

ISSN 1404-3041

ISRN MDH-MRTC-116/2003-1-SE

3rd International Workshop on
Worst-Case Execution Time
Analysis
(WCET’2003)

Polytechnic Institute of Porto, Portugal, July 1, 2003

Jan Gustafsson (Workshop Chair)

Department of Computer Science and Engineering
Mälardalen University, Box 883, 721 23 Västerås,
SWEDEN

 2003 by the authors.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission by the authors.

WCET’2003

3rd International Workshop on Worst-Case
Execution Time Analysis

 (Satellite Event to ECRTS 2003)

Polytechnic Institute of Porto, Portugal
July 1, 2003

Page 3 / 104

Page 4 / 104

Message from the Workshop Chair

Welcome to the 3rd International Workshop on Worst-Case Execution Time Analysis
(WCET’2003). The workshop a satellite event to the 15th Euromicro Conference on Real-
Time Systems (ECRTS 2003). It was held in Porto, Portugal, July 1, 2003. This is the third in

a series of successful events. The first two were held in Delft, Holland, and Vienna, Austria,
respectively.

The goal of the workshop is to bring together people from academia, tool vendors and users in
industry and that are interested in all aspects of timing analysis for real-time systems. The
workshop will provide a relaxed forum to present and discuss new ideas, new research

directions and to review current trends in this area. The workshop will be based on short
presentations that should encourage discussion by the attendees.

The topics of the workshop include any issue related to timing analysis, in particular:

* Flow analysis for WCET
* Low-level timing analysis

* Calculation methods for WCET
* Timing analysis through measurement
* Modeling and analysis of processor features

* Probabilistic analysis techniques
* Integration of WCET and schedulability analysis
* Evaluation and case studies

* Tools for timing analysis
* Industry experience reports

Statements which are innovative, controversial, or that present new approaches are specially
sought.

I would like to thank all the participants, panelists, authors, reviewers and session
chairpersons that made this events a successful one. Special thanks to Eduardo Tovar of
ECRTS, who was responsible for the local arrangements.

Dr. Jan Gustafsson
Mälardalen University, Västerås, Sweden

Page 5 / 104

FINAL PROGRAM
3rd Intl WORKSHOP ON WORST-CASE EXECUTION TIME (WCET) ANALYSIS

July 1, 2003
Building E ("Edificio E")

School of Engineering of the Polytechnic Institute of Porto (ISEP)
Rua Dr. Antonio Bernardino de Almeida, 431

4200-072 Porto, Portugal

PART I: WCET tools (chair: Jan Gustafsson, Mälardalen University, Västerås, Sweden)
• Challenges in Calculating the WCET of a Complex On-board Satellite Application

M. Rodriguez, N. Silva, J. Estives, L. Henriques and D. Costa, Critical Software SA,
Coimbra, Portugal.

• Convenient User Annotations for a WCET Tool
C. Ferdinand, R. Heckmann, H. Theiling, AbsInt Angewandte Informatik GmbH,
Saarbrücken, Germany, and R. Wilhelm, Universität des Saarlandes, Saarbrücken,

Germany.
• pWCET, a Tool for Probabilistic WCET Analysis of Real-Time Systems

G. Bernat, A. Colin, S. Petters. University of York, United Kingdom.

• Discussion.

PANEL DISCUSSION: "Requirements of WCET tools". Jean Souyris, Airbus
Toulouse, France, Jan Lindblad, ENEA OSE, Sweden. Moderator Reinhard Wilhelm,
Universität des Saarlandes, Saarbrücken, Germany.

PART II: WCET calculation methods (chair: Peter Puschner, Technische Universität
Wien, Austria)
• On the Design of an Extensible Platform for Flow Analysis of Java using Abstract

Interpretation
P. Guedes, Cidade Universitária, Recife, Brazil.

• Elimination of Unstructured Loops in Flow Analysis

C. Sandberg, Mälardalen University, Västerås, Sweden.
• A Survey of Methods to Improve ILP-based WCET Analysis

Xianfeng Li, National University of Singapore, Singapore.

