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Message from the Workshop Chair 

 
 
Welcome to the 4th International Workshop on Worst-Case Execution Time (WCET) Analysis. 
The workshop is a satellite event to the 16th Euromicro Conference on Real-Time Systems 
(ECRTS 2004). It was held in Catania, Italy, on the 29th of June 2004. This is the fourth event in 
the series after the successful meetings in Delft (Holland) in 2001, Vienna (Austria) in 2002, and 
Porto (Portugal) in 2003 (see http://www.ecrts.org/wcet/). 
 
The goal of the workshop is to bring together people from academia, tool vendors and users in 
industry and that are interested in all aspects of timing analysis for real-time systems. The 
workshop provides a relaxed forum to present and discuss new ideas, new research directions and 
to review current trends in this area. The workshop is based on short presentations that encourage 
discussion by the attendees. 
 
The topics of the workshop include any issue related to timing analysis, in particular: 
 

• Flow analysis for WCET 
• Low-level timing analysis, modelling and analysis of processor features 
• Calculation methods for WCET 
• Strategies to reduce the complexity of WCET analysis 
• Timing analysis through measurement 
• Probabilistic analysis techniques 
• Integration of WCET and schedulability analysis 
• Evaluation and case studies 
• Tools for timing analysis 
• Current practice in industry 
• Integration of WCET analysis in development process  

 
The proceedings include the papers presented during the workshop as well as a detailed transcript 
of the discussions. 
 
If you would like to reference any article included in the WCET2004 proceedings, please note 
that these proceedings are published as a research report from IRISA, number PI-1645 (see 
http://www.irisa.fr/bibli/publi/pi/). 
 
I would like to express my congratulations to all participants, authors, members of program 
committee, external reviewers, session chairs (Raimund Kirner, Stefan M. Petters, Jan 
Gustafsson), that have made this event a successful one. Special thanks go to Lucia Lo Bello and 
the local organization team in Catania, as well as Laurent David and Raimund Kirner, for the 
local arrangements. 
 
Isabelle Puaut 
University of Rennes, France 
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Session I: Compiler and Runtime Optimizations for 
WCET Determination 

 

Chair: Raimund Kirner (TU Vienna, Austria) 
 

Presentations 
 
In the first presentation “Predictable Timing Behavior by using Compiler Controlled 
Operations” Vesa Hirvisalo gave a position to use compiler techniques to improve temporal 
predictability of real-time systems. The motivation is to replace unpredictable hardware and 
operating system features by more predictable features. As a first approach, caches are replaced 
by scratchpad memories to improve predictability of memory references. 
 
The second talk given by Hemendra Singh Negi was about “Simplifying WCET Analysis by Code 
Transformations” as a preprocessing step before doing the path analysis to gather information 
about feasible paths. These code transformations make infeasible paths in programs more obvious 
and therefore simplify the path analysis. Several examples are given to give an idea how this 
transformation should look like. 
 
In the third presentation “Optimizing JVM Object Management Operations to Improve WCET 
Predictability” Corrado Santoro presents technical solutions for a Java Virtual Machine to make 
its timing behavior more predictable. The garbage collection becomes predictable as it is only 
called directly before allocating memory and frees only as much memory as is needed for the new 
allocation. Sources of unknown behavior like dynamic classes or dynamic arrays are handled by 
restricting the programming language respectively by using code annotations. 
 

Discussion 
The following discussion centered around the properties of compilers for real-time systems and 
their possible support for timing analysis. 
 
Christian Ferdinand: I come from the industrial side, working for the company AbsInt. We are 
providing commercial timing analysis tools. Regarding the point of emitting information by the 
compiler for timing analysis, all of our customers are using existing compilers. These compilers 
are typically quite old because for people developing safety-critical applications there is typically 
no chance to change the compiler. For example in the automotive industry, people are not only 
using compilers but there is also a high amount of hand-written assembly code in it. So I don’t 
see a chance for the safety-critical area; one cannot change the tool chain and to somehow getting 
the information from the compiler what optimizations have been performed. For the generation of 
more predictable code it is the same problem. Depending on the domain it requires many years to 
define how a safety-critical application is build. For example, there is a design to use ADA or C 
then it is frozen at the beginning of the project and only ten years later they indeed use C. Ten 
years is a typical time period for the avionic area when it will come into production. It is not easy 
to propose anything else then C or ADA. Therefore, I don’t see that the industry is going to 
switch from the current programming paradigms. It will be C for the next 20 years. And still 
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declining but active there is ADA and that’s all. I do not see that the industry is willing to pick up 
any other coding paradigm for the next years.  
 
Peter Puschner:  Coming back to Christian’s statement, of course, I see the current situation in 
industry. And of course, things will change very slowly, I agree. And we shouldn’t have any 
illusions on how things will develop and I think it would be quite difficult to get kinds of 
revolutions. We will rather have to expect evolutions, but I think we should not be too pessimistic 
even if it takes some time. It is the purpose and also the responsibility of research to come up with 
new solutions and to work out new solutions. It is our responsibility to push the state of the art 
into a direction. Someday, people cannot deny that technology is there, that certain techniques are 
state of the art and have to be used. This sometimes happens. If you build a system and the 
system puts people into problems and later on you find out that the tools that have been used do 
not reflect the state of the art. After some time of course, everybody will accept it. It will take 
some time to reflect research results in industrial technology but at some time I think our research 
results have to be picked up. And so, even it takes time, I would not say that we will not ever see 
them as strictly as you [Christian Ferdinand] did in your first statement. I would say that would 
make any research ridiculous and useless. But that is not the case. 
 
Christian Ferdinand: Maybe, that was a little bit too pessimistic. It is not to discourage you in that 
area. Probably it is a kind of dilemma. As for the most safety-critical applications like fly-by-
wire, airbags in cars and all such things, I see people that do have a budget and might be 
interested in using WCET tools and say that they will not change other tools, so that is the 
dilemma. But there are huge other areas which are less critical, like telecommunication. They use 
also C or in some cases Real-Time Java. These areas are much less critical but they are typical in 
projects where timing is not so critical, i.e. it is more soft real-time. They are not really interested 
in the worst case but in some worst average case or something like that; things that can you 
usually do with measurements. But they are not going to pick up the tools, they are not going to 
invest into them. But this community provides tools that are working for them, they are working 
for Real-Time Java and maybe some other languages, there is a chance. But currently, these tools 
are very specially and very expensive, and they are only going to be used for the most critical 
system designs. 
 
Iain Bate: Listening to the conversation of you, you are both right. The problems we are always 
have to face in the critical systems domain is legacy. Therefore, we often have to keep the 
antiquated approaches like frames systems development. And any such approach has to deal with 
legacy. What we always have to remember is that these are large legacy components which are 
hard to deal with, using languages like ADA or C; they are conservative coding style approaches. 
And the other thing to remember from the industrial practice is that timing analysis is only a 
minor part of what they have to do. And anything that we propose like code transformation has to 
be weighted off against the bigger problems like functional verification, unit testing, etc.  
 
Guillem Bernat: One extra comment to this special area is that now there is already the awareness 
that there is a problem of finding the worst-case timing behavior. A few years ago there were 
these simple chips where worst-case analysis tools where easy to build and the hardware was easy 
to analyze. Now we hear somewhere in the avionics they were starting using caches, pipelines 
and very complex processors. There is a lot research to do. People are already committing to 
using these advanced processors and then they say: “oh, we have a problem and we do not know 
how to do in that case”. As you say, it is changing very slowly, but engineers are starting to use 
these processors even in very critical systems. The other point on the compilers is that it is true 
that people buy the compiler and stay with that compiler. But we had some experiences recently 
where compiler vendors where approaching to us: if our compiler knew how to do the WCET 
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analysis we can sell it to more customers. This is the first time we got this message of compiler 
vendors now trying to find an edge on their problems, having more real-time features, support for 
real-time operating systems, and a lot of support for instrumentation and WCET. To grab the 
argument from Peter [Puschner] and you [Iain Bate]: things are changing, slowly but they are 
changing. The good thing is that we must be there when people start asking for this.  
 
Raimund Kirner: I can just express my opinion of how it works in industry, they just pick every 
solution that is available ready to use, that’s all. In a company in that area there is no significant 
time for research or development budget. But there is also a good chance for applying research on 
WCET compiler support to industrial practice. For certain new chip products a compiler has to be 
written from the scratch, for example, for some special signal processors and so on. In such a 
situation it could be useful to think from the beginning which data structures and mechanism are 
suitable to support aspects like predictability or timing analysis. And as Guillem [Bernat] said, it 
helps if compiler vendors are looking for niche markets by supporting timing analysis. Then if 
other people see that it works quite well it may also convince them to adapt such technologies. It 
may be still a question of time, but as long as we do not have a solution, industry will not adapt it, 
for example, for their compilers. It may still take 20 years, but at least we have to do the basic 
research, because timing analysis is still a very serious problem. And of course, if everyone just 
says that due to all the legacy systems it is too complicated to do anything, there will be no 
change. But of course, this will not bring any advantage for the software development process 
used by them. Luckily, development departments of many companies already think of using 
better and more structured software development processes. And I think, for new projects, they 
are also willing to change their whole software development method to achieve more 
predictability. Therefore, I think there are some realistic possibilities to introduce these 
technologies.  
 
Peter Puschner: If I am allowed I would like to ask a question, actually more than making a 
statement or answer to one of these statements we had before. Since we had been talking about 
transformation, every compiler does some kind of code transformation. If we speak about 
optimization it does a little bit more than just code transformation, but even translating from C to 
machine language is some kind of transformation. Since we have some people here from industry 
and also other people are dealing with industry or having contacts to industry, I would be 
interested to know what are the limits of transformations that do you think would be allowed in 
order to generate code for a safety-critical system. I don’t know if it is possible to define such a 
limit, but I think that there have to be some transformations and I know it is easy to certify 
compilers which do very simple transformations from source code into machine code, but where 
does this simplicity end when you want to certify a system? Is there any idea or does anybody 
have an idea how this can be expressed, because I think the second talk1 pointed out to - at least 
from a research point of view – a very interesting solution to the problem of WCET analysis. But 
I heard a comment that it would not be feasible in an industrial setting, so therefore my question. 
 
Iain Bate: I think the answer is easy. What you are allowed to do is driven by cost. If it is cheaper 
to transform the code and just skip the transformation and do the analysis without the 
transformation you will be allowed to do it. But you have then go to the customer just to define 
the transformation. It is a cost tradeoff. There is nothing to stop you doing optimizations and 
transformations as long as you can show that you do not introduce any additional hazards into the 
software. And that is the tricky bit, showing it for all conceivable cases to that it might be applied. 
Normally, the reality is that they just say that you cannot just do it. But I see a lot of work on 
tools like code generation, you know, tools like SCADE, that successfully brings models into the 
                                                 
1 H. S. Negi, A. Roychoudhuri and T. Mitra: Simplifying WCET analysis by code transformations. 
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code and compile them down. That is allowed because people did a lot of efforts just to define 
those transformations which was very expensive the first couple of times they did it. But what 
they consider is that it was worth doing the transformation. Any compiler just does 
transformations.  
 
Raimund Kirner: I am not really the expert in this area on certification. So, I’m interested about 
what are compiler optimizations – let’s say code transformations to improve performance – are 
currently used for certified systems in the avionics. As far as I know they already use code 
transformations to improve performance. Maybe Iain [Bates] knows some details on this.  
 
Iain Bate: No, they do not use optimizations. Still, they turn off all optimizations in the compiler. 
 
Raimund Kirner: I was asking because I heard from some unofficial sources that people are also 
thinking about using compiler optimizations in the avionics.  
 
Iain Bate: It depends on the system. There are a lot of systems in the avionics, on an aircraft like 
the flight control system which is one the most critical system on an aircraft and any form of 
optimization will not be considered. Then, the various integrity levels down from that, low 
integrity level, less real-time, less critical systems, then certainly code optimizations would be 
considered. Though, on those systems they probably do not do WCET analysis, they would use 
more test-oriented methods. But certainly, on the parts of the system where one is doing static 
analysis one would not turn the optimizations on. Would you agree? 
 
Christian Ferdinand: If you have a verifier, a tool that can verify that the optimized code is also 
correct, i.e. corresponds to the source, you can do it. But as long as such tool is not available they 
will probably switch off all optimizations. 
 
Stefan M. Petters: I heard once the argument, probably not in the highest critical systems area, the 
most used optimization would be actually “-O1” in terms of – and there comes the argument now 
- this is the most often used compiler optimization stage and as such is most trusted compared to 
the no-optimization setting. I cannot confirm that this is really the case but I have been told that. 
 
Guillem Bernat: One thing that we should not forget is that the scope for which WCET applies is 
quite broad. On one extreme there are the absolute safety-critical systems as the avionics. What 
they actually say is about you do not trust the compiler. On another scope we have the people in 
the automotive industry which are very keen using WCET approaches because they start having 
to share the same chip with other applications and they have budgets. They also have to guarantee 
timing properties as this is safety-critical but not at the level of the avionics. And now we have 
the telecom industry where something does not work and this is always the problem. And 
possibly the timing problems, how do we go to analyze this? My suggestion is that we try to keep 
the conversation open in the sense that if we talk about WCET, some people always do the 
absolutely safety-critical, some do the soft real-time systems. Actually, we should try to get a 
broader view. Some aspects cover all these approaches. For example the real-time application of 
Java which I do not have seen flying in a plane but doing a lot of other efforts.  
 
Iain Bate: If you look at the avionics standards they define critical systems of possibly causing 
harm of lives. If you look at some standards like IEC 61508 which is a reference standard for 
programs and electronic controllers, etc. They define critical systems if it could loss life or 
economic damage in case of a failure. And therefore, to a certain extent I agree with Guillem 
[Bernat] in a sense that there are a lot of people at telecommunication, mobile phones 
manufacturers etc. who are beginning to get more willing to consider execution time analysis 
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because if the system fails and they have shipped a millions units that it is very costly, and that is 
a different type of critical system, where economics is driving it. They spend much more efforts 
into verification, certification, power proofed, etc.  
 
Christian Ferdinand: In avionics everything is regulated, so there is a need for certification. In the 
car manufacturers OEMs and suppliers there is no such thing, there is no regulation and they 
typically use all optimizations the compiler provides, even for the safety-critical applications. 
 
Stefan M. Petters: Not yet! They use not yet a standard, but… 
 
Christian Ferdinand: Yes, but even if it involves them the people insist that they can use all 
optimizations that are there. And if you look at the USA and the critical systems there, there is a 
danger for the OEMs there that they will be filed with a huge amount of money if they fail to use 
state of the art. So, if there are tools that show the absence of errors, so to say in the timing 
domain the WCET tools, they are going to use them to avoid these damages. So, we have to have 
WCET tools for the car manufacturers that also work with the highest level of optimization. 
 
Raimund Kirner: I want to make an open comment on this because when you think about 
introducing compiler support for timing analysis, of course, it requires a lot of changes. For really 
safety-critical systems there is just a very small market compared to other systems. Therefore, it 
might be also useful to consider the application of timing analysis for domains that do not require 
absolutely safe bounds. This may also introduce WCET analysis techniques and also compiler 
support into mass production. If this happens it will also convince people from hard real-time 
systems domain that compiler support for WCET and predictability would help to improve the 
overall design flow. This would be a chance we can think about. 
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Abstract

We propose coordinated use of compiler techniques to
improve predictability of timing behavior of hard real-time
systems, and thus, to tighten their worst-case execution
times. We aim at a generic methodology of compiler op-
timizations that replace the use of unpredictable hardware
and operating system features by the use of more pre-
dictable features. We call the approach compiler controlled
operation, because it is based on using compilers to con-
trol operations that are traditionally controlled by hardware
or operating systems. As an example of the approach, we
overview our work in progress on a small experimental sys-
tem.

1 Introduction

This paper discusses how compiler techniques can be
used to build software systems having predictable timing
behavior. Predictability of timing behavior is needed to
guarantee temporal correctness of hard real-time systems.

There are several trends that make giving such guaran-
tees increasingly difficult. New applications based on the
use of real-time software components are rapidly emerging.
To cope with the complexity of the software systems, high-
level software development tools are being adapted. Many
applications require high performance in addition to pre-
dictable timing behavior. Because of the increasing perfor-
mance requirements and the use of generic purpose hard-
ware components to limit production costs, hardware for
real-time systems is becoming complex. These factors in-
crease dynamism of the systems and make their timing be-
havior hard to predict.

Timing guarantees are given by schedulability analysis
that is typically divided into intra-task analysis and inter-
task analysis. Intra-task analysis resolves worst-case exe-
cution times (WCET) for tasks. Improving execution speed

can be useless, even if the improvements yield tight worst-
case execution times, unless such tight worst-case execu-
tion times can be guaranteed. Inter-task analysis determines
whether the tasks can be guaranteed to be scheduled so that
they meet their deadlines. Similarly, techniques for faster
average-case execution can be useless, or even harmful,
when inter-task real-time analysis is considered.

We concentrate on unpredictability caused by modern
hardware and typical operating system features. Such fea-
tures include – but are not limited to – cache memories,
interrupts, and context switches. There are two things com-
mon to features considered by us. First, they make tim-
ing analysis difficult by using features that are not apparent
from the application code. Second, more predictable tech-
niques exist for implementing them in special cases. Using
such alternative techniques yield tighter worst-case execu-
tion times.

Our generic solution is to use compiler techniques to
transform the software to use more predictable implemen-
tation techniques, when such transformations are possible.
We call the approach compiler controlled operation, be-
cause it is based on using compilers to control operations
that are traditionally controlled by hardware or operating
systems. Compiler controlled operation is based on static
program analysis. Therefore, it is closely related to the use
of WCET analysis methods based on static program anal-
ysis. In addition to improving timing behavior, compiler
controlled operation can be used to other purposes, e.g., en-
ergy saving.

The structure of the rest of this paper is the following. In
Section 2, we discuss compiler controlled operation in gen-
eral. In Section 3, we consider briefly some possible real-
izations for compiler controlled operation. In Section 4, we
overview our work in progress on an experimental system
that concentrates on using fast on-chip RAM memory (of-
ten called scratchpad memory) to implement the operation
of classic cache hardware and compiler-time scheduling to
partially implement a process abstraction. The last section
draws some conclusions and discusses some related work.
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2 Compiler controlled operation

Programs are abstract entities, but they are executed in
some concrete execution environment that usually has sev-
eral specific features supporting the execution of programs.
Typically, the execution environment includes the various
features of the operating system and the whole underly-
ing hardware (including both on-chip and off-chip features).
The environment significantly affects the timing behavior of
a program.

Compiler controlled operation means that some opera-
tions in the execution environment of an application are
controlled by the compiler that compiles the application.
This requires cooperation between the compiler and the ex-
ecution environment.

The main task of operating systems is to imple-
ment process abstraction. This includes managing pro-
cesses, scheduling processes, and providing processes with
inter-process communication, synchronization and protec-
tion. Especially scheduling combined with synchronization
causes problems in timing prediction, because of the run-
time decisions made by the operating system.

Modern hardware includes speculative features to in-
crease speed and supporting features to increase flexibil-
ity. The use of such features often make timing prediction
hard. The typical speculative hardware feature that causes
problems in timing prediction is the cache memory. The
combined use of parallel processes and cache memories can
cause severe problems in predictability [11].

Traditionally, the programmers of a system are responsi-
ble for using predictable techniques instead of the generic
ones (e.g., application-controlled memory management).
There are situations, where this can be automated. The
use of predictable techniques instead of the generic ones
can be implemented as optimizations done by a compiler.
Such compiler optimizations consider the whole execution
environment instead of the instruction set architecture of the
processor. As in traditional compilers, several optimizations
can be used in a coordinated way, and they can be used to
promote predictability (e.g., tight WCETs) instead of aver-
age speed.

In addition to the transformations, analysis required for
the transformations can be done by compilers, as well as
timing verification. As for many WCET tools, user support
may be needed to guide the compiler. However, some tasks
can be fully automatized, e.g., the use of a scratchpad mem-
ory as a cache.

Considered from the point of view of the application de-
veloper, transparency is important regardless whether the
analysis can be made fully automatic. Independent of the
implementation, the same way of coding and the same in-
terfaces should be used.

3 Various possibilities for compiler
controlled operation

Traditionally, compilers are aware of the execution en-
vironment only partially. They know the target hardware
architecture including target processor and memory layout,
but often the operating system semantics and semantics of
other applications in the system are completely unknown.
Operating system interfacing is typically provided by li-
braries. Isolation is even a goal in many operating system
designs.

In closed systems, there exists less reasons for such iso-
lation, as often all application and operating system seman-
tics are completely available at design time. Providing such
information for the compiler reveals many exciting possi-
bilities for optimization. We give some examples on how
compiler might exploit extended information on execution
environment.

A compiler can automate scratchpad memory usage and
allocation. As scratchpad operations are explicit in the pro-
gram code, they pose no inherent unpredictability. Instead,
program code using scratchpad operations can be analyzed
with existing WCET tools. Thus, the problems of cache
behavior unpredictability can be avoided (see [10] as an in-
troduction to such scratchpad usage).

When timing information of tasks is provided, the com-
piler can perform scheduling optimizations. For example,
compiler might statically schedule and join multiple peri-
odic tasks of same frequency or integer multiple of some
base frequency into one task [1]. Further, if the information
of hardware interrupt rate boundaries is known, interrupt
handling may be transformed to polling by the compiler.
Polling and branch prediction may improve WCET guaran-
tees in some cases.

If the compiler is aware of operating system semantics,
optimizations to inter-process communications can be per-
formed. Semaphore synchronization may be transformed to
statical task rescheduling in some cases, as well as many re-
mote procedure call patterns are transformable to simpler
inter-process procedure calls. Such transformations sim-
plify scheduling analysis, and are thus susceptible to pro-
mote WCET guarantees.

The transformations need not to concern only applica-
tion code, but may also be directed to the operating system.
A typical task performed manually is the tuning of operat-
ing system features, such as the sizes of various buffers,
and implementation techniques of features such as inter-
process communication primitives. The operating system
feature-selection and tuning can be seen as global optimiza-
tion problem for the compiler.

Furthermore, when high-volume systems are of concern,
the compiler could even tune the hardware execution en-
vironment. As with the operating system, tuning of hard-
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ware execution environment can also be seen as global op-
timization problem. For example, the amount of scratchpad
memory in the system, number of registers, special instruc-
tions (such as division, multiplicate-and-accumulate, and
scratchpad transfer instructions), can all be seen as param-
eters to a global optimization problem. Today, hardware
features are selected and tuned manually, and the choices
may have great effect to the system performance.

4 Work in progress

The PAD system consist of two components: a compiler,
padCC, and an operating system, padOS. It is a small ex-
perimental system that is designed for the study of plat-
forms for closed embedded control systems that have peri-
odic hard real-time timing requirements. The goal of the
system is to promote predictable timing and low energy
consumption in high performance applications.

padOS is a small real-time operating system. It sup-
ports multitasking, but has no memory protection, because
it is designed for closed applications. It implements EDF
scheduling and prioritized interrupt handling. padOS sup-
ports background tasks and inter-process communication.

padCC is a C compiler. In addition to optimization based
on the instruction set architecture of the target processor,
padCC supports optimizations based on the execution en-
vironment. padCC uses scratchpad memory hardware to
implement the operation of classic cache hardware. Instead
of using associative memory that is able to handle misses,
padCC generates code that uses scratchpad memory instead
of of main memory to store and access data. The analy-
sis and code generation closely resembles the register allo-
cation techniques used in optimizing compilers. Thus, all
memory transfers are statically known.

padCC does partial compiler-time scheduling. A C pro-
gram with operating system primitives is considered as a
concurrent program that is compiled into a sequential pro-
gram when possible (see [4] for an introduction to such
techniques). The static scheduling is coordinated with the
scratchpad memory allocation. Inter-task scratchpad allo-
cation is realized by giving the sequentialized code to the
scratchpad memory allocator.

All the transformations described above are optimiza-
tions. They are done by padCC, when they are possible. If
the scratchpad cannot be allocated for some memory oper-
ation or some task cannot be scheduled statically, then that
part of the code is left unchanged. As typical for optimiza-
tions, these actions are transparent to the user. Their main
effect is to improve predictability of the timing of the ex-
ecution. However, a deep understanding of the timing is
needed to tune a program to fully use the features of the
PAD system.

The PAD system has its roots in on our previous work

on cache performance analysis [8]. The current version is
designed for the ARM7TDMI processor [2] in a system that
has 8kB of scratchpad memory.

