., 1999.

[5] A. Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Uppsala University, Swe-
den, June 2003.

[6] J. Gustafsson, A. Ermedahl, and B. Lisper. Algo-
rithms for Infeasible Path Calculation. In Sixth Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2006), Dresden, Germany, July 2006.

[7] M. Harrold and M. Sofia. Interprocedural Data Flow Test-
ing. In Proceedings of the 3rd Symposium on Software Test-
ing, Analysis, and Verification, pages 158–167, 1989.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs. In PLDI ’88: Proceedings of
the ACM SIGPLAN 1988 conference on Programming Lan-
guage design and Implementation, pages 35–46, New York,
NY, USA, 1988. ACM Press.

[9] J. Laski and B. Korel. A Data Flow Oriented Program
Testing Strategy. In IEEE Transactions on Software Engi-
neering, volume 9(5), pages 347–354, May 1983.

[10] Mälardalen University. WCET project homepage, 2007.
www.mrtc.mdh.se/projects/wcet.

[11] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis, 2nd edition. Springer, 2005. ISBN 3-
540-65410-0.

[12] I. S. G. of Software: Engineering Terminology. IEEE Stan-
dards Collection, IEEE Std 610.12-1990. September 1990.

[13] A. Pettersson, D. Sundmark, H. Thane, and D. Nyström.
Shared Data Analysis for Multi-Tasking Real-Time System
Testing. In Proceedings of Second Symposium of Industrial
Embedded Systems, July 2007.

[14] A. Pettersson and H. Thane. Testing of Multi-Tasking
Real-Time Systems with Critical Sections. In Proceedings
of Ninth International Conference on Real-Time and Em-
bedded Computing Systems amd Applications, Tainan City,
Taiwan, R.O.C, 18-20 February 2003.

[15] H. Thane and H. Hansson. Towards Systematic Testing of
Distributed Real-Time Systems. In Proceedings of The 20th
IEEE Real-Time Systems Symposium, pages 360–369, 1999.

[16] H. Thane and H. Hansson. Testing Distributed Real-Time
Systems. In Journal of Microprocessors and Microsystems,
pages 463–478. Elsevier, 2001.

[17] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Computing Surveys (CSUR),
29(4):366–427, 1997.

6

Loop Bound Analysis based on a Combination of
Program Slicing, Abstract Interpretation, and Invariant Analysis†

Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper
Department of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden
{andreas.ermedahl,christer.sandberg,jan.gustafsson,stefan.bygde,bjorn.lisper}@mdh.se

Abstract

Static Worst-Case Execution Time (WCET) ana-
lysis is a technique to derive upper bounds for the ex-
ecution times of programs. Such bounds are crucial
when designing and verifying real-time systems. A key
component for static derivation of precise WCET esti-
mates is upper bounds on the number of times different
loops can be iterated.

In this paper we present an approach for deriving
upper loop bounds based on a combination of standard
program analysis techniques. The idea is to bound the
number of different states in the loop which can influ-
ence the exit conditions. Given that the loop termi-
nates, this number provides an upper loop bound.

An algorithm based on the approach has been imple-
mented in our WCET analysis tool SWEET. We eval-
uate the algorithm on a number of standard WCET
benchmarks, giving evidence that it is capable to derive
valid bounds for many types of loops.

1 Introduction

The WCET is an important parameter when ver-
ifying real-time properties. A static WCET analysis
finds an upper bound to the WCET of a program by
analysing the statical properties of the hardware and
software involved. Given that the methods used are
correct and safe, the analysis will derive a timing esti-
mate that is safe, i.e., a value ≥ WCET.

To statically derive a timing bound for a program,
information on both the hardware timing characteris-
tics, such as the execution time of individual instruc-
tions, as well as the program’s possible execution flows,
to bind the number of times the instructions can be
executed, needs to be derived. The latter includes in-

† This work has been supported by the KK-foundation
through grant 2005/0271. It has also been funded in part by the
ARTIST2 Network of Excellence (www.artist-embedded.org).

formation about the maximum number of times loops
are iterated, which paths through the program that are
feasible, execution frequencies of code parts, etc.

The goal of flow analysis is to calculate such flow
information as automatically as possible. Flow analy-
sis research has mostly focused on loop bound analysis,
since upper bounds on the number of loop iterations
must be known in order to derive WCET estimates.
Recent industrial WCET case studies [9] have shown
that it is important to develop good support for flow
analysis, in particular loop bound analysis, in order to
reduce the need for manual annotations.

This article presents an approach how to calculate
upper loop bounds statically. The approach builds on
the observation that terminating loops always must
reach a new state for each new iteration. Thus, if
we can somehow bound the number of states which
are possible to reach during any execution of the loop,
then that number provides an upper bound to the num-
ber of loop iterations provided that the loop terminates.
Since in general many states may be equivalent w.r.t.
program flow, it suffices to count the number of equiva-
lence classes of states. An upper bound to the number
of possible equivalence classes is the number of possible
combinations of values for variables affecting the exit
conditions of the loop.

Based on this observation, we perform a loop bound
analysis using a combination of standard program anal-
ysis techniques:
1. By program slicing we derive a set of variables and

statements that must be considered when deriving
a loop bound for a given loop. Only this code is
analysed.

2. By abstract interpretation (AI) we derive, for each
program point and variable, an upper approxima-
tion of the possible set of values held by the variable
in that program point. This information can be used
to limit the possible number of (equivalence classes
of) states in loops.

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1194

3. A variable can sometimes have many possible values
in a loop, altough its value will always remain the
same for each execution of the loop. By invariant
analysis we identify variables not having their values
changed in loops. These variables are removed from
the corresponding loop bound calculations.
All the analyses above terminate. Thus, the sug-

gested loop bound analysis also terminates. Moreover,
since AI is input dependent, (bounds on input values
can be specified), the analysis is also input dependent.

Since our approach assumes that analysed loops ter-
minate, separate proofs of termination will have to be
provided. In Section 7 we discuss this problem.

The reminder of this article is organized as follows:
Section 2 presents related work. Section 3 presents an
illustrating example. Section 4 gives more details of
the approach, including some implementation details.
Section 5 presents our WCET tool. Section 6 presents
some evaluations of the approach. Finally, Section 7
gives our conclusions and ideas for future work.

2 Related work

Upper bounds on the number of loop iterations are
needed in order to derive a finite WCET estimate at all.
Similarly, recursion depth must also be bounded. Due
to the halting problem, no automatic method for loop
bounds analysis can give an exact answer for all loops.
Thus, WCET analysis tools provide means to give loop
iteration bounds manually [5, 6, 17]. However, this is
often laborious, and a source of possible errors.

Although necessarily incomplete, an automatic loop
bounds analysis can still be useful to reduce the man-
ual work by bounding most of the commonly occurring
loops. A common approach is to identify loop coun-
ters, and then determine (or bound) their start values,
increment (decrement), and highest (or lowest) possi-
ble value. From this information, an upper bound for
the iteration count can be obtained. Whalley et al.
[12] use data flow analysis and specialized algorithms
to calculate loop bounds for both single and some spe-
cial types of nested, triangular loops. This approach is
quite syntactical and will fail for loops which do not fit
the patterns. The loop-bound analysis of the Bound-T
tool [17] estimates range and increment for loop coun-
ters using Presburger arithmetics, and the latest loop
bound analysis of the aiT tool [4] decides start values
by an interval-based AI and the possible increments by
a data flow analysis. These methods have in common
that they only work for well-structured loops with a
proper nesting, and where loop counters are updated
using addition or subtraction only. In contrast, our
analysis is based entirely on abstract interpretation,

1. int foo(int INPUT) { // INPUT = [10..20]

2. int OUTPUT = 0;

3. int i = 1;

4. while(i <= INPUT) { // p

5. OUTPUT += 2;

6. i++;

7. }
8. return OUTPUT;

9. }
Figure 1. Illustrative code example

which makes is less sensitive to the kind of operations
applied to loop counters. It works also for unstructured
loops without proper nesting.

We have previously presented Abstract Execution
(AE), a form of symbolic execution based on an AI
framework. AE is able to derive loop bounds and in-
feasible path information for many type of programs
[10, 11] but has a potential bad worst-case complexity,
and no guaranteed termination. Thus, the approach
presented in this article complements the AE by being
less general, since it cannot bound all type of loops,
but with guaranteed termination.

3 An illustrative example

As an illustrative example, consider foo in Figure 1.
The INPUT variable is given the value limit [10..20].

A slicing w.r.t. the exit condition of the loop dis-
covers that OUTPUT does not affect the outcome of the
condition, and could, together with statements 2, 5 and
8, be sliced away. i and INPUT are both used in the
loop exit condition and must therefore be kept.

An AI using the interval domain together with
widening and narrowing (see Section 4.2) will find that
at program point p, the possible values of i lie in the
range [1..20], and those of INPUT in [10..20]. Thus,
a safe bound on the number of times the loop body
can be executed, given that the loop terminates, is
given by size(i,p)∗size(INPUT,p) = size([1..20])∗
size([10..20]) = (20−1+1)∗ (20−10+1) = 20∗11 =
220. Here size(v,p) is the number of possible values
of variable v at a program point p as given by the AI.

We improve the loop bound by observing that the
INPUT variable is invariant in the loop, although it
might assume any value in the range [10..20] in the
loop. Therefore, it does not contribute to the calcu-
lated loop bound. Thus, a safe upper loop bound, given
that the loop terminates, is given by the number of val-
ues of i at point p: size(i,p) = 20.

Note that the derived loop bound is input depen-
dent, i.e., another value limitation of the INPUT vari-
able could result in a different loop bound.

2

4 Method details

This section will present our loop bound analysis
and its included analyses in more detail. We also
present some implementation details, useful for obtain-
ing a faster and more precise analysis.

4.1 Program slicing

Our approach for loop bound analysis uses program
slicing [18]. Program slicing finds a subset of a program
containing the program parts which can affect some
given part of the program like a specific condition, or
a set of conditions.

Our program slicing works by first building a pro-
gram dependency graph (PDG) which holds the data
flow and control dependencies between the statements
in the program [7, 13]. The slice which is computed
with respect to some program part is the part of the
PDG which is backwards reachable from the program
part. For more details on our program slicing, see [16].

We slice w.r.t. to the exit conditions of the loop to be
analyzed. Only the computed slice has to be analysed.
In order to reduce the size of the program states of
subsequent analyses we also remove variables that are
not accessed.

Step-wise slicing Our current implementation ac-
tually performs a stepwise slicing. First, the program
is sliced w.r.t. all conditionals in the program. This
removes code that can never affect the outcome of any
condition. Then the computed slice is sliced w.r.t. the
exit conditions of each single loop to be analysed. Com-
pared to slicing the original program for each loop, this
two-step approach gives much better performance, es-
pecially if the first slicing is able to remove many state-
ments and variables.

4.2 Abstract interpretation

Abstract interpretation (AI) is a theory of sound
approximation of the semantics of computer programs.
It was formalized by Cousot & Cousot [2].

AI gives a safe, but potentially pessimistic, estima-
tion of the possible sets of states in different program
points. To achieve this, abstract domains with ele-
ments representing sets of states, so-called “abstract
states” are used. The abstract domains are complete
lattices, with a top and a bottom value. For each state-
ment in the language, a corresponding transfer func-
tion is derived which maps abstract states to abstract
states. The transfer functions are used to set up a set
of equations relating the abstract states for the differ-
ent program points. An initial abstract state specifies
possible constraints on the input variables. The set

of equations is solved using least fixed-point iteration.
The least fixed-point defines an abstract state for each
program point, and each abstract state represents a
safe overapproximation of the set of states in its pro-
gram point. Often, the abstract states are mappings
from program variables to abstract values representing
possible sets of “concrete” values held by the variables.

For certain abstract domains, the fixed-point itera-
tion will not always terminate. Termination can how-
ever be guaranteed through a binary widening opera-
tor on abstract states, which will enlarge the abstract
states during the iteration [2]. Widening can also be
used to speed up termination. The solution obtained
using widening will be safe, but maybe not the least
one. It can sometimes be improved using a narrowing
operator [3].

Supported abstract domains Our current imple-
mentation supports two abstract domains, namely the
interval- [10] and the congruence domain [1, 8]. It also
supports the product domain of these two domains.

In the interval domain the possible values of a vari-
able is approximated by an interval [l..u]. E.g., an ab-
stract state holding the assignment i = [1..20] repre-
sents all concrete states where 1 ≤ i ≤ 20, i.e., 20
different states.

In the congruence domain the possible values of a
variable is approximated by an abstract value of the
form n(mod m). For example, an abstract state hold-
ing the assignment i = 0(mod 5) represent all concrete
states where i contains the factor 5.

The abstract values in the product domain are
pairs 〈i, c〉 where i is an interval and c a congru-
ence. The pair 〈i, c〉 represents the intersection of
i and c. For instance, 〈[1..20], 0(mod 5)〉 represents
[1..20] ∩ 0(mod 5) = {5, 10, 15, 20}.

In our implementation each basic data type in C,
such as char, int and float has a corresponding ab-
stract data type. We also have abstract versions of ag-
gregate data structures, such a structs and arrays, as
well as pointers. Our abstract domains model fixed-size
integers with possible overflow. To guarantee termina-
tion of the AI we have implemented widening and nar-
rowing operations for our different abstract domains.
For details, see [10].

Figure 2 gives an illustrative example of the bene-
fit of using the product domain. An interval analysis
would derive i = [0..9] at point p, corresponding to
10 concrete values. Similarly, a congruence analysis
would derive i = 0(mod 2) at point p corresponding
to an infinite number of concrete values. However, the
intersection of the two domains contains all values be-
tween 0 and 9 evenly dividable by 2, i.e., {0, 2, 4, 6, 8}.
This set has the size 5, which is a precise loop bound.

3

1. int i = 0;

2. while(i < 10) {
3. // p

4. i += 2;

5. }

Interval analysis:

i = [0..9] at p

Congruence analysis:

i = 0(mod 2) at p

Figure 2. Interval and congruence example

4.3 Loop bound calculation

We use the result of the AI analysis of the sliced
program to derive a loop bound for the selected loop.
We first select a program point guaranteed to be within
the loop, which all iterations of the loop are guaran-
teed to pass, e.g., the program point just before the
last instruction in the loop header node1. Then, for all
variables not ruled out by the analyses in Section 4.4,
the sizes of their respective abstract values are taken
as upper bounds to their numbers of possible concrete
values. The loop bound is finally calculated by multi-
plying all these sizes.

For integer and pointer variables, the size of the set
of concrete values defined by an interval, or an element
in the product domain, is straightforward to compute.
The same holds for aggregate objects (array, struct)
containing only fields of integer and pointer type. If
the variable is or contains a floating-point value then
we consider the number of concrete values to be either
zero, one or infinite.

If any variable in the abstract state holds the top
value, then the loop bound cannot be derived (we con-
sider top to represent an infinite set of concrete values).
Similarly, if some variable in the abstract state holds
the bottom value, then the loop body is unreachable
and we set the loop bound to zero.

4.4 Invariant analysis

Invariant analysis is a program analysis used in
many compilers [15]. It identifies statements in loops
which can be moved outside the loop since they always
recompute the same value. We have implemented a
simplified version, which simply checks if any variable
used in the (sliced) loop body is also possibly writ-
ten in the body. A variable that cannot be written is
considered loop invariant and can safely be excluded
from the loop bounds calculation. Statements reach-
able through function calls must also be considered.
Since pointers can be used to update values, e.g., in
int* p = &i; *p = 5; variable i is assigned a value
through the pointer p, we use the result of a pointer
analysis to find which variables that could possibly be
updated through dereferenced pointers.

1Assuming, for simplicity, that the loop is well-structured.

int i = 1;

while(i <= 100) {
j = 1;

while(j <= i) // p

j++;

i++;

}

int temp; // no init

int j = 0;

while(j < 100) {
temp = 1;

j = j + temp;

temp = 2;

}
(a) Nested loops (b) Problematic code

Figure 3. Invariant analysis examples

Figure 3(a) gives an example where the invariant
analysis helps producing a tighter loop bound. At
program point p an AI using intervals would derive
i = [1..100] and j = [1..100]. This gives a loop bound
of 100 ∗ 100 = 10000 of the inner loop. However, i is
invariant in the inner loop, giving that the loop bound
can be calculated using j’s abstract value only. This
gives a loop bound of 100 for the inner loop.

Single-valued-uses analysis The condition de-
tected by the invariant analysis, that a variable never
is assigned a new value in the loop body, is unnecessar-
ily strong. Actually, to remove the variable from the
loop bounds calculation it suffices that in any program
point in the loop body where the variable might be used,
it can hold at most a single value for a given execution
of the loop. An example is shown in Figure 3(b): here,
an invariant analysis will fail since temp is reassigned
two times in the loop, and yet it will always have the
single value 1 when used.

We have implemented an analysis to discover if a
variable only can have a single value at each relevant
use. The analysis simply uses the abstract value de-
rived by the AI, for each relevant variable and program
point within the sliced loop body where it is used, to
see if the variable can only hold a single value in that
point. If this is true for all these program points the
variable is removed from the loop bounds calculation.

5 The SWEET tool

SWEET (SWEdish Execution time Tool) [5, 10] is a
research tool developed at Mälardalen University [14].
SWEET can handle ANSI-C programs including point-
ers, unstructured code, and recursion. The basic anal-
ysis steps of SWEET are depicted in Figure 4.

Unlike most WCET analysis tools, SWEET is inte-
grated with a compiler and performs its flow analysis
on the intermediate representation (IR) of the com-
piler. The control structure of the IR and the object
code is similar, and flow analysis results for the IR, in
terms of execution bounds on basic blocks, is therefore
also applicable for the object code. The low-level anal-
ysis of SWEET currently supports the NECV850E and

4

������

����	�
����

�
�������

��������

����

����

�
����
����

� !"
#��

�$�������%
��

���#��	��

�����&"'���

����

(��)���	
)

�� ������
��#

�)�����

�
�+#�#

�%�

���)���	

%�)��

,
���

�����#

�

)	��	
�

����

�
�
�
�
	

�

�

�
��

-��*�
�
�+#�#

	��	
��#������

�"#�	
�������)	.

%�,
	�
���
�
�+#�#

�"#�	
����$�������

%���	!

����
�������

Figure 4. The SWEET WCET analysis tool

ARM9 processors. SWEET supports three different
calculation methods: a path-based method, an IPET
method, and a hybrid clustered method [5].

The loop bound analysis presented in this article is
one of several analyses performed in the flow analysis
phase. There is an annotation language which can be
used to assign abstract values in the interval domain.

6 Measurements and evaluations

We have used programs from the Mälardalen WCET
Benchmark suite [14] to test our flow analyses. The
benchmarks are a diverse collection of test programs
differing in types of flows, code structure and instruc-
tions, intended to thoroughly test different aspects of
WCET analysis including flow analysis. Our current
implementation of the loop bound analysis cannot han-
dle recursive code, due to limitations in our AI. Thus,
no recursive program has been used in our evaluations.

Table 1 gives some basic data about the programs,
including lines of C code (#LC) and the number of
loops (#L). The number of loops is counted in a con-
text dependent manner since a loop might have dif-
ferent upper bounds depending from where its corre-
sponding function is called, e.g., crc contains such an
input dependent loop. For each benchmark we give the
number (#B) and the percentage (%B) of loops bound
by the analysis. We also give the number (#E) and
the percentage (%E) of loops which are exactly bound,
i.e., given a bound equal to the actual loop bound. The
column (Time) gives the analysis time in seconds on
a 3 GHz PC running Linux.

The Total row summarizes our analysis results. We
see that more than 60% of all loops gets upper bounded
and more than 50% are given an exact loop bound.
The loops bounded are in most cases rather simple
loops usually dependent on one or two integer index
variables. For more complex loops, or loops containing
floating point index variables, the analysis often fails.

The analysis time of the loop bound analysis de-
pends very much on how much of the program that
could be removed by the slicing. A large remaining
program means that the AI usually will take quite a

long time. For programs which take long time to anal-
yse, like adpcm, ns, and ludcmp, the analysis time is
dominated by the AI.

The results in the table are based on analysis using
the interval domain. If we use the product domain
described in Section 4.2, we are able to get tighter loop
bounds for 6 loops.