• Discussion of Misconceptions about WCET Analysis
R. Kirner and P. Puschner, Technische Universität Wien, Austria.

• Discussion.

PART III: WCET calculation methods, cont. (chair: Reinhard Wilhelm, Universität des
Saarlandes, Saarbrücken, Germany)
• Compiler Support for WCET Analysis: a Wish List

G. Bernat, University of York, United Kingdom and N. Holsti, Space Systems Finland,
Finland.

Page 6 / 104

• Impact of Automatic Gain Time Identification on Tree-Based Static WCET Analysis
Mathieu Avila, Maxime Glaizot, Isabelle Puaut, IRISA, Campus de Beaulieu, Rennes
Cedex, France.

• Comparison of Trace Generation Methods for Measurement Based WCET Analysis
S. Petters, University of York, United Kingdom.

• Evaluating Reasons for Unexpected Results When Measuring Execution Time of Code

V. Lorente, A. Espinosa, A. Terrasa, A. Garcia and A. Crespo, Universitat Politecnica de
Valencia, Valencia, Spain.

• Discussion.

PART IV: Low-level analysis (chair: Guillem Bernat, University of York, United
Kingdom)
• Towards Designing WCET-Predictable Processors

Christine Rochange, Pascal Sainrat IRIT - UPS, Toulouse, France.
• A Flexible Tradeoff between Code Size and WCET Employing Dual Instruction Set

Processors
Sheayun Lee, Jaejin Lee, Chang Yun Park, and Sang Lyul Min, Seoul National
University, Seoul, Korea.

PART V: New methods for analyzing WCET (chair: Guillem Bernat)
• Aspect-Level WCET Analyzer: A Tool for Automated WCET Analysis of the Real-Time

Software Composed Using Aspect and Components
A. Tesanovic, J. Hansson and P. Uhlin, Linköping University, Linköping, Sweden and D.
Nyström and C. Norström, Mälardalen University, Västerås, Sweden.

• Fully Automatic, Parametric Worst-Case Execution Time Analysis
B. Lisper, Mälardalen University, Västerås, Sweden.

• Discussion for the two last sessions.

Page 7 / 104

Contents

PART I: WCET tools

Challenges in Calculating the WCET of a Complex On-board Satellite Application
M. Rodriguez, N. Silva, J. Estives, L. Henriques and D. Costa, Critical Software SA,
Coimbra, Portugal... 11

Convenient User Annotations for a WCET Tool
C. Ferdinand, R. Heckmann, H. Theiling, AbsInt Angewandte Informatik GmbH,
Saarbrücken, Germany, and R. Wilhelm, Universität des Saarlandes, Saarbrücken, Germany
.. 17

pWCET, a Tool for Probabilistic WCET Analysis of Real-Time Systems
G. Bernat, A. Colin, S. Petters. University of York, United Kingdom 21

PANEL DISCUSSION: Requirements of WCET tools (panelist statements)

Industrial Requirements for WCET Tools - Answers to the ARTIST Questionnaire
Reinhard Wilhelm, Universität des Saarlandes .. 39

Requirements of WCET tools
Jan Lindblad, ENEA OSE, Sweden.. 45

PART II: WCET calculation methods

On the Design of an Extensible Platform for Flow Analysis of Java using Abstract
Interpretation

P. Guedes, Cidade Universitária, Recife, Brazil... 47

Elimination of Unstructured Loops in Flow Analysis
C. Sandberg, Mälardalen University, Västerås, Sweden.. 51

A Survey of Methods to Improve ILP-based WCET Analysis
Xianfeng Li, National University of Singapore, Singapore ... 57

Discussion of Misconceptions about WCET Analysis

R. Kirner and P. Puschner, Technische Universität Wien, Austria 61

PART III: WCET calculation methods, cont.