5 Conclusion

The techniques used by us are not unique. The use
of simple hardware features to promote predictability is
very common in hard real-time systems. Also, using com-
piler techniques to implement statically-decided operation
has been studied. However, we feel that multiple com-
piler techniques should be used in a coordinated way to
promote predictability. In this way, our approach can be
seen as an extension to the software synthesis approach [5]
(exemplified by the compiler-based static scheduling) with
new hardware-related optimizations [3, 14] (exemplified by
scratchpad usage).

Our approach is a compromise between approaches to-
ward very predictable systems (see [6, 12]) and the current
practice. The building of predictable systems is also related
to the corresponding analyses (e.g., [13]). Our research is
especially dependent on the development of WCET analysis
based on static program analysis and its relation to hardware
development (see [7]). Our current practical work is lim-
ited. In the future, we aim at an implementation that makes
full scale experimentation possible. Because of the success-
ful previous studies on specific techniques (e.g., [9, 10]), we
expect good results.
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ABSTRACT
Determining worst case execution time of a program by
static analysis is important for the design of real-time soft-
ware. WCET analysis at the programming language level
requires the detection of the longest path in the program. A
tighter bound on the WCET of a program can be achieved
by identifying the infeasible paths in the program’s control
flow, which is a difficult problem. Due to the branches in
a program structure, the number of possible paths in the
program can grow exponentially. In this paper we present a
method to transform the code such that the number of paths
in the program could be reduced and hence the search space
for the infeasible paths is brought down. This could reduce
the complexity of determining infeasible paths in a program
and also result in tighter WCET.

1. INTRODUCTION
The design of real-time embedded software requires that a

guarantee must be given about the time taken by a program.
Especially, in hard real-time systems, where the failure of a
program to give results within a required amount of time
may have serious consequences, the problem of determining
Worst Case Execution Time (WCET) of a program becomes
more critical. The WCET of a task is also important for
scheduling the tasks in real-time systems. However, it is very
difficult to obtain an accurate WCET of a task. Therefore,
a tight bound on the WCET by static analysis methods is
always desired to achieve better scheduling of tasks.

The problem of determining the WCET of a program by
static analysis methods has to be solved at the following two
levels [12]: (1) Programming language level, to discover the
longest path from the start to the end of the program [7] and
(2) Micro-architectural level, to take into account the effect
of features such as pipeline, cache and branch prediction [6,
5]. The determination of WCET at the programming lan-
guage level involves the detection of infeasible paths in the
program and then use that information to give a tight bound
on the execution time of the task ([3, 11]). In this paper,
we only consider the programming language level analysis
of the WCET. We will first describe the types of infeasible
paths along with some techniques on how to detect them.
We then present our idea to reduce their numbers and get a
better estimation of the WCET of a task.

The knowledge about infeasible paths in a program can be
used to give a tighter bound on the WCET. There could be
infeasible paths because of the correlation between branches.
For example, in Figure 1(A), <3,4,5,6> is an infeasible path
because if the outcome of branch at line number 3 is true

1 for(i:= 0; i<limit; i++) 1 sumeven := 0;
2 { 2 for (j:=0; j<=limit; j++)
3 if ( i < 3 ) 3 {
4 S1; 4 if (j % 2 == 0) then
5 if ( i > 3 ) 5 sumeven = sumeven + j;
6 S2; 6 }
7 }

(A) (B)

Figure 1: Infeasible paths due to branch correlation

then the outcome of branch at line number 5 can not be
true. Detection of such types of infeasible paths has been
studied in [2, 3]. Another type of infeasible paths which can
be present in a program are ones that span over multiple
iterations of a loop. For example consider the code to cal-
culate the sum of even numbers, as shown in Figure 1(B).
If the path <3,4,5,6> is taken in some iteration of the loop
then it is not possible to take it again in the next iteration
of the loop.

Detection of infeasible paths in a program is an impor-
tant but difficult problem. A technique to detect and use
infeasible path information is presented in [3]. We briefly
describe their technique here to motivate how it could be
benefited by our code transformation approach. In [3], the
authors have used an effect based technique to determine the
infeasible paths in a program and used this information for
calculating the WCET of a loop. They first determine how
a conditional branch can be effected by an assignment to a
variable and/or the outcome of another conditional branch.
The conditional branch could have one of the three types of
effects: unknown, fall-through or jump. The effects on the
conditional branches by the assignment of a variable are then
exploited while traversing the basic blocks in every path of
the program to determine whether the path is feasible or
not.

Timing prediction of loops via control flow (as in [3]) poses
a lot of problems for timing analyzer. A lot of space is
required to represent all the paths, unavailability of which
might abort the timing analyzer. Moreover, a large number
of paths will result in a significant increase of the execution
time of the timing analyzer. Therefore, a method which can
reduce the number of paths, will be very useful. We present
our approach as a pre-processing step to reduce the number
of paths and hence reduce the complexity and time taken
by the timing analyzer.

2. OUR PROPOSED TECHNIQUE
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1 x = 0; t = 1;
2 for (i = 0; i < 10; i++)
3 {
4      if ( x == 0)
5          S1;
6      else
7          S2;
8      if ( x == 2)
9          t = -1;
10     if ( x == -1)
11         t = 1;
12     x = x + t;
13 }

Original Code

(A)

1 x = 0; t = 1;
2 for (i = 0; i < 10; i++)
3 {
4      if (x == 0)
5          S1;
6      else
7      {
8          S2;
9          if (x == 2)
10             t = -1;
11         else
12             if( x == -1)
13                 t = 1;
14     }
15     x = x + t;
16 }

Code after loop path reduction
(B)

Figure 2: Example code to illustrate our technique

We observe that the detection of infeasible paths is in-
herently exponential in terms of the number of branch con-
straints. Hence, we try to develop a strategy to identify
which branch conditions can be removed from consideration
during the detection of infeasible paths such that the com-
plexity of the detection algorithm could be reduced and at
the same time a tighter bound on the WCET could be pro-
vided. We also try to optimize the code such that the num-
ber of paths in the code can be reduced. We try to exploit
the constraints generated at branch conditions to optimize
the code. In this section we will illustrate our technique
with the help of an example and also show how the WCET
analysis as per [3] can be benefited by it.

Reducing number of loop paths.Consider the piece of
code shown in Figure 2(A). The values of x in the Figure
2(A) seen at line number 4 are in the form of a simple har-
monic motion around the value 0. The sequence of values
seen for x at line number 4 are (0,1,2,1,0,-1)*. ‘*’ represents
zero or more repetitions. The control flow graph for the
code in Figure 2(A) is shown in Figure 3(A). From Figure
3(A), it is apparent that there are 3 branch conditions and
8 paths in each iteration of the loop. The various possible
paths for each iteration in terms of basic blocks executed
are given below.

a : 2 3 4 6 7 8 9 10 11 b : 2 3 4 6 7 8 10 11
c : 2 3 4 6 8 9 10 11 d : 2 3 4 6 8 10 11
e : 2 3 5 6 7 8 9 10 11 f : 2 3 5 6 7 8 10 11
g : 2 3 5 6 8 9 10 11 h : 2 3 5 6 8 10 11

However, it could be observed from the branch constraints
that the results of branch conditions at block 3 and 6 could
never be true simultaneously. Therefore block 4 can never be
executed together with block 7. Moreover, both (true/false)
paths from block 3 reaches block 6 and 8 where block 6 is a
conditional statement and blocks between 6 and 8 could only
be executed along with the false path from block 3. Also the
constraint variable (x) of block 6 does not get assigned along
the true path from block 3. Therefore, blocks 6 and 7 could
be moved in the false path from block 3. Figure 3(B) shows
the result of such a transformation.

Due to the transformation, the number of paths in the
loop gets reduced to 6 from the initial number 8. Using
the similar observation for conditional branches at blocks 3
and 8, the code can be optimized as shown in Figure 3(C),

1  x := 0; t := 1;
2  for (i := 0; i < 9; i++)
3  {
4      if ( x == 0)
5          S1;
6      else
7      {
8          S2;
9          update (x , t);
10     }
11     x = x + t;
12 }

update (x , t)
{

switch (x)
{

case 2 : t = -1; break;
case -1: t = 1; break;
default: t = t;

}
}

Figure 4: Example code after path length equaliza-
tion

reducing the number of paths to 5. And finally the code
can be modified to as shown in Figure 3(D), reducing the
number of paths to 4.

The WCET analysis on the basis of the technique given
in [3] will involve the following steps: determining the effect
of assignments on the three branch conditions and then us-
ing this information to determine the infeasible sequence of
paths. The technique will be greatly benefited by the opti-
mization as the number of paths are decreased and so is the
complexity of the technique which traverse over the paths to
determine feasibility of paths and also the sequence of paths
which is infeasible in consecutive iterations.

Equalizing path lengths.The optimization given in the
previous section will transform the original example code
into an optimized code as shown in Figure 2(B). We now try
to deduce a transformation for this code to further simplify
the WCET analysis. For our purpose, we propose a new
type of block in the CFG along with basic blocks. The new
block will be called as functional block which will represent
a function. The various paths inside such a functional block
will not be considered in the WCET analysis. We will see
later in this section that a safe WCET bound can still be
reached even though the number of paths considered for
WCET are reduced without actually removing such paths.

We can identify the following paths, in each iteration of
loop, from Figure 3(D).

a : 2 3 4 10 11 b : 2 3 5 6 8 10 11
c : 2 3 5 6 8 9 10 11 d : 2 3 5 6 7 10 11

The execution of loop will result in the following sequence
of taken paths (abdbac)*. It is apparent that aa, bb, cc,
dd along with ad, abc, bdc and many more, are infeasible
sequences of paths that could be taken in consecutive it-
erations. Determining such infeasible sequences of paths
with techniques as in [3] will be quite complex and com-
putationally expensive. However, we propose the following
code transformation to simplify things. The code in Figure
2(B) can be modified to the code as in Figure 4. The CFG
for the modified code is shown in Figure 5

The combining of the blocks in path from 6 to 10 into
update function and writing the update function in the way
shown in Figure 4 could be very fruitful. Every call of the
update function will take a constant amount of time due to
the structure of the update function, hence the time taken
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x = 0; t = 1; i = 0

t  =  1;

if ( x = = -1)

t  =  -1;

if ( x = = 2)

S1;

if ( x = = 0 )

if ( i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

T
F

F

F
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T

1

2
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4 5

6

7

8

9

10

11

12

(A) Original CFG

x = 0; t = 1; i = 0

t  =  1;

if ( x = = -1)

t  =  -1;

if ( x = = 2)

S1;

if ( x = = 0 )

if ( i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

T
F

F

F

T

T

1

2

3

4 5

6

7

8

9

10

11

12

(B) After first transformation

x = 0; t = 1; i = 0

t  =  1;

if ( x = = -1)

t  =  -1;

if ( x = = 2)

S1;

if ( x = = 0 )

if ( i < 10)

x = x + t;

i++;

S2;

Exit loop
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(C) After second transformation

x = 0; t = 1; i = 0

t  =  1;

if ( x = = -1) t  =  -1;

if ( x = = 2)

S1;

if ( x = = 0 )

if ( i < 10)

x = x + t;

i++;

S2;

Exit loop

T F
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(D) Final CFG

Figure 3: Reduction of number of loop paths in Control Flow Graph

x = 0; t = 1; i = 0

update (x , t)

S1;

if ( x = = 0 )

if ( i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

F

T

1
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3

4 5

6

10

11

12

Figure 5: Control Flow Graph after path equaliza-
tion

to execute block 6 in Figure 5 will always be the same, ir-
respective of the path taken within the function. The block
6 is a functional block in Figure 5, and a constant time can
be assigned to it just like basic blocks.

The transformation of code will result in the following
two possible paths (Figure 5) in each iteration of loop, that
should be considered by the analyzer to detect infeasible
sequences of paths taken in consecutive iterations.

a : 2 3 4 10 11 b : 2 3 5 6 10 11

The execution of loop will result in the following sequence of

taken paths (abbbab)*, from which it is easy to identify that
the infeasible sequences of paths are aa, bbbb, abba, ababa.
The transformation results in reducing the search space for
possible infeasible paths, to a great extent. Therefore the
complexity of infeasible path detection as per the technique
in [3] is greatly reduced and will result in a tight and safe
bound on WCET. Even though there exists other infeasible
paths when the paths inside the update functions are consid-
ered, such infeasible paths can be ignored in WCET analysis
as every call to update function takes constant amount of
time.

3. CONCLUSION
Detection of infeasible paths in a program is important

for WCET analysis. However, it is difficult to detect all
the infeasible paths in a program and moreover the search
space for infeasible paths could grow exponentially in terms
of number of branches in the program. Our technique can
not only reduce the number of paths in the program by
optimization but could also consolidate a group of paths
into one path as far as WCET analysis is concerned. Thus
we reduce the complexity of infeasible path detection while
still maintaining the safe bound on WCET.

4. DISCUSSION & FUTURE WORK
Mueller and Whalley in [8] have also exploited the idea

of restructuring the control flow and replicating code. How-
ever, they have used it for compiler optimization via avoid-
ing conditional branches. Previously, Puschner in [9, 10]
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(A)

f1(i){                     
switch (i){

case 1: i= i+1;
break;

case 2: i = j+0;
break;

case 3: i = i+3;
break; 

case 4: i = i+1;
break;

}
} 

f2(i){
switch (i){

case 5:
printf (" i = %d

\n",i);
break; 

case 6:                        
printf (" j = %d

\n",j);
break;

}
}

(B)

#include <stdio.h> 
main() {

int i, j;
printf ("enter a number: ");          
scanf ("%d", &i);                     
if (i == 1)

i = i+1; 
if (i == 2) 

i = j; 
if (i == 3) 

i = i+3; 
if (i == 4) 

++i; 
if (i == 5) 

printf (" i = %d\n",i); 
if (i == 6)                         

printf (" j = %d\n",j); 
} 

#include <stdio.h> 
main() {

int i, j; 
printf ("enter a number: ");          
scanf ("%d", &i);
f1(i);
f2(i);

}

Figure 6: Example Code: Toy6

have also given a code transformation based approach to
reduce the complexity of WCET analysis. The author has
proposed a single path paradigm for programs so that there
could only be a single path in a program hence making
WCET determination simple. Such a transformation will
have to trade a lot of performance with predictability. On
the other hand, with our proposed technique, the WCET
analysis complexity could be reduced to a large extent with-
out much trade off in performance. Another work by Al-
Yaqoubi ([4, 1]) also describes a technique to simplify the
control flow of complex loops by partitioning the control
flow into sections that are limited to a predefined number of
paths. Each section is then treated by the timing analyzer
as a loop that iterates only once. Using the same example
Toy6 as in [1] (shown in Figure 6(A)), we see that our
transformation (shown in Figure 6(B)) can reduce the num-
ber of paths in Toy6 from 64 to 1, without much increase in
the code length and still giving a tight prediction for time
using timing analyzer as in [3]. Function f1 in Figure 6(B)
can be assigned a constant amount of time (equal to any sin-
gle case of the switch statement), similarly function f2 can
also be assigned a constant amount of time and both f1,

f2 are treated as functional block while calculating WCET.
Hence, our approach can reduce the complexity of control
flow much better than that in [4], without trading of much
in terms of code length and tightness of estimation.

Note that, our technique requires a modification in the
actual code in order to reduce the complexity, which in case
of some hard real-time systems might not be allowed. It
should also be noted that our technique is not a timing
analysis technique. It could be used as a preprocessing
step to other infeasible path detection and timing analysis
techniques such as [3, 2]. Our technique could reduce the
complexity of other techniques and provide tighter bounds
on WCET. Other techniques need to be modified in order to
handle the functional blocks. However, at the present stage
we do not have a concrete technique to determine the po-
tential regions in the code which could be worked upon for
transformation. For example, a certain type of if structures
in the program can be optimized for reducing the paths as
in the given example in this paper and also a group of basic
blocks can be converted into a functional block by trans-
forming if statements into a switch statement inside the new

function. In our future work, we plan to come up with effi-
cient methods to automatically determine potential regions
for transformation.
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Abstract

This paper describes the optimizations introduced in
Juice, a J2ME virtual machine for embedded systems.
These optimizations are designed to make possible the
determination of the WCET of the JVM bytecodes re-
lated to object and array management. The solution
proposed, which is based on subdividing the heap in a
set of chunks of fixed size, allows to execute those byte-
codes either in a constant time or in a linear time with
an upper bound that can be determined.

1 Introduction

In real-time systems, determination of the worst-
case execution time (WCET) plays a fundamental role
in task feasibility analysis and scheduling. Frameworks
for WCET analysis [1] are based on determining the ex-
pected execution time of each instruction of the given
task. In a real-time Java environment, this implies
to obtain the WCET of each Java bytecode. Such an
analysis could be hard for those bytecodes that need
to manipulate Java heap or access the structure of in-
volved objects, class/interface hierarchy, etc. In such a
context, this paper describes the optimizations intro-
duced in Juice [3], a J2ME virtual machine designed by
the authors to be run upon NUXI [5], a light executive
for Intel-based embedded systems1. Juice uses a heap
management technique and an object layout that facil-
itate object allocation, object’s attributes access and
garbage collection. The employed technique allows to
perform these operations in a predictable time. The
paper focuses on object allocation/deallocation and at-
tribute reading/writing, showing how these operation

1NUXI can be downloaded at http://nuxi.iit.unict.it

can advantage of the proposed heap management tech-
nique.

2 Heap Management

Operations related to heap management are those
executed when an object has to be allocated or col-
lected. In general, the time required to perform the
creation of a new object depends on the size of the ob-
ject that, in turn, depends on the amount of attributes
declared in the object’s class and in its ancestors. The
operations required for object allocation can be sum-
marized as: (i) determine the number and the type
of the attributes, in order to compute the size of the
memory area to allocate in the heap, and (ii) find a
contiguous area of free memory, in the heap, where to
allocate the created object.

The former operation could imply to navigate class
hierarchy in order to find all the attributes the object
possesses; indeed, number of attributes can be com-
puted at class loading time, thus storing object size in
a field of the structure representing the class in mem-
ory. The latter operation instead implies to scan the
heap until a piece of free memory, whose size is greater
than or equal to the requested amount, is found. This
operation requires, in general, a time dependent on the
size of the heap and of the object [4, 6]. This means
that the WCET of such an operation cannot be exactly
computed, but only upper bounded with a limit that
depends on heap size.

To overcome the problems above, we propose a tech-
nique that, by borrowing some principles from Unix-
style file system handling, provides an efficient algo-
rithm to allocate any object in a time that depends
only on the size of the allocated object, a parameter
that can be exactly estimated with a static bytecode
analysis. Our solution subdivides the entire heap in
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Figure 1. Object Data Allocation Policy

a sequence of chunks of a fixed size CS. All chunks
are organized in a linked list, started by a pointer FC
representing the free list of chunks (the first four bytes
of each chunk represent the pointer to the next free
chunk). Allocating a chunk means to pick it from FC,
moving the latter to the next free chunk; while releas-
ing a chunk implies to place it at the head of the free
list, thus updating FC accordingly.

Using such a memory layout, allocating an object,
given its size S, implies to pick a number of free chunks
equal to NC = � S

CS �, operation that does not re-
quire to walk the heap and whose duration can be
predictable. Similarly, releasing an object implies to
return allocated chunks to the free list.

With such an allocation policy, the main issue is
that the allocated chunks could not be contiguous and
object’s data could be spread over different chunks; a
technique to suitably link those chunks together is thus
needed, and it also must take into account that object’s
data access has to be fast and predictable.

2.1 Object Allocation Policy in Juice

In Juice, a Java object is composed of a header,
which contains information such as the pointer to the
corresponding class, the object’s monitor, etc., and a
data, which contains the array of object’s fields. If the
object is an array, data contains the array elements.
We make the following assumptions: (i) chunks are
double-word (32-bit) aligned, thus CS is a multiple
of 4. We call B = CS

4 the number of d-words of a
chunk2; (ii) the chunk size is greater than the size of
header, i.e. size(header) < CS; and (iii) header is
structured in such a way as to be double-word aligned,
we call H = CS−size(header)

4 the number of d-words left
in a chunk after the object header. When an object is
small, i.e. size(header) + size(data) ≤ CS, a single
memory chunk is enough; otherwise, the first part of
the chunk is filled with header while data is placed in

2This choice is due to the fact that most of the JVM types
are 4-bytes long (integer, floats, object and array pointers, etc.).

the remaining chunk part and in other chunks linked
using a hierarchical structure of forwarding pointers as
depicted in Figure 1. In particular, d-words from 0 to
H − 4 after object header store the corresponding el-
ements of object’s data, while d-words from H − 3 to
H−1 are used as single-, double- and triple-indirection
links to other chunks, each one containing B data ele-
ments. Therefore, as detailed in Figure 1, d-word H−3
is a pointer to a chunk containing elements from H −3
to H+B−4, d-word H−2 points to a chunk containing
pointers to chunks containing elements, etc.

3 WCET for Object Operations

3.1 Object Allocation

In traditional heap management techniques, the
time required to allocated a new object depends on
the sizes of both the heap and the object to allocate.
In the proposed approach we need to pick a number of
chunks, from the free list, equal to:

1 +
⌈

n − H + 3
B

⌉
+ �logB(n − H + 3)�+

⌊
n − H + 3

BB

⌋

(1)
where n is the number of object fields or array elements.
This number depends only on object size and, if B is
a power of 2, it can be easily calculated using bit-shift
and if instructions.

Using the relation above, the WCET of the new byte-
code can be exactly computed. The only exception is
the use of the Class.forName() construct to load and
instantiate a new object; in this case, the type of the
object—and thus its size—is unknown until runtime
and the WCET cannot be exactly computed: only an
upper bound can be determined by assuming a rea-
sonable maximum number of attributes that an object
could have (in Juice, we assumed that an object cannot
have more than 255 attributes).
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3.2 Array Allocation

Java treats arrays as objects: an array of elements of
type “T” is treated as an object of class “[T” (“array of
T”). For this reason, the structure of an array, in Juice,
is the same of an object, given that it has no attributes
and the data part is used to represent array elements.
Allocating an array, given that its size is known, im-
plies to perform the same operations done for object
allocation, and thus the calculation of the WCET is
subject to the same formula 1. However, if the array
size is known only at runtime (and this could happen
very often), a different approach is needed. Indeed,
this is a common problem of WCET computation in
presence of dynamic arrays, and should be solved with
other well-known techniques, such as by determining
an upper bound, using annotation, etc. [1].

3.3 Reading/Writing Attributes

Reading and Writing object attributes is per-
formed, in Java, by means of the bytecodes
getfield/getstatic and putfield/putstatic.

Since Juice is a virtual machine for embedded sys-
tem, Java classes are intended to be “ROM’ized”. To
this aim, Juice adopts an ahead-of-time pre-link and
resolution process that, together with transforming
classes into a ROMable representation, replaces each
get-/putfield attribute with the “quick” version. At-
tribute index is thus referred to the array stored in the
object. Given that attributes can be spread over dif-
ferent chunks, the access could require to navigate the
chain of pointers. The code of such an operation is
reported in Figure 2 for the getfield bytecode: as it
can be seen, it is fast and its WCET can be exactly
determined.

3.4 Juice Heap Layout and Garbage Collection

One of the main known issues that impede the use
of Java in (hard) real-time environments is the pres-
ence of the garbage collector. The instants in which
the GC is activated and the duration of its execution
cannot be predicted, and thus any WCET/schedulabil-
ity analysis is, in general, impossible. Such problems
are overcome by the Real-Time Specification for Java
(RTSJ) [2] with the introduction of scoped memory.

In our approach, the use of memory chunks greatly
simplifies garbage collection, independently of the par-
ticular algorithm that is then used (reference-counting,
three-color-marking, etc.). In fact, chunks are fixed-
sized and free chunks are organized in a linked list,
therefore no compacting process is needed. Collecting

�
dword getfield_quick ( HOBJECT p, int index)
{

dword * p1 , * p2 , * p3;
if (index < (H - 3)) return p->data[index];
index -= (H - 3);
if (index < B) {

// follow index at H - 3
p1 = (dword *)p->data[H - 3];
return p1[index];

}
index -= B;
if (index < B*B) {

// follow index at H - 2
p2 = (dword *)p->data[H - 2];
p1 = (dword *)p2[index / B];
return p1[index % B];

}
// follow index at H - 1
index -= B*B;
int i0 = index / (B*B);
int i1 = ( index % (B*B)) / B;
int i2 = index % B;
p3 = ( dword *)p->data[H - 1];
p2 = ( dword *)p3[i0];
p1 = ( dword *)p2[i1];
return p1[i2];

}

�� �

Figure 2. Juice’s getfield code fragment

an object no longer used implies to return the asso-
ciated chunks to the free list, one-by-one, operation
that can be performed also incrementally, n chunks per
time. Using such a characteristic, the garbage collector
of Juice3 is designed to perform a known number of op-
erations each time it is invoked. More specifically, the
cost to pay when an object occupying n chunks has to
be allocated is to ask the garbage collection to free, at
most, n unreferenced chunks. With such an approach,
execution of the GC is always tied to object allocation
(i.e. when new free memory could be needed) and its
duration can be predicted.