7 Conclusions and future work

We have presented a static loop bound analysis
based on a combination of standard program analy-
sis techniques. The method has shown to be powerful,
giving exact loop bounds for more than 50% of our used
benchmarks, with reasonable analysis time.

For future work, we plan to extend the approach to
handle more type of loops. One idea is to look into
more powerful relational abstract domains in the AI,
allowing constraints between values of variables. This
should allow the size of the abstract states used for
loop bound analysis to be minimized.

We plan to extend the approach to discover if a loop
terminates. For example, if it can be shown that each
loop variable is either monotonically increasing or de-
creasing, that no wrap-arounds of these variables could
occur, that for any iteration of the loop at least one of
the loop variables is updated, and we have a bound
on the number of concrete states in the loop, the loop
should terminate. We also plan to extend the approach
to derive infeasible path information, i.e., paths never
possible to execute within a loop body. The latter will
be a combination of program slicing, AI and AE.

References

[1] S. Bygde. Abstract interpretation and abstract domains.
Master’s thesis, Mälardalen University, June 2006.

[2] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. 4th ACM Sympo-
sium on Principles of Programming Languages, pages 238–
252, Los Angeles, Jan. 1977.

[3] P. Cousot and R. Cousot. Comparing the Galois Connection
and Widening/Narrowing Approaches to Abstract Interpre-

5

Program Description #LC #L #B %B #E %E Time

adpcm Adaptive pulse code modulation algorithm. 879 27 18 67% 8 30% 48.6
bs Binary search in an array of 15 integer elements. 114 1 0 0% 0 0% 0.81
cnt Counts non-negative numbers in a matrix. 267 4 4 100% 4 100% 0.24
cover Program for testing many paths. 640 3 3 100% 3 100% 0.32
crc Cyclic redundancy check computation on 40 data bytes. 128 6 6 100% 6 100% 0.11
duff Using “Duff’s device” to copy 43 byte array. 86 2 1 50% 1 50% 0.04
edn Finite Impulse Response (FIR) filter calculations. 285 12 12 100% 9 75% 0.71
expint Series expansion computing an exponential integral. 157 3 3 100% 3 100% 0.04
fac Recursive program to calculate factorials. 21 1 1 100% 1 100% 0.01
fdct Fast Discrete Cosine Transform. 239 2 2 100% 2 100% 0.05
fft1 Fast Fourier Transform using Cooly-Turkey algorithm. 219 30 7 23% 3 10% 5.39
fibcall Iterative Fibonacci, used to calculate fib(30). 72 1 1 100% 1 100% 0.01
fir Finite impulse response filter (signal processing). 276 2 2 100% 1 50% 0.38
inssort Insertion sort on a reversed array of size 10. 92 2 1 50% 1 50% 0.54
jcomplex Nested loop program. 64 2 0 0% 0 0% 0.04
jfdctint Discrete-cosine transformation on 8x8 pixel block. 375 3 3 100% 3 100% 0.06
lcdnum Read ten values, output half to LCD. 64 1 1 100% 1 100% 0.01
ludcmp LU decomposition algorithm. 147 11 6 55% 5 45% 247.6
matmult Matrix multiplication of two 20x20 matrices. 163 7 7 100% 7 100% 0.51
ndes Embedded code with many complex bit operations. 231 12 12 100% 12 100% 3.11
ns Search in a multi-dimensional array. 535 4 1 25% 1 25% 91.9
nsichneu Simulates an extended Petri net. 4253 1 1 100% 1 100% 1.11
prime Search in a multi-dimensional array. 535 2 0 0% 0 0% 0.05
qsort-exam Linear equations by LU decomposition. 121 6 0 0% 0 0% 76.4
qurt Root computation of quadratic equations. 166 3 1 33% 1 33% 0.09
select Selects the n:th largest number in floating point array. 114 4 0 0% 0 0% 19.6
statemate Automatic generated code. 1276 1 0 0% 0 0% 1.00
ud Linear equations by LU decomposition. 161 11 11 100% 10 91% 0.53

Total - 164 104 63% 84 51% -

Table 1. Benchmark programs and result of loop bound analysis

tation. In Proc. 4th International Symposium on Program-
ming Languages, Implementations, Logics, and Programs,
Lecture Notes in Computer Science (LNCS) 631, pages 269–
295. Springer-Verlag, August 1992.

[4] C. Cullmann. Statische berechnung sicherer schleifengren-
zen auf maschinencode. Master’s thesis, Universität d. Saar-
landes, 2006.

[5] A. Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Uppsala University, Swe-
den, June 2003.

[6] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient
user annotations for a WCET tool. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2003), 2003.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Transactions on Programming Languages and Sys-
tems, 9(3):319–349, July 1987.

[8] P. Granger. Static Analysis of Arithmetical Congruences.
International Journal of Computer Mathematics, pages
165–199, 1989.

[9] J. Gustafsson and A. Ermedahl. Experiences from applying
WCET analysis in industrial settings. In The 10th IEEE
International Symposium on Oject/component/service-
oriented Real-time distributed Computing (ISORC2007),
Santorini Island, Greece, May 2007.

[10] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow
analysis for embedded system C programs. In Proc. 10th

IEEE International Workshop on Object-oriented Real-
time Dependable Systems (WORDS 2005), Feb. 2005.

[11] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper.
Automatic derivation of loop bounds and infeasible paths
for WCET analysis using abstract execution. In Proc. 27th

IEEE Real-Time Systems Symposium (RTSS’06), Dec.
2006.

[12] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van
Engelen. Supporting timing analysis by automatic bound-
ing of loop iterations. Journal of Real-Time Systems, 18(2-
3):129–156, May 2000.

[13] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs. ACM Trans. Program. Lang.
Syst., 12(1):26–60, 1990.

[14] Mälardalen University. WCET project homepage, 2007.
www.mrtc.mdh.se/projects/wcet.

[15] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, 1997. ISBN: 1-55860-
320-4.

[16] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper.
Faster WCET flow analysis by program slicing. In Proc.
ACM SIGPLAN Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES’06), pages 103–112,
June 2006.

[17] Tidorum. Bound-T tool homepage, 2006.
www.tidorum.fi/bound-t.

[18] M. Weiser. Program Slicing. IEEE Transactions on Soft-
ware Engineering, SE-10(4):352–357, July 1984.

6

Measurements or Static Analysis or Both?

Stefan M. Petters Patryk Zadarnowski Gernot Heiser∗

NICTA†and University of New South Wales
Sydney, Australia

firstname.lastname@nicta.com.au

Abstract

To date, measurement-based WCET analysis and
static analysis have largely been seen as being at
odds with each other. We argue that instead they
should be considered complementary, and that the
combination of both represents a promising ap-
proach that provides benefits over either individ-
ual approach. In this paper we discuss in some
detail how we aim to improve on our probabilis-
tic measurement-based technique by adding static
cache analysis. Specifically we are planning to
make use of recent advances within the functional
languages research community. The objective of
this paper is not to present finished or almost fin-
ished work. Instead we hope to trigger discussion
and solicit feedback from the community in order
to avoid pitfalls experienced by others and to help
focus our research.

1 Introduction

Embedded systems are becoming more pervasive
by the day, and many of these embedded systems
are subject to critical temporal requirements. While
many of these systems may not be life critical, miss-
ing deadlines may nevertheless be a costly excersise
if experienced as degraded functionality or quality
of service by millions of end users.

The analysis of worst-case execution times
(WCET) is a fundamental building block of any
form of real-time analysis. Most of the work
to date has been based either on static analy-
sis or on measurements. The research commu-
nity has predominantly focussed on static analysis,

∗Also with Open Kernel Labs
†National ICT Australia is funded by the Australian Gov-

ernment’s Department of Communications, Information Tech-
nology, and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Research Cen-
tre of Excellence programs.

but measurement-based techniques have gained in-
creased significance over the last ten years.

These two principal approaches have largely been
seen as mutually exclusive, and proponents of either
approach tend to be quite critical of the other. Com-
mon concerns voiced about measurement-based
analysis are that:
1. it is unsafe, as there are no guarantees that the

worst case has been observed and
2. measurements are too expensive if sufficient

coverage is to be achieved.
On the other hand, critics of the static-analysis

approaches claim that static analysis:
1. is unsafe, as modern architectures are highly

complex and thus modelling them is an error
prone process, not least due to lack of documen-
tation,

2. raises substantial challenges in terms of portabil-
ity, and

3. does not support the more creative features used
to improve performance in today’s architectures.

We believe that ultimately a combination of the
two paradigms is required to overcome the issues in
both. Specifically, we propose to use measurements
to obtain realistic, accurate results and static analy-
sis to back the findings of the measurement phase by
establishing that major contributors to the variabil-
ity of the execution time have been adequately cov-
ered. Besides variations in program path, which are
usually covered in the computation phase of WCET
analysis approaches, caches contribute most sub-
stantially to variations in the execution times of soft-
ware. Establishing whether all cache misses as pre-
dicted by static analysis have been observed in the
measurements is of substantial help to ensure con-
fidence in results obtained by measurements. Fo-
cussing on caches allows for easy verification that
the model used is actually correct and provides a
high degree of portability of the analysis.

Furthermore, the results of the static analysis of
caching behaviour can be used to reduce the over-

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1188

mailto:smp@nicta.com.au

estimation produced when analysing the measure-
ments of small untis independently and when con-
servatively covering any possible dependency be-
tween the units.

2 Related Work

The integration of cache analysis into WCET analy-
sis was pioneered by Mueller [1] and Lim et al. [2].
The latter represented a holistic WCET and schedu-
lability analysis that was subject to considerable
complexity and was eventually abandoned as a line
of research. Mueller’s work has been refined over
the years [3]. However, the main drawback of
the approach is the loss of information inherent to
the abstraction processs., Specifically information
is lost when the predefined join function is used to
merge abstract cache states at points in the program
where two control flows of a program merge (e.g.
after an if-then-else construct. Further, abstract
analysis, the tool of choice for static program anal-
ysers, has proven notoriously resilient to all non-
trivial attempts to apply it to programs that manip-
ulate dynamic data structures such as linked lists or
those in which pointers to functions cannot be re-
solved statically. While it can be argued that both
features are rarely found in real-time programs, they
are nevertheless common in certain critical parts of
the system such as dynamic schedulers and page ta-
bles.

Ferdinand and Wilhelm [4] have extended
Mueller’s work by introducing the must and may
analysis, effectively reducing the amount of infor-
mation lost by the join function and proving that the
resulting abstract domain is optimal. Nevertheless,
even with these improvements, the analysis still
loses some information at junctions of control-flow
paths introduced by any chosen program represen-
tation. Further, the must and may analysis suffers
from the same limitations as the earlier approaches
when applied to code manipulating dynamic data
structures.

Attacking the WCET problem from a different
angle, Kirner et al. [5] deployed static analysis to
identify a set of input data, which would enforce
any possible path combination to be executed, ef-
fectively doing a full path enumeration. This set
is then fed into the program and measured on real
hardware. In order to manage complexity, the pro-
gram under test is divided into program segments
which are tested and measured independently. The

approach did not support caches and thus is not ap-
plicable to our work.

Yamamoto et al. [6] approached the problem of
ensuring measurement coverage of cache states by
measuring each basic block in isolation in a best
case scenario; in other words, all referenced mem-
ory locations are preloaded into the caches. A sep-
arate cache analysis provides a worst-case cache-
miss scenario for the given basic block and enables
the addition of the cost of these cache misses in the
computation stage of the analysis process. The ex-
act cache simulator used is not described in their
paper, however, the analysed programs in their eval-
uation are sufficiently small to allow a brute force
computation of the cache states.

3 Potoroo

A brief introduction to the overall framework is
necessary to set the proposed approach into con-
text. The Potoroo project aims to analyse the ker-
nel primitives of the L4 microkernel API [7] for
their WCET to enable real-time systems to be built
ontop of the kernel. So far, we have developed a
toolset which allows the measurement-based analy-
sis of the kernel. In terms of the general approach it
follows the paradigm used in [8].

The executable code of the program under test is
analysed to extract the control-flow graph (CFG).
By using the executable code, all compiler optimi-
sations and preprocessor modifications are consid-
ered. The analysis tries to be minimal by focussing
mainly on control-flow changing instructions. How-
ever, this implies that register-indirect branches are
particularly hard to resolve. Instead of a full analy-
sis of the code, we have chosen to use a source code
parser developed in the Goanna project at NICTA
[9] and use debugging information in the executable
to find corresponding parts in the source code.

Traces may be generated either by software in-
strumentation, hardware support, or using cycle-
accurate simulators. Software instrumentation is
subject to overhead and may quickly become too
high a burden in a running system. Cycle-accurate
simulators, however, raise the question of accuracy
of the model in the simulator — “mostly right” is
not good enough. Hardware supported tracing usu-
ally makes use of debugging ports implemented on
the processor die, like the ETM macrocell in some
ARM processors. Traces are taken usually on a ba-
sic block level, where the time stamp of the first in-

2

 1e-04

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200

P
ro

ba
bi

lit
y

Execution Time [ns]

Figure 1: Sample ETP

struction of each basic block is stored alongside a
basic block identifier. All the execution time mea-
surements for a basic block are interpreted as a
probability distribution called execution time pro-
file (ETP). While basic blocks exhibit their WCET
easily compared to entire programs, there are no
guarantees that a given block has been completely
represented in the ETP.

GNU
objdump

Computation

Objectcode
Analysis

Executable

disassembled
Objectcode

Traceparser

computed
ETPs

measured
ETPs

Traces
ExecutionExecution/

Simulation

CFG2Tree

CFG.xml

CTree.xml

Figure 2: Toolset Overview

The traces are translated into ETPs, an example
of which is depicted in Figure 1. This is performed
using the control-flow graph previously established.
Besides the work of actually producing the traces,
this is the most computationally-expensive part of
the approach.

The CFG is also translated into a tree, which di-
rects the combination of ETPs to form ETPs de-
scribing larger code constructs. Using the tree en-
sures that any possible path combinations are con-
sidered.

For this paper the combination of sequential code
constructs is of particular relevance. The toolset
employs the supremal convolution [10, 11] for this.
The supremal convolution combines two distribu-

tions in such a way that any possible dependency
between the two distributions is conservatively cov-
ered in the result, thus ensuring a safe combination
of two ETPs. However, a major drawback of supre-
mal convolutions is that they are very conservative
and tend towards a yes/no decision instead of a pro-
file when many ETPs are combined [12].

4 Basic Idea

In the previous section we have identified two fun-
damental challenges to the approach we are taking
in analysing the kernel.
1. Ensuring sufficient test coverage on basic block

level.
2. Avoiding the overly-conservative nature of

the supremal convolution without jeopardising
safety.

Looking at the variability of the execution time in
Figure 1 we can see that the ETP is clustered. These
clusters can be attributed to cache misses, which are
dominating the execution time of a given piece of
code. Guaranteeing that the code has actually ex-
perienced its worst case of cache misses during the
execution would go a long way to guaranteeing suf-
ficient measurement coverage.

Cycles

p(x)

Cache misses

Measurements
expected

Measurement results

Static Analysis Prediction

Figure 3: Coverage

In order to tackle this, we aim to establish for
each ETP the different cache-miss scenarios ex-
pected and compare that to the measured ETP as de-
picted in Figure 3. While the creation of a complete
and accurate model of a system including processor
core, caches and peripherial devices is non-trivial
and raises the issue of portability, caches themselves
are only subject to a few parameters which can be
easily established and verified for a given system
[13]. In order to be able to make the connection
between cache misses predicted and the measured

3

ETP, it is necessary to reason about the cache-miss
penalty actually imposed on a given cache miss.

While caches are used to mitigate the effect of
long memory access latencies, modern processors
try in various ways to mitigate the effect of cache-
miss penalties. Critical-word-first loads by caches
avoids the overhead of loading data which is not im-
mediatly required, if the request does not hit the first
word in a cache line. Out-of-order execution en-
ables the program to progress on instructions which
are not dependent on the memory location being
loaded. A side effect of out-of-order execution is
that instructions independent of the cache miss are
executed. Thus a cache miss at a given point in the
program reduces the entropy of states the CPU may
be in during the execution of subsequent instruc-
tions after the data has been fetched from memory.

Load/store architectures tend to tag registers
waiting for outstanding memory requests, to enable
continued execution until the register is actually
used. This enables a smart compiler to make use of
instruction scheduling to preload registers as early
as possible to avoid as much of the maximum cache
miss penalty as possible. Contrary to out-of-order
execution, the pipeline is usually drained of instruc-
tions preceding the cache-miss causing instruction.
Some architectures such as the ARM9EJ-S proces-
sor core allow for only a single outstanding memory
transaction. However, other processors such as the
XScale processor family allow for several outstand-
ing requests, by implementing fill buffers and pend
buffers.

Applying the above discussion to the environ-
ment we are performing our analysis in, we make
the following observations:

1. The ARM9EJ-S is only subject to a single out-
standing memory transaction, forcing a stall on
subsequent loads.

2. The ARM-gcc compiler typically uses loaded
registers within three instructions thereby mak-
ing little or no use of the reduced penalty of a
delayed load.

Any approach performing coverage analysis
should inherently have information about depen-
dencies between the cache misses of subsequent ba-
sic blocks (and possibly even beyond that). Exploit-
ing these dependencies as depicted in Figure 4 al-
lows, on the one hand, more realistic bounding of
ETPs, and on the other hand, the reduction of the
overall WCET.

Cache missesCache misses

Block 2
Measurement

Measurement
Block 2

Known
Impossible

Combination

Dependency Structure RestrictedDependency Structure Unknown

Figure 4: Dependency Analysis

5 Static Analysis Approach

Static analysis is well-established as a powerful tool
for computing the WCET of a program. In par-
ticular, abstract interpretation, the tool of choice
for static program analysers, is an attractive tech-
nique for WCET analysis, as it provides a method
for a formally-provable derivation of concrete pro-
gram properties such as cache misses or even actual
bounds on the execution time. Unfortunately, in the
past, all applications of static analysis in the area
have been hampered by the limitations, described
in section 2, inherent to the abstract interpretation
technique.

5.1 Motivation

In our work, we observe that the problem of deriv-
ing the WCET of a given program using static anal-
ysis can be viewed as a search for a proof of a de-
sired program property. In particular, abstract inter-
pretation can be viewed as a way of deriving a con-
structive proof of the desired property by computing
that property directly from the structure of the pro-
gram. However, if we knew the property in the first
place (for example, through empirical measurement
of program’s behaviour) we could, in principle, con-
struct an indirect proof of the same result. In partic-
ular, we can attempt to prove the result by showing
that no possible execution scenario can result in an
answer different from the assumed one. Conversely,
we can disprove our hypothesis by searching for a
suitable counter-example during program analysis.
In the remainder of this section, we argue that the
indirect approach is particularly well suited to the
problem of computing the number of cache misses
experienced during execution of a program.

4

5.2 The Basic Approach

We take the set of cache miss counts observed dur-
ing measurement of the program as a hypothesis,
which we subsequently attempt to prove or disprove
through static analysis of the program. The problem
is simpler than attempting to compute the cache be-
haviour “from scratch” since the measured answer
provides finite bounds on the amount of computa-
tion performed during analysis, independent of the
bounds imposed by the particular abstract domain
and the associated join function. This gives us more
leeway in the design of the abstract domain, and in
fact permits us to perform the static analysis of the
program with virtually no loss of information at all.
In particular, observe that:
1. Since the measured set of cache miss counts is fi-

nite, it can always be obtained after a finite num-
ber of steps during abstract analysis, provided
that we take some simple precautions in the de-
sign of our algorithm to avoid divergent chains
of computation.

2. If due care is taken during design of the anal-
ysis algorithm, the above observation is suffi-
cient to guarantee that the analysis is performed
in a “reasonable” amount of time. However,
this does not prevent us from taking additional
measures to avoid the exponential complexity
of complete control path enumeration by com-
bining analysis for sections of the program that
are common to two or more potential execution
paths. In our approach, we will avoid exponen-
tial complexity by binding execution time of our
analysis to the number of cache miss counts ob-
served during measurement.

In other words, we can safely “run” the analyser
until it has either constrained the set of cache miss
counts to a subset of the measured one, or else until
it has detected a counter-example to our hypothesis.
In the later case, the state of the analyser at the time
when the counter-example has been detected pro-
vides invaluable clues permitting the user to extend
the measurement suite to cover the omitted execu-
tion scenarios.