Compiler Support for WCET Analysis: a Wish List
G. Bernat, University of York, United Kingdom and N. Holsti, Space Systems Finland,
Finland .. 65

Page 8 / 104

Impact of Automatic Gain Time Identification on Tree-Based Static WCET Analysis
Mathieu Avila, Maxime Glaizot, Isabelle Puaut, IRISA, Campus de Beaulieu, Rennes Cedex,
France ... 71

Comparison of Trace Generation Methods for Measurement Based WCET Analysis
S. Petters, University of York, United Kingdom.. 75

Evaluating Reasons for Unexpected Results When Measuring Execution Time of Code

V. Lorente, A. Espinosa, A. Terrasa, A. Garcia and A. Crespo, Universitat Politecnica de
Valencia, Valencia, Spain... 79

PART IV: Low-level analysis

Towards Designing WCET-Predictable Processors
Christine Rochange, Pascal Sainrat IRIT - UPS, Toulouse, France................................. 87

A Flexible Tradeoff between Code Size and WCET Employing Dual Instruction Set
Processors
Sheayun Lee, Jaejin Lee, Chang Yun Park, and Sang Lyul Min, Seoul National University,

Seoul, Korea ... 91

PART V: New methods for analyzing WCET

Aspect-Level WCET Analyzer: A Tool for Automated WCET Analysis of the Real-Time
Software Composed Using Aspect and Components
A. Tesanovic, J. Hansson and P. Uhlin, Linköping University, Linköping, Sweden and D.

Nyström and C. Norström, Mälardalen University, Västerås, Sweden............................ 95

Fully Automatic, Parametric Worst-Case Execution Time Analysis
B. Lisper, Mälardalen University, Västerås, Sweden... 99

Page 9 / 104

Page 10 / 104

Challenges in Calculating the WCET of a Complex On-board Satellite Application

Manuel Rodríguez1, Nuno Silva1, João Esteves1, Luis Henriques1, Diamantino Costa1, Niklas Holsti2, Kjeld Hjortnaes3
1Critical Software SA

Banhos Secos EN1, 3040-032 Coimbra, Portugal
{mrodriguez, nsilva, jesteves, lhenriques, dcosta}@criticalsoftware.com

2Space Systems Finland Ltd
Kappelitie 6, 02200 Espoo, Finland

holsti@ssf.fi

3ESA/ESTEC
Noordwijk, Netherlands
kjeld.hjortnaes@esa.int

Abstract

Calculating the WCET of mission-critical satellite
applications is a challenging issue. The European Space
Agency is currently undertaking the CryoSat mission,
consisting of a radar altimetry satellite to be launched in
2005. This paper describes the challenges and the first
experimental results of calculating the WCET of the
Control and Data Management Unit (CDMU) subsystem
of the satellite. This subsystem constitutes the central
control unit of all the on-board data handling, as well as
the attitude and orbit control system of the satellite, and
must guarantee predictable behavior.

1. Introduction

CryoSat is the first satellite of the Living Planet
Programme that the European Space Agency (ESA)
undertakes in the framework of the Earth Explorer
Opportunity Missions (see [1]). It is a three-year radar
altimetry mission, scheduled for launch in 2004/2005,
dedicated to the observation of the polar regions,
particularly the variations in the thickness of the Earth’s
continental ice sheets and marine ice cover. Its primary
objective is to study possible Earth's climate variability
and trends, and to predict the thinning of arctic ice due to
the global warming.

One of the most important on-board software
applications of the CryoSat satellite is the Control and
Data Management Unit (CDMU). This application
constitutes the central control unit for all the on-board
data handling (DH) and the attitude and orbit control
system (AOCS) of the satellite. Astrium GmbH
(http://www.astrium-space.com) is the prime contractor
for the CryoSat mission, and Critical Software
(http://www.criticalsoftware.com) is the prime contractor
of the Independent Software Verification & Validation
activities (ISVV, see [2]), on which the CDMU
application is being screened. The ISVV activities
encompass a number of static and dynamic analysis
techniques (e.g., robustness and stress testing, traceability
matrices, code inspections, software failure mode effects

and criticality analysis, schedulability analysis, etc.) that
are applied by personnel not involved in the development
process of the target product to ensure complete
independency.