4 Known Issues

The heap management policy presented in this pa-
per, even if it guarantees good allocation performances
and predictability in WCET determination, suffers of
two main problems: limited number of fields/array el-
ements and memory fragmentation.

4.1 Limited data elements

As shown in Figure 1, the maximum number of ele-
ments the data part can refer is H+BBB+BB+B−4.
In Juice, where we chose B = 32 (and thus H = 24),
this limit is equal to 33844. It is enough for object’s

3In the current implementation, the GC is based on a simple
reference-counting
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attribute, but it could be a problem for array alloca-
tion. A possible solution could be to increase B, but,
as we will see in the following, this choice provokes an
increment of memory internal fragmentation. The so-
lution adopted in Juice is to flag large arrays with a bit
in the header, and add another level of indirection in
the data array. This implies an upper bound equal to
H+BBBB+BBB+BB+B−5, i.e. 1082419 elements
when B = 32. This new upper bound can now be con-
sidered enough for embedded applications. However,
the introduction of such a variation implies an addi-
tional cost in accessing array elements, which is useless
when the limit of 33844 elements is not overcome by
the application: thus, in Juice, a command-line flag is
used to activate the “large array” option.

4.2 Memory Fragmentation

The proposed approach provokes both external and
internal fragmentation. The former is due to the fact
that an object could be spread over non-contiguous
chunks: this does not fit the working scheme of a
CPU cache and thus can lead to performance reduc-
tion. However, we remind that, in general, the use of
caching could be a problem for (hard) real-time sys-
tems, since caches may introduce large jitters in CPU
opcode executions thus affecting WCET calculation.

Internal fragmentation, derived from the unused
space left in chunks, is instead more important, since
it implies a reduction of the amount of available mem-
ory. For this reason, the value of B should be chosen in
such a way as to find a good compromise between the
allowed maximum number of object’s attributes and ar-
ray elements, which is M = H+BBB+BB+B−4, and
the degree of internal fragmentation. Figure 3 reports
the trend of M and the amount of wasted memory, due
to internal fragmentation, with respect to a value of B
ranging from 16 to 128 d-words. The amount of wasted
memory is measured considering 10, 50, 100 and 500
allocated objects with no attributes, thus producing
the maximum fragmentation. As Figure 3 reports, the
wasted memory with 500 objects, choosing B = 32
as in Juice, is approximatively 42 KBytes, a not-so-
high cost to be payed for the use of fixed-sized memory
chunks.

5 Conclusions

This paper described the heap management and ob-
ject allocation techniques employed in the Juice virtual
machine. As it has been shown, the proposed approach
was studied in order to have operations for object al-
location and access not only optimized but, above all,
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Figure 3. Wasted Memory due to Internal
Fragmentation

with a predictable execution time, making possible the
determination of WCET.
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Session 2: Low Level Analysis 

Session chair: Stefan M. Petters (University of York, UK) 
 
 

Presentations 
A discussion of the influence of scratchpad memories on the WCET analysis has been subject of 
the first presentation given by Lars Wehmeyer. The authors came to the conclusion, that the 
WCET can benefit considerably from scratchpad memories, with no extra effort on the analysis. 
 
Jürgen Stohr presented a method to control the influence of PCI DMA transfers on the WCET. 
Focus of this work is a PC style architecture and how to make that more suitable for real-time 
applications. 
  
Synergetic effects of cache related preemption delays were presented by Jan Staschulat. This 
centers around multiple executions of the same straight line code as it is used in the automotive 
industry and how that can be analyzed with much better results than previous simplifying 
approaches. 
 
The last talk by Oleg Parshin described a method to analyze instruction caches for individual 
components and how the results for those components can than be integrated into an overall 
WCET approach when the components are composed to form systems. 

Discussion 
 
The following discussion centered on the feasibility of componentization of real-time systems and 
the impact on WCET analysis. 
 
Peter Puschner: (To Oleg Parshin) In this analysis you say you analyze all procedures and this 
means even the first step of the analysis is for a concrete memory architecture. So is there a step 
which abstracts away from the concrete layout and size of cache?  
 
Oleg Parshin:  The cache line size needs to be known.  
 
Peter Puschner:  Did you try to store the actual memory references in some more abstract way? 
For example a procedure is used in several different contexts with different memory layouts and 
by storing the information in a more abstract way, you could reuse information gathered in 
previous analysis steps. 
 
Oleg Parshin:  We used the AbsInt tool, hence had no influence. 
  
Stefan M. Petters:  But technically it should be possible to have two analysis steps, use abstract 
information about memory regions used and then come up with the final result in a computational 
stage instantiating the analysis results. 
 
Oleg Parshin:  You need to know concrete size of the cache. 
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Stefan M. Petters:  That’s when you abstract away from the relative location and just say, even if 
you fix the cache size you can just say, within the module I’m doing the about that and when I 
use it in some context I need to know where it’s actually located, but that should be more 
troublesome. 
On a more general scale we have heard about scratchpad memories twice today. Does anybody 
know about the industrial uptake of those, compared to locked caches, which is the obvious 
alternative? 
 
Christian Ferdinand:  In most recent developments you have the choice: You have some amount 
of memory which may be either used as scratchpad memory, or cache and this may be configured 
at boot up, or even split it some this and some that way.  
 
Stefan M. Petters:  But is it really used? 
 
Christian Ferdinand:  In automotive it is truly used, because they start of with a design with an 
expected life span (in terms of delivery) of 6 years, but after 3 years they get so many requests for 
changes, that whatever it possible with that piece of hardware will be done. But not automatically, 
as they currently don’t know how to use this. 
 
Iain Bate:  Where you use abstract interpretation in aiT style tool for cache analysis, one thing we 
have found working with industry industrial use of poll status true/false for runtime exceptions 
they use abstract interpretation. In practical code they get a lot of mays, which need either manual 
inspection or a safe estimate. While this is a very different problem, when you are using this 
actually for cache analysis, what percentage of memory accesses do you get as mays, because that 
can be seen as wasted resource and one would try to cut that down.  
 
Christian Ferdinand:  The problem is this is a really good question that comes up all the time The 
problem is that really depends on the application. One can write application code, where this 
prediction would be extremely poor…. 
 
Iain Bate:  I’m talking about well written code. 
 
Christian Ferdinand:  For example, we as a company only provide the tools, but have not much 
insight into the application, but there is one example from Airbus, where they applied it on what 
they call real-time benchmark, which is basically an old version of the fly-by-wire code of the  340. 
This is generated with the SAO Scade tool mainly and we had a look at the Coldfire 5307 
with 8 KB. One problem is no-one really knows what the real WCET is, but what they did is a lot 
of measurements and they also used a legacy method based on measurements and a lot of 
argumentation what could be the WCET. Our result was between the results of the legacy method 
and the measurements. They believe they had about 20% overestimation with the legacy method 
and if we assume this correct, we get about 10% overestimation. 
 
Iain Bate:  I’m not talking about the overestimation and the overall execution time analysis 
results. It’s actually how many memory references you get as mays. Say you have got a million 
memory references, what percentage? 
 
Christian Ferdinand:  I do not know precisely where the overestimation comes from. Could be 
pipeline analysis or non-precision of the cache analysis. It’s a factor of 8 between a cache hit and 
a cache miss. If you assume all the 10% overestimation going into cache analysis, you come up 
with 1% or 2 % of wrongly predicted mays, so it’s very precise, it’s 99% precision in that specific 
case. 
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Stefan M. Petters (to Jan Staschulat): Setting aside future computational problem, how do you 
think you can get that to scale as it is now, in terms of looking for a branch. The examples you 
had were not too big and with the direct mapped caches or two way set associative caches you 
have been on the lower end of things. So how would you think you can manage the bigger 
problems? 
 
Jan Staschulat:  The high complexity is due to the analysis of multiple preemptions, because 
several cache states have to be analyzed in the control flow graph. To simplify one can abstract 
from specific cache states and merge several cache states. This will reduce the analysis 
complexity but also lower the precision. So the question is: “how much precision can you  get 
and how much effort you are willing to pay”? 
 
Peter Puschner (to Jan Staschulat):  Is there any first others? Have you ever measured the time 
you needed to solve the problem? 
 
Jan Staschulat:  They are long, indeed. Several hours. 
 
Peter Puschner:  Even for your small examples? 
 
Jan Staschulat:  Yes. We are thinking about a different implementation. The analysis of several 
preemptions has to be simplified. Instead of considering all paths of a preempting process, several 
cache states should be merged leading to a reduced number of states. The underlying concept of 
data flow algorithm considers than less states and the analysis complexity is reduced.  
But what is really necessary is the analysis of multiple process activations, because this is the 
loop of straight line programs of automotive applications. Since a cache is not useful for linear 
programs, a second program execution can be seen as a loop, and consequently cache lines are 
reused. 
 
Alexander von Buelow (to Jan Staschulat):  Does you approach also work for interrupts or are 
they not considered? 
 
Jan Staschulat:  At the moment interrupts are not considered. Interrupts can happen any time, as 
often as you wish. You have to assume it occurs n times in a given time period, and the user has 
to specify this information somehow. I don’t know how to consider interrupts in this analysis yet. 
You might want to consider jitter also. 
 
Stefan M. Petters (to Jan Staschulat):  In your data regarding your multiple preemptions, you just 
compared your results to previous approaches, but didn’t actually get to the point what the real 
simulation results were in context of an arbitrary number of runs of a program with a 
specification of the number of preemptions. 
 
Jan Staschulat:  I didn’t show the simulation results in this table, but I ran some experiments with 
the ARM Developer Studio and I instrumented the debugger to stop the preempted process at a 
preemption point and run the preempting process and then let the preempted process continue. I 
did this for all combination of n given multiple preemption points. The comparison showed that 
our CRPD analysis was close to the simulated results. Of course this verification by simulation 
works only for small examples. 
 
Jan Gustafsson (to Lars Wehmeyer):  I have another question to this scratchpad idea. It’s actually 
two questions: The first one is: “how does your method scales with larger applications”? and the 

Proceedings of the 4th Workshop on Worst-Case Execution Time Analysis 21/70



  

  

other question is: “your analysis method is part of the compiler?”. What are your opportunities to 
get this into a real compiler? Any thoughts about this or contacts? Because obviously this has to 
be done inside the compiler to work. I think the scratchpad idea is really great, but how is the 
future?  
 
Lars Wehmeyer:  Regarding the first part I guess your question aims at the direction of ILP and 
complexity issues. Right now we’re using the simplex ILP solver and we are formulating our 
models accordingly as an ILP and then giving that to the solver. But we have been discussing this 
problem with other groups at our University, especially theoretical computer science, and we 
have come to the conclusion that what we describe are actually knapsack problems and they 
belong to the group of packaging problems. Usually you can find a linear time approximation and 
you can also find a polynomial time approximation. So there is the possibility by trading in some 
of the precision of the final solution for the execution time. Using these approach and thoughts 
for scaling it to larger benchmarks and larger applications should not be a big problem. So you 
have to find out how far you are of the optimal solution and how much computation for finding 
an allocation of objects to the memory are we willing to accept in order to get closer to a certain 
precision. 
And the second question, right now the approach is integrated into our research compiler, but I 
guess, in order to really integrate it into any other compiler, all you would need is the information 
about the analysis that was performed, you would need either a static analysis or profiling and I 
think with that information and an energy model which models the environment and you know 
the energy required to access the different types of memory and you know about execution 
frequencies it should be actually possible to integrate it more or less into any compiler. Of course 
you would need to find some way of interfacing, but actually it is just a way of telling the linker 
where to place the different objects in memory. That’s all you need to place a certain memory 
object onto the scratchpad. You just tell the linker, put this to that address and that address is 
mapped to  scratchpad memory. So I guess, by cleverly interfacing knowledge you have within 
the compiler and having analysis regarding the runtime behavior of your application, externally 
solving the problem and then back annotating the information you get from solving the problem 
into your compiler, maybe it could even be done by solving the optimization problem and then 
using a linker script so it’s not that deep within the compiler.  
 
Iain Bate:  I just wonder, how many of those working on scratchpad memory have had a look at 
the work SoC people have done on optimizing performance and power characteristics? People 
like Frank Vahid or Tony Givargis are still on this work. It’s because they have done an awful 
amount of work in their domain. They have not combined it with execution time analysis, very 
much like testing systems in order to see what the worst case performance is but they have done a 
lot of work in how to configure your memories, caches and scratchpads for the best effect. I 
wonder whether anybody has looked at that communities work. 
 
No one! 
 
Peter Puschner:  I would like to make a comment on this work of modularized or reusable WCET 
analysis: I think this is really an interesting piece of work and I would like to encourage you to 
push this further, because I think this is really one of the open questions on WCET analysis: How 
to reuse information for timing analysis? You mentioned the software development process and 
what we all do is, we compile modules and we don’t compile all modules again and again, but we 
compile only the modified ones and link them with the others. I think this should also be true for 
WCET analysis. If we analyze a piece of code, we should be able to store this information in a 
way that can be used later on and make the analysis easier. So you don’t want to do the whole 
complex analysis again and again, but rather do the complex analysis tasks only once and then 
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store the information in a way, so we can reuse our results cheaply, so we don’t have to go 
through all the analysis and all the modules, functions and libraries again and again. And I think 
this is one step in that direction.  
 
Stefan M. Petters:  Another step in that direction, which is upcoming work looking at real-time 
components on the vendor side. A real-time operating system,  where you don’t have the actual 
hardware it’s running on, so you want to provide as much information in terms of timing as you 
can and then instantiate that on a particular piece of hardware or a particular environment and I 
think that is certainly worthwhile.  
 
Guillem Bernat:  Can we have a feel of what is the impact of these recompilations of the WCET? 
From your experiments, what is the difference in the execution time of a module when you 
execute it somewhere else? Is it for example, a 1% or a 50% difference? 
 
Oleg Parshin:  I can’t tell you exact numbers. 
 
Guillem Bernat:  When you compile a module and recompile it you expect the functional 
behavior to be the same. The answer to Peter is: You can do that if you assume that if you add 
some small module somewhere else does not change that much and therefore you are sort off in 
the same dimension, then you can, in all other cases you have to do a full analysis end to end. The 
question is the ability to do it component-wise is only true if the components have a meaning and 
they don’t really depend too much on the context they are running in.  
 
Peter Puschner:  Yes, in some way. Of course, if you design a system it depends on the interfaces. 
In this way, the degree in which you can decompose the problem depends on the interference of 
the different parts and of course, if the interference is too large, it might not be worthwhile, but 
then the question is whether the solution is the right solution. We can’t recompile and reanalyze 
all this. If this takes an hour, you would not want to do it every time you change a module. If it 
really takes an hour, then the solution is probably not the right solution: Isn’t the architecture 
wrong? 
 
Jan Gustafsson:  One way of dealing with this could be to analyze parts, whether they are context 
sensitive or not and if they are not then you don’t have to do this all over again. That could be a 
part of the analysis.  
 
Stefan M. Petters:  It’s actually a question whether you want to go down the route and separate 
the context non sensitive from the context sensitive stuff analyze one and wait for the other to 
happen or whether you split the analysis rather than the application into bits you know and things 
you can’t know at this stage and try to get the second stage as small and simple as possible, 
because you don’t want to have engineer XYZ sitting somewhere and trying to figure out what 
you initially were trying to do.  
 
Iain Bate (to Guillem Bernat):  I’ve got a question for Guillem Bernat: the WCET analysis work 
presumably subject to regression testing and trying to carry all those many measurements as 
possible forward for a task once you do a change to that task that is important. Have you thought 
how you might handle that? 
 
Guillem Bernat:  Well, that’s exactly why I asked the question. In measurement based analysis 
we assume that the impact on the execution time once you make changes to the code are actually 
quite small. So you can reuse a lot of measurements on your code, unless there are some 
pathological cases. The issue is, the approach we are actually using is you test your components 
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and carry that forward, but once you have your system finally assembled, you do a full analysis of 
the whole system once, assuming there is no more changes on the code.  
 
Iain Bate:  Because what happens in the functional testing world, they make unit tests only on the 
units which have changed which is isolated from the rest of the system and then they do very 
limited progressively less integration tests for the number of changes, so they do some scenarios 
of functional testing, so in the end this assumes that the changes don’t ripple through too much.  
 
Guillem Bernat:  You don’t even need to recompile the code, you just relink it with a slightly 
different link map and then all the addresses change and then there is allegedly nothing you can 
do. I think the point here is – going back to my point of different systems – in a absolute safety 
critical system, in order to get meaningful values, you will completely redo an end-to-end 
analysis, any time you introduce a small change. If you have a system with less criticality, like the 
automotive industry, then they accept there is an error on that value, but it’s more or less in that 
value and the error is not an order of magnitude. From my experience they know that small 
changes in the code won’t double the execution time. You get an extra couple of cache misses but 
that’s what it costs.  
 
Peter Puschner:  I’m a bit surprised to hear this, because my guess would be: If you do some 
static analysis and also analysis of interferences as proposed, and you change a module, you 
would be able to see the effect of this change on the interference, because I see now I would use 
this and that cacheline too, which I didn’t have before and therefore I see there is now an 
interference with module X. But if you measure, how would you be able to see this interference, 
because you don’t go into the detail?  
 
Guillem Bernat:  You don’t know where it is, but you observe the effect and that’s the philosophy 
change, the change of mentality. A large project with a couple of 10.000 lines of code, the 
number of memory accesses made is in the order of millions, hundred millions. The people who 
design caches are very clever and they have been making for a long time something, which 
guesses the impact of the memory accesses. So yes, you change a module, hence something that 
was a cache miss becomes a cache hit, but the miss happens now somewhere else. Statistically 
speaking after a very large number of memory accesses this averages out. So we say: a good 
cache mechanism hits about 9x% would you expect that a change in the program makes your 
cache miss 50%?  
 
Peter Puschner:  But that takes us away from hard real-time, right? 
 
Guillem Bernat:  That’s what I’m saying. There is an absolute guarantee somewhere else and as 
soon as you move over edge of the absolute safety critical then you are at this gate.  
 
Iain Bate:  An observation from a Federal Aviation Authority perspective. They are very 
concerned about the use of caches, the multimode sort of things like pipeline effects, because of 
these sort of problems and therefore a lot of work looks into what the issues are. A lot of systems 
are just avoiding caches wherever possible turning them off, etc.  Some of them are using them, 
but they haven’t got a grip on what to do. Things like CAS20, which is the guidance document, 
still funding more and more work in this area on how to handle this problem and not just from the 
execution time analysis perspective. 
 
Peter Puschner:  Just to clarify that: You don’t observe the task you have modified in isolation, 
but again you are looking at the whole system. So you don’t just make a local analysis after a 
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change, but you have to go back to your global analysis of the whole system to get out the 
knowledge of all the interferences, which is a more complex problem. 
 
Guillem Bernat:  Let me take a step back. We are doing measurement based WCET analysis as 
opposed to static analysis. Measurement based analysis does not address the issue of what 
happened to that particular cache line, but you just measure the execution time and if it happens 
to be longer, then you can assume that maybe there was an additional cache miss or something. 
Now when you move away from characterizing each individual memory access that’s when the 
large numbers are on your side. That’s the first piece. Secondly, when you do testing or when you 
analyze a small component, there are two steps to manage this. One is to determine how long it 
takes for a component to execute in isolation and the second step is in the high level analysis to 
put all things together. But those are completely separate processes. This is not linear, but N log 
(N) with the size of the program and is independent on the testing. Even if you do it manually, 
putting together all the information would not take longer then the time to compile your code. At 
least it’s in the same order of magnitude. Deriving the information of each module is what takes 
time, but that is linear with the complexity of the module, so there is no computational explosion, 
but depends on how you do your testing. You could do 4 weeks of testing and would get much 
better data, but you want to separate the issues of deriving information on the module and how to 
put that information together. So that’s where one comes up with the capability issue. In fact, one 
can even deal with the problem of a whole subsystem being not developed. Because you say “I 
assume that module X is going to take that much and that’s a design estimate” and then can 
reason whether one is 300 times over budget or within budget. The key point here is, if you move 
away from the absolute, absolute guarantee that you get the absolute, absolute worst case life is 
much easier. Besides no safety critical system had that information. 
 
Peter Puschner:  And probably not as safe. 
 
Guillem Bernat:  All safety critical systems have the built in assumptions, that a chip will fail, 
data corrupted etc.  
 
Iain Bate:  The issue is showing that this is not a cause of failure, one can accept one part of a 
redundant system to fail, but you don’t want all of them fail at the same time. Since in those 
systems, the redundant parts are mostly working in locked step, your assumption of having 
statistics on your side does not hold, because they are supposed to behave identical.  
 
Peter Puschner:  I think you are right that people assume that systems or parts of systems fail, but 
what they usually do is they try to avoid to introduce any sources of failures themselves. In order 
to reduce complexity, and one strategy to do that is to separate the system into components and 
try to make them as independent as possible, to keep the interfaces and interferences really small. 
What you are trying to do is, to develop one component and try to verify correctness including 
temporal correctness and then rely on what you got. If you then compose these components, you 
want to be sure they still work. You want to have that for timing not only for functional aspects. 
In the moment I start to neglect the interfaces and interferences, if you just measure, you avoid 
the view on the interference on purpose. You just neglect that.  
 
Guillem Bernat:  Not really I think that’s a different thing. You measure module A and measure 
module B and then you put A and B together considering the worst possible interference and 
that’s the kind of thing we do. The probabilistic analysis framework allows you to reason: “What 
is the worst possible combination of this and this?” Then you can actually ask whether this 
combination is feasible or whether you can reduce the pessimism.  
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Peter Puschner:  If you want to argue about it. It has to be simple, otherwise it’s too complex. 
You take two tasks and can hardly do it. If you just measure it’s still a probabilistic statement, but 
you can’t prove anything. 
 
Stefan M. Petters:  In the end, I think what drives all of it is cost. Assuming one can pour 200 
million dollars into each individual plane to make it 100% save or one can be 100% - 10-20 sure 
and save that money, I see people being willing to go down the route of saving that money.  
 
Guillem Bernat:  We had an argument with someone saying: “Well, worst case is too pessimistic 
for us! We want our testing, we don’t believe it.” Testing is too optimistic, the absolute worst case 
is too pessimistic and they want to have something in between. If it is good enough, if it is less 
likely to fail than any other component of the system, then that’s good enough for them. 
 
Peter Puschner:  Let me refer to a different area where quite the opposite of what you claimed 
happens and that’s when you look at communication protocols. For cars, where, for example, 
CAN seemed to work quite well for a very long time and now companies are getting into trouble 
and they start to see that what they have to use and they are all now getting more or less into the 
time triggered business, because they realize that building on probabilities gets them into trouble 
when complexity reaches a certain level. So now they go down and say: ”We can’t do that 
anymore. We have to have systems, which are decomposable, where we have an isolated view on 
each of the components and where we reduce the interference between components really to a 
minimum”.  
 
Stefan M. Petters:  But they have still a probabilistic argument for a component failure. 
 
Peter Puschner:  Of course, there are always hardware failures. But what they try to avoid is to 
build in probabilistic failures themselves, because then it’s difficult to argue about dependencies 
of things happening.  
 
Stefan M. Petters:  But there’s still the question of who has to foot the bill if something goes 
wrong. 
 
Iain Bate:  An interesting thing is, how big a guarantee do you want? And what that comes down 
to is cost of human life. When I have done enough assessment for a system in, let’s say, avionics 
and then it comes down to issues, like how many people are on the aircraft, which countries is it 
flying over, because there are unfortunately certain differences, in what a nationals life is worth, 
and in follow up what is the cost of litigation in court. What they do is certainly a trade off 
between the costs of safety, because they come to the point where they are happy to write off 
these costs of litigation if they loose an aircraft. The question is: “how far are we willing to go?”, 
because there is no such thing as absolute guaranties. There are always probabilities, even in 
static analysis it’s still probabilities. For example your analysis tool aiT. You are relying on the 
compiler your compiling your tool with, do you have formal proof of the compiler? No. Do you 
have formal proof of the processor model? No. You have to rely on the documentation and 
observations. So it all comes down to probabilities of cost of life.  
 