Note that this approach is strictly limited to
analysing those programs for which a “perfect”
measurement suite can actually be constructed from
a finite number of test cases. This excludes, among
others, non-terminating programs. Fortunately, this
is precisely the class of programs suitable for use
in real-time applications and accordingly, covers all
programs that we are concerned with.

The remaining subsection outline our implemen-
tation of this technique.

5.3 Source Program Preparation

First, we translate the input binary program into
a purely-functional representation using the tech-
nique pioneered by Chakravarty, et al. [14]. We
choose a normal form of the continuation-passing
style of lambda calculus as our program repre-
sentation for its similarity to the low-level treat-
ment of control flow on typical processor architec-
tures. In the purely-functional form, all basic blocks
are translated into functions with loops represented
by recursion. Further, all global variables are re-
placed by additional function arguments “threaded”
throughout the control-flow path of the program.
This step is necessary for pragmatic reasons, since
the subsequent program transformations would be-
come prohibitively-expensive without the detailed
data-flow information explicit in purely-functional
programs.

Note that, in this paper, we use the term “func-
tion” in the declarative programming sense of the
word, rather than to refer to the procedures of the
input program. Every function in our analysis cor-
responds loosely to a basic block of the input pro-
gram.

5.4 Cache Analysis

Next, we transform the input program into a new
analyser program that dynamically computes the
cache miss counts of the original program. This
step is very similar to a conventional abstract analy-
sis, and uses the same form of an abstract domain to
represent the cache miss counts. However, since the
solution we seek is computed dynamically during
execution of the analyser program rather than stati-
cally in the course of analysis, we never have to join
abstract values in the analyser program as described
in section 2. During any given actual execution of
the analyser, only one of all possible control flow
paths can be followed. In other words, the anal-
yser program provides a compact, finite represen-
tation of the large (and potentially infinite) number
of all possible control flow paths that would have
to be followed to obtain precise cache miss counts
for every possible execution scenario, just like the
original program provided a compact finite repre-
sentation of all control flow paths of the original
program. Note that the resulting program encodes

5

the precise cache miss count for every possible con-
trol flow path without any loss of information. Also
note that such translation of an input program into
an analyser program is performed implicitly by ev-
ery abstract analysis algorithm, although the result-
ing program is rarely “materialised” into an actual
data structure, and typically remains encoded im-
plicitly in the state of the static analyser. Further,
during conventional abstract analysis, the control
structure of the translated program is simplified at
the expense of precision to ensure termination of the
analyser.

Besides this translation, we also perform a
number of standard optimising transformations of
the generated programs, including constant fold-
ing, copy propagation and dead code elimination.
Since the typical calculations involved in computing
cache miss counts are relatively straight-forward in
comparison to the work done by the original input
program, we expect these simple transformations to
result in a dramatic reduction to the size of the anal-
yser program. In particular, large chunks of code
that do not affect cache behaviour should disappear
from the program, thus substantially reducing the
cost of the subsequent stages of the whole process.
We also perform an induction variable analysis to
reduce many common loop patterns such as those
used to obtain a sum of an arithmetic series into a
simple scalar expression.

5.5 Coverage Analysis

Finally, we analyse the transformed program to ver-
ify that it can only return values from the set of
cache miss counts observed during measurement.
In other words, we seek to find the maximal set of
input arguments for which the analyser program re-
turns an answer within the range specified by the
measured set. Our solution first constructs an in-
verse of each function f in the program (in other
words, a function f−1 such that f−1(x) = Y iff,
for all y in the set Y, f(y) = x.) It is a remark-
able fact that such inversion can be performed rel-
atively easily for all functions that may be encoun-
tered in an analyser program. This is because we
are seeking total inversion only, rather than partial
inversion (where some of the input arguments to the
original functions remain fixed) which is a harder
problem. While the ranges of the inverted functions
grow quickly with the number of original function
parameters, as will be shown shortly, this is not a
problem in our application because the size of those

ranges is used to bind the depth of our analysis and
facilitate early termination of our algorithm. The
true exponential growth is therefore never reached
and the overall complexity of the algorithm is a lo-
gistic function of the size of the measured set and
the number of basic blocks in the input program.
The term logistic function relates to an intial expo-
nential growth of the function which subsequently
slows and finally stops.

The analysis maintains a work list of inverted
functions annotated with a set of their input argu-
ments. Initially, the work list contains only those
functions that correspond to the leaves of the call
graph of the original program, each annotated with
the set of cache miss counts obtained through mea-
surement. The algorithm proceeds by extracting
each item from the work list in turn, and terminates
when the work list becomes empty.

A single work list entry is analysed by applying
the given input value set to the corresponding in-
verted function, thus obtaining the maximal set of
corresponding program inputs. We recognise two
scenarios:
1. If the resulting set of values is unconstrained

(as will often happen by the nature of function
inversion), we have determined that the mea-
surements have been exhaustive along the corre-
sponding control-flow path in the original pro-
gram. Accordingly, the function is removed
from the work list.

2. Otherwise, we determine the set of callers of
the function under consideration in the original
(non-inverted) program, and add the correspond-
ing inverted functions to the work list. If no such
functions exist, we have just examined the entry
block of the original program, and accordingly
report the resulting set of constraints to the user.

All constraints reported to the user as a result of the
second point above represent constraints on the in-
put of the original program that must be satisfied in
order for the program’s cache behaviour to remain
within the measured set of cache miss counts. Ac-
cordingly, all input values outside of the constraint
set represent counter-examples to our hypothesis.

5.6 Algorithmic Complexity

In the worst case, the algorithm may analyse all
individual control-flow paths through the program.
However, in practice the worst case is incredibly
difficult to achieve, as the execution of our algo-
rithm is bounded by the size of the constraint set,

6

which itself grows exponentially during the func-
tion inversion process. This means that the actual
complexity of the program is a logistic, rather than
an exponential function. In fact, we believe that the
amortised complexity of our algorithm for all termi-
nating input programs is polynomial (quadratic) in
the number of functions (basic blocks) in the pro-
gram. More research is needed to substantiate this
result.

6 Conclusions

In this paper we have outlined our approach to sup-
porting probabilistic measurement-based WCET
analysis with static analysis. The static analysis is
based on a functional representation of the code in-
vestigated and an abstract interpretation of repre-
sentation. The goal is to establish sufficient mea-
surement coverage, and to reduce overestimation
of conservative combination of ETPs by conserva-
tively covering any possible dependencies between
them. Future work will largely center on finishing
the implementation of the plan presented and per-
forming the subsequent evaluation.

References

[1] F. Mueller, Static Cache Simulation and its Ap-
plications. PhD thesis, Department of Computer
Science, Florida State University, Tallahassee, FL,
USA, July 1994.

[2] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, S.-M. Moon, and
C.-S. Kim, “An accurate worst-case timing analy-
sis for risc processors,” IEEE Transactions on Soft-
ware Engineering, vol. 21, no. 7, pp. 593–604,
1995.

[3] K. Patil, K. Seth, and F. Mueller, “Compositional
static instruction cache simulation,” in Proceedings
of the Conference on Language, Compiler and Tool
Support for Embedded Systems2004, (Washington,
DC, USA), June11–13 2004.

[4] C. Ferdinand and R. Wilhelm, “Efficient and pre-
cise cache behavior prediction for real-time sys-
tems,” Journal of Real–Time Systems, vol. 17,
pp. 131–181, 1999.

[5] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner,
“Using measurements as a complement to static
worst-case execution time analysis,” in Intelligent
Systems at the Service of Mankind, vol. 2, UBooks
Verlag, Dec. 2005.

[6] K. Yamamoto, Y. Ishikawa, and T. Matsui,
“Portable execution time analysis method,” in Pro-
ceedings of the 12th International Conference on
Embedded and Real-Time Computing and Applica-
tions, (Sydney, Australia), Aug. 2006.

[7] C. van Schaik and G. Heiser, “High-performance
microkernels and virtualisation on ARM and seg-
mented architectures,” in Proceedings of the 1st
International Workshop on Microkernels for Em-
bedded Systems, (Sydney, Australia), NICTA, Jan.
2007.

[8] G. Bernat, A. Colin, and S. M. Petters, “pWCET:
a tool for probabilistic worst case execution time
analysis of real–time systems,” technical report
YCS353 (2003), University of York, Department
of Computer Science, York, YO10 5DD, United
Kingdom, Apr. 2003.

[9] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and
F. Rauch, “Goanna — A Static Model Checker,”
in Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems,
(Bonn, Germany), pp. 297–300, Aug. 2006.

[10] R. C. Williamson, Probabilistic Arithmetic. PhD
thesis, Department of Electrical Engineering, Uni-
versity of Queensland, Brisbane, Australia, Aug.
1989.

[11] G. Bernat, M. Newby, and A. Burns, “Probabilistic
timing analysis: An approach using copulas,” Jour-
nal of Embedded Computing, vol. 1, no. 2, pp. 179–
194, 2005.

[12] S. M. Petters, “Execution-time profiles,” tech. rep.,
NICTA, NICTA, Sydney 2052, Australia, Jan.
2007.

[13] T. John and R. Baumgartl, “Exact cache charac-
terization by experimental parameter extraction,”
in Proceedings of the 15th International Confer-
ence on Real-Time and Network Systems RTNS07,
(Nancy, France), pp. 65–74, Mar. 2007.

[14] M. M. Chakravarty, G. Keller, and P. Zadarnowski,
“A functional perspective on ssa optimisation algo-
rithms,” in Electronic Notes in Theoretical Com-
puter Science (J. Knoop and W. Zimmermann,
eds.), vol. 82, Elsevier, 2004.

7

Timing Analysis of Body Area Network Applications

Yun Liang Abhik Roychoudhury Tulika Mitra
Department of Computer Science, National University of Singapore

{liangyun,abhik,tulika}@comp.nus.edu.sg

Abstract

Body area network (BAN) applications have stringent
timing requirements. The timing behavior of a BAN ap-
plication is determined not only by the software complex-
ity, inputs, and architecture, but also by the timing behav-
ior of the peripherals.This paper presents systematic tim-
ing analysis of such applications, deployed for health-care
monitoring of patients staying at home. This monitoring
is used to achieve prompt notification of the hospital when
a patient shows abnormal vital signs. Due to the safety-
critical nature of these applications, worst-case execution
time (WCET) analysis is extremely important.

1. Introduction

Embedded systems based on sensor networks are
widely used in many contexts. Many applications run-
ning on sensor networks have real-time constraints. For
example, Body Area Network (BAN) technologies are
often applied in the health-care domain. Usually, the
use of BAN in health care involves several low capacity
sensor nodes on the human body and a powerful gate-
way device like a mobile phone or PDA. The nodes in
this body area sensor network communicate through
wireless connections and send data to the gateway. The
gateway device can monitor the situation of the patient
and inform the hospital if necessary in a timely fash-
ion. Such sensor network based applications have strin-
gent timing requirements.

Worst-Case Execution Time (WCET) is a required
input to provide timing predictability in a system with
timing constraints. Therefore, given an architecture
and an application, estimating the WCET is very im-
portant for the system designer. In health-care do-
main, monitoring the patient’s situation accurately
and timely is so vital that the designer must perform
WCET analysis for BAN applications.

In recent times, low-end sensor nodes such as the
ones from Berkeley [3] have become popular and have

been deployed in many applications. A typical exam-
ple of a platform used by the sensor nodes is Tmote
Sky [1]. Tmote Sky is a wireless sensor module for sen-
sor network applications that require ultra low-power
and high-reliability. A number of integrated peripher-
als including Timer, UART bus protocols, and DMA
controller are provided by Tmote Sky.

The timing behavior of a BAN application on such
sensor node architectures is determined by software
complexity, program inputs, hardware and timing be-
havior of its peripherals. Hence, timing analysis for
such sensor node architectures is non-trivial. This pa-
per presents systematic timing analysis for BAN appli-
cations by integrating the timing behavior of each com-
ponent on the platform and estimating the WCET of
the application. First, the timing behavior of applica-
tion code is analyzed through static timing analysis.
This is done by extending Chronos, an existing tim-
ing analyzer for embedded software [4]. Next, the tim-
ing behavior of the peripheral devices are taken into ac-
count by analyzing the interrupt handler code and es-
timating the number of interrupts. This turns out to
be extremely important in the context of WCET anal-
ysis of applications running on BAN.

The context of our work on BAN is a major pro-
gramme on health-care monitoring being funded and
carried out by Singapore’s Agency of Science Technol-
ogy and Research (A*STAR). The programme involves
collaboration among many different projects — core
technologies, middleware and applications. The aim is
to develop and exploit embedded system technologies
for health-care monitoring of patients staying at home
(such that the hospital can be notified whenever any
“unusual activity” in the patient’s body is detected).
Typical monitoring applications that we are studying
include blood-pressure computation/detection (possi-
bly for patients with cardio-vascular disease), fall de-
tection (monitoring for elderly patients falling to the
ground) and others.

The work described in this paper focuses on (a) the
typical micro-architecture deployed in sensor nodes put
on the patient’s body, (b) modeling and timing analy-

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1192

sis of monitoring applications running on such sensor
nodes, and (c) the significance of modeling the periph-
erals’ timing behavior to accomplish a full-system tim-
ing analysis of such applications.

Related Work We are aware of one recent work
on WCET analysis of applications running on sen-
sor nodes [7]. The focus of this work is on the processor
modeling and handling of nesC code. The applica-
tions considered are standard ones (sorting, sum, en-
cryption, etc.) rather than from a specific domain.
In terms of peripheral modeling, we know of one re-
cent work on modeling a system controller [8] where
the author develops a timing model for WCET analy-
sis from the VHDL description of the system.

Organization of the paper The use of BAN for health-
care is outlined in Section 2. Section 3 presents a typ-
ical application based on BAN. Section 4 summarizes
the key feature of Tmote sky architecture, which is
a widely used sensor network platform. Static timing
analysis based on Chronos is presented in Section 5. Fi-
nally, we present the results in Section 6 and provide
concluding remarks in Section 7.

2. Body Area Network for Health Care

For some patients, their health conditions need to
be monitored not only when they are at hospital, but
also when they stay at home. Such daily medical re-
port is very crucial for the doctors to diagnose some
chronological diseases. Wearable systems can monitor
the patients’s condition by sensors placed on the body.
Body Area Network technologies are used in such sit-
uations.

A Body Area Network comprises of some intelli-
gent low-power devices including biomedical sensors
and storage devices. The BAN works around the hu-
man body. The sensors are able to monitor and store
important biomedical information and data. The BAN
can also send information to the external world through
a gateway, e.g, a PDA or mobile phone.

The overall architecture in which a BAN is de-
ployed/used is shown in Figure 1, sensors on the hu-
man body communicate with both the gateway and
other sensors.

3. BAN Applications

BAN applications are low-power applications.
Hence, these applications keep the processor in
low-power mode as much as possible and use inter-
rupts to wake up the processor when data process-
ing is required. Also, the peripherals are switched
on only when needed in order to save energy. The

Figure 1: Body Area Network technologies for health-
care applications

high-level work-flow of a BAN application is as fol-
lows: initialization, followed by a loop consisting of
sampling and processing, that is

initialization,
sampling, processing,
sampling, processing,
...

During sampling, the CPU could be turned off to save
energy. When the sampled data is ready, it is processed
by the application, and appropriate data is transmit-
ted to remote devices. For analyzing such applications,
we need to analyze the timing behavior of the main ap-
plication and the interrupt handlers through static tim-
ing analysis.

The BAN application we analyze here continuously
monitors the blood oxygen saturation level (SpO2) of a
patient with non-invasive optical plethysmography also
known as pulsoximeter. This measurement of the oxy-
gen level and heart rate can be used to sound an alarm
if they drop below a pre-determined level. This type
of monitoring is specially useful in neonatal care and
post-operative recovery. In a pulsoximeter, the estima-
tion of blood oxygen saturation level (SpO2) is based
on measuring the intensity of light that has been at-
tenuated by body tissue. The amount of light absorbed
by the body tissue depends on the oxygenation level of
blood that is passing through it. Two different wave-
lengths of light are used — visible red wavelength and
infrared wavelength.

The light intensity is sampled at a regular interval of
16ms. Every 16ms, first the red LED is turned on and
the light passes through the finger of the patient to a
photodiode. The intensity of light at the photodiode is

2

Figure 2: The waveform of sensor data.

Figure 3: MSP430 Architecture c©Texas Instruments

sampled 16 times and the average value is taken. Next,
the infrared LED is turned on and again the intensity
of light at the photodiode is sampled 16 times to obtain
an average. This process is repeated every 16ms. Fig-
ure 2 shows this average value of red light intensity at-
tenuated by body tissue over time. The heart rate and
SpO2 are estimated from these two waveforms corre-
sponding to red and infrared light intensity. A window
of a particular size is defined and the window slides on
the waveforms. The application detects peaks in the
waveforms inside the current window. The time inter-
val between two peaks is used to measure both heart
rate and SpO2 of the patient. These values are subse-
quently sent to some gateway device such as PDA that
can detect abnormalities and send information to the
hospital or health care provider.

4. Features of Tmote Sky Architecture

In this section, we outline the underlying micro-
architecture of the sensor node platforms used by the
BAN applications. Specifically, we describe the Tmote
Sky platform [1], which employs the MSP430 proces-
sor from Texas Instruments. The MSP430 has a simple
micro-architecture and a reduced instruction set with
only 27 instructions. So, for WCET analysis, the focus
is not so much on the processor modeling. Instead, mod-
eling the timing effects of the peripherals turns out to
be extremely important. We now describe the platform
architecture in detail.

Tmote Sky is a mote platform designed for ex-
tremely low power, high data-rate, sensor network
applications. The micro-controller present in Tmote
Sky note is Texas Instruments’s MSP430 F1611. The
MSP430 incorporates a 16-bit RISC CPU, peripherals

(12-bit ADC and DAC, Timer, USART, and a perfor-
mance boosting DMA controller) and a flexible clock
system. The architecture of MSP430 is shown in Fig-
ure 3. The current consumption of the micro-controller
in low active and sleep mode is so small that an appli-
cation can run for a very long time with only a single
pair of AA batteries.

The features of Tmote sky platform with significant
impact on the timing behavior of a BAN application
are the following.

• Flexible Clock System: The platform includes a
low-frequency auxiliary clock (ACLK) and a high-
frequency master clock (MCLK). The peripherals
can use different clocks.

• Operating Modes: MSP430 is designed for ex-
tremely low-power applications and features differ-
ent operating modes distinguished by power, speed
and current consumption. Operating mode can be
selected by setting mode-control bits.

• 16-bit RISC CPU: The number of CPU clock
cycles required to execute an instruction de-
pends on the instruction format and the address-
ing mode. All jumps instructions take two cy-
cles to execute, regardless of whether the jump
is taken or not. When computing execution cy-
cles for interrupt handlers, the additional cy-
cles due to interrupt overhead and reset should
be taken into account.

• Timer A: Timer A is an asynchronous 16-bit
timer counter with four operating modes. Clock
source is configurable.

• Timer B: Timer B is identical to Timer A with
the exception that it can be programmed as 8, 10,
12, or 16 bit timer.

• USART: USART is used for asynchronous serial
transmission and reception of characters to/from
another device. The time to send/receive one char-
acter is based on the selected baud rate of the US-
ART. Baud rate frequency is the same for both
transmit and receive functions.

• Hardware Multiplier: The hardware multiplier
is a peripheral and is not part of the 16-bit RISC
CPU. The registers used by hardware multiplier
are special peripheral registers.

The SpO2 application uses Timer B, Timer A and
universal synchronous/asynchronous receive/transmit
(USART). Timer B is used to wake up the CPU and
trigger Timer A every 16ms. Timer A is used to take
32 samples from the photodiode (16 for the red light
and 16 for the infrared light) as discussed in Section 3.
Timer B and Timer A use different clocks. USART is

3

used to send the heart rate and SpO2 measurements of
the patient to some gateway device such as PDA.