As part of the ISVV activities, schedulability analysis
and WCET calculation are also to be performed. The
selected tool for the WCET calculation is Bound-T [3],
which is based on static code analysis techniques [4]. This
paper describes the challenges of calculating the WCET
of the CDMU application using this tool.

The structure of the paper is as follows. In Section 2,
we present the CDMU onboard software application and
the computational model used by the scheduler. The
Bound-T tool is described in Section 3. Section 4 provides
experimental results and describes the challenges of
performing WCET analysis on the CDMU application.
Section 5 concludes the paper.

2. The CDMU onboard software application
of ESA’s CryoSat satellite

The CryoSat’s Control and Data Management Unit
(CDMU) is the central control unit of all onboard data
handling and of the attitude and orbit control system. Data
handling functions are mainly constituted of command
distribution, telemetry acquisition and timing facilities
during all phases of the mission. Furthermore, the CDMU
application performs monitoring functions and, depending
on detected failures, provides reconfiguration and safe
redundancy switchover capabilities.

The scheduler of the CDMU implements a cyclic
scheduling policy. In a cyclic scheduling, the tasks are
dispatched at predefined intervals. The CDMU scheduler
implements a major cycle of 1 second that is divided into
10 minor cycles (called slots) of 100 milliseconds each.
At each slot, the scheduler dispatches a predefined subset
of cyclic tasks according to a task table, which is repeated
every major cycle.

The CDMU onboard software consists of 24 cyclic
tasks, 12 sporadic tasks and a number of background
tasks. The cyclic tasks are allocated periods and offsets
multiple of 100 ms (i.e., one slot), and are mainly

Page 11 / 104

responsible for managing telemetry and telecomands,
onboard control procedures, housekeeping, and the
mission timeline. The sporadic tasks can preempt the
cyclic tasks at any time, and are associated both to
external events (e.g., the beginning of a slot or the arrival
of a telecomand) and to internal error conditions (e.g.,
single bit-flip error detection). Background tasks are
executed during spare time intervals (usually, at the end of
a slot), and mainly perform maintenance activities (e.g.,
memory scrubbing).

The CDMU application is implemented in Ada 95, and
the binary code is generated with the XGC Ada compiler.
Neither protected objects nor the Ada tasking model are
used (all the tasks are implemented in the form of
procedures). The target processor used to run the
application is the ERC32/SPARC V.7, running at a clock
frequency of 24Mhz. Caches, pipelines and branch
prediction units are not used.

3. The WCET tool: Bound-T

There are a number of methods developed for the
prediction of the WCET of a program. These methods can
be grouped into two main categories, namely, dynamic
methods (e.g., testing and simulation) and static methods
(e.g., static code analysis). The advantage of static
methods is that they do not require input test sets to be
defined in order to find the longest execution paths within
the program code. Static code analysis [4] has become
very popular and has been the object of study of many
works in both academy and industry (e.g., see [5]), giving
rise to a large variety of methods and supporting tools.

Bound-T [3], from Space Systems Finland
(http://www.ssf.fi), is the tool selected by Critical/ESA to
perform the WCET analysis of the CDMU onboard
software application. Bound-T features static code
analysis techniques for estimating the WCET of real-time
programs based on their executable binary COFF or ELF
code [6]. Apart from the ERC32/SPARC V7 processor
targeted by the CDMU application, Bound-T also
supports the Intel 8051 and the ADSP21020 processor
families. Two of the most outstanding features of the tool
are its arithmetic and assertion facilities. The arithmetic
facility, based on the non-commercial Omega Calculator
constraint-solving tool [7], caters for automatically
bounding counter-type loops. The assertion facility
implements an advanced language that allows the user to
manually write assertions and bound those loops that
cannot be analyzed fully automatically by the tool.

For more information about the features provided by
Bound-T, refer to [3].

4. Challenges and experimental results

The main challenges raised by the analysis of the
WCET of the CDMU application are related to the
complexity of its loops constructions and to the XGC Ada
compiler optimizations. As a consequence:
1. These issues lead to situations unexpected by

Bound-T, keeping it from analyzing the application in
a fully automatic way.