Stefan M. Petters:  But it’s more complicated like that. Then you have authorities like the FAA, 
which just want to make sure, they can’t be sued and don’t have to foot the bill to pay for the 
development. If you have those agencies involved it’s a bit more tricky.  
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Iain Bate:  You can’t sue the FAA. They don’t hold responsibility for life, that’s the thing of the 
aircraft companies and operators. The FAA has no legal responsibility. In the military world it’s 
different though, because the MoD may be sued.  
 
Guillem Bernat:  In the end the question is: “How much is enough?” I can do a very rough testing 
on a simulator and that tells me that this code executes for 1000 cycles my deadline is a million 
cycles, that’s good enough. You would consider that enough. The tools are not reliable, but 
nevertheless you are sure enough it does not blow up. If you need something which costs a lot of 
money and time, which does not improve that statement, then people just don’t use it. If it’s 
clearly schedulable, that’s OK. Even if it’s clearly un-schedulable, that’s also OK. In the cases at 
the borderline is when you make the distinction between the application domains, whether simple 
end-to-end measurements are OK or whether you need a very elaborate method. 
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Abstract

In contrast to standard PCs and many high-performance com-
puter systems, systems that have to meet real-time requirements
usually do not feature caches, since caches primarily improve
the average case performance, whereas their impact on WCET
is generally hard to predict. Especially in embedded systems,
scratchpad memories have become popular. Since these small,
fast memories can be controlled by the programmer or the com-
piler, their behavior is perfectly predictable. In this paper, we
study for the first time the impact of scratchpad memories on
worst case execution time (WCET) prediction. Our results in-
dicate that scratchpads can significantly improve WCET at no
extra analysis cost.

1 Introduction

For the currently available technologies, there is an increas-
ing speed gap between processor speeds and memory speeds.
Caches are being used in order to bridge that gap, especially in
PC-like systems. However, the approach used in such systems
has some disadvantages for embedded systems:

1. Caches are known to be one of the main contributors to
the total energy consumption of systems [1], and

2. Caches are typically designed to improve the average case
access time.

Analysis techniques to determine their contribution to the
worst case execution time are complicated and, for some re-
placement policies, just missing. Scratch pad memories (some-
times also known as tightly coupled memories) are small mem-
ories mapped into the address space of a system. They are used
whenever an address is within the address range assigned to
that memory. Scratch pad memories are more energy efficient
than main memories (since they are smaller) but also more ef-
ficient than caches (since only the required information is read
from or written into the scratchpad memory). Scratchpads are
currently being used by designers in a very ad-hoc fashion, and
a comprehensive methodology of how to use them is, surpris-
ingly, still missing.

Earlier work proposed compile-time algorithms for mapping
hot spots of applications to scratchpad memories. This work

∗This work has been sponsored in part by EU-project ARTIST2

was mainly motivated by the resulting energy savings, much
of which result from a reduction of the average access time.
However, the algorithms also have an extremely beneficial im-
pact on worst case execution time estimation: it is fully pre-
dictable which memory will be used for a certain memory ac-
cess. Hence, scratchpad memories provide 100% predictability
concerning the timing of memory references. This predictabil-
ity is explored in the current paper. In this work, we combine
views from three different perspectives: an architectural view
on scratchpad-based memory structures, a compiler view on
how to map hot spots to these memories and a real-time system
view on the resulting WCET. To the best of our knowledge, it is
the first paper that provides a detailed analysis of the impact on
the WCET of optimized mappings of applications to scratchpad
memories.

2 Related Work

Many architectural features are included in modern micropro-
cessors in order to meet the customers’ demand for high aver-
age case performance. Especially in embedded systems having
to meet real-time constraints, this is in general not very help-
ful, since the inclusion of pipelines, caches and branch predic-
tion units makes it more difficult to predict a guaranteed upper
bound for worst case exeution time [2]. Complicated analysis
tools have been developed and are in use to shed light on the
effect of these architectural features on WCET (see [3] for an
overview). The difficulty lies in the fact that e.g. for caches, the
hardware detects at runtime whether a memory access results
in a cache hit or miss. In order to predict this behavior dur-
ing WCET analysis, the worst case behavior of the cache has
to be determined for the considered application. Several anal-
ysis methods have been proposed for instruction caches [4, 5]
as well as for data caches [6]. The aforementioned publica-
tions solely deal with inclusion of caches in WCET estimation,
which shows the considerable analysis effort required to predict
cache behavior.

aiT [7] is a software tool that can help developers of safety-
critical applications to verify that their programs will always
meet the specified deadlines. This is done by determining
an upper bound for the worst case execution time of the ap-
plication. aiT guarantees the generated WCET results to be
safe, which is generally infeasible using simulation techniques
alone. Also, aiT abolishes the need to perform time consum-
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ing simulation runs in order to determine typical performance
values. The aiT WCET analyzer has been designed according
to the requirements of Airbus France for validating the timing
behaviour of critical avionics software.

Scratchpad memories are being used as an alternative to
caches due to their performance and their reduced energy con-
sumption [8]. Scratchpad memories do not have a hardware to
control their contents at runtime. Therefore, the assignment of
memory objects to the different memories has to be handled
either by the programmer or, in an automated process, by the
compiler, who can analyze memory access patterns and dis-
tribute objects accordingly. The scratchpad can either retain
the assigned memory objects throughout the running time of
the application (static case), or the contents of the scratchpad
may change at runtime (dynamic case). Allocation techniques
to statically allocate data to the scratchpad were introduced e.g.
in [9], whereas [10, 11] presented a dynamic approach for data
and instructions, respectively. Further work concerning the uti-
lization of scratchpad memories was conducted by [12, 13].
Both static and dynamic scratchpad usage are under full con-
trol of the compiler or the programmer, making the methods
inherently predictable at compile time. In this paper, we will
concentrate on the static allocation technique.

For the work presented in [14], the goal of the static alloca-
tion of both instructions and data to the scratchpad memory is
energy saving. Therefore, an instruction level energy model for
the used processor, an ARM7TDMI [15], was developed [16]
and used in the encc compiler. The compiler determines the
execution counts of functions and basic blocks and the number
of accesses to variables in order to compute the most promising
objects to be assigned to the limited scratchpad space. The ac-
tual optimization problem, which is similar to the well-known
knapsack problem, is solved using an ILP solver. Then, the
chosen memory objects are placed on the scratchpad, making
control flow and address corrections where necessary.

3 Workflow

To determine a scratchpad memory’s impact on WCET, we
used the workflow shown in figure 1: The encc compiler gen-
erates an executable program which makes use of the available
scratchpad. The memory objects allocated to the scratchpad
memory are chosen according to the following algorithm (for
details, please refer to [14]) which selects those elements with
the highest benefit with respect to energy. In order to do this,
all memory objects are weighted according to their execution or
access frequency (for functions or data elements, respectively).
The size of the objects is also considered, allowing the opti-
mzation problem to be formulated as an integer programming
problem as follows:

Maximize
∑
i

m(i) ∗ E(Fi) +
∑
j

m(j) ∗ E(Dataj)

subject to
∑
i

m(i) ∗ S(Fi) +
∑
j

m(j) ∗ S(Dataj) <= SPsize

where m(x) is a binary decision variable having the value ′1′

if the corresponding object is allocated to the scratchpad and
E(x) is the benefit in energy consumption if object x is stored

C−Program

encc

executable

ARMulator

aiT

Performance
Actual

WCET

SP
Size

Figure 1: Workflow

on the scratchpad instead of main memory. S(x), the size of
object x, is used in the constraints to ensure that the scratchpad
capacity is not exceeded. In this form, the optimization prob-
lem can be solved using a commercial ILP solver [17]. The
encc compiler then uses the solver’s results to allocate the cho-
sen objects to the scratchpad memory. The scratchpad size is
varied in powers of two from 0 to a total of 4096 bytes in our
experiments.

The generated executable with the optimal set of objects al-
located to the scratchpad is then fed through ARM’s instruction
set simulator ARMulator to obtain the number of actually exe-
cuted cycles for the given input data set. Apart from this, the ex-
ecutable is analyzed using aiT [7] to determine an upper bound
for the WCET (commonly called WCET) of the executable.

aiT supports the specification of memory regions with dif-
ferent attributes. The only relevant attribute for this work is the
number of wait states that occur during memory accesses. Ac-
cording to the values measured for our ARM7 evaluation board,
we assumed three waitstates for all main memory accesses and
one wait state for scratchpad accesses.

To enable aiT to analyze the executable with memory ob-
jects allocated to the scratchpad, some annotations concerning
instructions that use PC-relative addressing are required. These
annotations ensure that the correct addresses will always be as-
sumed during aiT’s analysis. In order to keep the manual an-
notation overhead low, we decided to allow only the allocation
of complete functions (i.e. not basic blocks and multi basic
blocks as described in [14]) and data elements onto the scratch-
pad. This restriction can be easily overcome with a slightly
increased annotation effort. The used toolchain supports this
annotation process.

4 Results

The benchmarks used to explore the impact of a scratchpad on
WCET are given in table 1. They comprise two speech encod-
ing and decoding algorithms from the mediabench benchmark
suite [18]. The programs were compiled with varying scratch-
pad sizes, as described in the previous section. The execution
time is expected to decrease (along with the energy consump-
tion) when the scratchpad capacity is increased. The effect
of larger scratchpad size on average case performance and on
WCET can be seen in figures 2 to 4.

The G.721 benchmark takes a little more than 2 million cy-
cles to complete with our used input data on a system with
only one main memory, whereas aiT estimates the WCET for
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Name Description

adpcm Speech encoding and decoding using
Adaptive Diff. Pulse Code Modulation

G.721 Speech encoding and decoding, reference
implementation of the CCITT

Multi Sort Combination of sorting algorithms

Table 1: Benchmarks
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Figure 2: Results for G.721 benchmark

the worst case input to be about 4 million cycles. Since it is
in general not possible to determine the worst case input data
set for an arbitrary application, using a simulation approach is
not feasible to determine a guaranteed upper bound for WCET.
As can be seen in figure 2, increasing the scratchpad capacity
not only improves the average execution time, but also has a
strong positive effect on the WCET estimate. Where average
case execution time is reduced to about 1,250,000 cycles for
a 4k scratchpad, corresponding to a reduction of 43%, WCET
reduces down to 1,650,000 cycles, which means a reduction of
58% compared to the inital case with no scratchpad. Thus, the
effect on WCET is even greater than the effect on average case
execution time.
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Figure 3: Results for Multi Sort benchmark

For the Multi Sort benchmark, similar results can be ob-
served. By only changing the scratchpad capacity and using
our compile-time algorithm to solve the problem of allocating
an optimal set of memory objects to the scratchpad memory,
we find that the WCET decreases by about 65%, whereas the
actual execution time for our used average input data only de-

creases by about 50%. Without further requirements concern-
ing WCET analysis (as e.g. required if a cache was used in the
system), the use of a scratchpad memory thus shows a positive
impact on WCET.
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Figure 4: Results for adpcm benchmark

For the adpcm benchmark, even the initial WCET values
are very close to the actual execution times. This seems to
be due to the fact that all execution paths within this bench-
mark are very similar to the critical path. Despite this good
initial WCET estimate, using a scratchpad can still improve
the WCET prediction: If an onchip memory of more than 512
bytes is used, the difference between actual performance and
WCET becomes negligible. The reductions in average case ex-
ecution and WCET estimate reduce by 49% and 63%, respec-
tively, highlighting the fact that WCET benefits strongly from
use of a scratchpad memory.

One reason for the positive effect of scratchpad memo-
ries is possibly due to worst case assumptions concerning
pipeline stalls. In the case of a three stage pipeline (as in the
ARM7TDMI used in our experiments), a pipeline stall will re-
quire three instructions to be fetched from memory before the
next result is generated by the CPU. If the latency for a single
memory access is three cycles, then nine additional memory
cycles will be required to completely re-fill the pipeline (as-
suming, as on our evaluation board, memory chips that do not
support accelerated burst transfers). If, on the other hand, the
used memory has a latency of only one cycle (as is the case for
a scratchpad memory), then the pipeline can be filled with only
three additional memory cycles. aiT has to assume all pos-
sible pipeline stalls to be able to guarantee that the predicted
WCET result is always safe. The fact that the overhead for
these pipeline stalls can be reduced by using a scratchpad mem-
ory explains the good results concerning WCET.

5 Summary and Future Work

In this work we show for the first time that using scratchpad
memories in real-time systems is beneficial for WCET esti-
mation. Using a known algorithm to allocate memory objects
(both instructions and data) to the scratchpad memory, and a
commercially available WCET analysis tool, we have shown
that the decrease of the WCET caused by scratchpad memories
is even larger than the decrease of the average case execution
time. This is possible without any modification in the used tim-
ing analysis tool. Many performance enhancing architectural
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modifications (e.g. caches) make WCET estimation a difficult
task. If scratchpads are being used, the user only needs to know
the latency cycles of the used memories.

This work shows an additional advantage of scratchpad
based architectures beyond previously published results (which
investigated average case execution time and energy consump-
tion). All this is feasible with a decreased complexity of WCET
tools.

In the future, we will consider how scratchpad memories
compare to cache models that are being supported in some
WCET analyzers today. This comparison is not really fair,
since caches require extensive support and careful analysis in
WCET analysis, whereas scratchpad memories can be inte-
grated at no extra analysis costs. However, caches are being
used in many systems today to improve the average perfor-
mance and therefore have a practical significance.

Apart from using the energy-aware allocation algorithm
from [14], we will also consider employing a similar technique
which primarily takes into account the memory objects that
lie on a program’s critical path. By reinforcing the selection
of these memory objects instead of those memory objects that
consume most energy, the positive effect on WCET should be-
come even more obvious.
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7 Results of discussion

This section briefly highlights some of the topics raised and
discussed after the presentation of this work, only including
those points that are directly linked with this contribution.

Q: What are the reasons for the overestmation with small or
no scratchpad memories? Could it be that some annotations are
missing?

A: The WCET estimates were validated assuming only main
memory. The annotations are thus assumed to be correct.

Q: Are scratchpad memories being used in industry?
A: The TriCore has an onchip memory that is configurable as

cache or as scratchpad. It is being used e.g. in the automotive
industry. Optimal exploitation is unsolved, however.

Q: Concerning AbsInt’s aiT tool for cache analysis men-
tioned in future work, how much performance is lost in the
prediction compared to execution?

A: For an example from industry (RT benchmark) using 8k
unified cache, aiT was compared to the used legacy method and
a simulation. It was found to be inbetween the two with about
10% error rate.

Q: How does the approach scale to bigger programs?
A: The used knapsack is actually a packaging problem, for

which polynomial approxmiation schemes exist, so running
time of the memory allocator is not really an issue.

Q: How about integrating the approach into a real compiler?
A: Required information could be exported from the inter-

nal data structures and solved externally using an ILP solver.

Distribution among memories could then be achieved by back-
annotation to the program or by a linker script. The technique
could thus probably be implemented outside a compiler.

In addition to the immediate discussion following the pre-
sentations, some discussions with other participants have lead
to further insights into possible reasons for the high over-
estimation for small scratchpad memory sizes. Experiments
are still being performed to validate the improved results.
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Institute for Real–Time Computer Systems

Prof. Dr.–Ing. Georg Färber
Technische Universität München, Germany

{Juergen.Stohr,Alexander.Buelow,Georg.Faerber}@rcs.ei.tum.de

Abstract

The PCI Local Bus is used in all general purpose computer
systems. Peripheral devices connected to this bus may perform
transactions autonomously. If a processor accesses the main
memory or performs an I/O instruction, the execution time of
these operations depends on the working load of the PCI bus
and of the communication protocols being used by the chip
set. In this paper the influence of the PCI Local Bus on real–
time software is demonstrated. A method is presented reducing
these impacts of the PCI Local Bus on the execution time of
real–time software. Thus accesses to PCI peripherals from
real–time tasks behave more deterministically.

1. Introduction

When determining the worst–case execution time of real–
time software, all the underlying hardware has to be taken into
account. Major reasons for varying execution times of soft-
ware are the caches and the TLBs as the costs of a cache miss
are immense. If there is a miss the execution time of loading a
cache line from the main memory into the processor depends
on the transactions being performed by the PCI peripherals. In
addition, if a real-time task wants to perform I/O and there-
fore has to access a peripheral device directly, the chip set also
should not be busy if deterministic computation times are fa-
vored.

In most cases the behavior of the chip set is transparent to
software. It interconnects the processors, the main memory
and the peripheral devices. An essential part of the chip set
of general purpose computers is the PCI Local Bus which is
used to connect the peripheral devices to the host. As these
peripheral devices can be programmed to perform accesses to

∗The work presented in this paper is supported by the Deutsche
Forschungsgemeinschaft as part of a research programme on “Real-
time with Commercial Off-the-Shelf Multiprocessor Systems” under
Grant Fa 109/15-1.

the main memory autonomously by processing DMA trans-
fers, there is a steady influence on the execution time of soft-
ware.

In this paper the impacts of the PCI Local Bus on the worst–
case execution time of real–time software are examined. A
method is presented which can be used to postpone the DMA
transfers of PCI devices in order to get more deterministic ex-
ecution times of real–time software. This method can be used
if a general purpose and a real–time operating system are run-
ning in parallel on the same machine and real–time and non
real–time devices are connected to PCI.

This paper is organized as follows. Section 2 gives a survey
of the PCI Local Bus being used in real–time systems. In sec-
tion 3 some important facts of PCI are explained. Our method
making the PCI Local Bus behaving more deterministically
is described in section 4. The advantages of this method are
demonstrated in section 5. The paper is summarized in sec-
tion 6.

2. Related Work

In real–time systems, the PCI Local Bus is used to intercon-
nect the various components. Examples are the RAPID [2] [6]
and the SARA [3] project. However, only a few publications
deal with PCI: In [4] PCI connects a reconfigurable computing
device to its hosts processor. In this paper, some performance
measurements concerning PCI are done. Baumgartl and Härtig
discuss in [1] PCI busmastering DMA. In contrast to the con-
clusion of this paper, they noticed that to their knowledge it
is impossible to give timing guarantees for DMA operations
involving the PCI bus. In [7] the impact of PCI–Bus load on
real–time applications is evaluated. A slowdown factor is de-
fined to describe these impacts formally.

When designing and validating a computer system for hard
real–time usage the worst case execution time (WCET) of soft-
ware has to be known. There are many components of the
system that have an influence on the WCET, for example the
architecture of the CPU and the design of the caches. The chip
set and its buses and communication protocols affect the exe-
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cution time, too. There exist two different approaches when
evaluating the WCET: the modelling and the measurement
based approach. The pros and cons of each approach are dis-
cussed in [5]. As the specifications of processor and chip set
are often not available for public use, we have chosen the mea-
surement based approach to start our work with.

3. PCI Local Bus

In state of the art computer systems, the Host Bridge inter-
connects the CPUs, the Advanced Graphics Adapter (AGP),
the main memory and the PCI peripherals. Figure 1 illustrates
a simplified system architecture: The Host Bus connects the
CPUs to the Host Bridge and the PCI Local Buses are used to
connect the peripheral devices to the Host Bridge.

3.1. Functionality

The PCI Local Bus is a multi–master bus. Every device
is allowed to become initiator. The initiator, or bus master,
initiates a transfer. The target, or slave, is the device currently
addressed by the initiator for the purpose of performing a data
transfer. PCI devices can access the bus autonomously without
the aid of a CPU. In order to avoid collisions, each initiator has
to request the bus from the PCI bus arbiter before performing
any transfers.

Usually the arbiter is integrated into the PCI chip set; specif-
ically, it is typically integrated into the Host Bridge. As the
PCI specification does not define the scheme to be used by the
PCI bus arbiter, the order the devices are accessing the bus de-
pends on the chip set being used. The PCI specification only
states that the arbiter is required to implement a fairness algo-
rithm to avoid deadlocks.

As the Host Bridge acts to the PCI bus as a PCI device,
it has to request the PCI bus from the arbiter like any other
device before becoming initiator. If a peripheral device wants
to access the main memory the Host Bridge is the target.

A PCI–to–PCI bridge provides a bridge from one PCI bus
to another. It works as a traffic coordinator between the two

buses. It monitors the transactions that are initiated on the two
PCI buses and decides whether or not to pass the transaction
through the opposite PCI bus.

3.2. Burst Transfers

When performing a transfer, a peripheral device first has to
request for bus ownership as mentioned above. The transfer
itself is consisting of a single address phase followed by two
or more data phases. The start address and the transaction type
are issued during the address phase. The target device latches
the start address into its address counter which is incremented
from one data phase to the next one. This kind of data transfer
is called a DMA burst transfer.

If a bus master acquires ownership of the PCI bus, it initiates
a transaction. The two most important types of transactions are
listed below:

memory transactions A device accesses the memory of an-
other PCI device. If the target addresses reside in the
main memory, the Host Bridge serves as target.

I/O transactions These transactions are used to access the
command and status registers of the PCI devices. Nor-
mally, I/O transactions are generated by the Host Bridge.

4. Impact of the PCI–Bus

If a PCI peripheral device performs a burst transfer access-
ing the main memory, the execution of real–time software can
be delayed in two ways:

• If the CPU executing a real–time task has to access the
main memory, these accesses are affected by parallel
transfers of peripheral devices. This happens if a periph-
eral device initiates a DMA burst transfer accessing the
main memory just before the access to the main memory
of a CPU is initiated.

• A real–time task wants to perform I/O, e.g. writing data
to a hard disk, and therefore has to access a peripheral
device. If there is a high workload on the PCI bus, the
I/O transactions may be delayed. This latency depends
on the arbitration scheme being used by the bus arbiter.

As the policy of the PCI arbiter depends on the chip set,
it cannot be said in which order the peripheral devices are al-
lowed to access the bus. If some devices have got pending
requests, the arbiter chooses one of them. If the access to the
bus is granted to a certain device, it is allowed to perform its
transfers for a certain span of time, which is specified by the
Latency Timer.

Master Enable Bit The execution time of real–time soft-
ware when accessing a PCI peripheral varies depending on the
workload on the PCI bus. But there is a way to configure the
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Figure 2: Accesses of a CPU to main memory with con-
current PCI activity
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Figure 3: Accesses of a CPU to main memory without
concurrent PCI activity

PCI Local Bus to behave more deterministically: Each periph-
eral device can be prevented from becoming initiator by clear-
ing the Master Enable Bit which is defined in the PCI Com-
mand Register. If this bit is cleared on every peripheral device
which may become initiator during certain critical sections,
the PCI Local Bus can be used by the Host Bridge exclusively.
Thus a real–time task performing transactions across the PCI
bus cannot be delayed.

The time needed to clear every Master Enable Bit depends
on the number of peripheral devices connected to the bus, the
activity of each device and of the arbitration algorithm. Before
performing the I/O transactions needed to clear the Master En-
able Bit, the Host Bridge has to arbitrate for the bus. This
latency depends on the peripherals able to perform transac-
tions. If the number of devices being able to become initiator
decreases, the time needed to clear the Master Enable Bit of a
remaining peripheral decreases, too.
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Figure 4: Accesses of a CPU to a PCI device with con-
current PCI activity
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Figure 5: Accesses of a CPU to a PCI device without
concurrent PCI activity

PCI–to–PCI bridges If PCI–to–PCI bridges are used, all
peripherals not needed in real–time context should be put be-
hind this bridge if possible. Thus only the Master Enable Bit
of the bridge has to be cleared. Then the bridge ignores all
memory and I/O transactions detected on the secondary side.
In order to minimize the time needed to clear the Master En-
able Bit of each relevant PCI device, a few guidelines can be
stated:

• The devices causing the heaviest workload should be dis-
abled first.

• All non-RT relevant devices should be grouped behind a
bridge, thus only the bridge has to be disabled.

• The devices needed in RT context should be plugged into
the PCI bus nearest to the Host Bridge.

• Only the devices able to initiate DMA burst transfers
should be disabled. The Master Enable Bits of periph-
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eral devices which are not used by the operating system
or which only act as slaves need not to be cleared.