5. Static Timing Analysis

The execution time of a program is determined by
the program path taken during execution. If worst
case input is known, then simulating the system with
the worst case input will result in worst case execu-
tion time. However, determining the worst case in-
put is very difficult when the application is non-trivial.
Hence, static timing analysis is widely used technique
to estimate worst case execution time. While many
approaches have been proposed, we use Chronos [4,
5, 6] — an open-source timing analysis tool with de-
tailed micro-architectural modeling developed by our
research group. Given an architecture and an appli-
cation, Chronos returns an upper bound on the ex-
ecution time across all the inputs. WCET analysis
in Chronos proceeds in two phases: path-analysis and
micro-architecture modeling. The interested reader can
get more details about (or even download) the Chronos
toolkit from its website

http://www.comp.nus.edu.sg/∼rpembed/chronos
An overview of the framework of Chronos is illus-

trated in Figure 4. During path analysis, Chronos con-
structs the control flow graph (CFG) of the application
and generates functional constraints like loop bounds
and flow constraints. In micro-architecture model-
ing, Chronos models complex micro-architectural fea-
tures such as cache, pipeline, branch prediction and
generate micro-architectural constraints. Follow-
ing that, Chronos represents the execution time of the
whole program through an Integer Linear Program-
ming (ILP) formulation, and uses ILP/LP solver to
find the maximum execution time.

We modify the Chronos toolkit in order to model
the micro-controller MSP430. Chronos is targeted to-
wards SimpleScalar PISA instruction-set architecture
(ISA). As MSP430 has a different ISA, the control flow
graph construction is modified. The other components
in path analysis such as flow constraints generation and
loop bound detection remain the same. While Chronos
models cache, pipeline, branch prediction, these model-
ing are omitted here as MSP430 processor does not sup-
port these features. The execution cycles corresponding
to an instruction is obtained by a simple table look-up
with the corresponding instruction format and address-
ing mode. Then, the execution time of a basic block is
simply the sum of the execution time of the instruc-
tions within the basic block.

The main contribution of this work is that we ex-
tend Chronos to model and analyze the timing behav-

Figure 4: Workflow of Chronos Timing Analysis Tool

ior of the peripherals. For SpO2 application, the pe-
ripherals include Timer B, Timer A and USART. The
next section describes the modeling of the peripher-
als in detail.

6. System-Level Modeling for BAN Ap-
plication

The interesting aspect of any BAN application is
that the sensor nodes are sampled at regular intervals
through the use of timers. In other words, the number
of interrupts can be estimated accurately. Therefore,
the timing behavior of the main application and the in-
terrupt handlers for Timer A and Timer B can be ana-
lyzed separately. We use Chronos to perform static tim-
ing analysis of the interrupt handlers and the main ap-
plication individually. However, we should ensure that
the timing overheads due to interrupt acceptance and
return are taken into account. Finally, summing up the
WCET of all the sub components yields the WCET of
the whole system. Here, we define WCET as the to-
tal time required to acquire and process the samples
every 16ms. The timing analysis of the interrupt han-
dlers and the main application for SpO2 are illustrated

4

Component Clock System WCET cycles WCET WCET Percentage ACET
Processing High Speed (8 MHz) 64352 8.044 ms 61.73% 0.586 ms
Timer B Low Frequency (32 KHz) 38 4.75 µs 0% 4.75 µs
Timer A High Speed (8 MHz) 35724 4.4655 ms 34.27% 3.766 ms
USART Asynchronous Transmission 0.52ms 4% 0.52 ms
Total 13.03ms 100% 4.872 ms

Table 1: Results of Timing Analysis of SpO2 application with interrupt

in the following.
Timer B: Timer B uses the low frequency auxil-

iary clock (ACLK) running at 32 KHz. The counter
for this timer is set such that it generates an inter-
rupt every 16ms. The functionality of Timer B inter-
rupt handler is to simply enable Timer A to sample
data. The WCET of Timer B interrupt handler rou-
tine is shown in Table 1.

Timer A: Timer A is enabled by Timer B. As men-
tioned earlier, each time Timer A takes 32 samples
from the photodiode (16 at red light wavelength and
16 at infrared wavelength). Finally, two average values
are computed from these samples. The interrupt han-
dler is invoked for each sample. However, only 2 out
of these 32 invocations lead to average value computa-
tion, which is more time consuming. So, the call con-
text is taken into account when analyzing the worst
case execution time of the Timer A interrupt handler.
The WCET of Timer A handler routine for one round
(i.e., 32 samples) is shown in Table 1. When the aver-
age values have been computed, the CPU exits the low
power mode and returns to active mode for data pro-
cessing.

Processing: In the main application, the average
values obtained from Timer A are filtered and stored
into a window. Then, the application tries to detect
a peak in the middle of this window. If a new peak
is detected, heart rate and SpO2 are calculated using
the peak value. Finally, USART is called to send some
feedback to the gateway device. From the description
above, it is obvious that the worst case behavior hap-
pens when a peak is detected. The WCET of the main
application (Processing) is shown in Table 1.

USART: The USART takes 1/115200 second to
send 1 bit and SpO2 needs to transmit 6 bytes per
round. In the USART, for every byte of data, two more
bits (start bit and stop bit) are added. Therefore, a to-
tal of 60 bits are transmitted per round. The time spent
in the USART is shown in Table 1. In SpO2 applica-
tion, the USART transmission takes place via polling;
so the time spent in the USART is the blocking time
due to transmission.

From the Ratio column in Table 1, we find that the
time consumed in peripherals is 38.27% for one round
of acquisition and processing. Clearly, if the timing ef-
fects of the peripherals are not modeled, the WCET of the
whole system will be an under-estimation.

The average case execution time (ACET) is shown in
Table 1 too. In terms of ACET, the time for one round
of data acquisition and processing is close to 4.872 ms.
Clearly, the WCET value is essential here to claim that
timing constraint is satisfied.

7. Conclusion

In this work, we present a systematic timing analy-
sis framework for BAN applications. BAN applications
are safety-critical and have stringent timing require-
ments. We analyze the timing behavior of application
code and interrupt handlers for peripherals separately.
Finally, the WCET of the interrupt handlers are mul-
tiplied by the number of interrupts during one round
of processing and summed up with the WCET of the
main data processing part to estimate the WCET of
the entire system.

TinyOS [3] is an operating system designed for wire-
less embedded sensor networks and has been used
widely for sensor nodes. NesC [2] is the correspond-
ing language for programming sensor network applica-
tions in TinyOS. In the future, we plan to adapt our
framework to provide WCET analysis for NesC code
along with modeling of TinyOS.

Acknowledgments

This work was supported by NUS project R252-000-
171-112 and A*Star SERC EHS-II project R-252-000-
258-305.

References

[1] Tmoteskyplatform.http://www.moteiv.com/products/.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach

5

to networked embedded systems. In PLDI ’03: Proceed-
ings of the ACM SIGPLAN 2003 conference on Program-
ming language design and implementation, pages 1–11,
New York, NY, USA, 2003. ACM Press.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In ASPLOS-IX: Proceedings of the ninth inter-
national conference on Architectural support for program-
ming languages andoperating systems, pages93–104,New
York, NY, USA, 2000. ACM Press.

[4] X.Li,Y.Liang,T.Mitra, andA.Roychoudhury. Chronos:
A timing analyzer for embedded software. Science of
Computer Programming, 2007.

[5] X. Li, T. Mitra, and A. Roychoudhury. Modeling con-
trol speculation for timing analysis. Real-Time System.,
29(1):27–58, 2005.

[6] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-
order processors for wcet analysis. Real-Time System.,
34(3):195–227, 2006.

[7] S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing
analysis for sensor network nodes of the atmega processor
family. In RTAS ’05: Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Sympo-
sium, pages 405–414, Washington, DC, USA, 2005. IEEE
Computer Society.

[8] S. Thesing. Modeling a system controller for Timing
Analysis. In EMSOFT ’06: Proceedings of the 6th ACM
& IEEE International conference on Embedded software,
pages 292–300, New York, NY, USA, 2006. ACM Press.

6

Towards Symbolic State Traversal for Efficient WCET Analysis of Abstract
Pipeline and Cache Models∗

Stephan Wilhelm
AbsInt GmbH and Saarland University

Saarbrücken, Germany
sw@absint.com

Björn Wachter
Saarland University

Saarbrücken, Germany
bwachter@cs.uni-sb.de

Abstract

Static program analysis is a proven approach for obtain-
ing safe and tight upper bounds on the worst-case execu-
tion time (WCET) of program tasks. It requires an analysis
on the microarchitectural level, most notably pipeline and
cache analysis. In our approach, the integrated pipeline
and cache analysis operates on sets of possible abstract
hardware states. Due to the growth of CPU complexity and
the existence of timing anomalies, the analysis must handle
an increasing number of possible abstract states for each
program point. Symbolic methods have been proposed as
a way to reduce memory consumption and improve runtime
in order to keep pace with the growing hardware complex-
ity. This paper presents the advances made since the origi-
nal proposal and discusses a compact representation of ab-
stract caches for integration with symbolic pipeline analy-
sis.

1. Introduction

Finding the worst-case execution time (WCET) for all
tasks of a software is an important requirement in the design
of hard real-time systems. A proven approach for obtaining
tight upper bounds of the WCET, based onabstract inter-
pretation (AI), has been presented in [9]. It employs sev-
eral semantics-based static program analyses on the assem-
bly level control flow graph (CFG) of the input program.
First, thevalue analysis computes possible register contents
for each program point in order to determine the address
ranges for instructions accessing memory. Then, an inte-
gratedpipeline and cache analysis, operating on safe ap-
proximations of the possible pipeline and cache states, com-
putes a WCET bound for each basic block of the CFG. Safe

∗This work has been funded in part by the ARTIST2 Network of Ex-
cellence (http://www.artist-embedded.org/) and by the Transregional Col-
laborative Research Center 14 AVACS (http://www.avacs.org/).

approximation means, that the analysis might only consider
too many states, i. e. the WCET state is always included.
The correctness of this approach has been proven [8] [15].
Finally, apath analysis computes the global worst-case path
using the WCET bounds for basic blocks determined by the
pipeline and cache analysis [14]. The AI approach has been
used very successfully for various complex, real-life archi-
tectures [16] [13].

Unfortunately, CPUs using modern techniques for reduc-
ing the average execution time, such as caches, pipelined
execution, branch prediction, speculative execution, and
out-of-order execution, are often subject totiming anoma-
lies. A timing anomaly is a local worst-case behavior, e. g.
a cache miss, that does not contribute to the global worst-
case [11]. As a consequence, abstract interpretation of the
pipeline behavior must consider a large number of possible
abstract pipeline states for each program point. This prob-
lem is also known asstate explosion. In certain cases, the
analysis can even become infeasible because of the increase
in memory consumption and computation time [15].

Measurement-based approaches for computing the
WCET avoid the high cost of microarchitectural modeling
and are therefore not affected by the problem of state explo-
sion. However, measurement-based approaches are often
not suitable for safety critical applications since an underes-
timation of the WCET cannot be excluded [2]. Furthermore,
using measurement-based methods for complex architec-
tures can lead to a high overestimation of the WCET [7].

Symbolic methods have been proposed recently as a way
to handle sets of abstract pipeline states efficiently, reduc-
ing memory consumption and improving runtime, in order
to keep pace with the growing hardware complexity [17]. In
the past, such methods have been used successfully for sim-
ilar problems in model checking [5]. This paper presents an
extension of the AI approach for pipeline analysis, using a
symbolic representation of abstract pipeline states.

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1190

Our Contribution. We propose an improved algorithm
for symbolic state traversal of abstract pipeline models that
overcomes limitations of the algorithm presented in [17].
Furthermore, we discuss a compact encoding of abstract
caches that admits an integration of pipeline and cache anal-
ysis.

The paper is organized as follows. Section 2 briefly in-
troduces the required terminology and section 3 gives an
informal overview of the abstraction techniques used for
deriving abstract pipeline models. Then, we review the al-
gorithm for computing state transitions for sets of abstract
pipeline states, using a small example (section 4). Using
the same example, section 5 shows that the algorithm does
not handle all cases correctly and proposes a solution for
this problem. Section 6 discusses the performance of the
approach and section 7 presents the current state of our im-
plementation and gives first performance numbers. Finally,
section 8 discusses the integration with a cache analysis.

2. Background

Given a finite state machine (FSM) with a set of statesQ,
a set of input valuesI, and a transition relationT , each set
of FSM statesA ⊆ Q can be associated to itscharacteristic
function A : Q → {0, 1}; A(x) = 1 ⇔ x ∈ A. In the same
way, thetransition relation T can be associated to the func-
tion T : Q× I ×Q → {0, 1}; T(x, i, y) = 1 ⇔ (x, i, y) ∈
T . It is common practice to represent FSM state sets and
the FSM transition relation by their characteristic functions
encoded asbinary decision diagrams (BDDs). BDDs are
usually more compact than explicit representations and ef-
ficient implementations of useful operations such as nega-
tion, conjunction and existential quantification exist [4].

Given a set of FSM statesA ⊆ Q, the image of A,
Img(A) ⊆ Q, is the set of states that is reachable fromA

underT . Image computation is the core operation of sym-
bolic model checking algorithms and can be efficiently im-
plemented using BDDs [12].

Pipeline analysis is a static program analysis which per-
forms a fixed point iteration on the domain of abstract
pipeline states. The least fixed point (LFP) is the solution
to the data flow problem containing all states that are reach-
able for a given program point including the WCET state.
The result is a maximum number of cycles for each basic
block.

Symbolic pipeline analysis is an implementation of
pipeline analysis using BDDs for representing sets of ab-
stract pipeline states (an abstract pipeline model is an FSM).
In addition to the standard BDD operations provided by any
BDD library, it uses the image computation engine from a
model checker for efficiently computing the reachable ab-
stract pipeline states.

3. Abstract Pipeline Models

Implementation of an abstract pipeline model requires
detailed knowledge about the internal working and timing
behavior of a CPU. This knowledge can be obtained from
written documentation or hardware traces of bus signals
or from the original Verilog or VHDL implementation (al-
though the latter is often not available). Using any of this
information, an abstract pipeline model can be derived by

1. Omission of timing-irrelevant implementation details.

2. Omission of data paths.
Operations on the register file are already handled by
the value analysis. Possible register values are there-
fore available during pipeline analysis without model-
ing register file and ALU.

3. Use of instruction addresses in all pipeline stages.

The last two points require a detailed discussion because
they are crucial for understanding the difference between
model checking and pipeline analysis. Model checking ex-
plores the state space of a model in order to prove or reject
a statement in temporal logic. All information is contained
in the model and state space exploration is guided by the
transition relation and by the logic statement. In contrast,
pipeline analysis explores the model’s state space guided
by the transition relation and the structure of a program and
by additional information from other analyses. Thus, the
model doesnot contain all information because we have
delegated some of it, e. g. to the value analysis. In order
to obtain this information during the analysis, we need to
establish a relationship between abstract states and program
points. This is achieved by the use of instruction addresses
in all pipeline stages (see item 3 above). The same rela-
tionship can be used to annotate the analysis result, i. e. the
WCET for each basic block.

Reading the delegated information during state transition
is trivial for implementations operating on an explicit rep-
resentation of abstract states, because the transition is com-
puted individually for each abstract state [15]. On the other
hand, symbolic pipeline analysis gains efficiency by using
BDD operations on sets of abstract states. Explicitly ex-
tracting and recoding single states has to be avoided or min-
imized. An algorithm for computing state transitions on sets
using image computation and encoding the delegated infor-
mation using BDD operations has been presented in [17].
In the next section, we will illustrate the key ideas using a
simplified abstract pipeline model.

4. An Illustrated Example

Figure 1 shows a simplified extract from our abstract
pipeline model for a subset of the Infineon Tricore [18]. The

2

Figure 1: Extract from Tricore model.

architecture features two pipelines, calledInteger-Pipeline
(IP) andLoad/Store-Pipeline (LSP), which share the same
fetch unit. Each pipeline has its dedicated decode unit.1

The state of each unit is held in a few variables which are
updated in each cycle. The Verilog code below the unit’s
name shows the update for three selected variables. The cur-
rent value of each variable is communicated to other units
using1- or n-bit wide wires, wheren is the number of bits
used for encoding instruction addresses.

Let us examine what happens if we analyze this subset
of our abstract model. The fetch unit sends instruction ad-
dresses to the bus unit viabu adr which returns the sig-
nal bu ack when the instruction data arrives. The fetch
unit controls an 8 byte prefetch buffer (not shown in the
example) and dispatches its contents to the decode units.
The fetch unit sends only instruction addresses viai addr
andls addr instead of sending instruction data (remem-
ber that data paths have been removed). The decode units
are responsible for detecting structural pipeline hazards(not
shown here) and for computing targets of control-flow in-
structions. Target addresses are stored in thei tgt and
ls tgt buffers where the special value0 indicates that the
buffer does not contain a valid target. Whenever the fetch
unit is about to request a new address from the bus unit,
it checks whether any of the two buffers contains a valid
address and in that case it overwritesbu addr with that
address and redirects the next fetch to the branch, return or
call target. Otherwise, the new value ofbu addr is calcu-
lated by the functionupdate depending on the state of the
prefetch buffer.

1The third pipeline for handling zero-overhead loops sharesits decode
stage with the LSP.

0xd4000056 mov d15, +21649

0xd400005a j 0xd4000068

Figure 2: Tricore assembly.

Pipeline analysis starts from the initial state where
bu addr contains the start address andi tgt and
ls tgt are set to zero. The reachable pipeline states
are computed by repeated image computation, but at cer-
tain points we require some of the delegated information
(from now on, we will refer to such cases asexternal re-
quests). E. g. in a stateq where the condition(i req &&
i addr) holds, we require the possible control-flow tar-
gets for the instruction at addressi addr in order to up-
date the variablei tgt. The update rule2 for this variable,
i tgt = $ND, states thati tgt may adopt any possible
value in the next cycle ($ND stands for non-deterministic
values). Thus, the image ofq is a set of2n states that differ
only in the value ofi tgt.

Consider the assembly code of figure 2 and let us assume
that the value ofi addr in stateq ∈ Q is 0xd400005a.
A lookup of this address from the assembly program shows
that it is an unconditional jump to address0xd4000068.
The key idea presented in [17] is to partition a set of ab-
stract states according to different external requests. Com-
puting the image of each partition yields all possible succes-
sor states for that request, which can be restricted using the
external information. The set of successor states for the next
analysis cycle is the disjunction of the restricted images for
each partition.

5. Concurrent External Requests

Consider again the assembly code of figure 2. The
Tricore fetch unit can issue such a pair of instructions
concurrently by assigning the move instruction to the IP
and the unconditional jump to the LSP. If the signals
i req andls req are active during the next cycle, then
both conditions(i req && i addr) and(ls req &&
ls addr) hold. This means that we have two external re-
quests in the same stater ∈ Q andImg(r) produces22n

successor states, becauseboth target buffers may adopt any
value. The original algorithm as proposed in [17] handles
each external request individually and therefore fails to cre-
ate a correct restriction for this case. Thus, if restrict(A,v)
denotes the restriction of variablev in the subsetA ⊆ Q,
then the algorithm effectively computes

restrict(Img({r}),i tgt) ∪ restrict(Img({r}),ls tgt)

This computation yields2 · 2n states instead of the single
state wherei tgt equals0 (the move has no branch target)
andls tgt equals0xd4000068.

2Depicted in the left decode unit in figure 1.

3

We therefore propose a slightly different algorithm for
partitioning the set of abstract pipeline states, in order to
simplify finding all restrictions for concurrent external re-
quests. It involves the computation of allcofactors of the
variables controlling external requests. Computing a cofac-
tor means restricting a binary variable to either1 or 0. We
define an ordering on the decision variables for external re-
quests, e. g.

i req →
1

i addr[n] → . . . i addr[0]

↓
ls req →

1

ls addr[n] → . . . ls addr[0]

All decision variables for a single external request appearin
a single line and their ordering is indicated by arrows. Using
this ordering, we compute a tree of cofactors as shown in
figure 3. The leaves of the tree are the required partitions
for external requests. In some cases, we do not need to
consider the cofactors of all variables in a line. E. g. we
skip cofactoring the variablesi addr[n] . . .i addr[0]
for cofactors wherei req = 0 because the expression

i req ∧ (i addr[n] ∨ . . . ∨ i addr[0])

evaluates to false for all assignments ofi addr[n] . . .

i addr[0]. This shortcut is indicated by the1 below the
ordering arrow betweeni req andi addr[n]. Short-
cuts can be found easily because of the regular structure of
external requests. They usually rely on the state of very few
signals (likei req) and the address part must be different
from 0 (invalid address). The partitions depicted in figure 3
are

(A) States without external requests.
(B) States requestingi tgt.
(C, D) States requestingi tgt andls tgt.