2. The arithmetic facility of Bound-T systematically
blocks (i.e., it runs for too long) when trying to
automatically bound the loops of the CDMU
application. The arithmetic facility cannot thus be
used, and all the loops have to be manually bounded,
what can be very time consuming.
In the sequel, we first describe the problems

encountered during the analysis of the WCET of the
CDMU application’s tasks. We then provide experimental
results that are compared to the WCET estimations made
at early development stages of the application.

4.1. Challenges

The analysis of the WCET of the CDMU code raised
many problems that were not expected by the Bound-T
tool, and that kept it from analyzing the application in a
fully automatic way. The main problems encountered are
reported in Figure 1.

1. Use of “sentinels” in the loops: A loop terminates

only when a particular "sentinel" value is found in an
array, rather than when the loop-counter reaches a
limit value.

2. Complex parameter-dependent loops: The maximum
number of iterations of a loop depends on the values of
the input parameters. These dependencies in the
CryoSat CDMU code are clearly too complex or
extensive for the arithmetic facility in the current
Bound-T.

3. Complex loop-arithmetic: Complex conditions, usually
based on logical instructions “and” and “bleu” (branch
if less or equal, unsigned), appearing in the loop-
counter computations or in the loop-termination of the
assembly code.

4. Not explicit loops: Loops appearing in the assembly
code but not in the source code, specially caused by
the use of array assignment constructs.

5. Calls to error-handling code: Ada run-time checks
inserted by the compiler, triggering global error-
handlers (e.g., exception Constraint_Error) that do not
return to the call-site.

6. Irreducible control-flow: The longest control-flow
path of a function cannot be found because of a
compiler optimization or a manual coding of assembly
routines leading to poorly structured loops.

7. Recursive calls: Recursive call sequences impairing
the WCET calculation of the complete set of tasks.

Figure 1. Problems encountered

Page 12 / 104

The assertion facility of Bound-T can be used in order
to manually bound the unbounded loops and procedures
resulting from these problems. Note that the assertions are
not inserted in the application code, but are written as
separated files interpreted by Bound-T. Let P be an Ada
procedure, and N a natural number. Examples of typical
assertions are the following:
• “subprogram “P” loop repeats N times;

end loop” , which means that the single loop
contained by procedure P does not repeat for more
than N times.

• “subprogram “P” time N cycles” , which means
that the execution time of procedure P is less than or
equal to N clock cycles.
Writing assertions is a challenging issue because the

user is responsible for finding bounds for the number of
iterations of loops and for the execution time of
procedures (i.e., value N of the previous examples). In
particular, concerning the problems reported in Figure 1,
the challenges raised are the following:
• For cases 1 to 4, the challenge consists in being able to

understand the behavior of the CDMU application and
find the maximum number of iterations of the
unbounded loops. Bounds for loops in cases 1 to 3 can
be found by inspecting the Ada source code. The effort
required for this depends on the complexity of the Ada
code related to the loops, and requires understanding
of the control flow, data flow, and specific mission
requirements. Bounding loops in case 4 (i.e., not
explicit loops) requires also analyzing the assembly
code of the application. It adds an additional
complexity, since it might not be feasible to actually
isolate the Ada instructions of the source code that
lead to such assembly loops. It is worth noting that
some of the unbounded loops caused by these
problems might be automatically bounded by the
arithmetic facility of Bound-T. Since the arithmetic
facility cannot be used, these and all the other loops of
the application have to be manually bounded.

• For cases 5 to 7, the challenge consists in finding a
bound for the execution time of the corresponding
procedures (i.e., the error-handlers, the irreducible
functions and the recursive functions). Another
challenging issue for case 5 (i.e., calls to error-
handling code) consists in making assumptions about
the maximum arrival rate of failures, as long as the
behavior of the application in presence of faults is to
be considered. In general, finding time bounds for
cases 5 to 7 can be assisted by the use of techniques
other than static code analysis (e.g., see [8]).
In the sequel, we analyze in more detail cases 4 to 7.
Not explicit loops
In some cases, the XGC Ada compiler generates loops

that cannot be identified in the source code of the

application. It usually concerns the compilation of array
assignments constructs, as the one presented in Figure 2.
...
Array_A(0..Foo) := Array_B(6..Bar);
...