5. Results

We have performed some measurements in order to study
the effects when the Master Enable Bits are cleared:

Accesses to Main Memory These measurements have
been taken on a Dual PII machine using the Intel 440FX chip
set. On one CPU a real–time task was started which accessed
the main memory performing 2048 read and write accesses.
Attention has been payed not to cache the memory accesses.
The second CPU was kept in an idle loop not affecting the
measurement. The results of this measurement are illustrated
in figure 2 and 3. If there is PCI activity in parallel, the execu-
tion time to perform the 2048 accesses varies by 72%; if there
is not any PCI activity the execution times are varying by 2%.

Accesses to PCI Devices In the following measurements
the time needed to access a PCI peripheral from a real–time
task are examined. These measurements have been performed
on a Dual Athlon machine using the AMD 760MPX chip set.
The real–time task performed 1024 read accesses to a PCI pe-
ripheral using memory–mapped I/O, whereby always the same
memory–mapped address was used in order to avoid burst
transfers. The other processor was kept in an idle loop dur-
ing each measurement. The results of this measurements are
shown in figure 4 and 5. If the 1024 accesses are done with
PCI activity in parallel, the execution time varies by 164%; if
the Master Enable Bits are cleared, the execution time is nearly
constant.

Time needed to enter the deterministic state We have
also measured the time needed to clear the Master Enable Bit
of the relevant PCI device — a PCI–to–PCI bridge — of the
Dual Athlon. In parallel to each measurement the host was
busy, performing network and disk I/O heavily. The time
needed to clear the Master Enable Bit varies between 1.41 mi-
croseconds and 5.94 microseconds.

6. Conclusion

As the PCI peripherals are allowed to initiate transactions
autonomously, there is an influence on the execution time of
real–time software due to DMA burst transfers. These trans-
fers affect the time needed to access the main memory from a
CPU leading to varying execution times of software. On the
other side, if a real–time task wants to perform I/O, the access
time depends on the current workload on the PCI Local Bus.

In this paper a method is presented which makes accesses
from a CPU across the PCI Local Bus behaving more deter-
ministically. When switching to real–time context the bus may

be configured by clearing the Master Enable Bit of relevant de-
vices. Thus only the Host Bridge is allowed to become initiator
and all peripherals are only acting as slaves.

This method is useful for real–time systems accomplishing
a lot of I/O. When estimating the WCET of specific code per-
forming I/O, the time needed to enter the deterministic state
has to be considered. The measurement based approach is use-
ful when determining the WCET of a given system. However,
hard– and software has to be configured in a way which leads
to deterministic execution times.
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Abstract

Cache prediction for preemptive scheduling is
an open issue despite its practical importance.
First analysis approaches use simplified models for
cache behaviour or they assume simplified preemp-
tion and execution scenarios that seriously impact
analysis precision. We present an analysis ap-
proach for m-way associative caches which consid-
ers multiple executions of processes and preemp-
tion scenarios for static priority periodic schedul-
ing. The results of our experiments show that
caches introduce a strong and complex timing de-
pendency between process executions that are not
appropriately captured in the simplified models.

1. Introduction and motivation

Caches are needed to increase processor perfor-
mance but they are hard to use in real-time sys-
tems because of their complex behaviour. While
it is already difficult to determine cache behaviour
for a single process, it becomes really complicated
if preemptive process scheduling is included. Pre-
emptive process scheduling means that process ex-
ecution can be interrupted by higher priority pro-
cesses. In this case, cache improvements can be
strongly degraded by frequent exchange of cache
blocks.

There are several approaches to make caches
more predictable and efficient. One approach is to
partition the cache sets and to reserve these parti-
tions for individual processes. This has been in-
vestigated in [8]. The advantage is that cache lines
do not have to be reloaded after interrupts and be-
tween consecutive executions of the same process.
Also, cache behaviour becomes (partly) orthogonal
for processes and therefore more predictable. In
[4] process layout techniques are suggested which
aim at minimising the inter-process interference in
the instruction cache. Another approach [10] is to

lock frequently used cache lines. While cache par-
tition and lock strategies are certainly a very use-
ful add-on to improve cache predictability and ef-
ficiency, they do not solve the general cache be-
haviour problem which is critical for larger systems
of processes.

Simplified approaches extend the known RMA
with fixed context switch costs [1], while recent ap-
proaches use data flow analysis of the preempted
and preempting process to bound the number of
replaced cache blocks [7] [9]. However, these ap-
proaches model only a single process activation as-
suming an empty cache at process start neglect-
ing that cache blocks (CB) might be available for
later executions. Pre-runtime scheduling heuris-
tics which take the effects of process switching on
processor cache into account have been presented
in [6]. However, only non-preemptive scheduling
based on earliest deadline first strategies is con-
sidered which is much easier than the preemptive
case. If a process is preempted several times the
total number of cache blocks replaced drops, be-
cause a cache block of preempted process can only
be replaced once. Such preemption scenarios are
not considered in classical CRPD analysis.

This paper is organized as follows. Section 2 re-
views related work. In Section 3 we present a new
analysis approach to determine the cache related
preemption delay (CRPD) for m-way associative
instruction caches which considers multiple execu-
tions of processes as well as preemption scenarios.
We show the results in Section 4, before we con-
clude in Section 5.

2. Related work

The data flow analysis by [7] determines the
CRPD when a processτ1 preempts processτ0 by
intersecting the number of useful CBs ofτ0 and
with the number of used CBs ofτ1 assuming an
empty cache at process start. Then, a complex
analysis follows analysing all possible combina-
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tions of preemptions. The number of preemptions
is determined by integer linear programming (ILP)
and process phasing based on worst case and best
case response time (BCRT) of processes. How-
ever, the BCRT analysis is a complicated problem
where only approximative solutions have been pro-
posed for the general case [5]. Multiple process
executions is not considered and multiple preemp-
tions are simplified by multiplying the maximum
CRPD cost by the number of preemptions. For di-
rect mapped instruction caches [9] refine the data
flow analysis of [7] by modeling the cache content
as astateinstead of a set. All possible cache states
of the preempting and preempted process are in-
tersected to find the maximum CRPD. Preemption
scenarios are not considered and an empty cache is
assumed at process start.

Current approaches either model only the num-
ber and cost of preemptions for a single process
execution or the cache effects of multiple process
execution without preemptions, but none models
both. Only the combination provides sufficient ac-
curacy as we will see in our experiments.

3. Refined approach

Our CRPD analysis considers multiple activa-
tions of processes and preemption scenarios. A
preemption scenario consists of one preempted
processτi and of a processτj which preemptsτi

during a single executionn times. We represent
the process by its control flow graph (CFG), where
each node is a basic block and assume a preemp-
tion point at each node.

To reduce the exponential combinations ofn
preemption points (CFG nodes) we use a branch
and bound algorithm. It first determines then most
expensive preemption points by analyzing the cost
of a single preemption at each node. Then it contin-
ues to compare the cost of the combinations of two
nodes until the costCn for a preemption scenario
with n nodes is found. The algorithms bounds at a
combination if the current cost plus the cost for fu-
ture preemptions is smaller thanCn. For sequential
code this is straight forward, but forn preemtions
within loop body this modeling would lead to un-
rolling the loop. Therefore we abstract from pre-
emption points of different loop iterations by es-
timating the preemption point with the maximum
cost of the loop body and multiplying it byn. This
estimation is exact ifI ≥ n, whereI is the max-
imum loop iterations and conservative ifI < n.
The costCn of a preemption scenario is calculated
by considering the useful CBs of the preempted
processτi and the used CBs of the preempting pro-

cessτj . For the analysis of each preemption cost a
data flow model is needed.

We base our analysis form-way associative
caches on the cache state analysis of [9]. But de-
fine a cache state for each cache set withm blocks.
A reaching cache stateRCSB at a basic blockB
of a process is the set of possible cache states when
B is reached via any incoming program path. The
live cache states at a basic block B, denotedLCSB ,
are the possible first memory reference to CBs via
any outgoing program path fromB. A least fixed
point data flow algorithm computes the values of
these sets. The cache behavior including replace-
ment strategy (e.g. LRU) is simulated by preload-
ing the cache stateRCS of the predessor node and
executing the instruction sequence of basic block B
by cache simulation. The resulting cache state rep-
resents the RCS of basic block B. The intersection
of RCS and LCS is the set of useful CBs at basic
block B. The used CBs of preempting processτj is
given byRCSend, assumingend is the last basic
block of τj . Finally, the CRPD at basic block B
is computed by the intersection of the used cache
blocks ofτj and the useful CBs ofτi.

3.1. Preemption scenarios

We extend this general modelling for preemtion
scenarios as follows. The cost of the first preemp-
tion atBk is calculated by the data flow algorithm
of [9]. For a second preemption we insert afterBk

n nodes in the CFG ofτi, if the preempting pro-
cessτj finishes withn different RCSs. Figure 1
shows part of the CFG ofτi with four basic blocks.
To model a preemption at nodeB3, and assuming
three RCSs atτj last node, we insert three preemp-
tion nodesP1, P2 andP3. Now the iterative data

B2 B3

B4

B1

B2 B3

B4

B1

Preemption

P1 P2 P3

Figure 1. Modeling of a preemption by
τj with three nodes P1, P2 P3 in CFG of
preempted process τi

flow analysis is applied again and the RCS of all
other nodes are recalculated. This models the fact
that useful CBs might be overwritten by a preemp-
tion and thus cannot be replaced again. After recal-
culating the RCSs the CRPD is recalculated at the
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next preemption point. This procedure is applied
for every preemption point.

The complexity of this accurate modelling ofn
preemptions for a single process execution is expo-
nential with the number of RCS states of the pre-
empting task, because then RCS states are prop-
agated in the CFG of the preempted process and
increase the number of cache states.

3.2. Multiple process execution

Many automotive control applications consist of
sequential code without loops. A cache will not
speed up a single execution because of the high
cache miss penalty. A cache architecture is only
well desigend if the cache is large enough that CBs
of a single process can be reused in later execu-
tions. For simplicity we assume that no processes
run between two activations of a processτi. We
model a warm cache cache like in Subsection 3.1
by insertingn nodes in the CFGbefore the first
node forn differentRCSend sets of processτi.

However, it is important to consider the pro-
cesses which run between two activations. In this
paper we assume the conservative approximation
that all higher priority and lower priority proceses
of the system execute. We model the execution of
these intermediate execution ofτi, τj1 , · · · , τjk

, τi

as a sequence of process executions. The cache
states ofRCSend of the preceding processτjm

are
inserted as start nodes in the CFG of processτjm+1 .
The last process isτi again. This assumes that the
CRPD at the second activation of processτi is in-
dependent of the order and the frequency of inter-
mediate processes which is shown in [11].

4. Experiments

We select six different benchmarks: a square
root calculationsqrt [9], array calculation with
loops dac [12], two sequential programs of add
instructionslin , lin2 and two linear programs
nsich andstatm , part of a car window lift con-
trol generated by STAtechart Real-time-Code gen-
erator STARC [3]. The memory size ranges from
94 Byte till 872 Byte. We use the ARM developer
studio for processor simulation and DINERO for
cache simulation. All benchmarks are compiled for
ARM946 assembly language with fixed four byte
instruction width. Given the CFG generated from
C code by [12], a tool for worst case execution time
analysis for single processes, and the ARM mem-
ory map file our analyzer computes the CRPD.

4.1. Multiple process execution

Table 1 shows the response time for different
cache architectures and benchmarks. A 2-way as-
sociative 1024 Byte cache with 8 Byte block size
is denoted as 1024-8-2. With the ARM simula-
tor we determine the core execution time of the
processes and the instruction trace.tnegi

resp denotes
the response time according to [9] assuming an
empty cache at process start andtana

resp the response
time calculated by our approach. In our experi-
ments we assumed one clock cycle for a cache hit
and a cache miss penalty of 20 clock cycles. The

Benchmark Cache-C. tnegi
resp tana

resp tsim
resp Pl[%]

dac/linear 256-8-1 1193 1041 1041 15
dac/linear 512-8-1 1193 1041 1041 15
dac/linear 1024-8-2 1041 813 813 28
sqrt/linear 512-8-1 2119 1549 1492 42
sqrt/linear 1024-8-2 1929 1131 1131 70
sqrt/linear 2048-8-2 1929 1131 1131 70
linear2/nsich 1024-8-1 3336 3070 3032 10
linear2/nsich 2048-8-1 4269 2690 2690 58
linear2/nsich 2048-8-2 4269 2690 2690 58
statm/nsich 512-8-1 4174 4174 4174 0
statm/nsich 1024-8-1 4174 3585 3547 18
statm/nsich 2048-8-1 4174 2274 2274 83

Table 1. Response time in clock cy-
cles for a preemption during second
activation for several benchmarks and
cache sizes

results show that the response time is pessimisti-
cally overestimated by [9]’s approach. The last col-

umn shows the performance lossPl = tnegi
resp−tsim

resp

tsim
resp

,

which could be gained with a more accurate analy-
sis. For example, the performance loss in case of a
1KB and 2KB cache forsqrt/linear is 70%
and for statm/nsich even 83% for the 2KB
cache. We see that the current approach is less ac-
curate for relevant larger caches.

The results for our refined analysis is in most
cases exact to the simulated response time, the
maximum error is 4% in case ofsqrt/linear
for direct mapped 512 Byte instruction cache.

4.2. Preemption scenarios

Now we consider multiple preemptions with an
empty and preloaded cache. Table 2 presents the
preemption cost of five preemptions for four task
sets. The results show that for an empty cache our
analysis does not improve the accuracy for bench-
marks with or without loops. The reason is that
the most expensive preemption points are inside
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LP/HP Cache Empty Cache Preload. Cache
Task Config. Negi Ana Negi Ana

dac/lin 512-8-1 52 52 52 43
dac/lin 1024-8-1 52 52 52 40
dac/lin 1048-8-1 12 12 12 12
sqrt/lin 512-8-1 182 182 182 169
sqrt/lin 1024-8-1 47 47 47 1
sqrt/lin 2048-8-1 42 42 42 0
nsich/lin2 512-8-1 104 104 104 83
nsich/lin2 1024-8-1 104 104 104 74
nsich/lin2 2048-8-1 99 99 99 0
statm/lin2 512-8-1 125 125 125 107
statm/lin2 1024-8-1 125 125 125 97
statm/lin2 2048-8-2 120 120 120 0

Table 2. Comparison of total number
of cache misses of Negi et al. and
our approach for 5 preemptions with
empty and preloaded cache for given
lower priority (LP) and higher priority
(HP) tasks.

a loop body. However, in the case of multiple
activations with preloaded cache our analysis ap-
proach yield more accurate results. For a larger
2 KB cache the preemption cost is even zero for
all preemptions in benchmarknsich/linear2
andstatm/linear2 , in contrast to 99 and 120
cache misses in Negi et al.’s approach.

The performance of our analysis ranged from
several minutes till several hours. The reason for
the long running time is the exponential number of
states that are propagated after inserting a preemp-
tion node.

5. Conclusion

In this paper we have extended the approach
of [9] to consider multiple process activations and
preemption scenarios for m-way associative in-
struction caches. The results with a realistic pro-
cessor architecture show that cache effects lead to
process interdependencies which can easily out-
weigh individual process execution times. Such
cases are not covered by the classical performance
analysis approaches which are based on individual
process execution times plus independent blocking
times (e.g. [2]). However, the complexity of the
proposed analyis is exponential with the number
of cache states of the preempting process. Future
research is necessary to develop less complex algo-
rithms.

Applications with loops behave better also in
other approaches. However, for automotive con-
trol applications linear code is very important (e.g.

Matlab generated code). Here current approaches
result high overestimations. On the other hand,
cache parameters have a significant influence on
process interdependence. We can therefore con-
clude that cache design should receive maximum
attention in embedded system design, use process
systems as benchmarks rather than individual pro-
cesses to consider multiple process activation and
that new models and approaches are needed for
performance analysis of systems with caches.
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Component-wise Instruction-Cache Behavior Prediction
– Extended Abstract –

Oleg Parshin∗ Abdur Rakib† Stephan Thesing∗ Reinhard Wilhelm∗

Abstract

The precise determination of worst-case execution times
(WCETs) for programs is mostly being performed on linked
executables, since all needed information and all machine
parameters influencing cache performance are available
to the analysis. This paper describes how to perform a
component-wise prediction of the instruction-cache behav-
ior guaranteeing conservative results compared to an anal-
ysis of a linked executable. This proves the correctness of
the method based on a previous proof of correctness of the
analysis of linked executables. The analysis is described for
a general A-way set associative cache. The assumptions are
that the replacement strategy is LRU and inter-module call
relationship is acyclic.

1. Introduction

So far, WCET-determination methods mostly work on
fully linked executables, since in this case all needed
machine-level information about code allocation is fixed
and available. This paper presents a method for component-
wise analysis of the instruction-cache behavior, thus sup-
porting incremental program development. This method
uses the notion of cache-equivalence of memory allocations
to express that one allocation of a module in the memory
will display exactly the same cache behavior as the equiv-
alent one. This equivalence is exploited to influence the
linker, which can choose between several equivalent allo-
cations when placing a module into the executable. The
overall picture is the following:

1. A set of modules making up the real-time program is
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ter AVACS (Automatic Verification and Analysis of Complex Systems) of
the DFG (Deutsche Forschungsgemeinschaft). These authors are with
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Saarbrücken, Germany, {oleg, thesing, wilhelm}@cs.uni-sb.de

†Supported by the IMPRS (International Max-Planck Research School
for Computer Science). This author is with Max-Planck Institut
für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany,
hossain@mpi-sb.mpg.de

given. Cyclic calling dependencies are assumed to ex-
ist only inside modules, i.e., the inter-module call rela-
tionship graph is acyclic.

2. A bottom-up module-wise analysis computes a sound
approximation to the cache contents at all program
points of all modules taking into account safe upper
approximations of the cache damages due to external
function calls. The results of the module-wise analy-
sis are combined conservatively with respect to an (in
general more precise) analysis of a linked executable.

2. Cache memory architectures

A cache can be characterized by three major parameters:

cache size s is the total size of the cache, i.e. the number of
bytes it may contain.

line size l (also called block size) is the number of con-
tiguous bytes that are transferred from memory on a
cache miss. The cache can hold at most n = s/l

blocks.

associativity A is the number of cache locations where a
particular memory block can reside. The cache con-
tains η = n/A sets.

If a block can reside in exactly A locations, then the
cache is called A-way associative. If a block can reside in
any cache location (A = n), then the cache is called fully
associative. If a block can reside in exactly one location
(A = 1), then it is called direct mapped. Thus, fully as-
sociative and direct mapped cahes are special cases of the
A-way cache.

In the case of an associative cache, a cache line has to be
selected for replacement when the cache is full and the pro-
cessor requests further data. This is done according to the
replacement strategy. Common strategies are LRU (Least
Recently Used), FIFO (First In First Out), and random.

In this paper we consider A-way set associative cache
with LRU replacement strategy. Detailed formal description
of the cache semantics can be found in [1].
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Figure 1. The structure of analysis framework.

3. The analysis framework

As input to our analysis framework (c.f. Figure 1) we
have a set of object modules that are yet to be linked to
form an executable. We also assume, that the user provides
additional information, such as number of loop iterations,
upper bound for recursions etc. A parser reads the object
modules and reconstructs the control flow graph for each
module [9]. Nodes of the control flow graph represent basic
blocks. For each basic block it is known which memory
blocks it references.

Analysis results are computed using Abstract Interpre-
tation [2]. The collecting semantics of a module is safely
approximated using abstract cache states [11].

We distinguish two kinds of analyses. The must anal-
ysis determines a set of memory blocks that are definitely
in the cache at a given program point whenever execution
reaches this point. The may analysis determines set of mem-
ory blocks that may be in the cache at given program point.
The complement of may analysis is used to determine which
blocks are definitely not in the cache.

The analyses are used to classify the memory references
into always hit, always miss, or non-classified [1].

Termination of analyses is guaranteed [3].

4. Notion of equivalence

Our aim is to ensure that the results of cache behavior
analysis obtained at module level can be combined in a con-
servative way with respect to the results of the analysis of a
linked executable. The relative and absolute address spaces
of a module before and after linking, respectively, will in
general be different. Consequently, the cache behavior of a
module before and after linking may be different.

We perform cache analysis for each module using avail-
able relative address information and a fixed mapping of rel-

ative addresses of an object module to cache sets.
This section is concerned with the conditions under

which the different allocations of modules will display
equivalent cache behavior (in the sense of number of cache
hits/misses, not exact content of the cache).

4.1. Equivalent memory allocation with respect to
the fixed set mapping

Suppose a set of modules M1, M2, . . . , Mp forms a pro-
gram. Each module consists of the set {mi

0
, . . . , mi

ki
} of

memory blocks (each memory block has the size of a cache
line). A linker combines these modules in the sequence
M1, M2, . . . , Mp. We assume that all object modules are
created with base address 0. According to this assumption,
in each module Mi the block mi

0
is mapped to the first set

of the cache.
A question arises when we consider a linked executable,

whether the absolute address in the executable, which cor-
responds to a relative address inside the module, will be
mapped to the same set. Since linkers only shuffle segments
of object modules but do not rearrange their internals, all
the internal memory addresses become offsets from the new
base address of the modules.

Since the number of the set to which block mi is mapped
is determined as (i mod η) [3], two memory blocks are
mapped to the same set, if the difference q between their
addresses is a multiple of (η · l), because each block has the
size of l bytes.

In order to preserve a fixed mapping of addresses for
module M1, the executable has to be created with such
a base address q. The base addresses of the modules
M2, . . . , Mp depend on the sum of the sizes of previous
modules. To preserve the fixed mapping for these modules,
some wasted space between them has to be added, such that
the base address of each module will be a multiple of (η · l).
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4.2. Conservative cache-behavior analysis

In order to combine the results of module-wise analysis
conservatively with respect to the analysis of a linked ex-
ecutable, we choose a placement of modules according to
Section 4.1, i.e., the absolute base address of each module
should be a multiple of (η · l).

5. Proposed analysis method

As input for the analysis we have a directed acyclic inter-
module dependency graph where vertices represent mod-
ules and edges represent call relations between modules.
Our analysis is based on a bottom-up approach, starting
from modules which are not dependent on any other module
in this graph (i.e., with outdegree = 0). At each stage (for
each module) the produced results are kept in a special data
structure so that analysis results of a module will be avail-
able later to the modules, which have calls to this module.

5.1. Module-wise cache analysis

We analyze cache behavior separately for each procedure
using the framework from Section 3 in the two following
call contexts: (i) local call – a call between two procedures
in the same module; and (ii) external call – a call between
two procedures in the different modules. In the last case we
combine at the return point the analysis result of the caller
with the analysis result of the callee.

During the analysis of a procedure we assume that cache
is initially empty for the must analysis and everything may
be in the cache with age 0 for the may analysis.

The analysis for modules, which have calls to other mod-
ules (i.e, with outdegree 6= 0) uses the precomputed infor-
mation of its called modules, whenever needed at the calling
points. Since the cache contents of the calling module will
be changed according to the called module’s cache infor-
mation, we have to consider the cache damages due to calls
to the external procedures. In the following subsection we
describe how to handle such cache effects during calls be-
tween modules.

5.2. Cache damage analysis

The aim of the cache damage analysis is to provide the
correct information about the bounds of replacements in a
particular set, i.e., to determine an upper-bound of the num-
ber of replacements occurring in a particular set for the must
analysis, and a lower-bound for the may analysis.

Let us consider must analysis. The elements of each set
of the caller’s cache are age by the upper bound of the num-
ber of replacements in the same set of the callee’s cache,
and the elements of this set in the callee’s cache retain their

age during the cache damage update (cf. formal cache se-
mantics in [1]).

If before the call some memory block m is in the caller’s
cache set f with age x, and the upper bound of replacements
in this set due to the call is a, then this block will survive in
the cache after the call if x + a 6 A − 1.

A procedure may be also called from inside a loop of an-
other procedure. If some block m is in the callee’s cache at
the return point with the age x, then it will be in the caller’s
cache after return. Since the procedure is called inside a
loop, this block may survive in the cache during all follow-
ing iterations, and be in the caller’s cache with the age y

before the call. If y+a 6 A−1 then this block will survive
in the caller’s cache during the call with the age z = y + a.
Hence, there may exist multiple copies of the block m in
the same set with different ages. In order to avoid such a
situation we flush all callee’s memory blocks which are in
the caller’s cache before the call.