The states (C) and (D) differ in the instruction address
ls addr for the external request ofls tgt. In practice,
most of the possible cofactors will be empty, which means
that it suffices to consider a fraction of the possible paths
through the partitioning tree. The efficiency of the parti-
tioning can be further improved by choosing a variable or-
dering that allows for the definition of many early shortcuts.
Furthermore, the use of shortcuts avoids the partitioning of
states with different addresses but without active external
requests, e. g. fori addr if i reg = 0. A tree walk from
the root to a leaf defines an assignment of all decision vari-
ables for all active external requests in that partition. Using
this information, we can lookup the results for all active
external requests of a partition and restrict the possible suc-
cessor states as described in section 4.

ls_req

ls_addr[n]

ls_addr[n−1] ls_addr[n−1]

...

i_req

...

...

...

i_addr[0]

ls_req

0

0

1 1

1

1

0 1

0

1

0 1

0

...

1 0

1

ls_addr[0] ...

i_addr[n]

0

0 1

...

0 110

C D

B

A

...

Figure 3: Partitioning tree.

6. Performance Considerations

The performance of BDD-based algorithms depends on
the number of BDD variables and on their ordering. The
number of BDD variables is equivalent to the number of bits
needed for all variables in the abstract model. Therefore, in-
troducing instruction addresses into all pipeline stages cre-
ates a serious problem if we use all 31 bits needed for ad-
dressing the whole address space (for Tricore, we can omit 1
bit because of alignment restrictions). We can significantly
reduce the number of bits by enumerating all instructions
used in the program. For external requests, we translate
the numbers back using a simple table lookup. The same
method can be used for compactly encoding data addresses.

The problem of finding a good variable ordering for ob-
taining small BDDs has been studied extensively and many
heuristics exist [10]. However, finding a good ordering re-
quires careful engineering and knowledge about the imple-
mentation of a concrete abstract model. Thus, it must be
determined for each abstract pipeline model.

The number of partitions generated by our traversal al-
gorithm depends on the number and placement of external
requests in the abstract pipeline model. A large number of
external requests can lead tofragmentation of the symbolic
representation, e. g. if each state issues a different external
request, we have to separate all states into singular parti-
tions. However, we believe that the worst case is unlikely in
practice and that efficient designs can be found.

7. Implementation and Experimental Results

The presented approach for symbolic pipeline analysis
has been implemented in theaiT-framework [1], using the
VIS [3] model checker for image computation and BDD op-
erations. An abstract pipeline model for a subset of the Infi-
neon Tricore has been implemented in Verilog. It comprises
the shared fetch unit (fully implemented) and simplified im-

4

Figure 4: Cycle update times compared to number of states.

plementations of the two main pipelines (altogether about
500 lines of Verilog). The Verilog specification is trans-
lated to a netlist for VIS, using thevl2mv compiler [6]. The
interface to aiT’s program analysis framework, including
the handling of external requests, is implemented in C++.
The analysis has been tested successfully on several small
benchmarks, e. g. dhrystone.

In order to assess the efficiency of our approach, we
have increased the number of abstract states considered by
the analysis by assuming different latencies for instruction
fetches. This is similar to real-world problems since state
explosion is often caused by uncertain information about
the timing of memory accesses (e. g. cache-hit or miss).
Using 63 possible latencies for each instruction fetch, we
obtained the results presented in figure 4 by analyzing a pro-
gram for calculating prime numbers. The solid bold curve
indicates the time required for computing a cycle update for
all possible abstract states at a program point. The dotted
curve below shows the number of partitions generated by
our algorithm and the dashed curve shows the number of
BDD nodes (divided by 10). Considering that the repre-
sentation of a single state requires 192 BDD nodes and ap-
proximately 10 msecs per cycle update, figure 4 shows that
memory consumption (number of required BDD nodes) and
computation time for cycle updates only grow slowly with
the number of states. We expect that the symbolic approach
will outperform an explicit implementation, as soon as the
number of states reaches a break-even point.

8. Integrating Cache Analysis

We have mentioned that the AI approach uses anin-
tegrated cache and pipeline analysis (see section 1). In
fact, the analysis operates on tuples of abstract pipeline-
and cache states because of their interdependence, i. e. the
order of memory accesses depends on pipeline effects and
the timing of memory accesses depends on the cache state.
We propose a symbolic implementation of an integrated

pipeline and cache analysis such that the extra number
of BDD variables for representing abstract caches remains
small. Let us start by recalling some notions of cache anal-
ysis as defined in [8].

Abstract Cache Model. We deal withA-way associative
caches. LetA denote the associativity of the cache. We
denote byM the set of memory locations that are mapped
into the cache. Lets be a cache set andS the set of cache
sets. Each memory location falls into a particular cache set.

The setM decomposes into disjoint setsM =
.⋃

s∈SMs

whereMs are the memory locations falling into sets. Ab-
stract caches are typically based on the concept of age. A
memory location is either not in the cache, i.e. has age⊥,
or it is in one of theA many lines of its cache set, i.e. has
agek wherek ∈ {1, . . . , A}. The age of a memory location
is an element ofA = {1, . . . , A,⊥}. An abstract state of a
cache set is a total function[Ms → A]. An abstract cache
state is the collection of the states of its sets:

Ĉache =
⊎

s∈S

[Ms → A]

Symbolic Representation. We exploit knowledge about
the program and approximations to arrive at a compact sym-
bolic encoding. As noted earlier, we know the memory lo-
cations that will be accessed by the program in advance,
as they can be determined by value analysis. In general, the
set of accessed memory locationsM is significantly smaller
than the full address space and depends on the program un-
der analysis. Note that we encode functions that keep track
of the age of particular memory locations. A straightfor-
ward encoding would be to extend the state vector by|M|
many entries, one for each memory location, that record the
age of each memory location. An advantage of this encod-
ing is that it can be implemented using off-the-shelf image
computation. However, the number of required state bits
would be too high, as e. g. a data cache typically may con-
tain tens of thousands of memory locations.

The problem with the naive encoding is that it unrolls the
domain of the functions that represent cache state. In our
encoding, we exploit that BDDs can encode functions di-
rectly and without unrolling, so that the number of required
boolean variables is logarithmic in the number of memory
locations rather than linear. For simplicity, we can assume
that only one cache state is stored per pipeline state. States
that agree in terms of pipeline state can be merged to one
state by using the join operator for abstract caches. The
symbolic domain consists of partial functions from pipeline
to cache state:

P̂ ipe ↪→ Ĉache

An element of this domain represents a set of abstract states
and is stored in a single BDD. The BDD contains the

5

boolean variables of the pipeline state plus boolean vari-
ables that address a particular cache set, a memory location,
and age, respectively. One can use binary encoding for the
set of cache sets, the sets of memory locations and ages, re-
spectively. One obtains the following number of required
boolean variables in the BDD:

‖P̂ ipe‖ + dlog
2
Se + dlog

2
max
s∈S

|Ms|e + dlog
2
|A|

︸ ︷︷ ︸

‖Ĉache‖

e (1)

where ‖P̂ ipe‖ denotes the number of bits required for
pipeline state.

As mentioned earlier, BDDs typically represent charac-
teristic functions in symbolic state traversal [5]. This is
not the case for the proposed symbolic representation and
therefore a modified image computation algorithm is re-
quired. However, space precludes us from discussing this
algorithm.

Let us briefly assess the compactness of the represen-
tation on a real-life example, a task set obtained from an
industry project. The task set was compiled for a Pow-
erPC 755 processor featuring a 2-way associative cache
with 128 sets and 32 bytes line size. We obtained (an over-
approximation of) the set of accessed memory locationsM
by value analysis. The maximum number of memory loca-
tions that fall into a cache set is 94 in this example. Overall
there are about ten thousand memory locations. Using for-
mula 1, we see that the extra number of bits required for the
data cache is 16 (|S| = 128, maxs∈S |Ms| = 94,|A| = 3).
In the example, the instruction cache can potentially con-
tain only about a thousand locations. Thus we only need
one more bit to switch between instruction and data cache
in the representation (analogously to how we use bits to ad-
dress different sets in a cache). The overall number of bits
required for the cache is thus 17.

9. Conclusion

We have shown that symbolic pipeline analysis is a static
program analysis which uses the same abstractions as pro-
posed in [15]. The use of a symbolic representation for ab-
stract pipeline states requires algorithms for efficientlyen-
coding delegated information when computing state transi-
tions. We have illustrated our solution using the notion of
external requests (sections 4 and 5) and described its effects
on the performance of the analysis.

Currently, our implementation only supports a pipeline
analysis. We have outlined ideas that admit an integrated
cache and pipeline analysis without significantly increasing
the number of state bits compared to stand-alone pipeline
analysis (section 8). In the future, we will implement the
integrated analysis.

References

[1] http://www.absint.com/aiT/.
[2] A. Betts, G. Bernat, R. Kirner, P. Puschner, and I. Wenzel.

WCET Coverage for Pipelines. Technical report, 2006.
[3] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli,

F. Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Kha-
tri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sar-
wary, T. R. Shiple, G. Swamy, and T. Villa. VIS: A System
for Verification and Synthesis. InCAV, pages 428–432, 1996.

[4] R. Bryant. Graph based algorithms for boolean function ma-
nipulation. InIEEE Transactions on Computers, 1986.

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang.
Symbolic model checking:1020 states and beyond. IEEE
Comp. Soc. Press, 1990.

[6] S.-T. Cheng. Compiling Verilog into Automata. Technical
report, Electronics Research Lab, Univ. of California, Berke-
ley, CA 94720, 1994.

[7] A. Colin and S. M. Petters. Experimental Evaluation of Code
Properties for WCET Analysis. InRTSS ’03: Proceedings of
the 24th IEEE International Real-Time Systems Symposium,
page 190, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[8] C. Ferdinand.Cache Behavior Prediction for Real-Time Sys-
tems. PhD thesis, Saarland University, 1997.

[9] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and Precise WCET Determination for a Real-Life Pro-
cessor. InProceedings of EMSOFT 2001, LNCS 2211, 2001.

[10] S.-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Vari-
able Ordering for FSM Traversal. InProceedings of the In-
ternational Conference on Computer-Aided Design, 1991.

[11] T. Lundquist and P. Stenström. Timing Anomalies in Dy-
namically Scheduled Microprocessors. InProceedings of the
20th IEEE Real-Time Systems Symposium, 1999.

[12] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley.
Efficient BDD Algorithms for FSM Synthesis and Verifica-
tion, 1995.

[13] J. Souyris, E. Le Pavec, G. Himbert, V. Jgu, G. Borios, and
R. Heckmann. Computing the Worst Case Execution Time
of an Avionics Program by Abstract Interpretation. InPro-
ceedings of the 5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 21–24, 2005.

[14] H. Theiling. ILP-based Interprocedural Path Analysis. In
Proceedings of the Workshop on Embedded Software, Greno-
ble, France, 2002.

[15] S. Thesing.Safe and Precise WCET Determination by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Saar-
land University, 2004.

[16] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An Ab-
stract Interpretation-Based Timing Validation of Hard Real-
Time Avionics Software. InProceedings of the 2003 Inter-
national Conference on Dependable Systems and Networks
(DSN 2003), pages 625–632. IEEE Computer Society, 2003.

[17] S. Wilhelm. Efficient Analysis of Pipeline Models for WCET
Computation. InProceedings of the 5th Intl. Workshop on
Worst-Case Execution Time Analysis, 2005.

[18] S. Zarnescu.TriCore Pipeline Behaviour & Instruction Exe-
cution Timing. Infineon Technologies, 2001.

6

WCET Analysis: The Annotation Language Challenge ∗

Raimund Kirner†, Jens Knoop‡, Adrian Prantl‡, Markus Schordan‡, Ingomar Wenzel†

Vienna University of Technology, Austria

Abstract

Worst-case execution time (WCET) analysis is in-

dispensable for the successful design and development

of systems, which, in addition to their functional con-

straints, have to satisfy hard real-time constraints. The

expressiveness and usability of annotation languages,

which are used by algorithms and tools for WCET anal-

ysis in order to separate feasible from infeasible pro-

gram paths, have a crucial impact on the precision

and performance of these algorithms and tools. In

this paper, we thus propose to complement the WCET
tool challenge, which has recently successfully been

launched, by a second closely related challenge: the

WCET annotation language challenge. We believe that

contributions towards mastering this challenge will be

essential for the next major step of advancing the field

of WCET analysis.

Keywords: Worst-case execution time (WCET)
analysis, annotation languages, WCET tool challenge,

WCET annotation language challenge.

1 Motivation

The precision and performance of worst-case execu-
tion time (WCET) analysis depends crucially on the
identification and separation of feasible and infeasible
program paths. This information can automatically
be computed by appropriate tools or manually be pro-
vided by the application programmer. In both cases
some dedicated language is necessary in order to an-
notate this information and make it amenable to a

∗This work has been partially supported by the Austrian
Science Fund (Fonds zur Förderung der wissenschaftlichen
Forschung) within the research project “Compiler-Support for
Timing Analysis” (CoSTA) under contract P18925-N13. This
work has been funded in part by the ARTIST2 Network of Ex-
cellence (http://www.artist-embedded.org/).

†Institut für Technische Informatik, Vienna University of
Technology, Austria, {raimund,ingo}@vmars.tuwien.ac.at

‡Institut für Computersprachen, Vienna University of Tech-
nology, Austria, {knoop,adrian,markus}@complang.tuwien.ac.at

subsequent WCET analysis. Languages used for this
purpose are commonly known as annotation languages.
Over the past 15 years, an array of conceptually quite
diverse proposals of annotation languages has been pre-
sented. Many of them have been used for the imple-
mentation of a WCET tool. A comprehensive survey of
WCET tools and methods has been given by Wilhelm
et al. [30]. Until now, however, there has been no sys-
tematic comparison of the various approaches proposed
on annotation languages for WCET analysis.

We believe that this lack is not only a hurdle for
students and researchers entering the field of WCET
analysis, but that it also constrains the further progress
and advancement of the field. In fact, after roughly two
decades of vibrant and vigorous research we consider
closing this gap a major step both for consolidating
the state-of-the-art and for providing a new and strong
stimulus for further advancing it.

The purpose and the contributions of this paper are
thus three-fold: First, to identify an array of impor-
tant universally valid criteria, in which the usefulness
of annotation languages for WCET analysis becomes
manifest. Second, to investigate and classify a selec-
tion of prototypical representatives of annotation lan-
guages used in practice along these criteria in order to
shed light on the relative strengths and limitations of
the different annotation concepts. And third, most im-
portant and directly based on these findings, to extend
the invitation to researchers working in this field to
contribute to the challenge of designing novel and su-
perior annotation languages, which will allow the devel-
opment of even more general and powerful algorithms
and tools for WCET analysis.

In addition to providing a thorough, yet smooth and
survey-like introduction to annotation languages used
in WCET analysis for newcomers to this field, we hope
that this endeavor will in fact significantly contribute to
attracting the attention of researchers who are working
in this field to the challenge, which we call the WCET

annotation language challenge: the design of novel,
elegant, and easy to use powerful annotation languages.

In spite of the tremendous success the research on

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1197

http://www.artist-embedded.org/

WCET analysis has had in the past, and the maturity
and usefulness WCET tools have already achieved and
proved in practice, we believe that the major next step
to further advance their power and widespread dissem-
ination in academia and industry depends crucially on
the availability of more expressive and more easily use-
able annotation languages, which can truly seamlessly
be integrated into the tool chain of WCET analysis.
We consider the identification of the most important
and useful features of annotation languages, the choice
of a superior mix, the development and in the long-
run the standardization of a language based thereon a
major challenge for researchers working in the field of
WCET analysis.

In this paper we present this challenge as the WCET

annotation language challenge to the WCET research
community. As pointed out, we believe that mastering
it will be the key for further advancing the field of
WCET analysis. But in fact, we also believe that
mastering it will be essential in order to enable the
recently successfully launched WCET tool challenge,
which has attracted the attention of many WCET tool
developers [9, 28], to unfold its strength and impact in
full.

2 Assessment Criteria

In this section we introduce and discuss the criteria
that we use throughout this paper to assess the merits
of the annotation languages and mechanisms consid-
ered. We separate these criteria into the two groups of
language design and usability criteria. While the char-
acteristics of the criteria of the first group are under
control when designing the language, the characteris-
tics of the criteria of the second group are essentially
an outcome of those of the first one. Additionally to
these two groups of criteria, we consider a third and or-
thogonal issue: the existence of a tool using the anno-
tation language. This is not directly related to a spe-
cific property or feature of an annotation language. In
fact, the reasons why a tool has been developed, and
vice versa, why not, are many-fold. They are not nec-
essarily related to the language at all. Nonetheless, we
consider the availability of a tool an indicator of the
general usefulness and usability of an annotation lan-
guage. Independently of this, it is also valuable as an
information on its own. It is worth noting, however,
that we do not assess the quality of these tools. This is
indeed beyond the scope of this paper. Readers with a
deeper interest in WCET tools are invited to refer to
the (forthcoming) article by Wilhelm et al. presenting
a survey of WCET methods and tools [30].

2.1 Language Design

Expressiveness: We consider this to be the most im-
portant criterion of all. Intuitively, expressiveness re-
flects the capability of an annotation language to de-
scribe control-flow paths. Especially important is here,
which types of flow information can be described and
which ones cannot. An interesting level of expressive-
ness is completeness. It requires that the annotation
language allows to precisely describe all feasible paths
of arbitrary terminating programs. Other important
issues of expressiveness are the capability of an anno-
tation language to cope with inter-procedural program
flow or selected iteration ranges of loops.

Important setscrews, which allow a language de-
signer to control the expressiveness of an annotation
language, are the means and their capabilities for deal-
ing with loop bounds, with triangle loops, and, more
generally, with context sensitivity and the execution

order of statements. We consider all these through-
out this paper. See Section 3.1 for further details.

Annotation placement and abstraction level:

The question of placement and abstraction level of an-
notations has an immediate impact on the usability of
any annotation language. This becomes obvious when
thinking in terms of the programmer’s effort to use a
language.

The first design decision that has to be made is con-
cerning the location of annotations: Shall code anno-
tations be directly placed at the locations of the source
code they describe, or shall they be provided in a sep-
arate file? None of the two options is always superior
and thus consistently preferable to the other. As a rule
of thumb: a) if annotated manually, it is usually more
convenient to annotate the source code, b) if annotated
automatically by appropriate tools, the usage of sepa-
rate files often turns out to be advantageous.

The second design decision concerns the issue of an-
notating the source code or the object code. From
a (human-centered) usability perspective, source code
annotations are generally preferable. This appears to
be obvious, if code annotations are manually provided.
But it also holds, if flow information is automatically
computed by a tool. The reason is that it is often oblig-
atory or at least desirable to verify these annotations
manually, e.g., to verify that the correct execution con-
text has been taken into account.

Closely related is the issue of establishing a mapping
between source and object code: If an object code-
based annotation language is to be used to express the
behavior of constructs of the original programming lan-
guage it is necessary to establish some correspondence

2

between the two. One possibility is to define a set of
constructs that can still be recognized after compila-
tion, such as loops or procedure calls. We will call
these constructs anchors.

Programming language: Restricting the features of
the programming language that can be handled is an
important option when designing an annotation lan-
guage in order to control the expressiveness, precision,
and efficiency of subsequent WCET analyses using the
language. In effect, this means to restrict the pro-
gramming language to a subset. Annotation languages,
for example, can be limited to reduceable code. Pro-
gramming languages, however, are often constrained
in another way, too: by the WCET calculation meth-
ods which are compatible with the annotation language
at hand. Similarly, also techniques for the automatic
calculation of flow information impose often further
restrictions on the programming language. Floating
point operations, for example, might not be supported
by an annotation language.

Besides this, it is another important issue if the
annotation language supports path analysis of the ob-
ject code. This is crucial because it imposes additional
challenges compared to path analysis at the source code
level. Different from object code, for example, source
code typically uses high-level control-flow statements
which allow for a simple calculation of the control-flow
graph (CFG). For object code, additional annotations
are necessary to reconstruct the CFG precisely.