Figure 2. Ada array assignment instruction

Indeed, two loops might be generated in the assembly
code for the single array assignment of Figure 2. It usually
occurs when the compiler cannot guarantee that the
memory addresses (or slice) allocated to the target array
are different from the slice allocated to the source array.
In such a case, the compiler first copies the source array
into a temporary location, and then copies the temporary
location into the target array.

Apart from array assignments, conditional branches
(e.g., if-else branches) appearing in the assembly code
might be arranged by the compiler in a different order as
they appear in the Ada sources. Also, the XGC Ada
compiler might generate a huge amount of extra
conditional branches for constraint verification purposes.
This greatly increases the complexity of the resulting
assembly code.

As we explained, the existence of not explicit loops
constraints the user to inspect and understand the
assembly code, so as to find the maximum number of
iterations of the unbounded loops and write the
corresponding assertions. This can be very time
consuming, as it requires analyzing a large amount of
assembly code, and taking into account the specific
aspects of the ERC32 architecture. Indeed, some zones in
the CDMU application code make a great use of arrays
assignments. These array assignments usually occur
within other loops or inside conditional structures. Since
the compiler might rearrange loops in the assembly code,
manually finding bounds can thus become even more
difficult.

Calls to error-handling code
This problem is related to run-time checks inserted by

the compiler, which trigger global error-handlers not
returning to the call-site. More precisely, the code
generated for some Ada exceptions contains jumps to
addresses outside the text segment.

The XGC Ada compiler is the responsible for most of
the calls to exception routines appearing in the assembly
code. This is for instance the case of the Constraint_Error
Ada exception, for which the compiler generates a
function labeled “__raise_constraint_error” , whose
implementation is shown in Figure 3.

<__raise_constraint_error>:
02096070: 91 d0 20 05 ta 5
02096074: 81 c3 e0 08 retl
02096078: 01 00 00 00 nop

Figure 3. Assembly code of the Contraint_Error Ada exception

Page 13 / 104

Instruction at line 0x02096070 (trap 5) is interpreted
by Bound-T as a jump outside the text segment
boundaries. The reason is that the information contained
in the vector trap is loaded at runtime, and Bound-T
cannot keep track of it during static analysis. Static
analysis is thus stopped at this point.

As long as the behavior of the application in presence
of faults is not to be considered during static analysis, this
issue does not represent a significant problem. Indeed, in
practice, whenever an exception is raised, the nominal
control flow is broken and the CDMU application is
restarted. Two workarounds can be envisaged:
(i) asserting the execution time of the exception handler
with a non significant value (e.g., “subprogram address
“02096070” time 0 cycles;”), or (ii) asserting that no
calls to the error-handling subprogram are executed (e.g.,
“all calls to address “020976070” repeat 0

times;”). It allows Bound-T to proceed calculating the
WCET of the application.

Irreducible control-flow
We observed that this problem appeared whenever the

call graph contains a jump to a mathematical function in a
library responsible for calculating the integer division
(e.g., calls to .div). These functions are implemented in
libraries external to the CDMU application.

The solution consists thus in measuring and asserting
the execution time of every library routine leading to an
irreducible control flow. For instance, concerning the .div
routine, the following assertion can be used: “subprogram
".div" time N cycles;” , where N would correspond to
the estimated execution time (expressed in cycles) of the
function.

Recursive calls
A recursion involving two functions was identified in

the code (the depth of this recursion is 2). This inhibits the
WCET calculation in almost all the tasks because
Bound-T cannot analyze recursion.

A workaround consists in calculating separately the
WCET of each function responsible for the recursion. For
instance, consider assertion of Figure 4, where “A” and
“B” are the functions responsible for the recursion:

subprogram "A" time 0 cycles;
subprogram "B" call to "A" time 0 cycles; end
call;

Figure 4. Workaround to calculate the WCET of recursive function B

Assertion of Figure 4 allows automatically calculating
with Bound-T the WCET of function “B”. A similar
assertion can be written to calculate the WCET of
function “A”. Therefore, when the recursion depth is
known, WCET bounds for the functions involved in the
recursion (e.g., “A” and “B”) can be manually computed
via similar assertions, omitting thus the recursion.