5.3. Properties of the method

The following steps are followed during the analysis of
a module: (i) construct the control flow graph for each pro-
cedure, (ii) identify the local and the external calls, (iii) an-
alyze all possible paths considering local and external calls
of a procedure, (iv) update the cache information according
to the call contexts using cache-damage analysis result, and
(v) store the cache analysis information for each procedure
in the corresponding data structure.

The analysis result of the complete program is the com-
position of the analysis results of all the modules. We have
the following properties of the method.

Termination of the analysis. Termination of the may
and must analysis is guaranteed. Cache damage analysis
terminates, since the domain is finite, update functions are
monotone, and the join functions are monotone, associative
and commutative (cf. full version of this paper [4] ).

The results of the module-wise analysis are conserva-
tive. Our analysis is based on a bottom-up approach and
during the analysis of each procedure we take safe initial
approximations according to Section 5.1. Therefore, we can
conclude the following theorem:

Theorem 1 The results of component-wise cache behavior
prediction are conservative to an analysis results of a linked
executable, assuming the equivalent module placement ac-
cording to Section 4.1.

For the sake of space, we omit the proof of the theorem.
The proof can be found in the full version of the paper [4] .

Maximum wasted memory space. As we have seen
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in Section 4.1, some memory space is wasted in order to
preserve the equivalent memory allocation w.r.t. the fixed
set mapping. The wasted memory space in the worst case is
(η · l − 1) · (p − 1).

6. Related work

Most of the research on precise cache-behavior predic-
tion is being performed on fully linked executables.

The work [5] propose a compositional instruction-cache
behavior prediction. Their goal is to decrease the analy-
sis effort by splitting the analysis into several phases, a
module-level analysis, preprocessing calls, and a compo-
sitional analysis using this information. The motivation
comes from the claim that only small programs can be ana-
lyzed by the traditional methods. However, as shown in [10]
these methods realized in commercially available tools are
in routine use in the aeronautics and also in the automotive
industry. Their method needs the availability of all mod-
ules, while ours analyzes modules as they are compiled and
combines the analysis results in a conservative way. A re-
search group at the Laboratory of Embedded Systems Inno-
vation and Technology (LIT) described in [6] a framework,
PERF, which works with the object code generated by the
integrated tools in order to determine execution-time limit
estimations for functions that compose a real-time system.
Their cache behavior prediction method is based on the ex-
tended timing schemata proposed by [7, 8].

7. Conclusions and future work

We have presented a technique for predicting the cache
behavior for A-way set associative instruction caches
component-wise. Given a set of object code-modules, a
parser reads the object code-modules and reconstructs the
control flow. The cache analysis technique works in a
bottom-up way starting from minimal modules of the mod-
ule dependency graph. The analysis computes a sound ap-
proximation to the cache contents at all program points of
all modules taking safe upper approximations of the cache
damages of called external functions into account. The anal-
ysis results can be combined in a conservative way with re-
spect to an analysis of a fully linked executable.

Our current research direction includes component-wise
data cache behavior prediction. Data cache analysis is more
difficult than instruction cache analysis, because the effec-
tive data address may change when an instruction referenc-
ing data is executed repeatedly. We will implement a tool
to estimate the worst-case execution time of a real-time sys-
tem, where the system is given as a set of object code mod-
ules.
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Session 3: WCET calculation methods 

Session chair: Jan Gustafsson (University of Mälardalen, Sweden) 
 

Presentations 
 
The first paper “A Distributed WCET Computation Scheme for Smart Card Operating Systems”, 
by N. Aissa et. al. presented a new method to calculate the WCET on a security protected and 
very constrained device (a smart card). 
 
The second paper “Inspection of industrial code for syntactical loop analysis” by 
C. Sandberg described methods for analysis of “real” code and some preliminary results. 
 
In the third presentation “A New Timing Schema for WCET Analysis” by S. Petters et al., a new 
technique for handling path-based and low-level analysis. 
 
The forth paper, “Petri Net Level WCET Analysis” by F. Stappert described an approach for 
WCET calculation based on high level Petri Nets. 
 
The last paper in the session, “Measurement-Based Worst-Case Execution Time Analysis using 
Automatic Test-Data Generation” by R. Kirner et al. described a hybrid approach to calculate the 
WCET partly based on static analysis, partly on measurements.  

Discussion 
The discussion that ended the session was mainly concerned with the development in the WCET 
research area since the WCET workshop started in 2001 and the future of the workshop. 
 
Jan Gustafsson: I see two main trends in the WCET area. The first is academic; this area wants to 
grow and the workshop would like to extend be longer, have more papers etc. So the first 
question is: how do you look upon this workshop and the future of it? 
 
The other trend is to target the industry and to get our methods known and used there. Since the 
WCET workshop started, at least three tools have been developed for the industrial market. We 
all hope that these companies will succeed, since this is of benefit for us. We also hope that new 
companies and tools will emerge. This is because there is a synergy between these tools and the 
research. We have seen one paper today (the effect of scratchpad memories on WCET 
prediction2) where the aiT tool has been used to support research, and we can expect more papers 
in the future.  
 
In my department, the aiT tool is used to study the use of static WCET analysis in industrial 
settings. The results can be used as input to our research.  
 

                                                 
2 Influence on Onchip Scratchpad Memories on WCET, by L. Wehmeyer, P. Marwedel, University of 
Dortmund, Germany 
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So the other question is obvious: how do we find our way out to reality? Can we push even 
harder? Maybe this workshop can help, too. Maybe we can start an “WCET Interest Group” 
which is active also between workshops.  
 
One important issue is the one about benchmarks. A common WCET benchmark allows tools and 
methods to be compared. There is a lot of work to be done here. 
 
Guillem Bernat: There are many questions! What we would like to suggest is that we get a 
repository where we can store all these codes. For example we could have code with many nested 
loops.  
 
Friedhelm Stappert: We already have such a repository3. We volunteer to have it extended. 
 
Jan Gustafsson: A problem here is that some of the interesting code is not accepted for spreading 
by the companies. And we want real code. So how do we get it? 
 
Peter Puschner: I don’t know if this is a solution, but I think even the patterns are interesting. So, 
if you find some patterns that you think are interesting, you may create “dummy” code with 
maybe not the same semantics as the real code, but with similar patterns, say control structure or 
other property, like dependence on pointers. 
 
Jan Gustafsson: Well, it has to be semantically correct so you can run it and measure it. 
 
Peter Puschner: Well, it should be able to do a simple version with a correct semantics but still 
with the interesting structure.  
 
Iain Bate: Thanks for the offer! We already have some samples that we used before. We are 
looking at some software that we might have there on the benchmark and which is available stuff. 
What we don’t want is too many examples. If you look at other benchmarks in other areas you 
see that they are small. We don’t want dozens of examples but rather get it down to 3 or 4 
examples. Otherwise, the different groups will look at different subsets of the examples. 
 
A second issue is benchmarks for hardware. It would be good to choose 2 or 3 different 
processors, maybe one with a simple pipeline, another one that is a little bit more complex, and 
the last one at the “bleeding edge”. This is because it makes no point to have common software 
and then compile them to and analyze them in different targets.  
 
Jan Gustafsson: So you mean that you should force people to use the same codes, and not select 
the examples that works just for them?  
 
Iain Bate: Yes. And, for the software, we could have the similar selection as for hardware, that is 
a simple one, in intermediate on and a complex one. 
 
Raimund Kirner: I have a comment on the type of codes we want to collect. A nice thing with the 
codes that Christer studied is that “this is code from reality”. Also, if you have a nested loop with 
some dependencies inside which show some difficulties, which poses problems for the WCET 
analysis, you might argue that this is a sorting algorithm and these problems might not be 
interesting for other areas of practice. So, we should keep in mind what is the typical application 
and avoid studying code patterns that are not relevant in practice. 
                                                 
3 http://www.c-lab.de/home/en/download.html#wcet 
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Also there are a lot of code examples in books, and maybe we can copy them for a use like this. 
 
Jan Staschulat: My observation is that the WCET community is always a number of years behind 
the latest developments in processor architecture. I have seen this with the pipelines, then the 
caches, and now we have the scratchpad memory. First, a new hardware feature is introduced and 
then a couple of years later an analysis by some research team is proposed to cope with the new 
complexity. Instead, shouldn’t the WCET community propose how a processor should look like 
to be fast and predictable? 
 
Unidentifier speaker: Right now the processors are going in a direction with more complex 
features like out-of-order execution and similar. So on the contrary – it is the WCET community 
has to follow. I think that it is not possible to force the industry to produce processors that are fast 
and predictable. It is probably more useful to try to overcome the problems with really 
unpredictable processors.  
 
Jan Gustafsson: In our project in Sweden we have deliberately concentrated on simple processors 
for embedded systems. These are today typically without caches and even pipelines. These 
embedded systems also often have hard real-time requirements. In the other end with the really 
complex processors it may be better with statistical WCET methods, but then you will not have 
the full safety. This is my simple view, but if you can come up with something better, many 
should buy that.  
I don’t think that we can steer the hardware community. It is too much money involved. But we 
can pick the processors that suit our methods and the customers can do that, too. 
 
Tullio Vardanega: It really seems to me that there are two views. The first is speed-oriented 
software, whether it is hardware or software. The other is timing-aware processing and coding. 
I can see that there are real academic challenges to take any sort of jumbled code and to derive 
information from that. But it would be much more valuable to tell the users that there a number of 
coding styles or idioms that are timing-aware and much more amenable to timing analysis, no 
matter what the processor is. I see no effort indicating to people that there are idioms that are 
wrong, and it’s no good to squeeze and push our tools that they can understand this rubbish!  
 
Jan Gustafsson: Have you seen rubbish? Are there coding styles which are no good? 
 
Tullio Vardanega: I have seen lots and lots of coding styles which are speed-oriented and which 
are totally wrong. One can tell (or smell) that what was behind that code was speed and nothing 
else.  
Everybody have a responsibility, when you are a programmer or designer, to solve the timing 
problem. It is no good to delegate it to a magic tool – to write rubbish and to send it to a tool to 
solve it. I don’t believe in magic. 
 
Peter Puschner: Exactly as you say we have to look for the priorities. Speed is often number one, 
and what we would like to add is predictability. But really it depends on the area we are looking 
at. If we are looking at hard real-time systems that need to be dependable, we want predictable 
timing. Then predictability is the number one issue, but speed if of course still important.  
If we want predictability we should design our systems with this in mind. The whole architecture, 
both hardware and software, should be laid out towards that goal.  
 
We are doing some work in these issues and my feeling is that even if you aim at predictability, 
the speed, in terms of short worst-case timing, will come as an add-on. 
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Tullio Vardanega: People are implicitly presenting the notion that real-time programming is 
complex. For example going from Java to Real-time Java adds on a lot of classes. But when you 
are programming against time, you take a number of constraints (or even short-cuts) with you and 
you are more disciplined. It the cost of something, of course.  
It is a service to the community if these things are told up-front, and not are discovered at the end 
of the slope.  
The cost you pay is a certain limitation of freedom. I would really like this community of 
cultivated people to say this to the programmers and don’t just say “Give us anything, we will 
process anything”. 
 
Peter Puschner: Just a picture of the user: if you work with a nail you use a hammer, and if you 
work with a screw you need a screwdriver, but not the other way around. And it’s the same here. 
Use the right tools! 
 
Iain Bate: The only counter-argument to what I am hearing is that you already know all this. For 
example a lot of the industrial examples are simple hardware and software. But from the 
academic perspective I assume that this is less interesting. It is useful to look at the more nasty 
control flow graph for example. It is more of a challenge.  
 
Jan Gustafsson: I agree with Tullio but I don’t think that the word is spread all around.  
 
Guillem Bernat: People are aware of what is possible and what is not possible. Moreover, in a 
real setting there is a lot of priorities, the software, the processor, the development process, etc. 
To make radical changes, for example: do not use this processor, may be impossible since it may 
have been selected by other criteria.  
So if we work for this aim it is good, but we have only limited possibilities in our position. 
Sometimes we will have to live with the fact that other criteria completely steers the situation. 
 
Iain Bate: I would like to bring up the second question that Jan brought up namely: how we raise 
the profile of what we are doing, and what is the next step for a workshop like this? 
Our workshop has a good form, and is interesting, but obviously from an academic perspective 
what we need is to move towards longer papers, more stringently reviewed, longer presentations 
etc. That is, moving towards a conference, and in my view, have proceedings that are more 
academically credible, like an IEEE publication with an ISBN number and all of these good 
things.  
 
Guillem Bernat: We have been discussing this before with Peter Puschner. We are very happy to 
see all these new faces and you are all very welcome. I hope we all share the same view, i.e., 
move towards IEEE proceedings etc. 
Have many of you have come only to the workshop and not the full ECRTS? (Many raised 
hands) So, there is no longer a great risk of this workshop would die if it was organized on its 
own and not as a satellite, as the situation was a number of years ago.  
I would like to go to a longer workshop with longer papers etc., but the issue is would we get 
enough contributions for that?  
 
Peter Puschner: One important point is the flavor of the workshop. The original idea when we 
started the series was to have room and time for discussion, and not to make this “yet another 
conference” with one paper presented after the other with almost no discussion, and people 
submit papers only to get a publication. The flavor shouldn’t change a lot so we should avoid 
moving to these of these “standard conferences”.  
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But, it is definitely a good idea to think about for example publication that goes beyond just a 
technical report.  
 
Jan Gustafsson: Another thing that would be good is to continue these discussions between users 
and developers. This workshop would become a meeting point with prepared talks and prepared 
discussions. This is not in conflict with higher academic goals. Maybe this requires two days. 
 
Peter Puschner: It is also this point of having something to present. How many of you wouldn’t 
have the possibility to come without having a paper presented here? (Some raised hands) 
 
Guillem Bernat: Well if your paper does not show up in the proceedings it does not always give 
the proper founding for travel. So this calls for a proper proceedings which you can reference and 
so on.  
 
Iain Bate: Maybe a solution is to have a two day workshop with not many more papers but longer 
and more detailed papers, while still maintaining the discussions, which can be very useful. To 
come for 4 or 5 days, the whole week is gone. Two days is just as easy.  
 
Björn Lisper:  Here is another suggestion. We can keep the present format of the workshop, with 
short papers, but then invite authors will have to submit a longer version afterwards. These papers 
should be reviewed and then be published as post-proceedings. Then we would get proceedings 
that are peer reviewed and on par with ordinary conference proceedings.  
 
Guillem Bernat: Well, this would not solve the problem that some people do not get funding if 
they do not have a paper accepted.  
 
Iain Bate: It is more than that. You want to align to a journal or something like that. In the UK for 
example it is important where you publish and a workshop like this is not of the same high value 
as a journal.  
 
Guillem Bernat: I would like to go back to the benchmark issue. We can have something like a 
competition between PhD students who can go to this workshop. They can try different methods 
on different problems and in that way find open problems, using real-life pieces of code.  
 
Jan Gustafsson: This is a nice suggestion; we can give this community problems to solve ad we 
can then discuss the solutions. This should be on free will – you can write about this or something 
else if you like.  
 
Guillem Bernat: Yes, you can just register if you’re interested. There is an interesting Matlab 
programming competition where they set up a problem and then they get a score for their 
solutions. It is interesting to see how people can really compete to really squeeze smart solutions 
out of this.  
 
Jan Gustafsson: So, there is still work to do for the organizing committee. So finalizing this 
workshop, I would like to give the word to Isabelle [Puaut] for some final words.  
 
Isabelle Puaut: I would like to thank everybody for coming, a special thanks to the session chairs, 
and the organizing committee. And don’t forget to come to the restaurant tonight! 
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Abstract

Computing WCET in a resource-constrained device such
as a smart card in a safe manner raises some difficulties. In-
deed, most of the classical algorithms for computing WCET
do not address resource-limitation or security issues. In this
article, we propose to distribute the computation process
between the off-card part running on a powerful worksta-
tion and the on-card part specific to the hardware included
in the smart card. We also guarantee the safety of our com-
putation process by inserting assertions in the generated
code and preventing information leaks from the card to the
outside.

1 Introduction

Smart card operating systems have to face very hard con-
straints in terms of available memory space and computing
power. Nonetheless, the specifications of most smart card
platforms impose strict deadlines for communications be-
tween the card and the terminal to which it is connected.
This advocates the real time paradigm to guarantee re-
sponse times and thus introduces the need for computa-
tion of WCET on these very constrained devices. Besides,
smart card operating systems have very strict security re-
quirements which must be taken into account by all parts
of the operating system, including the WCET computation
algorithm. Unfortunately, most of the classical algorithms
for computing WCET do not address resource-limitation or
security issues. We propose in this paper a novel scheme for
safely computing WCET on a very constrained device such
as a smart card.

∗This work is partially supported by grants from the CPER Nord-Pas-
de-Calais TACT LOMC C21, the FP6 Integrated Project INSPIRED, the
French Ministry of Education and Research (ACI Sécurit́e Informatique
SPOPS), and Gemplus Research Labs.

We first present theCAMILLE operating system for smart
cards, and then describe the main issues when computing
WCET on very constrained devices. We then detail the ar-
chitecture we propose to compute WCET in theCAMILLE

operating system and illustrate it on an example of a simple
embedded algorithm. We conclude by presenting the future
work we plan to conduct.

2 The CAMILLE architecture

CAMILLE [1] is an extensible operating system designed
for resource-limited devices, such as smart cards for in-
stance. It is based on the exokernel architecture [2] and ad-
vocates the same principle of not imposing any abstractions
in the kernel, which is only in charge of demultiplexing re-
sources. CAMILLE provides secure access to the various
hardware and software resources manipulated by the system
(e.g. the processor, memory pages, native code blocks, etc)
and enables applications to directly manage those resources
in a flexible way.

System components and applications can be written in a
variety of languages (including Java, C, etc). The source
code is translated in a dedicated intermediate language
called FAÇADE [3] by appropriate tools. Using an inter-
mediate language enhances the portability of the various
components is a way similar to Java bytecode. To guar-
antee the efficiency of the system and the applications, the
FAÇADE code is translated into native code using an em-
bedded compiler. This compiler convertsFAÇADE pro-
grams when they are loaded in the device, and performs
machine-dependent optimizations to exploit fully the un-
derlying hardware. FAÇADE is an object-oriented lan-
guage including only five instructions:jump , jumpif ,
jumplist , return , and invoke which can be easily
type-checked due to its simplicity.

Thus,CAMILLE architecture is divided in two parts. The
off-card part is in charge on compiling the application or
system components intoFAÇADE and compute the proof
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of their type-correctness which is included in the generated
binary [4]. The on-card part loads this binary, checks the
proof, and then translate theFAÇADE program into native
code using the embedded compiler. Thus,CAMILLE takes
advantage of the computing power and memory space avail-
able on the workstation on which runs the off-card part to
perform costly operations. The WCET computation scheme
we propose is based on a similar distribution between off-
card and on-card parts, as detailed below.

3 Distributing the WCET Computation pro-
cess

WCET can be computed either statically or dynamically.
However, the WCET computed by a dynamic analysis can
be less than the real execution time of the code [5], which
is not compatible with hard real time constraint. Thus, we
focus on a static analysis which is more suitable in our con-
text. Since static analysis usually result in a pessimistic
estimate [6, 7], one of our goal shall be to reduce the de-
gree of pessimism as much as possible. Classical techniques
for computing WCET include the tree-based [6], the path-
based and the Implicit Path Enumeration Technique [8] al-
gorithms.

At the source code level, the tree-based method uses a
combination of an abstract syntax tree with a timing schema
approach [9]. It works on the source code of the program
to extract both its logical structure and the annotations in-
troduced by the programmer. InCAMILLE , the on-card part
of the system does not have access to the source code of a
dynamically loaded extension, but only toFAÇADE binary
code and its proof. AsFAÇADE is a low-level language
close to assembly, no high-level instructions likeloop or
if-then-else are included in theFAÇADE instruction
set. Thus,FAÇADE code does not include any way to guess
the high-level structure of the program, which means that
the tree-based technique cannot be used in our context.

The IPET algorithm generates a set of constraints from
the Control Flow Graph of the program. The WCET esti-
mate is then generated by maximizing the sum of the prod-
ucts of the execution counts and execution times of the ba-
sic blocks forming the CFG. Constraint solving or Integer
Linear Programming can be used to solve this maximiza-
tion problem. Obviously, a simplex algorithm for instance
is much to costly in terms of memory and CPU resources
to be executed on a smart card. Since the costs of the basic
blocks are unknown off-card, the whole algorithm must be
executed in the smart card, which is not realistic for com-
plex programs.

The path-based technique can be assimilated to the clas-
sical problem of finding the longest path in a graph, which
can be solved for instance by a Dijkstra algorithm [10].
The path-based analysis searches the most costly path in the

CFG. Considering the memory space necessary to compute
WCET for complex programs with many possible paths,
and the heavy computations it implies, it is not possible to
use this technique as is in a smart card. Thus, we propose
to distribute the computation of the WCET between the off-
card and the on-card parts ofCAMILLE , so that the most
costly operations are done off-card. The path search algo-
rithm cannot be applied off-card as it requires the knowl-
edge of the cost of each path to select the most costly one.
Indeed, only the card knows about the worst case timing be-
havior because it depends closely on the target architecture.
Moreover, the off-card part cannot quantify the execution
time of eachFAÇADE instruction which are handled differ-
ently by the on-card backend according to the compilation
context (i.e. optimizations). Exporting relevant information
from the card would make it possible to compute WCET
in the off-card part. In fact, exporting a profile contain-
ing the exact code generated by the embedded compiler and
the cycle number corresponding to each native instruction
would allow the computation to be finalized off-card. Un-
fortunately, carrying out such sensitive information from a
secure area as the smart card to the outside is reproved by
smart card manufacturers in order to prevent both technol-
ogy leaks and potential timing attacks [11] against the cryp-
tographic protocols implemented in the card for instance.

In the next section, we show how we propose to dis-
tribute the WCET computation process by simplifying the
CFG outside of the card before sending it to the on-card part
of the system.

4 Implementation in CAMILLE

The WCET computational process has to be split up into
two phases. In a first step, in the off-card part ofCAMILLE ,
a weighted control-flow graph must be figured out as shown
in Figure 1. Each node in the graph represents a basic block
(i.e. a sequential piece of code without any jumps or labels:
labels start a block, and jumps end a block). Iterations are
represented by edges labelled with the upper bound of the
loop.

Then, a parser flattens the control-flow graph obtained
into a tree. This eases the computation of the WCET by the
on-card part of the system, since searching the most costly
path is less resource-demanding in a tree than in a cyclic
graph. Conditional statements are represented by separate
branches in the tree. Loops are replaced by a tag on the
node representing the execution count of the block. In the
case of nested loops, the inner loop is tagged by the product
of its execution count and the outer loop one, as illustrated
in Figure 1, whereBB4 will be executedn4 × n5 times.

Once the tagged-tree is built, it is sent to the card within
the binary containing theFAÇADE code and the proof. The
embedded compiler is responsible for searching the most
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Figure 1. Tranformation of the CFG to tagged-
tree.

costly branch in the tagged-tree. As it decodes theFAÇADE

instructions one by one, the embedded compiler has to
translate the basic blocks ofFAÇADE code into native ones.

Once the translation phase is finished, each basic block is
assigned an execution time which corresponds to the sum of
the number of cycles that will be consumed by each instruc-
tion. Then, the tagged-tree is used to compute the WCET
of the program by starting with the root node and summing
up the execution times of each basic block belonging to the
same branch. The formula used to compute the WCET of
the right branch is therefore:

WCET (Right branch) = WCET (BB1)+
n4 × n5 ×WCET (BB4) +
n4 ×WCET (BB5) + WCET (BB6)

The WCET of the respective branches are then compared
and the global WCET value is sorted out. If the deadline of
the program can be met, the code can be executed, other-
wise an error message is sent to the off-card part.

To compute theni used in the formula presented above,
we use annotations inserted in the source code either by the
programmer or by code analysis tools. Figure 2 illustrates
theCAMILLE compilation scheme of an annotated C code.
The off-card part should be extended with a static flow
analysis tool capable of translating the assertions inserted
by the programmer in the C code toFAÇADE annotations.
Figure 2 shows an example of such a programmer-inserted
annotation, represented by the C comment// MAXITER
128 which declares that the following multiplication loop
will iterate 128 times. This C comment is simply translated
by the static flow analysis tool into theFAÇADE annotation
.AttributeLine WCET MAXITER %128;.