2.2 Usability

The usability of an annotation language is possi-
bly best reflected by the skills and the amount and
the complexity of work it demands from a program-
mer when using it. It also refers to the knowledge
that is required beyond the annotation language itself,
e.g. about the WCET analysis expected to make use of
it, maybe even of the implementation specifics of this
technique as it might affect its performance. Similarly,
this holds for the amount of work required to update
a program annotation in response to an update of the
program. Another issue referred to concerns the ability
to cope with annotations that are automatically pro-
vided by a tool.

In principle, there are two potential classes of users
that provide code annotations: a) programmers, who
write manual code annotations, and b) tools that cal-
culate annotations by means of code analysis.

Considering manual code annotations it is quite im-
portant that the program behavior can be described
concisely and compactly. As an extreme case, the size

of an annotation describing a specific program prop-
erty, may grow exponentially with the program size.
When using automatic techniques to calculate code an-
notations, it is important whether the techniques are
capable to produce information in a format which is
supported by the annotation language.

When post-processing the calculated WCET results,
it is an important issue whether the WCET calculation
methods compatible with the annotation language are
able to provide the user with information explaining
the WCET results. Standard use of ILP (cf. Section
3.4.3) with flow constraints, for example, can only
provide information about the execution frequency of
statements, but does not provide any information on
the execution order.

The preceding discussion shows that usability is the
outcome of the interplay of several factors, in partic-
ular, of the complex interplay of the annotation lan-
guage and the possible support for applying this lan-
guage that is provided by the (tool) environment it is
used in. Assessing the usability of an annotation lan-
guage thus implicitly amounts to an assessment of its
usability with respect to a specific global environment,
which might even change over time. This, however,
is beyond the scope of this paper. For the purpose of
this paper, we will thus additionally use a second term,
which we call intricacy of an annotation language. In
distinction to usability, which is the broader, the more
general term, intricacy is the more specific one. We
refer to intricacy to assess the language-inherent con-
ceptual and technical complexity of an annotation lan-
guage, detached from any environment or tool support
of using it.

2.3 Tool Support

As mentioned above, the availability of a tool us-
ing a specific annotation language can be considered
an indicator of the general usefulness and usability of
this language. In particular, it is an information which
we consider valuable on its own. In general, we be-
lieve that the efficiency of the known WCET calcula-
tion methods, which are compatible with an annotation
language, is one of the most relevant factors driving the
development of tools. It is also worth noting, however,
that vice versa the efficiency of a specific WCET cal-
culation method depends much on the specifics of the
underlying annotation language. Obviously, this holds
for annotation languages, which require the program
structure to be unrolled in order to make the code
annotation applicable. We would like to remind the
reader that we are not aiming at assessing the quality
of tools in this paper.

3

3 WCET Fundamentals

In this section we recall the essentials of flow in-
formation and of WCET calculation methods. This
provides the foundation for reviewing the annotation
languages we selected as prototypical representatives
of the different annotation concepts. To enable this,
we first divide the different kinds of flow-information
into three types (Section 3.1), and then characterize
the flow information which must be supported at a
minimum by any reasonable annotation language (Sec-
tion 3.2). The precision of flow information is limited
by the expressiveness of the annotation language (Sec-
tion 3.3). Subsequently, we describe the essence of the
fundamental WCET calculation methods used in prac-
tice (Section 3.4).

3.1 Types of Flow Information

The static description of a program’s control flow
is given by its control-flow graph and its call graph.
To calculate the WCET of a program also information
about the dynamic control-flow behavior is needed. In
WCET analysis, flow information about the dynamic
control flow is typically used to partially describe the
following program behavior:

Explicit execution frequency. This type of flow in-
formation describes the execution count of nodes
or edges of the control-flow graph. Execution
count information can be given, for example, as
the absolute execution count of a code location, or
as a relation between the execution count of one
code location and another code location. In prac-
tice, information on execution frequency is formu-
lated as linear equations between the execution
count of different code locations.

Explicit execution order. This type of flow infor-
mation is concerned with describing patterns of
execution order of nodes or edges of the control-
flow graph. The execution order of statements is
significant on modern processors where the execu-
tion time of an instruction depends on the execu-
tion history.

Context-sensitive flow information. This refers
to the control flow of instructions that may
be executed multiple times within a program
execution. In greater detail, we can distinguish
two sources of context-sensitive flow information:
instructions executed within a loop and instruc-
tions executed within a function which is called
multiple times.

• Loop-context sensitive flow information de-
scribes the control-flow behavior of a loop
body for a subrange of all possible loop it-
erations.

• Call-context sensitive flow information de-
scribes the control-flow behavior of a function
for specific call sites.

3.2 Minimal Flow Information

Besides the control-flow description of a program,
the only additional flow information mandatory to
bound its WCET are boundaries of the execution fre-
quency of cycles in the description of the syntactical
control flow. For intra-procedural WCET analysis, the
control-flow graph (CFG) is used as control-flow de-
scription; for inter-procedural WCET analysis the su-

per graph is used, which is a combination of the call
graph and the CFG of each subroutine.

In case of reducible loops [1] so-called loop bounds

are used to describe the maximum iteration count of
loops. Annotating other cyclic control-flow like recur-
sive function calls or non-reducible loops is less intu-
itive.

3.3 Completeness of an Annotation Language

The completeness of an annotation language is con-
cerned with the question of how precise the set of fea-
sible control-flow paths of programs can be described
by a flow annotation language. A path annotation
language is complete if it is expressive enough to de-
scribe for arbitrary programs the feasible paths and the
infeasible paths as two disjoint (non-overlapping) sets
of paths, i.e., feasible and infeasible paths can be de-
scribed precisely instead of having to use any approxi-
mations. For this definition of completeness it is suffi-
cient to assume an implicit description of the infeasible
paths by the inverse of the set of feasible paths. Given
a flow annotation language which does not allow to de-
scribe the set of feasible paths precisely, one has to use
over-approximations, representing a superset of the set
of feasible paths. Lacking completeness in the flow de-
scription will generally result in an overestimation of
the WCET.

3.4 WCET Calculation Methods

The type of interesting flow information depends
much on the applied WCET calculation method. In the
following we recall the three most important WCET
calculation methods.

4

3.4.1 Timing Schema

The timing schema approach turned out to be an effi-
cient WCET calculation method that is also very sim-
ple to implement [24, 26, 23]. Essentially, the tim-

ing schema consists of hierarchical WCET calculation
rules for each node of the syntax tree representing el-
ementary or composed statements. Denoting the local
WCET bound of a node A by T (A), the local WCET
of the sequential composition A; B of two nodes A and
B is computed as T (A)+T (B). Analogously, the local
WCET of a conditional statement if A then B else

C fi; is computed as T (A)+max (T (B), T (C)), while
the local WCET bound of a loop while A do B od;

with at most LB iterations (loop bound) is computed
as (LB + 1) · T (A) + LB · T (B). Last but not least,
if A represents an elementary statement, T (A) is sim-
ply the maximum execution time of A. Of course, the
timing schema can analogously be formulated to calcu-
late the best-case execution time. The computational
complexity of the timing schema is linear with the pro-
gram size. It can thus be applied efficiently to large
programs.

A refinement of the timing schema approach to han-
dle nested loops more precisely has been presented by
Colin and Puaut [6].

3.4.2 Path-Based WCET Calculation

Path-based WCET calculation [10, 27] is inspired by
the naive approach of analyzing each program path
and selecting the longest out of it as the WCET bound.
Though this approach is infeasible for the whole pro-
gram, it becomes realistic for local scopes of a pro-
gram. Thus, the idea of path-based WCET calculation
is to search for the longest path within each innermost
scope. For example, each loop could form a scope.
Once the longest path of a scope has been determined,
the whole scope is treated as a single instruction with
the execution time of the longest path assigned to it.
This procedure is repeated till the whole program is
analyzed.

Path-based WCET calculation has been developed
to analyze the effects of pipelines. It allows to model
the impact of the pipeline to an instruction sequence
longer than just basic blocks, and thus increases the
precision of the WCET bound. However, path-based
WCET calculation is inappropriate to take rather
global timing effects into account, like cache behavior.

3.4.3 IPET-Based WCET Calculation

The implicit path enumeration technique (IPET) has
been introduced by Li and Malik [17], as well as by

Puschner and Schedl [25]. In contrast to path-based
WCET calculation where paths are explicitly enumer-
ated, IPET performs an implicit longest path search.

The basic idea is to model the control flow of the
program by constraints. To reduce the complexity, typ-
ically only linear constraints are used, i.e., the program
is represented as an integer linear program (ILP). Sub-
sequently to this basic modelling, supplemental flow in-
formation can be included smoothly as additional con-
straints of the ILP problem. The finally formulated
ILP problem is passed to an ILP solver that computes
the desired WCET bound. Due to the broad availabil-
ity of commercial and open-source ILP solvers, such
ILP problems can be solved conveniently.

4 WCET Annotation Languages

Together with Section 5 and Section 6, Section 4
represents the core of this paper. In this section we
reconsider a selection of prototypical representatives of
the different annotation languages (Section 4.1 to 4.7).
The findings of this reconsideration will then be the
basis of our conceptional comparison of these languages
in Section 5.

4.1 TAL - Equations with Event Markers

Mok et al. describe the Timing Analysis Language

(TAL) [20]. This is an integral part of the timing
analysis system developed at the University of Texas.
The timing analysis system uses the timing schema ap-
proach and consists of several tools retrieving informa-
tion that is to be used as input for the timetool, which
eventually performs the calculation of the execution
time of the analyzed program.

While timetool itself works only on assembler code,
the tool set also contains a modified C compiler to
translate annotated C programs to annotated assem-
bler programs. The annotations of the C code are au-
tomatically generated by the annotate tool that fills
in default assumptions about the program’s behavior.
The compiler generates the annotations of the assem-
bler code in form of a TAL script. Usually, this script
is not yet useful for the analysis since it contains too
conservative estimates. It has thus to be refined by a
more powerful tool or by hand to get better results. To
aid the user with this task, a graphical user interface
is provided.

Finally, the script is interpreted by timetool to calcu-
late the execution time of the program. A very detailed
description of the language can be found in [5].

Figure 1 shows a simple C-program taken from [20]
that will serve us as an example. The automatically

5

1 main() { // -v-L1:

2 int i=0, j=0; 3

3 while (i < 100) { // -v-L3:

4 if (i < 10) j++;

5 i++;

6 } // -^-L6:

7 } // -^-L7:

Figure 1. Example C-Source

generated TAL-script is displayed in Figure 2. The
script contains references to labels that occur in the
assembler output of the compiler. We have also in-
serted the locations of these labels into the C-source in
Figure 1.

1 func TAL_main() {

2 block blk1;

3 loop lp1;

4

5 blk1#begin = "-v-L1";

6 blk#end = "-^-L7";

7

8 lp1#begin = "-v-L3";

9 lp1#count = MAXINT;

10 lp1#end = "-^-L6";

11

12 return(blk1#time);

13 }

Figure 2. Autogenerated TAL-Script for the
program in Figure 1

As can be seen in Figure 2, the language offers the
following data types for timing purposes: A loop de-
scribes a loop construct where the execution frequency
depends on the data being processed. A block is a pro-
gram fragment that may contain loops, but the exe-
cution time of the block must be fixed. The language
then also defines an action, which is any larger program
fragment whose execution time is of interest. TAL dis-
tinguishes primitive and composite actions.

Each object is associated a set of attributes, such
as the time and (loop-)count expressions. The syn-
tax of assigning an attribute is object#attribute =

expression.
In the example, there are two obvious modifications

a programmer can be expected to make to the auto-
generated script: First, replacing MAXINT as loop count
attribute of lp1 by a more accurate value.

9 lp1#count = 100;

Second, parameterizing function definition and
changing the calculation formula in the last line of the
script to reflect the fact that the inner if-statement is
executed only ten times:

1 func TAL_main(if_count)

and

12 return (lp1#count - if_count)*blk#2time;

It is an interesting feature of the annotation lan-
guage that it allows to specify nearly perfect execution
time bounds, since the formula may contain almost any
expressions. This creates new responsibilities for the
programmers, who have to devise the correct calcula-
tions on their own.

4.2 Path Language and IDL

Park and Shaw proposed a WCET analysis for a sub-
set of the C language, compiled by the GCC compiler
for the MC68010 processor [26, 23, 21, 22]. They also
developed the timing schema recalled in Section 3.4.1
for calculating the WCET of a program.

4.2.1 Path Language (PL)

Park and Shaw took much care in order to allow the
specification of (in)feasible program paths. They devel-
oped a so-called path language (in the following called
PL) based on regular expressions, which is shown in
Figure 3. The basic idea is to label instructions inter-
esting for path characterization with labels. Using PL
one can describe path patterns, representing a set of
paths.

path ::

a regular expression of symbols

symbols ::

alphabets(Σ) : a set of code labels

operators : +, ·, ⋆, ∩, ¬

parenthesis : (,)

empty set : ∅

wild cards :

∗ . . . arbitrary string of labels: (Σ)⋆

. . . any string of code labels not containing

its surrounding labels,

i.e., x y = x(Σ − {x, y}) ⋆ y

’ ’ may be also used as unary operator:

y = (Σ − {y}) ⋆ y, x = x(Σ − {x})⋆

Note the difference between the Kleene star ‘⋆’ and the wild-

card ‘∗’ !

Figure 3. Path language based on regular expres-
sions [22]

Multiple occurrences of a pattern can be abbrevi-
ated, e.g., A2−4 is a short hand for AA+AAA+AAAA.

6

Using this convention, it can be easily expressed, for ex-
ample, that a loop, where the beginning of the body
is labelled LB, has an iteration count of at most 10:
(LB)0−10.

A key feature of PL is that it allows to describe pat-
terns of explicit execution order of labeled statements.
In fact, it is complete, i.e., it allows to describe all paths
of terminating programs. To specify the PL expression
of a given program, one has to instantiate the possible
shape of input data, i.e., one has to take into account
the possible valuations of input data.

A drawback of PL is that even common path pat-
terns can result in very long expressions. For example,
linear flow constraints like fi < fj (i.e., control-flow
edge fi is executed less frequently than edge fj) can
only be described by explicitly enumerating all possi-
ble path combinations containing fi and fj.

Path analysis based on regular expressions can be
rather computation-intensive. Every path information
Ii represents a set of paths IP i. The path analysis is
done by intersecting the set of syntactically possible
paths AP with the set of paths described by all the
path informations IP =

⋂
i IP i. The set of feasible

paths XP is then calculated as

XP = AP ∩ IP

The problem with this approach is that the central path
processing operations ¬ and ∩ require exponential time
in general [19]. Park and Shaw thus found that PL in
its generic form results in expressions too complex for
path processing. Therefore, they complemented PL
with a higher level information description language,
which we are going to recall next.

4.2.2 Information Description Language (IDL)

In order to overcome the deficiencies of PL, Park
et al. developed the information description language

(IDL), which can be translated into a structured sub-
set of PL [22]. For example, the information that
label A and B can only be executed together is ex-
pressed in IDL as samepath(A,B). This is trans-
lated to the equivalent low-level PL-expression (∗A∗)∩
(∗B∗)+¬(∗A∗)∩¬(∗B∗). As another example, a loop
of scope A with constant iteration count K is written as
loop A K times. This is translated into the low-level
expression ¬(∗A∗) + (A.entry A.body(A.body)K) ⋆ .
This transformation of loop information also illustrates
the difficulty of getting descriptions using low-level
regular expressions right. In fact, the original trans-
formation given in [22] is faulty, as it does not take

care of the case that a loop may be nested within an-
other loop. The original translation was like ¬(∗A∗) +
A.entry A.body(A.body)K , which in case of nested

loops would erroneously exclude paths with multiple
executions of the loop.

The strength of IDL (as well as of PL) is that they
both allow to describe path patterns of explicit execu-
tion order. However, IDL inherits a significant weak-
ness from PL: information about relative execution fre-
quencies of code can only be expressed by explicitly
enumerating all possible path patterns, which can be of
exponential length. An example illustrating this phe-
nomenon is shown in Column 4 of Table 2 (Bench-
mark B2).

4.3 Linear Flow Constraints

Linear flow constraints are used in the context of
IPET WCET calculation methods. The general ILP
problem representing the program execution consists
of n decision variables x1, ..., xn, an objective function
Z =

∑n

i=i ci ·xi that has to be maximized, m functional
constraints

∑n

j=1
aijxj ≤ bi for all i ∈ [1, m] with

aij being integer constants, and the non-negativity
constraints xi ≥ 0.

To model the WCET calculation as an ILP problem,
the static program structure is reflected by the control-
flow graph G = (V, E), having a unique start node
s ∈ V and a unique termination node t ∈ V . The
execution time of each edge 〈i, j〉 ∈ E is denoted by ti,j .
Denoting the execution frequency of edge 〈i, j〉 ∈ E

as fi,j , the WCET of a program P is given by the
following objective function to be maximized:

wcet(P) = max
∑

〈i,j〉∈E

fi,j · ti,j

The key idea to map the WCET calculation prob-
lem onto the general ILP problem is formulating the
CFG structure as flow equations. For that purpose,
the structure of the CFG is represented as functional
constraints in the ILP problem. The CFG resulting
from the source code of benchmark B1 and B2 (Ta-
ble 2) is used as example CFG within this section. For
each node exactly one flow equation is generated stat-
ing that the sum of the execution frequencies of incom-
ing control-flow edges equals the sum of the execution
frequencies of the outgoing edges. For instance, for
node 5 this equation is f4,5 = f5,6+f5,8. To model that
the program is executed exactly one time we set the fre-
quency of the back edge 〈14, 1〉 to one, i.e., f14,1 = 1.

To get the WCET bound, an ILP solver is used
to calculate the length of the longest possible path
through the CFG. However, in the CFG the length of

7

this path is not bounded due to the cycle introduced
by the back edge 〈12, 4〉 ∈ E of the loop. Thus, it is
required to add a constraint limiting the iteration count
(and thus the frequency f12,4). This is accomplished
by adding an additional constraint of the form f12,4 ≤
LOOP BOUND · f2,4. This so-called loop bound is a
mandatory flow fact to calculate a WCET bound.

After this step, the obtained model can be solved
by an ILP solver. There exist many implementations
of such solvers, for instance the GNU Linear Program-

ming Kit (GLPK). Figure 4 shows the resulting ILP
problem of benchmark B1 and B2 (Table 2). The corre-
sponding ti,j represent the execution times of the edges
〈i, j〉 ∈ E and are the coefficients of the respective fi,j

within the objective function (in this example, for all
edges 〈i, j〉 ∈ E it holds that ti,j = 1).

Maximize

etime: 1 f1_3 + 1 f3_4 + 1 f4_5 + 1 f5_6 + 1 f5_8 +

1 f6_9 + 1 f8_9 + 1 f9_10 + 1 f10_11 + 1 f11_12 +

1 f10_12 + 1 f12_4 + 1 f4_13

Subject To

f13_1 - f1_3 = 0

f1_3 - f3_4 = 0

f3_4 + f12_4 - f4_5 - f4_13 = 0

f4_5 - f5_6 - f5_8 = 0

f5_6 - f6_9 = 0

f5_8 - f8_9 = 0

f6_9 + f8_9 - f9_10 = 0

f9_10 - f10_12 - f10_11 = 0

f10_11 - f11_12 = 0

f10_12 + f11_12 - f12_4 = 0

f4_13 - f13_1 = 0

f13_1 = 1 * Artificial back edge *\

f12_4 - 100 f3_4 ≤ 0 * Loop bound *\

f5_6 - f10_11 = 0 * Constraint B1 *\

f5_6 - f5_8 ≤ 0 * Constraint B2 *\

End

Figure 4. ILP problem for the CFG of benchmark
B1 and B 2 in Table 2.

This example illustrates that flow facts are indis-
pensable for providing a limit on the number of the loop
iterations whenever loops are present. An example for
an annotation language that allows to express linear
flow constraints is wcetC [15]. Another annotation
language, being used within a tool that automatically
extracts control-flow information and constraints from
a program, has been proposed by Engblom et al. [7].
This annotation language is discussed next.