While decodingFAÇADE instructions, if it reaches an
annotation, the embedded compiler needs to verify it. For
instance, if the off-card part claims that a loop will not it-
erate more than 128 times, the embedded compiler has to
explicitly insert code to exit the loop when the loop has it-
erated 128 times.
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Figure 2. An example of annotation transla-
tion.

The assertioncmp r0, #128; bge err compares the
registerr0 which stores the value of variableMwith the de-
clared number of iterations (128). Ifr0 is greater than 128,
the program exits the loop and branches to an error label.

5 Conclusion and future work

We presented in this paper the scheme we propose to
safely compute WCET in a resource-constrained operating
system. By distributing the computation between the off-
card part running on a powerful workstation and the on-card
part specific to the hardware included in the smart card, we
are able to circumvent the very strict memory and CPU lim-
itation of the device. We guarantee the safety of our scheme
by inserting assertions in the generated code to validate the
annotations sent by the off-card part, and by preventing in-
formation leaks from the card to the outside. Finally, we
show that our scheme can be easily implemented in a se-
cure smart card operating system asCAMILLE . We are now
working on an extended architecture which would permit
to safely export hardware information outside of the card.
This would allow using the IPET technique to compute the
WCET off-card without risking to comprise the security of
the embedded system.
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Abstract

Flow analysis can be used in WCET analysis to, e.g.,
determine loop bounds and infeasible paths. Such infor-
mation can be used by low level analysis and for actual
WCET calculation. An efficient flow analysis method is
syntactical analysis. This method identifies certain pre-
defined syntactical constructs. It is not reasonable to
believe that we will be able to use syntactical analysis
to identify all conceivable constructs. Therefore we need
to learn which to prioritize.

This paper suggests methods for inspection of indus-
trial code to record properties of code that will give hints
how to design a syntactical analysis. We describe the
code properties to analyze, and present preliminary re-
sults for some industrial real-time code.

1 Introduction
We aim to develop methods for automatic estimation
of WCET. Automatic in this context means that man-
ual annotations of loops and infeasible paths should be
avoided. The task for an automatic flow analyzer in this
sense is to calculate ”flow facts” such as loop bounds,
infeasible paths etc. [4]. This can not in general be done
without interaction with the user. If, e.g., a loop bound
is dependent on input data these data has to be sup-
plied by the user. The user may also need to supply
which parts of the code that should be analyzed. If, e.g.,
infinite loops are part of the entire program the respon-
sibility is on the user to exclude these.

There are several methods that can be used for flow
analysis, [9, 5], one being abstract interpretation and
another syntactical analysis.

Syntactical analysis will identify syntactical constructs
where we can calculate the number of iterations by look-
ing at the loop syntax (in particular there is no need to
calculate the result of each iteration). The initial values
of loop variables, loop increment and loop termination
conditions can be translated to recurrence equations,
which can be solved. The advantage of this method is
that it is efficient, with a complexity that is linear to the
size of the program. In best case we succeed in bound-
ing all loops in the analyzed code. In case it finds loops
which does not match any known pattern, the method
can still be used as a ”filter” to reduce the amount of
work needed by other methods.

If we for example use syntactical analysis in combina-
tion with abstract interpretation, e.g., as described by
Gustafsson, [7], the remaining loops may be possible to
bound by the abstract interpretation. Specially, there is
a possibility to syntactically find final values of all vari-
ables assigned in the loop body. In such cases the entire
loop can be collapsed and replaced by a piece of sequen-
tial code, making life easier for other analysis methods.

Even in cases when only a few occasional loops can be
bounded by the syntactical analysis, this can still benefit
in a combination with other methods since the tightest
of the loop bounds found by the different methods can
be chosen.

The syntactical method can be thought of as a data
base of predefined patterns (syntactical constructs) and
we can check for each loop if it matches any of the pat-
terns in the database. Since there is a huge number of
possibilities to write loops we can not expect the syntac-
tical analysis to be able to recognize all of them. How-
ever, we want to fill this database with patterns that
matches as many loops as possible when analyzing real-
time code. Therefore we need to get an idea of what
loop constructs that are common in real-time systems
and that are fairly simple to identify without too much
of computational efforts.

In cases when loop patterns are not suitable to be ana-
lyzed by the syntactical method some alternative meth-
ods need to be used. The results from this inspection
might also be useful to find the requirements on such
methods.

2 Related work
In comparison between specInt95 and some code for
embedded systems, performed by Engblom [3], he con-
cluded that using code from desktop applications as base
for testing tools for embedded systems may be danger-
ous due to significant differences in programming style
for these categories of programs.

An investigation of a large set of industrial code, car-
ried out by Engblom [2] shows, e.g.,

• Recursive functions may be expected but are not
common.

• Use of function pointers can be expected, but is in
most programs rare or even absent.

• Deeply nested loops at a global level are quite com-
mon.

• Unstructured loops may occur.
• Multiple entries to the program may occur.
• Functions from other modules may be invoked.
• Multiple loop exits are quite common (almost 1 of

3 of those in the investigated programs).
• High decision nest complexity is not common.
In [11] we see that the use of a WCET tool in practice

may lead to unexpected problems. Some of the problems
encountered, related to loops, were:

• Sentinels in arrays are sometimes used as termina-
tion conditions in loops.

• Loop termination conditions may depend on input.
• Loop counters may be calculated using complex

arithmetics.
• Complex arithmetics is sometimes used in loop ter-

mination conditions.
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Another related investigation, [1], shows that for a cer-
tain operating system the program constructs were quite
simple. No nested loops, unstructured code or recursion
were found. Some function pointers were used.

Our conclusion is that a careful investigation of in-
dustrial code for real-time systems is needed to prepare
a WCET analysis tool to handle code that exists in re-
ality. For a syntactical analysis we specially need to get
more knowledge about loop details.

3 The inspection
We will use an existing flow analyzing tool for auto-
matic inspection, SWEET (SWEdish Execution Time
tool, [8]). Most of the methods that needs to be im-
plemented for this investigation are quite basic, and can
probably be re-used when implementing the actual syn-
tactical analysis, at least for the simple cases. This tool
takes intermediate code, produced by a C compiler, as
input.

Code needs to be inspected in a variety of views to
get useful measurements. Some of the properties mea-
sured by Engblom can benefit the design of syntactical
analysis. However we need to get a more detailed view,
specifically about loops. The following inspection items
will be explained in more detail in the subsequent sec-
tions: the overall program structure, the loop nesting
and details about individual loops. Some of these items
have been covered in previous work. They, however, need
to be done also for the code used for this more detailed
investigation, intended to aim the design of syntactical
analysis.

3.1 Program structure
The program structure can be analyzed by examining
the call graph. The depth of a call graph can give hints
about how much calculation power that is needed for an-
alyzing the code. Extending the call graph with informa-
tion about the presence of loops will give more informa-
tion. Comparing a call graph in DAG form with one in
tree form will show to what extent functions are reused.
Calculating loop bounds in functions called from differ-
ent sites in a context sensitive manner will cost more
in calculation efforts, but may give better (tighter) loop
bounds. Recursive functions should be recorded sepa-
rately. These may be hard to bound syntactically, but
simple cases may be possible to handle in case an inter-
procedural analysis is performed.

3.2 Loop nesting
The nesting level of loops can be counted both locally
(per function) and globally (per task or program). It
is important to bound deeply nested loops, since they
will have the highest influence on the final WCET. Also
other analyzing methods (e.g., abstract interpretation)
may suffer from high computational load when analyzing
these.

3.3 Loop conditions
Reducible loops have a single entry point (we only con-
sider reducible loops since we assume that irreducible
loops are already replaced by their multiple reducible
loops counterpart [12]).

There may be an arbitrary number of exits from loops.
Those with no exits (infinite loops) may occur in real-
time systems. We cannot find the loop bound of such a

loop syntactically. However, although we can’t analyze
them we need to count them to conclude how big por-
tions of a program that needs to be excluded from the
analysis.

Loops that contain more than one exit branch have
been shown to be analyzable syntactically [10], but are
in general harder to calculate the bounds of, both in
terms of computational efforts and implementation is-
sues. Thus the number of loop exits is of interest as well
as the number of targets of these exit branches.

For each termination condition there will be one or
more variables involved (otherwise the loop is either
equivalent to an infinite loop or with a non-looping con-
struct). Each such variable needs to be carefully inves-
tigated. The following properties of the variable may be
of interest:

• The initial value.
• The variable update in the loop.

Initial values
We are mostly interested in the initial value at the loop
termination condition in which it is used (do loops may
be handled a bit different, since the initial execution of
the loop body might affect the initial value of some vari-
ables). The initial value can either be deduced from a
constant, or depend on a variable that is updated in an
outer loop or depend on an input value to the code.

Initialization from constants. If the initial value only
depends on constants this will simplify the analysis, and
makes it more likely that we can find a loop bound. The
constant value can be found as an assignment from an
expression containing only operands that are constants
or that are other variables that recursively depend on
constants. It is of interest to record the locations of the
constants in terms of function nesting level. If all the
constants are not present in the same function as were
they are used, a more advanced syntactical analysis is
needed (e.g., a global analysis).

Initialization from variables updated in an outer
loop. There are certain kinds of nested loops where the
loop bound of the inner loop can be calculated even if
the number of iterations depend on an outer loop induc-
tion variable [8]. Therefore these class of initializations
are of a certain interest. The following properties needs
to be recorded:

• The loop nesting levels between the use and ini-
tialization. For example ”triangular loops” can be
recognized by a syntactical analysis, and it may be
possible to find loop bounds in case there is a loop
nesting level of one between the two loops.

• The properties of the source to the initialization are
of interest. Gerlek et.al., [6], makes a classification
of induction variables that may be useful as basis.
The problem of finding the bound for a loop can be
expected to vary based on these.

• Is the assignment of the initial value done from an
expression containing more than one induction vari-
ables in outer loops? If so, it will be a harder case
to handle.

Initialization from input values. The initial value can
in some cases be deduced from some input value. Input
to a real-time system may in general occur in various
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ways. One would be that the code just use some global
variable that appears uninitialized to the analyzer (e.g.,
the code reads from a labelled input port).

Different analyzable units (e.g., tasks) may need to
communicate to each other, and this data will appear as
inputs. The actual input data can in such case be de-
duced to some global entity, e.g., global variables. These
variables may occur as initialized to the analyzer.

In case of an analysis local to functions, also the func-
tion arguments are input.

There is a special problem in identifying input values.
The analyzer need to distinguish between those global
variables that are input to the analyzed code and those
that are rather constants or induction variables in the
context of the use in a loop condition. This can normally
not be done by looking at a part of the system code
in isolation. In general it can be hard to perform an
analysis on a complete system because of the interaction
of an operating system.

In our inspection all definitions that depends on global
variables will be recorded as inputs. When doing the
syntactical analysis the user may supply information
about which are input variables and the value of these.
Optionally a certain pass just to identify intertask com-
munication might be developed. Finding loop bounds
if the initial values depend on input is much the same
problem as finding it for constant initial values.

Updating of variables in the loop body
One or more of the variables in a loop termination condi-
tion must change their value in the loop, or the loop will
never terminate using that condition. A simple form is a
loop counter, i.e. a variable which value will contain the
current iteration number while executing the loop. Also
other forms of updates are of interest. If the value of the
variable forms a series which we can identify, there is a
good chance that we can calculate the loop bound. The
following properties will be recorded:
• Is the update self-referencing, i.e. is the right hand

side an expression that includes the target of the
assignment (directly or indirectly) within the loop.

• The operator(s) applied in update(s). If only lin-
ear updates are involved a calculation of the loop
bounds can be expected to be less complicated.

• The other operand(s). This may be constant (di-
rectly or indirectly) or an input dependent variable.
In both cases it will probably be easier to find loop
bounds than for induction variable dependent ini-
tialization values.

• Do the other operand alters its value in the loop?
In case it does, it is probably harder to find a re-
sulting loop bound (e.g., if an increment is altered
in a conditional statement).

• Is the update statement conditional? If so, it is in
general not possible to find the wanted series.

3.4 Branch conditions
Branch conditions are also of interest to the syntactical
analysis. Infeasible paths can be found if the reaching
definition for the involved variables are calculated in a
context sensitive manner. The values of variables in-
volved in conditions therefore needs to be recorded in
the same manner as initial values of loop conditions.

3.5 Arrays
In case array elements are used in place for simple vari-
ables in loop termination conditions this imposes difficul-
ties to the syntactical analysis. Such language elements
can take many different syntactical forms. Below are
listed some that will be recorded in the first round.

• Initial value. A variable in a loop termination con-
dition is an array element (or its value depends on
an array element), and this variable is loop invari-
ant. For certain sub-cases we might be able to find
loop bounds.

• Update. A variable in a loop termination condition
is updated using an expression containing an array
element (or a variable which value depends on an ar-
ray element). The updated variable is an induction
variable. The index variable might be an induction
variable in an outer loop.

• The ”sentinel problem”. There is some loop ter-
mination condition that compares an array element
with some other value. The array index is an induc-
tion variable in the current loop. This category can
be tricky to handle. But since we know that strings
as well as sometimes pointer arrays are often tra-
versed this way, it is important to know the number
of occurrences of this kind. Maybe we can calculate
the loop bounds for some sub-cases.

• Other uses of array values.

3.6 Pointers
The use of pointers in loop termination conditions im-
poses problems for the syntactical analysis. Pointers
that points to a distinct variable in a certain context
might give us some hope. We should distinguish these
uses of pointers from other.

4 Preliminary results
Code from three insdustrial systems (in total more than
80k lines of source code) has been inspected concerning
the properties shown in the tables below. Inspection has
been done in a context sensitive manner, meaning that
each call site of a function has been counted rather than
the function definition. The reason was that we wanted
to be able to detect interprocedural dependencies.

The maximum call tree depth per root function (e.g.,
task) was 7. There were 392 loops with a single exit while
there were 166 with 2, 58 with 3, and 12 with more that
3 exits. We found that 592 loops had a single target
of the loop exit, which might still give them a hope to
be syntactically bound, while 36 had multiple exits. No
recursive function was found. Three infinite loops and
three uses of function pointers were found in one of the
systems.

In table 1 we can see that the global nesting depth is
quite big. The difference between the local and global
nesting means that functions containing loops are often
called within loops. The rightmost column is a count of
the nodes in a scope tree (a call tree where each function
call and each loop instance has a node, as discussed in
3.1) where only the loop scopes are counted.

Table 2 shows the re-use of functions. Note that only
functions containing loops has been considered.

The used method for performing the inspection in a
context sensitive manner resulted in some of the root-
functions (tasks) growing quite large. As a result of this,
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Table 1: The number of loops with a certain nesting level.
Level Global count Local count Scope count

0 68927 574 0
1 51262 53 384
2 8985 1 1771
3 250 9036
4 106 14919
5 32 28467
6 36138
7 26834
8 10893
9 1056
10 64

Table 2: Re-use of functions.
Nr of calls per function Nr of functions

1 148
2 44
3 26
4 15

5-9 27
10-14 15
15-19 9
20-30 8
30-40 10
40-50 5
>50 74

the analysis could not be completed in some cases. The
analysis of loop variables could only be carried out for
290 loops. Of these, 138 were found to be dependent on
dereferenced pointers and was not further investigated.

In the remaining loops there were 175 variables in-
volved in termination conditions, of these 154 were up-
dated in the loop (table 3), and 3 were updated in dif-
ferent conditional branches of the loop. The operations
of the update has not been investigated in detail, but
the operands are based on constants only. Note that be-
cause of the context sensitive analysis ‘loop’ and ‘vari-
able’ should in this paragraph be read as and instance
of a loop and instances of a variable respectively.

In most cases the initial value could be found as a
constant in the same function, however in 14 cases in
the calling function and in 5 cases the value was obtained
from a called function. The value were never found in a
cross call-tree node.

The initial values were in 5 cases defined based on
variables updated in the enclosing loop (table 4).

Table 3: Definition from program constant.
Distance to Update Initial

defining function operand value
-1 0 5
0 154 151
1 0 14

Table 4: Definition from induction variable.
Distance Update Initial
to loop operand value

0 0 5

5 Conclusions and Future work
The big nesting level indicates that there might be lots
of dependencies between loops, as well as a needing to
search for loop variable definition in outer functions.
However, the subset of loop variables that we were able
to investigate does not confirm this. Surprisingly only
a few loops actually depend on outer loops and should
be simple to bound. Instead, there are problem with
dereferenced pointers in lot of cases (48% of the anal-
ysed loops). A conclusion is that to be able to bound all
loops a flow analysis need to handle pointers in a pow-
erful way. A manual inspection was made on one of the
systems to get some hints about the loops with point-
ers (this was a medium sized system, containing 45 of
the 138 dereferenced pointers). It appeared that all of
them were of interprocedural type (function parameters
or global variables).

To make the results more valuable further inspections
need to be done. It is necessary to handle functions
in a context sensitive manner without linking them all
together. It is also necessary to make a more detailed
investigation of the dereferenced pointers.

To increase the usefulness of the inspection more code
will need to be collected.
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[HSRW98] C. Healy, M. Sjödin, V. Rustagi, and D. Whal-
ley. Bounding Loop Iterations for Timing Analy-
sis. In Proc. 4th IEEE Real-Time Technology and
Applications Symposium (RTAS’98), June 1998.

[RSE+03] M. Rodriguez, N. Silva, J. Estives, L. Henriques,
D. Costa, N. Holsti, and K. Hjortnaes. Challenges
in Calculating the WCET of a Complex On-board
Satellite Application. In WCET 2003 Workshop
Porto, 2003.

[San03] C. Sandberg. Elimination of Unstructured Loops
in Flow Analysis. In WCET 2003 Workshop
Porto, 2003.

4
Proceedings of the 4th Workshop on Worst-Case Execution Time Analysis 58/70



A New Timing Schema for WCET Analysis

Stefan M. Petters Adam Betts Guillem Bernat
Department of Computer Science

University of York
United Kingdom

Stefan.Petters@cs.york.ac.uk

Abstract

The timing schemas proposed in various approaches for
Worst Case Execution Time (WCET) estimation lack the
ability of handling more path-based low level analysis and
non-structured code. As it is extremely efficient in the com-
putational stage, we propose a technique to handle these
cases, while still retaining most of the efficiency of the syn-
tax tree timing schema. This is achieved by changing the
rules for the construction of the computational tree. As a
result, the analysis becomes more path aware without af-
fecting the safety of the approach.

1 Motivation

Tree-based calculation methods for WCET analysis were
first proposed by Park and Shaw [1], based on a syntax tree
representation of the program. A timing schema is attrib-
uted to certain high-level language constructs, which is es-
sentially a formula for computing the upper bound of their
execution time. Bernat et al. [2, 3] extended this approach
to incorporate Execution Time Profiles (ETP) instead of in-
teger values. Obtaining ETPs requires a tracing mechanism
whereby the data are collected, but there are some related
drawbacks. Some tracing mechanisms (e.g. via the NEXUS
interface cf. [4]) do not provide compatible traces, so a path-
based approach would be much more suitable, but it must
cope with computational complexity.

Alternatively, instrumentation points (ipoints) can be
manually or automatically placed into the code to generate a

trace. There is generally no restriction on where ipoints can
be placed in the code, thus basic blocks could have several
ipoints, whilst others have none at all. Here we consider
that each basic block contains one ipoint at most, without
loss of generality. Nonetheless, this still implies that inac-
cuate placement exists. Inaccuracy in this context means
an ipoint that is not placed at the very beginning of a basic
block. If this happens for the first basic block of alternative
paths, unnecessary overestimations occur.

Ipoint 4

Ipoint 3

Ipoint 2

Ipoint 1

Figure 1. Ipoint Placement Example

For illustration purposes, the assumption of only the
longest observed execution time being used for computa-
tion is made. Figure 1 provides a simple example of an
if-then-else code. With the previous approach the
block containing ipoint 1 has two execution times, with
only the longer being used. Additionally the block contain-
ing ipoint 2 appears shorter and as a result is less likely to
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contribute to the overall WCET in the computational stage.
The assertion of potential overestimations applies to both
probability distributions and integer values. Furthermore,
unstructured code needs better support, as provided in the
previous approaches. Unstructured code may arise from a
couple of sources, ranging from deliberately or automatic-
ally set gotos in mission critical software (cf. e.g. [5]), mul-
tiple loop control conditions (e.g. ”if within range”), com-
piler optimisations or Ada exceptions.

2 Program Representation

To solve the problems described in the previous section
an elemental change to the presentation is proposed. In a
first move, the unit of computation is no longer basic blocks,
but rather the transition from one ipoint to another ipoint.
This corresponds to moving the weight of computation from
the nodes of a control flow graph to the edges. As such the
program representation and the timing schema are changed.
In relation to the extended syntax tree which is used in [2] to
generate the computation formulas, a computational tree is
produced, which will be named CTR throughout this paper.
Similar to the previous approach four constructs have to be
considered.

2.1 Node

A leaf node in the CTR represent a transition from one
ipoint to another ipoint. The content may either be an in-
teger number or an ETP.

2.2 Sequence

A sequence of nodes is combined the same way as with
the previous approaches. Dependent on the basic setup
some sort of convolution or a simple addition may be used.

2.3 Alternatives

The representation of an alternative path now contains
the transition from an external ipoint into the alternative
path and the transition out of the alternative path to an ex-
ternal ipoint. As a result, a set of alternatives has to share
the same starting and the same finishing ipoint (cf. Fig. 2
and Fig. 3).

Ipoint 1

other

Ipoint 3

other

Ipoint 2 Trans 1−2

Alternative

Sequence Trans 1−3

Trans 2−3

Figure 2. Optional Code

In the case of a simple if-then construct omitting the
else part as depicted in Figure 2, the alternatives contain a
single transition and a sequence of transitions respectively.
An if-then-else construct has sequences of transitions
in both alternatives. The two or more alternative parts –
more alternatives may be the result of switch statements –
are evaluated using the max operator as defined in the re-
spective approaches.

Ipoint 1

other

Ipoint 4

other

Ipoint 2 Ipoint 3 Trans 1−2

Alternative

Trans 2−4

Sequence

Trans 1−3

Sequence

Trans 1−4

Figure 3. Alternative
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2.4 Loop

A loop in this context consists of three parts. A loop
entry, a loop iteration and a loop exit. Figure 4 provides an
example of a loop and its representation. The basic require-
ment of these three blocks is that the end ipoint of the entry,
the start ipoint of the exit and the start and end ipoint of the
iteration have to be identical. The simple case of a loop is
when the loop head contains an ipoint and this ipoint is part
of every path leading into the loop, out of the loop and dur-
ing any loop iteration. The loop head is defined as any code
from the start of the loop to the point where an exit condi-
tion is met. In the computational stage, a loop is treated as
a sequence of the entry node, N iterations of the iteration
node and the exit node. For the iteration node, the previ-
ously proposed unrolling of iterations may take place.

Ipoint 1

other

Ipoint 3

Ipoint 2

Entry:
Trans 1−2

other

Ipoint 4

Loop

Trans 2−3

Iteration:
Sequence

Exit:
Trans 2−4

Trans 3−2

Figure 4. Loop

In the case of the loop head having no ipoint (which ful-
fils the the criteria in being part of any path as described
above) an ipoint of the body that has to be part of any it-
eration may be chosen as the common ipoint. As the com-
bination of the entry and the exit node contains already one
iteration of the loop, two measures are necessary. On one
hand the number of iterations N has to be adjusted for the
computational stage. On the other hand, an alternative to
the loop has to be created, which represents the fact that the
loop may not iterate at all. Figure 5 provides the CTR for
a graph similar to the one in Figure 4, where Ipoint 2 is as-

sumed to be in the loop body. However, this transformation
will usually be straightforward, as the transition between
Ipoint 1 and Ipoint 4 should already be visible in the control
flow or ipoint graph.

Alternative

Entry:
Trans 1−2

Trans 1−4 Loop

Trans 2−3

Body:
Sequence

Exit:
Trans 2−4

Trans 3−2

Figure 5. Loop with no Ipoint in Head

2.5 The Timing Schema

The timing schema provided uses the abstract operators
⊗ and �. In the calculation, these revert to a simple ad-
dition and multiplication in case of integer numbers, and a
convolution and power operator in ETP-based approaches.