4.3.1 Modeling Contexts within Flow Con-

straints

The annotation language developed by Engblom and
Ermedahl allows to represent flow facts over all iter-
ations of a loop as well as over some specific itera-
tions [7]. In particular, it also allows to specify flow
facts for irreducible control flow. For WCET analysis
the flow facts are converted to a format suitable for a
WCET calculation method based on the implicit path

enumeration technique (IPET) (cf. Section 3.4.3). En-
gblom and Ermedahl assume that flow-analysis is per-
formed prior to low-level analysis, meaning that flow
analysis does not have access to information about the
execution time of code. The outcome of the flow anal-
ysis is a set of statically feasible paths. The WCET
calculation uses information about the execution time
of each piece of code to find the paths in the set of
statically feasible paths that correspond to the actual
worst-case execution times.

To represent the dynamic behavior of a program En-
gblom and Ermedahl introduce the concept of a scope.
A scope has a header node that dominates all nodes in
the scope and corresponds to a certain repeating exe-
cution environment, such as a function call or a loop.
All scopes are supposed to be looping, even if they just
iterate zero or one time. Each scope is represented
by a set of nodes and edges. Scopes are connected
by edges according to the control flow in the program.
Every scope has a set of associated flow information
facts. A flow information fact consists of three parts:
i) the name of the scope, where the fact is defined, ii)
a context specifier, and iii) a constraint expression. A
context specifier allows to specify the iterations of the
scope in which the constraint expression must be valid.
The specifiers are defined using two dimensions of type
and iteration space. The type allows to specify that the
fact is considered a sum over all iterations, or for each
single iteration separately. The iteration space is the
set of iterations of the scope it is valid for. This can ei-
ther be all iterations or some specified range. The flow
information specified by annotations is converted to a
form appropriate for IPET by mapping the scope-local
semantics to execution-global semantics.

4.4 Data Value Assertions used in SPARK Ada

Chapman et al. described a WCET analysis for
SPARK Ada [3, 4], the programming language used
in the Spark Proof and Timing System (SPATS). The
SPARK1 language is a subset of Ada83 that is extended

1SPARK is an acronym for SPADE Ada Kernel, where
SPADE is a short hand for Southampton Program Analysis De-
velopment Environment.

8

by a special kind of comments. The annotations are
used for both program proof and timing analysis. Like
the program proof framework, the WCET calculation
in SPARK Ada is based on symbolic execution.

The edges of the control-flow graph of the input
program are provided with weights that describe the
execution time of the corresponding instructions. To
keep flexibility, the weights in the CFG are given in the
form of symbolic expressions instead of specific timing
values; this representation has the advantage of being
independent of the target hardware.

The static semantics of the SPARK language ensures
that the programmer places at least one assertion be-
fore every loop statement as well as preconditions and
postconditions to each function. These assertions are
called cut points. Thus, the control-flow graph can be
decomposed into a set of cut points and basic paths

connecting them.

The problem of finding the WCET is equivalent to
finding the longest path of the extended control-flow
graph, which can be solved by a simplified version of
the algorithm described by Tarjan [29]: through a set
of transformation rules, an acyclic directed graph is
mapped to a regular expression that is used to find
the shortest path. The dual problem is considered in
SPARK. To handle loops, a special bounded iteration
operator is included in the regular expression syntax.
Chapman gives three graph rewriting rules [3] to col-
lapse alternatives, inner loops and outer loops to a sim-
plified graph containing fewer edges, but more complex
regular expression as weights. SPARK Ada expects the
programmer to supply annotations for the loop bounds.

Figure 5 shows an example taken from [4] of a pro-
gram calculating the power function. A distinct feature
of the language is the inclusion of modes. SPARK Ada
allows the user to specify multiple behaviors for a func-
tion that may be called from different contexts or with
different input values. For each mode, the user can
specify a distinct set of annotations; thereby enabling
a more precise analysis.

Due to the nature of the annotations, however, it is
not possible to specify tight bounds for nested loops,
where the iteration space of the inner loop depends on
the state of the outer loop.

4.5 Symbolic Annotations

Blieberger proposed an approach, which combines
aspects of a pure annotation language with those of a
programming language extension [2]. The clue of this
approach is the invention of so-called discrete loops.
Discrete loops can be considered a generalized kind of
for-loops. Discrete loops allow a very flexible update of

1 --# proof function pow(FLOAT,INTEGER) return FLOAT;

2 function POWER(BASE: in FLOAT;

3 EXPONENT: in INTEGER) return FLOAT

4 --# pre true;

5 --# mode A (EXPONENT >=0);

6 --# mode B (EXPONENT < 0);

7 --# post (POWER = pow(BASE,EXPONENT));

8 is

9 ONE: constant FLOAT := 1.0;

10 EXCHANGE: BOOLEAN;

11 L_RES: FLOAT;

12 L_EXP: INTEGER;

13 RESULT: FLOAT;

14 begin

15 L_RES := ONE;

16 if EXPONENT ≥ 0 then

17 EXCHANGE := FALSE;

18 L_EXP := EXPONENT;

19 else

20 L_EXP := -EXPONENT;

21 EXCHANGE := TRUE;

22 end if;

23 --# loopcount(L EXP);

24 loop

25 --# assert

26 --# ((not EXCHANGE) -> (L RES = pow(BASE,(EXPONENT

- L EXP)))) in A;

27 --# & (EXCHANGE -> (L RES = pow(BASE,(-EXPONENT -

L EXP)))) in B;

28 exit when L_EXP = 0;

29 L_RES := L_RES*BASE;

30 L_EXP := L_EXP-1;

31 end loop;

32 if EXCHANGE = TRUE then RESULT := ONE / L_RES;

33 else RESULT := L_RES; end if;

34 return RESULT;

35 end POWER;

Figure 5. An example of an annotated
SPARK Ada program as given in [4]

the loop-variable, much more flexible as for a for-loop.
Nonetheless, like for for-loops, also for discrete loops
the loop bounds can often automatically be computed
by means of reasonably simple mathematical reasoning.
Particularly well-suited for this purpose are methods
for symbolic analysis. We thus coin the term symbolic

annotation for this approach here.

The following program fragment illustrates the
essence underlying the concept of discrete loops:

1 k:= ...;

2 discrete h := k in 1..N/2

3 new h := 2*h | 2*h+1 loop

4 <loop body>

5 end loop

Marked by the new key word discrete the expres-
sion following the initialization of the loop variable h

specifies the range both the initial value of h as well as
all other values of h during subsequent iterations of the
loop must be inside. Once the value is outside of this

9

range, the loop terminates. This captures the language
extension portion of this concept. The annotation lan-
guage portion is captured by the term following the
keyword new. This term specifies the set of legal val-
ues of the loop variable of immediately adjacent loop
iterations. In the example above, the new value must
be either the result of doubling the old value (2*h),
or the increment of this value (2*h+1). The semantics
given to discrete loops requires that these constraints
are validated at compile-time, or checked at run-time,
if the former fails.

A very appealing feature of this approach is the
seamless integration of the annotation and the pro-
gram source text. This elegance, however, comes at
the cost that algorithms, whose textbook version may
often make deliberate use of arbitrary loops, have to
be adopted or replaced by newly invented algorithms
which comply with the programming discipline im-
posed by discrete loops. Depending on the algorithmic
problem, this can be natural and easy, but sometimes
also difficult and challenging, or impossible at all.

4.6 The Annotation Language of Bound-T

In [13], Holsti et al. introduce Bound-T, an industri-
ally available WCET tool originally developed by Space
Systems Finland Ltd and currently marketed by Tido-
rum Ltd. Bound-T operates on the object-code level
and relies on debug information and additional asser-
tions provided by the programmer.

The analysis is performed in three distinct phases.
First, a control-flow analysis is performed to construct
the call-graph of the program. The WCET calcula-
tion is then performed bottom-up on the call-graph.
Bound-T cannot handle cyclic call graphs.

In the next step, iteration bounds for the loop con-
structs in the program are calculated. In some cases
these bounds can be found by the data flow analysis
that is implemented in Bound-T. In this step, the se-
mantics of the loop body is expressed as the functional
composition of the effect of the individual statements,
which are expressed in Presburger arithmetic, a decid-
able subset of integer arithmetic. On this basis, loop
increments can be found and thus can be the bounds
for all counter-based loops. If Bound-T is unable to
bound a loop automatically, the user is prompted to
provide an assertion containing the loop bound. The
tool will emit a warning for each instance, together with
the context of the loop in question. The assertions are
placed in an additional file. The decision for the ex-
ternal annotation is motivated by the need to support
multiple execution contexts for each function. Once the
call-graph has been constructed and the loop bounds

have been found, the actual worst-case execution path
is searched for.

On modern processors, the execution time of a par-
ticular instruction depends on the history of instruc-
tions that have previously been issued. Bound-T han-
dles this by simulating the processor pipeline. It does
not, however, model any cache behavior. The calcula-
tion is performed by transforming the analysis data
into an ILP problem which is then passed to the
lp solve tool.

The assertion language was conceived to be flexible
enough to be used with programs written in both high-
level languages and assembler. Assertions are stated
for a specific scope (= subprogram, loop or call) which
are identified through their respective name or - in the
case of loops - their syntactical structure. This allows
for characterizations such as loops being nested inside
other loops and loops calling a particular subprogram.
An example of such a characterization is given in Fig-
ure 6.

1 loop that

2 is in (loop that calls "Foo")

3 and contains (loop that not calls "Bar"

4 and calls "Fee")

5 and not contains (loop that calls "Fee2")

6 repeats 10 times end loop

Figure 6. An example of a Bound-T annotation
as given in [13]

While the annotations are conceptually driven by
the sources, they are referentially depending on the ob-
ject code. Through this design decision, Bound-T theo-
retically gains language and compiler independence by
using the object code as a basis for its calculations, but
there are also limitations that arise with this approach:
Because of the optimization steps performed by the
compiler, the annotations are restricted to reference
only program features that can still be recognized after
compilation. We will call these features (such as calls
and loops, but not if-then-else statements) anchors. A
detailed description can be found in [14]. In [12], the
author of Bound-T also stated that a better mapping
between source and object code is planned for a future
revision of the language.

4.7 The Annotation Language of aiT

Like Bound-T, the aiT WCET tool is a commer-
cially available tool for WCET analysis. It is devel-
oped by AbsInt Angewandte Informatik GmbH, Ger-
many, and is available for different hardware architec-
tures including ARM7, Motorola Star12/HCS12, and
PowerPC 555. The aiT tool reads binary files as input

10

programs to be analyzed. To make this more effective,
the tool supports a special kind of object code anno-
tations to reconstruct the control-flow graph from the
object code [8, 11]. They allow, for example, the user
to annotate the possible targets of a jump instruction
in order to guide the object-code parser when recon-
structing the flow graph.

aiT is not included in Table 2 since the focus of this
paper is on the annotation of feasible paths in general.
It is worth noting that the aiT tool also includes a
value analysis to automatically calculate some flow
information.

5 Discussion

In order to evaluate the annotation languages recon-
sidered in Section 4 we created benchmarks (Table 2)
covering the criteria developed in Section 2. These
benchmarks highlight the features and restrictions of
the respective languages.

Each benchmark Bi consists of a source program
and additional flow information that is specified infor-
mally. The first column of Table 2 describes for each
benchmark the flow information to be annotated. The
original source codes subject to annotation are given in
the second column of Table 2, their control-flow graphs
in the third column. The annotated examples for each
annotation language are presented in the subsequent
columns.

In the following, the most interesting results of ap-
plying the annotation languages of Table 2 to these
benchmarks are presented. Table 1 provides a sum-
mary of our findings.

5.1 Expressiveness

In order to assess the expressive power of the anno-
tation language, it is necessary to understand the cal-
culation method that is implemented by the tool. We
thus begin with an overview about the different meth-
ods and will then assess how these methods apply to
the modelling of different kinds of flow information:

Calculation method. Timing schema, as imple-
mented by TAL, were the first approach to WCET
analysis and provide little more than a unified frame-
work for the programmer to specify timing calculations
with.

This approach is refined by the graph-rewriting tech-
nique used in SPARK Ada. It must be noted, however,
that the expressiveness of SPARK Ada is limited, since
it restricts the permitted kinds of flow information to
loop-bounds.

IPET-based methods that use linear flow con-
straints, are widely regarded as state-of-the-art and al-
low a more versatile constraint-based specification of
flow facts. These constraints are then used as input for
an ILP solver. IPET-based tools still allow the specifi-
cation of loop-bounds, which can be transformed into
constraints easily.

As a unique feature, PL and IDL model execution
order naturally.

Loop-bounds. The minimal information necessary
to perform WCET analysis is an upper bound for every
loop construct; all discussed languages support this.

Triangle-loops. The IPET-based methods (linear
flow constraints and Bound-T) allow to specify inequal-
ities as further constraints in addition to loop-bounds.
With this method, so-called triangle-loops – these are
nested loops that follow a triangular pattern in the it-
eration space (i, j) – can be described precisely. In the
case of Bound-T, annotations of triangle-loops are only
possible when they contain an anchor to identify them,
such as a call. These anchors are necessary to identify
program fragments in the object code.

Calling context-sensitive annotations. If loop
bounds depend on input parameters, the precision will
benefit from a tailored annotation for each calling con-
text. The parametrized calculation schema of TAL
supports this through a functional abstraction. While
Bound-T does not expose context-sensitive information
to the annotation language, it is aware of context in-
formation during the automatic computation of loop
bounds.

Loop context-sensitive annotations. As de-
scribed in Section 4.3.1, in the presence of caches
it is often beneficial to distinguish between the first
and subsequent loop iterations when formulating
annotations. Currently none of the surveyed languages
directly supports this feature.

Application context-sensitive annotations.

SPARK Ada has a unique feature called modes to
describe multiple annotations for a function depending
on different input parameters. While this is in some
ways related to calling context-sensitivity, it is not
entirely the same concept. We will thus call this
feature application context sensitivity.

Execution order. Most WCET-calculation meth-
ods content themselves with estimates of the execution

11

Criteria Annotation Language

TAL PL and IDL Linear Flow
Constraints

Bound-T aiT SPARK
Ada

Symbolic
Annota-
tions

Chal-
lenge

Expressiveness Timing
schema

Regular
expressions

Constraint-
based

Constraint-
based

Constraint-
based

Loop-
bounds

Loop-
annotations

Loop-bounds yes yes yes yes yes yes yes yes
Triangle-loops yes no yes some yes no yes yes
Calling context yes no possible implicit no explicit no yes
Loop context no no possible no no no no yes
Appl. context no no no no yes yes no yes
Execution order no yes no no no no no yes

Intricacy of Anno-
tations

high medium to
high

medium medium medium low low to
medium

as
low as
possible

Annot. placement External
TAL-
script

Ideally
inside the
source code

Ideally
inside the
source code

External
file

External
file; par-
tially inside
source code

Source
code
comments

Integral
part of
the source
language

–
D

esig
n

D
ecisio

n
s

–

Abstraction level
Source code no yes yes no yes yes yes
Object code yes no yes yes yes no no

Program. language
Implementation As’mbler/C C - C, Ada As’mbler/C Ada Ada
General Scope - Any struc-

tured
language

Any
structured
language

Any
structured
language

Any
structured
language

- Any
structured
language

Tool available yes no yes commercial commercial yes prototype yes

| {z }

See also Table 2.

Table 1. Assessment summary

frequency of basic blocks. If the method supports the
modelling of a complex hardware architecture2, the ex-
ecution order is equally important. In contrast to the
PL and IDL, the IPET-based methods currently can-
not be used to describe the execution order.

5.2 Annotation Placement and Abstraction Level

Placing annotations directly inside the source code
is more convenient for the programmer, but may af-
fect the readability of the program, especially in the
case of library functions, which usually have many dif-
ferent call sites. One argument against an integration
into the sources is that in an production setting, any
modification of the source code may require a repeated
audit.

The decision of the annotation placement is closely
tied to that of the abstraction level. For obvious rea-
sons, all surveyed tools that operate on the object code
level (TAL and Bound-T) also choose to place the an-
notations in a separate file.

In general, the following three choices are available:

2 In complex hardware architectures the execution time of in-
structions depends on the execution history. Typical reasons for
this behavior are instruction pipelines, instruction/data caches
and processor parallelism.

Abstraction Placement
Source Code: inside external file
Object Code: (not practicable) external file

Bound-T and TAL follow the approach to anno-
tate the program at the object code level. This low-
level representation gains independence from the com-
piler, but complicates the development phase where the
source code is frequently changing. The interaction
with the compiler is an important issue, as optimiza-
tions that change the control flow may invalidate the
annotations.

5.3 Programming Language

If the WCET annotation is based entirely on the ob-
ject code, the annotation language is theoretically in-
dependent of the original programming language. This
advantage, however, is hardly exploited. For practical
reasons, many of the surveyed implementations focus
on subsets of the C language.

5.4 Intricacy of Annotations

As mentioned above, there is a trade-off between the
expressiveness and the complexity of annotations.

12

TAL, for example, leaves many aspects of the
WCET calculation to the user, who may specify al-
most arbitrary formulae within the script. While this
approach would guarantee the highest precision, it also
demands a high effort from the programmer, who has
to devise the correct calculation schema with care. The
annotation languages of aiT and Bound-T reduce the
intricacy and support language constructs tailored to
different kinds of flow information. At the other end of
the spectrum, there is SPARK Ada, which is restricted
to only loop-bounds that are annotated directly into
the source code.

5.5 Availability of Tools

Most of the surveyed annotation mechanisms stem
from an academic background, with aiT and Bound-T
being notable exceptions; they are currently being mar-
keted as commercial products. According to Praxis
High Integrity Systems, we may still see a future re-
lease3 of a SPARK Ada-based source code annotation
language.

In closing of our discussion, the findings summa-
rized in Table 1 illustrate that none of the anno-
tation languages we considered uniformly outperforms
its competitors, but instead have their own individ-
ual strengths and limitations. This became the more
apparent, if we were to take further criteria into ac-
count, e.g., the possibility and ease of reconstructing
the control-flow graph on the object-code level such
that it precisely reflects its counterpart on the source-
code level [16] or the consideration of application do-
mains of annotation languages which go beyond pure
WCET analysis. An approach for the latter has e.g. re-
cently been proposed by Lisper [18]. Compared to the
languages we considered in this paper, the language he
proposes has a more state-oriented flavor. By its ex-
ecution counters the language especially allows to ex-
press execution frequencies, similar to the linear flow
constraints described above. In principle, the language
could also be used to describe explicit execution or-
ders, however, the resulting expressions will often be
very complex.

6 The WCET Annotation Language

Challenge

Reconsidering the annotation languages proposed
and used so far for WCET analysis and opposing their
key characteristics as summarized in Table 1 demon-
strate that all these languages have their own specific

3http://www.praxis-his.com/sparkada/examiner.asp

profile of strengths and limitations. The demand for
an annotation language, which combines the individ-
ual strengths of the known annotation languages, while
simultaneously avoiding their limitations, is thus ap-
parent. In Table 1 this demand is reflected by the
right-most column denoted by “Annotation Language

Challenge.” It grasps the summarized strengths of the
different annotation concepts. Developing a language
(or an annotation concept), which enjoys this profile
is the central challenge, which we derive from our in-
vestigation, and which we would like to present to the
research community.

This challenge, however, is not the only challenge,
which is suggested by the findings of our investiga-
tion. It is obvious that an annotation language and
a methodology for computing the WCET of a program
based on annotations given in this language are highly
intertwined. Expressiveness delivered by an annotation
language, which cannot be exploited by a WCET com-
putation methodology, is in vain. Vice versa, the
power of a WCET computation methodology cannot
be evolved if the annotation language is too weak
to express the needed information. This mutual de-
pendence of annotation languages and WCET compu-
tation methodologies suggests two further challenges.
Which annotation language serves a given WCET com-
putation methodology best? And vice versa: which
WCET computation methodology makes the best use
of a given annotation language?

Of course, the meaning of “best” has to be made
more precise to be practically useful. We argue that the
underlying notion of the relation “better” has several
dimensions, each of these leading to possibly different
solutions. Besides parameters like ease of use, we
consider the parameters of power and performance and
the trade-off between the two most important.

Summing up, this results in the following challenges :

1. Finding an annotation language, which enjoys the
individual strengths of the known annotation lan-
guages while avoiding their limitations.

2. Finding an annotation language, which serves a
given WCET computation methodology best.

3. Finding a WCET computation methodology,
which makes the best use of a given annotation
language.

It is worth noting that these challenges can be con-
sidered on various levels of refinement, depending for
instance on the notion of the relation “better” as dis-
cussed above. Thus, the challenges above represent a
full array of more fine-grained challenges rather than
exactly three individual challenges.

13

1: Benchmark Bi 2: Control flow graph 3: TAL

B1: Explicit execu-

tion order

Side constraints: The
conditions of the two
if-statements at line 5
and 10 evaluate both
to false or both to
true within each
iteration of the
while-loop.

B2: Explicit

execution

frequency

Side constraints: The
execution frequency of
the statement at line 6
is less or equal to that
of the statement at
line 8.

1 void cond(int a[],int b[])

2 {

3 int i=0, j=0;

4 while (i < 100) {

5 if (a[i] < 10)

6 j++;

7 else

8 a[i]=10;

9 i++;

10 if (b[i] < 10)

11 j++;

12 }

13 }

1

3

f1_3

4

f3_4

5

f4_5

13

f4_13

6

f5_6

8

f5_8

9

f6_9 f8_9

10

f9_10

11

f10_11

12

f10_12

f11_12

f12_4

f13_1

1 func TAL_cond(A_COUNT, B_COUNT) {

2 block blk1, blk6, blk8, blk11;

3 loop lp1;

4 blk1#begin= "-v-LA_1";

5 blk1#end = "-^-LA_13";

6 lp1#begin = "-v-LA_4";

7 lp1#count = 100;

8 lp1#end = "-^-LA_12";

9 blk6#begin= "-v-LA_6";

10 blk6#end = "-^-LA_7";

11 blk8#begin= "-v-LA_8";

12 blk8#end = "-^-LA_9";

13 blk11#begin = "-v-LA_11";

14 blk11#end = "-^-LA_12";

15 return(blk1#time

16 -(min(0,100-A_COUNT)*blk6#time

17 -(min(100,A_COUNT) *blk8#time

18 -(min(0,100-B_COUNT)*blk11#time);

19 }

Note: The side constraints for B1 and B2

are not directly expressible in TAL; the
above script represents a best effort for
both B1 and B2.

B3: Subranges of

loop iterations

In this benchmark,
the challenge lies in
expressing a
triangular iteration
pattern. (The
program computes the
sum

P
n

k=1 k)

1 int compute_sum(int n) {

2 int a=0, b=0, i=n, j, y;

3 while (i>0) {

4 a=a+1;

5 i=i-1;

6 j=i;

7 while (j>0) {

8 b=b+1;

9 j=j-1;

10 }

11 }

12 y=a+b;

13 return y;

14 }

1

2

f1_2

3

f2_3

4

f3_4

11

f3_11

5

f4_5

6

f5_6

7

f6_7

12

f11_12

8

f7_8

10

f7_10 13

f12_13

9

f8_9

14

f13_14

f9_7

f10_3

f14_1

1 func TAL_compute_sum(N) {

2 block blk1; loop lp3, lp7;

3 blk1#begin= "-v-LA_1";

4 blk1#end = "-^-LA_14";

5 lp1#begin = "-v-LA_3";

6 lp1#count = N;

7 lp1#end = "-^-LA_11";

8 lp2#begin = "-v-LA_7";

9 lp2#count = N-1;

10 lp2#end = "-^-LA_10";

11 blk7#begin= "-v-LA_7";

12 blk7#end = "-^-LA_10";

13 return(blk1#time -

14 N*(N-1)/2 * blk7#time);

15 }

B4: Call-context

sensitive flow infor-

mation

Side constraints: The
loop bound of the loop
starting at line 7 is 10
when fa() is called
from fc() and 7 when
it is called from fb().

1 int fc(int m, int n) {

2 return fa(m) + fb(n);

3 }

4

5 int fa(int i) {

6 int j=0;

7 while (j<i) {

8 j++;

9 }

10 return j;

11 }

12

13 int fb(int i) {

14 return 8 + fa(i);

15 }

fc fafb

1

2

f1_2

3

f2_3

513

f3_1 6

f5_6

7

f6_7

8

f7_8

9

f7_9

f8_7

10

f9_10

14

f13_14

15

f14_15

1 func TAL_fc() {

2 return TAL_fa(10) +

3 TAL_fb(7);

4 }

5 /* To be called as TAL_fa(10); */

6 func TAL_fa(I_COUNT) {

7 block blk5; loop lp7;

8 blk5#begin = "-v-LA_5";

9 blk5#end = "-^-LA_11";

10 lp7#begin = "-v-LA_7";

11 lp7#count = I_COUNT;

12 lp7#end = "-^-LA_9";

13 return(blk5#time);

14 }

15 func TAL_fb(I_COUNT) {

16 return TAL_fa(I_COUNT);

17 }

Table 2: Flow Information Benchmarks and Annotation Examples, Part I

14

4: PL and IDL 5: Linear Flow Constraints (wcetC) 6: Bound-T annotation

PL:

Loop-bound:
¬(∗L5∗) + (L2(L5)100) ⋆

B1:

(∗L6∗)∩(∗L11∗)+¬(∗L6∗)∩¬(∗L11∗)

B2:

The flow relation between L6 and L8
would need full path enumeration!

IDL:

Loop-bound: loop L4 100 times

B1:

samepath(L6, L11)

B2:

The flow relation between L6 and L8
is not expressible!

Note: Lx means a reference to
line x of the original code

Note: The side constraints for B1 are not directly
expressible in wcetC.

B2:

1 void cond (int a[], int b[]) {

2 int i=0, j=0;

3 WCET_SCOPE(s1) {

4 while (i < 100) WCET_LOOP_BOUND(100) {

5 if (a[i] < 10) {

6 j++;

7 WCET_MARKER(M1);

8 }

9 else {

10 a[i]=10;

11 WCET_MARKER(M2);

12 }

13 i++;

14 if (b[i] < 10)

15 j++;

16 }

17 WCET_RESTRICTION(M1 ≤ M2);

18 } /* scope s1 */

19 }

B1:

1 subprogram "cond"

2 loop

3 repeats 100 times;

4 end loop;

5 end "cond";

Note: Due to the lack of anchor
features in the original program,
a finer granularity is not possi-
ble. The side constraints for B2

are also not directly expressible
in Bound-T.

PL:

¬(∗L4∗) + (L2(L4)0−n) ⋆

¬(∗L8∗) + (L6(L8)0−(n−1)) ⋆

¬(∗L2 L8∗) + (L2(L8)
n(n−1)

2) ⋆

IDL:

loop L3 n times

The inner loop has a variable loop
bound, which is not expressible!

execute L8
n(n−1)

2
times

inside L3;

1 #define N 100 /* max. value of n */

2 int compute_sum(int n) {

3 int a=0, b=0, i=n, j, y;

4 WCET_SCOPE(s1) {

5 while (i>0) WCET_LOOPBOUND(N) {

6 a=a+1;

7 i=i-1;

8 j=i;

9 while (j>0) WCET_LOOPBOUND(N-1) {

10 b=b+1;

11 j=j-1;

12 WCET_MARKER(M);

13 }

14 }

15 WCET_RESTRICTION(M ≤ (N*(N-1)/2));

16 } /* scope s1 */

17 y=a+b;

18 return y;

19 }

1 subprogram "compute_sum"

2 loop that contains (loop)

3 repeats N_MAX times;

4 end loop;

5 loop that is in (loop)

6 repeats N_MAX-1 times;

7 end loop;

8 end "compute_sum";

Note: This assumes that N MAX

is a known constant

PL:

¬(∗fb fa∗) + (fb fa(L8)7) ⋆

¬(∗fc fa∗) + (fc fa(L8)10) ⋆

IDL:

loop L7 7 times

inside fb;

loop L7 10 times

inside fc;

1 int fc (int m, int n) {

2 return fa(m) + fb(n);

3 }

4 int fa (int i) {

5 int j=0;

6 /* specific loop bound for call

7 context fb(fa()) is not supported */

8 while (j<i) WCET_LOOP_BOUND(10) {

9 j++;

10 }

11 return j;

12 }

13 int fb (int i) {

14 return 8 + fa(i);

15 }

1 subprogram "fa"

2 loop

3 repeats ≤ 10 times

4 end loop;

5 end "fa";

Note: According to [14], Bound-
T is able to perform context sen-
sitive analysis when loop bounds
depend on function parameters.
It is not possible to annotate
context-sensitive information di-
rectly in Bound-T.

Table 2: Flow Information Benchmarks and Annotation Examples, Part II

15

In order to foster research on these challenges and to
assess success, we consider the reference to a collection
of benchmark programs which reflect the intricacies of
annotating programs for WCET analysis, and of the
interaction of annotation languages and WCET com-
putation methodologies, most valuable. Ideally, these
programs should be taken from real world applications,
but stripped off from unnecessary detail; focusing on
just the very essence to demonstrate where current
annotation languages appear insufficient or inadequate
to cope with. We are planning to set up a web page
to host such a library of programs. In the long run we
hope that this results in a research community main-
tained and accepted library of benchmark programs for
assessing and evaluating the relative merits of anno-
tation languages and WCET computation methodolo-
gies and combinations thereof. In spirit this is similar
to the collection of benchmark programs proposed by
the organizers of the WCET Tool Challenge [9, 28]. In
fact, we consider it desirable to host such libraries in
close relationship to each other.

7 Conclusions and Perspectives

The power, the generality, and the ease of use of
tools for WCET analysis depend strongly on the kind
and the expressiveness of the annotation language used
to feed the tool with program-specific WCET infor-
mation. The choice of the annotation language is the
most crucial decision in the early stages of designing a
WCET analysis tool. This choice is not trivial. The
many conflicting properties an annotation language is
desired to enjoy, e.g. expressiveness vs. ease of usage
and analyzability, make the choice of a “good” lan-
guage indeed a challenge of its own. It is thus by no
means surprising that annotation languages attracted
so much attention by researchers working on WCET
analysis and that so many different approaches of anno-
tation languages have been proposed and used so far
for the implementation of WCET analysis tools.

In this paper we systematically reconsidered an ar-
ray of prototypical approaches which we consider path-
breaking or especially successful and important for the
advancement of the new and still fast developing field
of WCET analysis. The evaluation of these approaches
gives indeed evidence to our thesis that the definition of
a “good” annotation language is a challenge. Accord-
ing to our findings, which are summarized in Table 1,
none of the annotation languages turns out to be uni-
formly superior to its competitors, let alone to be with-
out deficiency. As discussed in Section 5, this becomes
the more apparent, if further criteria are taken into ac-
count such as the possibility and ease of reconstructing

the control-flow graph on the object-code level (cf. [16])
or the consideration of application domains of anno-
tation languages beyond pure WCET analysis (cf. [18]).

In spite of the indisputably successful use of so many
conceptually diverse annotation languages for WCET
analysis, all this indicates that the annotation lan-
guages proposed so far are still challenged in one way
or the other. It is this observation, which yields the
slogan and the invitation extended by this paper:

Contributing to

overcoming the challenged annotation languages

by mastering the annotation language challenge.

We consider the invention of an annotation lan-
guage, which enjoys the profile outlined in the right-
most column of Table 1 entitled “Annotation Language
Challenge”, as a milestone indicating the (partially)
successful mastering of this challenge (and its variants).
Particularly important for this will be advancements al-
lowing a refined handling of contexts, execution orders,
and interprocedural control-flow.

We believe that contributions towards mastering
this new challenge will be essential for the next ma-
jor step towards the further advancement of the field
as a whole. The annotation language challenge com-
plements the recently launched challenge for WCET
tools [9, 28]. In fact, it is motivated by it in part.
We believe that contributions towards mastering the
annotation language challenge will also be a major step
towards enabling the delivery of the prospects related
to the tool challenge. Otherwise, the incompatibility
of the annotation languages and the tools using them
might soon turn out to be a significant obstacle for
truly meaningful and in-depth comparisons of WCET
tools.

Acknowledgments. The authors greatfully ac-
knowledge the helpful comments of the anonymous
referees and the feedback of the participants at the
WCET’07 workshop. Especially, they would like to
thank Niklas Holsti and Albrecht Kadlec for their
many and very detailed comments, which helped to
clarify and improve the presentation of this paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Prin-
ciples, Techniques, and Tools. Addison-Wesley, June 1997.
ISBN 0-201-10088-6.

[2] J. Blieberger. Discrete loops and worst case performance.
Computer Languages, 20(3):193–212, 1994.

[3] R. Chapman, A. Burns, and A. Wellings. Integrated pro-
gram proof and worst-case timing analysis of spark ada.
In Proc. ACM Workshop on Language, Compiler and Tool
Support for Real-time Systems, pages K1–K11, June 1994.

16

[4] R. Chapman, A. Burns, and A. Wellings. Combining static
worst-case timing analysis and program proof. Real-Time
Systems, 11(2):145–171, 1996.

[5] M. Chen. A Timing Analysis Language - (TAL). Dept. of
Computer Science, University of Texas, Austin, TX, USA,
1987. Programmer’s Manual.

[6] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based wcet analysis. In Proc. 13th Euromi-
cro Conference on Real-Time Systems, pages 37–44, Delft,
Netherland, June 2001. Technical University of Delft.

[7] J. Engblom and A. Ermedahl. Modeling complex flows for
worst-case execution time analysis. In Proc. 21st IEEE
Real-Time Systems Symposium (RTSS), Orlando, Florida,
USA, Dec. 2000.

[8] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient
user annotations for a WCET tool. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
pages 17–20, Porto, Portugal, July 2003.

[9] J. Gustafson. The WCET tool challenge 2006. In Pre-
liminary Proc. 2nd Int. IEEE Symposium on Leveraging
Applications of Formal Methods, Verification and Valida-
tion, pages 248 – 249, Paphos, Cyprus, November 2006.

[10] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and
M. G. Harmon. Bounding pipeline and instruction cache
performance. IEEE Transactions on Computers, 48(1),
Jan. 1999.

[11] R. Heckmann and C. Ferdinand. Combining automatic
analysis and user annotations for successful worst-case ex-
ecution time prediction. In Embedded World 2005 Confer-
ence, Nürnberg, Germany, Feb. 2005.

[12] N. Holsti. Bound-t assertion language: Planned extensions.
Technical report, Tidorum Ltd, 2005.

[13] N. Holsti, T. L̊angbacka, and S. Saarinen. Worst-case
execution time analysis for digital signal processors. In
European Signal Processing Conference 2000 (EUSIPCO
2000), 2000.

[14] N. Holsti, T. L̊angbacka, and S. Saarinen. Bound-T timing
analysis tool User Manual. Tidorum Ltd, 2005.

[15] R. Kirner. The programming language wcetC. Technical
report, Technische Universität Wien, Institut für Technis-
che Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2002.

[16] R. Kirner and P. Puschner. Classification of code annota-
tions and discussion of compiler-support for worst-case exe-
cution time analysis. In Proc. 5th International Workshop
on Worst-Case Execution Time Analysis, Palma, Spain,
July 2005.

[17] Y.-T. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. In Proc. 32nd
ACM/IEEE Design Automation Conference, pages 456–
461, June 1995.

[18] B. Lisper. Ideas for annotation language(s). Technical
Report Oct. 25, Department of Computer Science and
Engineering, University of Mälardalen, 2005.

[19] R. MacNaughton and H. Yamada. Regular expressions and
state graphs for automata. IRE Transactions on Electronic
Computers, 9(39-47), 1960.

[20] A. K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat.
Evaluating tight execution time bounds of programs by
annotations. In Proc. 6th IEEE Worksop on Real-Time
Operating Systems and Software, pages 74–80, Pittsburgh,
PA, USA, May 1989.

[21] C. Y. Park. Predicting Deterministic Execution Times of
Real-Time Programs. PhD thesis, University of Washing-
ton, Seattle, USA, 1992. TR 92-08-02.

[22] C. Y. Park. Predicting program execution times by analyz-
ing static and dynamic program paths. Real-Time Systems,
5(1):31–62, 1993.

[23] C. Y. Park and A. C. Shaw. Experiments with a program
timing tool based on a source-level timing schema. Com-
puter, 24(5):48–57, May 1991.

[24] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs. The Journal of Real-Time
Systems, 1:159–176, 1989.

[25] P. Puschner and A. V. Schedl. Computing maximum task
execution times – a graph-based approach. Journal of Real-
Time Systems, 13:67–91, 1997.

[26] A. C. Shaw. Reasoning about time in higher level language
software. IEEE Transactions on Software Engineering,
15(7):875–889, July 1989.

[27] F. Stappert and P. Altenbernd. Complete worst-case execu-
tion time analysis of straight-line hard real-time programs.
Journal of Systems Architecture, 46(4):339–355, 2000.

[28] L. Tan and K. Echtle. The WCET tool challenge 2006:
External evaluation – draft report. In Handout at the 2nd
Int. IEEE Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation, Paphos, Cyprus,
November 2006. 13 pages.

[29] R. E. Tarjan. Fast algorithms for solving path problems.
J. ACM, 28(3):594–614, 1981.

[30] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
man, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenstrom. The worst-case execu-
tion time problem - overview of methods and survey of
tools. ACM Transactions on Embedded Computing Sys-
tems (TECS), (Accepted January 2007).

17

	WCET_abstracts_collection.1238-new
	vol006-oasics-frontmatter
	vol006-oasics-abstracts-collection
	2007 WCET Abstracts Collection 7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis

	oasics-vol6-wcet2007-complete.pdf
	WCET_abstracts_collection.1238.pdf
	vol006-oasics-frontmatter
	WCET_abstracts_collection.1238
	2007 WCET Abstracts Collection 7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
	 Christine Rochange

	Report.1198
	schlickling.1189
	holsti.1195
	1.Introduction
	2.Example of switch table and handler
	3.Problem and goals
	4.The solution by partial evaluation
	5.Building flow-graphs in Bound-T
	6.Partial evaluation in Bound-T
	7.Example
	8.Summary
	9.Implementation experience
	10.Experiments
	11.Related work
	12.Conclusion

	stein.1196
	1 Introduction
	2 Overview
	3 The Flow Constraint Analysis
	4 Limitation to n bits
	5 Evaluation
	6 Outlook
	6.1 Portability.
	6.2 Nonlinear slices.
	6.3 Theorem-prover interface.
	6.4 Elimination of unreachable code.
	6.5 PAG.

	7 Conclusion

	herrmann.1186
	Introduction
	Amortised Time Analysis
	Example: Implementation of a Queue by Two Stacks
	Type-Based WCET Analysis

	Obtaining WCET Bounds for HAM Instructions
	Low-Level WCET Analysis
	WCET Information for Individual HAM instructions

	Example: Drilling Robot
	Problem description
	Amortised WCET Analysis

	Conclusions

	fredriksson.1185
	cullmann.1193
	. Introduction
	. Common Basis for Both Analyses
	. Running Examples
	. The Pattern-Based Approach
	. Improved Loop Analysis Based on Data-Flow Analysis
	. Loop classification
	. Search for possible loop counters
	. Invariant analysis
	. Evaluation of the loop tests and bound calculation

	. Practical Evaluation
	. Summary and Outlook

	sundmark.1191
	ermedahl.1194
	petters.1188
	Introduction
	Related Work
	Potoroo
	Basic Idea
	Static Analysis Approach
	Motivation
	The Basic Approach
	Source Program Preparation
	Cache Analysis
	Coverage Analysis
	Algorithmic Complexity

	Conclusions

	liangyun.1192
	wilhelm.1190
	kirner.1197
	Motivation
	Assessment Criteria
	Language Design
	Usability
	Tool Support

	WCET Fundamentals
	Types of Flow Information
	Minimal Flow Information
	Completeness of an Annotation Language
	WCET Calculation Methods
	Timing Schema
	Path-Based WCET Calculation
	IPET-Based WCET Calculation

	WCET Annotation Languages
	TAL - Equations with Event Markers
	Path Language and IDL
	Path Language (PL)
	Information Description Language (IDL)

	Linear Flow Constraints
	Modeling Contexts within Flow Constraints

	Data Value Assertions used in SPARK Ada
	Symbolic Annotations
	The Annotation Language of Bound-T
	The Annotation Language of aiT

	Discussion
	Expressiveness
	Annotation Placement and Abstraction Level
	Programming Language
	Intricacy of Annotations
	Availability of Tools

	The WCET Annotation Language Challenge
	Conclusions and Perspectives