• Ci,j describes the WCET of the transition from ipoint
i to ipoint j which may be a measured leaf node or a

• Sequence (i, j, k): Ci,k = Ci,j ⊗ Cj,k

• Alternative (i and j outside the alternative and C1...o
i,j )

representing the o alternative paths):
Ci,j = max(C1

i,j , C
2

j,l, . . . , C
o
i,k)

• Loop (i and k outside then loop and j inside the loop):
Ci,k = Ci,j ⊗ (Cj,j � n) ⊗ Cj,k

Within the loop expression n is equal to the number of loop
iterations if the common point j lies within the loop head,
or number of iterations minus one if the common point j

lies within the loop body.
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3 Discussion

The actual schema is not provided in this paper in terms
of mathematical equations due to space restrictions, but
the schema may be derived straight forward from the tree
representation. The question arises, how the proposed ap-
proach supports the different aspects described in the motiv-
ation. The Nexus interface is supported by the loose defini-
tion of the contents of the alternatives. As only start and end
ipoints are defined, the rigid construction rules are resolved.
An enforced ipoint, by introducing an additional branch in-
struction, where deemed necessary, is comparably straight
forward. The overhead of ”inaccurately” set ipoints is re-
moved by the transitional description of the nodes. This
results overall in a tighter bound on the real values. Pos-
sibly most striking is the support of some non-structured
code. Especially loops with more than one exit condition
are a common problem. This is resolved as the entry and
exit nodes of a loop may contain several paths leading to or
from the common node. Code like exceptions may be ex-
pressed, but may lead to prohibitive execution times of the
analysis, as the analysis moves towards a fully path-based
approach with every exception considered.

The freedom of expression is possibly the biggest draw-
back of the approach. On the one hand, it is hard to ”read”
the CTR and associate its nodes with real code constructs,
which is much more straight forward with a syntax tree rep-
resentation. On the other hand there is more than one CTR
solution for almost any real world program. In the extreme,
a fully path-based CTR is possible with a set of alternatives
at the top level, each representing a possible walk on the
control flow graph. The move from a computationally feas-
ible to a computationally infeasible analysis is easily done.

4 Conclusion

In this paper we have proposed a powerful and flexble
program representation and a timing schema, which may be
applied to any timing schema based approach. The only
requirement is the concept of transitional computational
cost being associated with the leaf nodes of the CTR. This
schema may be applied independently of the low level ana-
lysis used to derive the values, without loss of safety of the
results, while supporting tighter WCET bounds. Addition-

ally it works equally for integer values or ETP-based ap-
proaches.

Future work in this area should focus on experiments to
establish the actual gain, which may be expected by using
this schema compared to the previously proposed schemas.
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Abstract

We present an approach for Worst-Case Execution
Time (WCET) Analysis of embedded system software
that is generated from Petri net specifications. The
main characteristic of the approach is that standard
Petri net analysis methods are utilized in order to auto-
matically derive additional flow information for WCET
analysis. Furthermore, the approach presented in this
paper clearly separates the analysis of model behavior
from the other WCET analysis phases. The method
is compared with similar approaches for WCET anal-
ysis on the model level. Furthermore, an application
example is presented.

1. Introduction and Related Work

A safe and precise WCET analysis must always take
into account possible program flow, like loop iterations
and dependencies between if-statements. This informa-
tion is usually derived from the source- or object-code
of a program. However, source code is often gener-
ated from higher-level specifications like StateCharts
or Petri nets. In such cases, it is possible to derive
additional flow information by analysing the possible
behavior of the according model. Using this addi-
tional information, a more precise WCET estimation
is achieved than by just analysing the generated source
code alone.

To generate a WCET estimate, we usually consider
a program to be processed through the phases of pro-
gram flow analysis, low level analysis and calculation.
Most WCET research groups make a similar division
notationally, but sometimes integrate two or more of
the phases into a single algorithm.

The program flow analysis phase determines pos-
sible program flows, and provides information about
which functions get called, how many times loops iter-
ate, if there are dependencies between if-statements,

etc. The information can be obtained by manual anno-
tations (integrated in the programming language [15]
or provided separately [3, 9, 16]). The flow informa-
tion can also be derived using automatic flow analysis
methods [5, 11, 12, 17]. Most approaches for auto-
matic flow analysis are based on the source- or object
code of a program. In contrast, this paper presents an
approach based on Petri nets, thereby extending the
program flow analysis phase from the source-code level
to the model level.

The low-level analysis phase determines the execu-
tion time for each atomic unit of flow (e.g. an instruc-
tion or a basic block), given the architecture and fea-
tures of the target system. Low-level analysis takes into
account performance enhancing features like caches,
branch predictors and pipelines.

In the calculation phase a program WCET estimate
is computed, combining the information derived in the
program flow and low-level analysis phases.

In recent work, WCET analysis on the model level
has been considered for the case of StateCharts [8, 7]
and Matlab/Simulink models [14]. Previous work also
includes analysis on the algorithm level for the case of
an MPEG decoder [1]. In the latter, knowledge about
the algorithm performed by the given code – namely
decoding an MPEG stream – and its possible input is
exploited in order to achieve better results for the esti-
mation of the WCET of the code. The WCET analysis
of Matlab/Simulink models presented by Kirner et al.
basically works by generating wcetC [13], a special form
of C with additional annotations suitable for WCET
analysis. These annotations include e.g. loop bounds
that can be easily derived from the Matlab/Simulink
specification. For each block of the Matlab/Simulink
model, the generated wcetC code is analysed by an ex-
isting WCET analysis tool. The results of the analysis
– namely the calculated worst-case execution times of
single blocks and tasks – are then propagated back into
the high-level representation of the model in the Mat-
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lab/Simulink environment. Thus, the main contribu-
tion of the approach is to integrate a WCET tool in the
overall environment of Matlab/Simulink using special
annotations in the generated code in order to provide
information about loop bounds and to propagate the
calculated WCET values back to the according parts in
the modelling environment. The analysis does however
not derive additional information about the behaviour
of the model itself.

The approach presented by Erpenbach in [8] works
on StateCharts [10]. It is similar to the concept de-
scribed above in that it also uses the code generated
for single states of the StateChart model as basis for
the WCET analysis on the model level. In addition,
information is compiled about the maximum number
of state transitions that can occur before the system
becomes stable again after the triggering of an exter-
nal event. The WCET of each possible state transi-
tion is derived by analysing the corresponding gener-
ated source code in isolation, using an existing WCET
analyser. All possible sequences of state transitions –
i.e. from the triggering of an external event to a sta-
ble state – are represented by an extended control flow
graph. The final WCET is calculated by finding the
longest path in this graph.

A key observation for the two approaches is that
they mix the low-level analysis, i.e. the analysis of con-
crete execution times, with the analysis on the model
level, by back-annotating these times into the corre-
sponding model parts. However, since the low-level
WCET analysis is performed on pieces of the gener-
ated code in isolation, the results of the overall WCET
calculation are less precise since global timing effects
reaching across the borders of these pieces cannot be
considered.

The main advantage of the approach presented here
is that it clearly separates the analysis of model be-
havior from the other WCET analysis phases. The
model analysis does not use or produce information
about execution times, but instead delivers informa-
tion on the worst-case execution count of certain parts
of the model. The analysis of concrete execution times
is the task of a subsequent low-level analysis. Thus, the
method presented here is independent from the imple-
mentation of the other WCET analysis phases.

2. Petri Net Analysis

The purpose of Petri net WCET analysis is to find
the longest possible execution time a given Petri net
needs to go from a defined start- to a defined end-
marking. The overall architecture of our Petri net
based WCET analysis is depicted in Figure 1. The
analysis – divided into the two phases reachability anal-

Annotated
Source Code

Petri Net

Reachability
Graph

Behaviour
Information

Reachability
Analysis

Behavioural
Analysis

Code
Generation

WCET
Tool

User
Input

Figure 1. Petri Net Analysis Architecture

ysis and behavioral analysis – compiles additional infor-
mation about the behavior of the net, which is handed
over to an existing WCET tool [4] in form of special an-
notations in the generated code, using the Flow Facts
language introduced in [3].

A detailed description of the reachability analysis
and behavioral analysis is given in [18]. In this paper,
we restrict ourselves to the description of the flow facts
generated from the results of the Petri net analysis.
The analysis derives the following information about
the given Petri net:

• The worst-case number of steps the net can make
until the defined end-state is reached

• For each transition, an upper bound on how often it
will fire at most during all steps

• For each step, the set of transitions that could fire
at that point in time

Here, a step is assumed to be the firing of exactly one
transition.

Note that the Petri net analysis does not make any
assumptions about the source-code generated from the
Petri net to be analysed. Particularly, no information
about execution times of single transitions is needed.
Dealing with timing and source-code is done much
more efficiently and precisely by the subsequently em-
ployed WCET tool. The only assumption that is made
about the implementation of the Petri net execution is
that it performs one transition firing per step, which is
a common execution paradigm for Petri nets. Further-
more, a clear mapping between the transitions of the
Petri net and their corresponding source code has to
be ensured. This is achieved by integrating the source-
code annotation into the code generation process as
shown in Figure 1.

2.1 Example

Figure 2 shows a simple Petri net, which is a small
part of a large net modelling the behavior of a Khepera
minirobot. The net receives its input by means of the
two input places param and nextState of transition In.
Then, depending on the values, one of the transitions
Reset, Active,Active1, Active2, Active3 computes the
new output values, which are then returned via the
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In

param

Reset Active Active2Active1 Active3

Out
OutBuf

State

Counter

nextState

Buf

Figure 2. Example Petri Net

while net is alive
  get enabled transitions
  if T1 is enabled
    fire T1
  if T2 is enabled
    fire T2
  ...
end while

Figure 3. Petri Net Code

output places of transition Out. The code generated
for the execution of the Petri net might look like as
sketched in Figure 3.

The reachability graph resulting from the given Petri
net is shown in Figure 4. As the first result, the Petri
net analysis returns that the net will take at most three
steps until the end-state is reached. Consequently, we
know that the while loop in Figure 3 will take at most
three iterations.

As the next result, we can see that each transition
of the Petri net can fire at most once during the
whole execution. Therefore, a flow fact of the form
Loop:[]:xT ≤ 1 is generated for each transition T ∈
{In,Reset, Active,Active1, Active2, Active3, Out},
stating that the corresponding basic block in the
generated code will be executed at most once during
all iterations (denoted by the ’[]’ brackets) of the
while loop (named Loop). For a detailed specification
of the Flow Fact language we refer to [6].

Furthermore, the Petri net analysis derives de-
tailed information about which transitions may fire
in each step. As can be seen in Figure 4, only
transition In can fire in the first step, transitions
Reset, Active,Active1, Active2, Active3 in the second
step, and only transition Out can fire in the third
step. This is reflected by the following generated flow
facts:

Figure 4. Reachability Graph

• Loop:<1>:xIn = 1

• Loop:<1>:xReset + xActive + xActive1 + xActive2 +
xActive3 + xOut = 0

• Loop:<2>:xReset + xActive + xActive1 + xActive2 +
xActive3 = 1

• Loop:<2>:xIn + xOut = 0

• Loop:<3>:xOut = 1

• Loop:<3>:xReset + xActive + xActive1 + xActive2 +
xActive3 + xIn = 0

The generated code was analysed with our WCET
tool prototype [4], assuming a NEC V850E as target
processor [2]. The tool performs the low-level analysis
and calculation as described in Section 1. The transi-
tion names in the above flow facts were manually re-
placed with the names of the according basic blocks in
the generated code. This mapping can currently not
be done automatically. However, as shown in Figure
1, annotating the source code is integrated in the code
generation process. Therefore, in the final implemen-
tation the mapping will also take place without user
interaction.

The results, together with the actual WCET of the
code are shown in Figure 5. First, the code was anal-
ysed without consideration of the generated flow facts
(column named ’no facts’). Only the mandatory up-
per bound for the number of loop iterations was given,
since otherwise a WCET analysis would not be possi-
ble. Without flow facts, the actual WCET (rightmost
column) was overestimated by about 100% (2425 ver-
sus 1177 cycles). When taking into account the flow
facts (column named ’with facts’), the WCET estima-
tion was 1744 cycles, which is significantly closer to the
actual WCET. This improvement is due to the fact that
the calculation phase can make less pessimistic assump-
tions about the possible execution paths of the code.
The results of the low-level analysis are not affected.
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Figure 5. Analysis Results
3. Conclusion

In this paper, a WCET analysis for Petri nets was
presented. Independently of the source-code generated
for a given Petri net, the analysis compiles information
about the behavior of the net. The gathered infor-
mation is then converted to a set of flow facts, which
are exploited by a subsequently employed source-code
based WCET tool. Using this additional information,
a more precise WCET estimation is achieved than by
just analysing the generated source code alone. Infor-
mation from the model (i.e. Petri net) level is therefore
not lost on the next lower level of the generated source-
code.

From the example in Section 2.1, it can be seen that
the flow facts derived by the Petri net analysis lead to
a much tighter prediction of the WCET, even for the
relatively simple net presented in the example.

A basic feature of the presented approach is the
strict separation from other WCET analysis phases,
thereby consequently following our overall approach for
a modular WCET tool architecture [4, 6]. This modu-
lar approach makes it easy to e.g. replace an algorithm
for a certain analysis phase with a more efficient one.

Although the presented approach is based on Petri
nets, the basic proposal of separating the model analy-
sis from the other WCET analysis phases could also be
applied for other modelling paradigms, like e.g. State-
Charts or Matlab/Simulink models.
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Abstract

Traditional worst-case execution time (WCET)
analysis methods based on static program analysis re-
quire a precise timing model of a target processor. The
construction of such a timing model is expensive and
time consuming.

In this paper we present a hybrid WCET analy-
sis framework using runtime measurements together
with static program analysis. The novel aspect of
this framework is that it uses automatic generation of
test data to derive the instruction timing of code se-
quences. Program paths are decomposed into subpaths
to make execution-time analysis based on runtime mea-
surements feasible.

1 Introduction

The current situation on WCET analysis is not sat-
isfying, because widely used industrial-strength WCET
analysis tools are still missing [7].

One challenge of WCET analysis is the variable in-
struction timing of processors. Complex processors
have performance increasing features like caches or
pipelines that maintain an internal state that depends
on the execution history. Precisely modeling these fea-
tures is problematic as on the one side it becomes quite
complex and on the other side, exact information of
the previous instruction stream cannot be calculated
in general. A further problem is that the vendor’s doc-
umentation of a processor’s instruction timing is often

∗This work has been supported by the FIT-IT research
project “Model-Based Development of distributed Embedded
Control Systems (MoDECS)”.

a very rough approximation of reality. Problems aris-
ing on WCET analysis using static hardware modeling
are described in [5].

A further problem of static WCET analysis is that
it is very time consuming to model features of com-
plex processors and furthermore, it has to be done for
each processor for which WCET analysis is required.
The alternative is to use measurement-based WCET
analysis. However, simply performing exhaustive end-
to-end measurements is not feasible for real-size pro-
grams. Therefore, measurement-based WCET analysis
is used in combination with static analysis techniques.
Approaches to hybrid WCET analysis do already ex-
ist [4, 1] but research in this area is just at the be-
ginning. The path analysis problem of static WCET
analysis is currently shifted to the problem of generat-
ing test data for measurement-based approaches. The
current approaches require the user to provide test data
or simply use random testing. In addition to runtime
measurements, Ernst and Ye propose to switch back
to traditional static WCET analysis techniques in case
that the test data provided by the user did not cover
all program blocks [4].

In this paper we present a measurement-based
WCET analysis framework with automatic generation
of test data. The problem of automatically generating
the test data is tackled by standard program analysis
techniques like model checking [2, 9] or constraint-based
analysis [10]. The approach is based on decomposition
of program paths into subpaths of program segments.
A static WCET calculation method is used after the in-
struction timing of subpaths of program segments has
been assessed by runtime measurements.

The paper is structured as follows: Section 2 gives a
discussion about demands from industry for the use of
WCET analysis tools. The measurement-based WCET
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analysis framework is described in Section 3. Section 4
discusses technical aspects of the framework. Finally,
Section 5 concludes this paper.

2 Requirements for an Industrial-
Strength WCET Analysis Tool

Before describing our new WCET analysis method,
we give a motivation for its development by describing
the industrial needs on a WCET analysis method. Pre-
viously proposed WCET analysis methods often only
demonstrate several analysis capabilities without show-
ing their applicability in an industrial environment. To
be more precise, the following list gives demands for a
WCET analysis tool raised by people working in indus-
try. This list also contains aspects regarding the use
of modeling tools like Matlab/Simulink, as they are
increasingly used in industrial software development.

1. The tool must work with minimal user interac-
tion. In particular, it cannot be expected that
users of the tool provide manual code annotations
about possible and impossible execution paths of
the code. For example, when using a modeling
tool like Matlab/Simulink, the WCET analysis
tool must be able to extract this information by
analyzing the code generated by the code genera-
tor of Matlab/Simulink.

2. The method must integrate into the development
tool chain of customers without modification of
tools from the tool chain (e.g., components of
Matlab/Simulink, code generator, C compiler).

However, it may be possible to use the tool chain
in a restrictive manner to enable the application of
a certain WCET analysis method. For example,
the available application development features of
a modeling tool like Matlab/Simulink may be re-
stricted or certain compiler optimizations may be
deactivated.

3. The method must be easily adaptable to new re-
leases of software components of the tool chain.
Expensive adaptations of the WCET method to
new releases of software components have to be
avoided.

The situation that a development tool of the tool
chain explicitly supports a specific WCET analysis
methods is currently very rare. For example, it
can be possible that a compiler provides certain
support to perform WCET analysis [6]. But such
tools are typically in a prototype state without
commercial support. Therefore, the best current

strategy for developing a WCET analysis tool is
to adapt to existing COTS software development
tools.

4. The WCET analysis method must be easy to
retarget to different hardware settings, i.e., the
implementation or configuration effort must be
small enough for an economic useability of the
WCET analysis method. Depending on the con-
crete WCET analysis method, there are in prin-
ciple two different possibilities for retargetability.
First, it can be required to order further imple-
mentation effort from the WCET tool provider.
Second, it may be possible that the tool is flex-
ible enough so that the customer can adapt the
tool by himself. The latter approach is applicable
for adequate measurement-based WCET analysis
methods.

The adaption of a WCET analysis method to new
hardware configurations can be kept easy when the
WCET analysis method is based on measurements on
the real hardware. Because in this case the WCET
analysis method does not have to provide a so-called
exec-time model, which describes the execution times
for given code sequences. In measurement-based ap-
proaches the exec-time model is substituted by mea-
surements on the real target hardware. There exist also
measurement-based WCET analysis approaches that
use hardware simulation instead of measurements on
the real hardware [3, 4]. Such approaches rely on the
existence of a cycle-accurate hardware simulator which
is often not available.

In the following section a new WCET analysis
method is presented that is able to fulfill the require-
ments from industry as given above. This WCET anal-
ysis method will be applied to program code automat-
ically generated from Matlab/Simulink models be-
cause there is additional information available about
the structure of the generated code.

3 The WCET Analysis Framework

A new WCET analysis approach is needed to ful-
fill the requirements from industry listed in Section 2.
Traditional methods based only on static code analysis
are not flexible enough to retarget them with reason-
able effort to new target processors. Though often used
in practice, end-to-end runtime measurements are not
an alternative, due to the exploding number of possible
execution paths in real-size programs.

The WCET analysis method we describe in this pa-
per is a hybrid approach of static and dynamic analy-
sis methods. The dynamic part is performed by run-
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time measurements on the real hardware platform. If
available for the particular platform, the measurements
could be also performed by a cycle-accurate simulator.

Test Data

Runtime Measurement

Measured Exec−Times

WCET Calculation

Test Data Generation

aux. Path Information

WCET Bound

Test Data Specification

Source Code

Object Code

Compiler (COTS)

Static Code Analysis

Figure 1. Components of the WCET Analysis
Framework

The basic components of our WCET analysis frame-
work are shown in Figure 1. The framework takes the
program as input in both the source code and the ob-
ject representation. The translation from source code
to object code is done by a COTS compiler.

The static code analysis phase analyzes the source
code with the goal to derive information about which
test data should be generated for the runtime measure-
ment and to derive path information that will be used
by the final WCET calculation step:

Runtime Measurement is used to derive the instruc-
tion timing of paths through program segments. A
program segment is a subgraph of a program’s control
flow graph with a unique start node such that only the
start node has incoming edges from external nodes and
all outgoing edges lead to the same external node.

The measurement of a specific execution path is en-
forced by generating input data that enforce the execu-
tion of this path. A coverage criterion has to be defined
that describes the required runtime measurements. As
already discussed, exhaustive execution path measure-
ments of programs are not possible for real-size pro-
grams.

Having defined a coverage criterion, semantic code
analysis is used to calculate the required test data.
This analysis does not have to be implemented from
scratch. Instead, the idea is to transform the program

into a formal description of its program semantics that
can be directly used by an existing analysis tool to
generate the needed test data. The concrete analysis
technique for test data generation has to be selected
after evaluating its scalability regarding program size.
Typical techniques that are interesting for this task are
model checking [2, 9] or constraint-based analysis [10].
Program slicing [11] can be used to reduce the semantic
models of the program by selecting only those parts of
the code that influence the execution of a certain execu-
tion paths. Stepwise test data calculation can be used
to further reduce the number of required test data. The
idea is to calculate which further code locations will be
also executed once input data for a specific code loca-
tion have been selected. The measurements are done
using a highly retargetable measurement framework.

To keep the test suite small, a hybrid approach con-
sisting of static and dynamic WCET analysis is used.
The WCET Calculation stage uses the execution time
of each feasible path through program segments to-
gether with additional path information to calculate
the WCET bound. The relevant path information in-
cludes iteration bounds for each loop, also called loop
bounds. Depending on the code complexity, such loop
bounds may be calculated automatically. If a loop
bound cannot be calculated automatically, additional
information has to be provided by the user. When
analyzing code automatically generated from model-
ing tools like Matlab/Simulink, additional knowledge
about the structure of the code is known. As a re-
sult, most of the loop bounds in the generated code
are typically hard coded and therefore can be derived
automatically.

The WCET Calculation based on implicit path enu-
meration is done after performing the runtime mea-
surements of the program segments [8].

The challenges of this WCET analysis framework
are the automatic generation of test data and the ex-
traction of control flow information from the program
code. Both tasks cannot be done fully automatically
for arbitrary program code. Therefore, user annota-
tions respective restrictions on the code structure have
to be used.

3.1 Decomposition of Execution Traces

To keep the number of required test data for runtime
measurements within a feasible quantity, it is necessary
to decompose the program paths into smaller parts and
combine the obtained results to get the overall WCET
bound. The choice of the right length of program sub-
paths for runtime measurement is based on a trade-off
between complexity and precision. Complexity is given
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by the number of required runtime measurements. In
case of complex processors having an internal state that
influences the execution time of instructions, measure-
ment precision is better when measuring longer sub-
paths of the program.

One important aspect for the decomposition of exe-
cution traces is the demanded coverage criteria for the
measurements. The coverage criteria will be defined at
the level of program segments. For using this frame-
work to obtain safe WCET bounds on a given hard-
ware platform it has to analyzed what is the possible
overestimation for particular coverage criteria.

4 Discussion

The design criteria of the measurement-based
WCET analysis framework described in Section 3
are motivated by the requirements for an industrial-
strength WCET analysis tool as summarized in Sec-
tion 2. The decision of performing the program anal-
ysis at source code level is due to the requirement of
high retargetability of the framework to new hardware
platforms. However, for certain application domains
it may be more important to have the analysis done
after the code compilation at object code level. For
example, it could be required to verify the path cov-
erage calculated for source code level at object code
level in case of critical code optimizations done by the
compiler. In this case, the concept of the measurement-
based WCET analysis using on automatic generation
of test data is the same, but the implementation would
be more hardware-dependent as it is also required to
have a parser for the object code.

Technical realizations like inserting instrumentation
code to measure the execution time of program seg-
ments are not discussed in this paper.

5 Summary and Conclusion

This paper describes a novel WCET analysis frame-
work based on runtime measurements. The require-
ments for the framework are high portability to new
target processors and an easy integration into COTS
software development tool chains. We described a hy-
brid approach using static and dynamic timing analysis
techniques. The central idea is to decompose the pro-
gram paths into smaller subpaths and use formal meth-
ods to automatically derive the required test data to
measure the execution time of the subpaths. Programs
are structured into program segments to decompose
program paths into smaller subpaths. After measuring
the execution time of subpaths, a static WCET calcu-
lation is used to obtain the WCET bound.

Future work will focus on the assessment and selec-
tion of concrete formal program analysis techniques to
generate the test data.
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