4.2. Experimental results

Due to the difficulties encountered while calculating
the WCET of the CDMU application with the Bound-T
tool, we were not able to obtain definite results yet.
Indeed, Bound-T is currently being updated, and some
modifications are being performed in the compilation
options of the CDMU application.

The preliminary results we obtained are based on
assumptions about the execution time of some functions of
the CDMU application, specially those functions
containing not explicit loops (see Section 4.1). These
assumptions were not validated yet. Note also that since
many of the asserted functions are common to various
tasks, inaccuracies in assumptions are propagated among
tasks.

As an example, let us present results concerning task
Mil_Bus_Manager (Table 1). This task manages the bus
that connects the different satellite payloads, and is the
largest and most complex task of the CDMU application.

Table 1. WCET calculation results

Task WCET given by
Bound-T (ms)

WCET reported in
design documents (ms)

Mil_Bus_Manager 15.79 20

Table 1 reports two different values: the WCET

estimated by Bound-T, and the WCET reported in the
design documents of the CDMU application. The latter
value is mainly based on in-service history information of
previous missions of similar applications. As shown in
Table 1, the WCET given by Bound-T (about 16 ms) was
slightly under the value reported in the design documents
(20 ms).

5. Conclusion

Calculating the WCET of mission critical satellite
applications is a challenging issue. The Control and Data
Management Unit (CDMU) application of the ESA’s
CryoSat satellite is responsible for all the data exchanged
between the satellite and the ground (e.g., telemetry data
containing measurements and telecommands containing
satellite commands). It is a large and complex satellite
application using the XGC Ada compiler and running on
an ERC32 architecture-based microprocessor, whose tasks
must guarantee predictable worst case execution times.

In the framework of the Independent Software
Verification and Validation (ISVV) program promoted by
ESA, Critical Software SA is performing (among other
testing activities) the WCET analysis of the CDMU
application. The tool chosen by ESA for this activity is
Bound-T, from Space Systems Finland, based on static
code analysis.

Page 14 / 104

The work presented in this paper leads us to state that
fully automated tools for analyzing the WCET of large
and complex safety critical satellite applications are still
not mature enough. Indeed, the various unexpected
problems we encountered kept us from accomplishing the
WCET calculation of the entire application. These
problems were described in detail in the paper: loops in
the assembly code not appearing in the source code, loops
depending on complex parameters, etc. To overcome
these problems, it is necessary (i) estimating loop and time
bounds of some parts (usually functions) of the
application code by other means (e.g., code inspection of
loops, testing techniques, etc.), (ii) writing annotations
asserting the bounds of the concerned loops and functions,
and (iii) using the annotations as inputs to the WCET tool.
Note however that the reported problems can actually be
solved by static code analysis techniques, but more mature
tools are still needed so as to deal with these problems in
an automated way. We also observed that developing
complex applications with WCET in mind (e.g.,
systematically asserting the maximum number of
iterations of every loop in the source code) could greatly
help automate WCET analysis. Indeed, facilities to
automatically bounding loops (e.g., the arithmetic facility
of Bound-T) might be of little use for complex and large
applications.

As a conclusion, fully automatic tools and good
programming practices are highly required in what
concerns static code analysis of the WCET of space
applications. Indeed, the effort and resources in industry

must be planned in advance for every activity, and there is
little place for unexpected situations that would require
revisiting the planning or allocating extra resources.

References

[1] http://www.esa.int/export/esaLP/cryosat.html
[2] ECSS Secretariat, “ ECSS-Q-80B, ECSS Space

Product Assurance, Software Product Assurance Draft
B” , ESA-ESTEC Requirements & Standards Division,
Noordwijk, The Netherlands, February 2002
(http://www.ecss.nl/)

[3] http://www.bound-t.com
[4] P. Puschner, C. Koza, “ Calculating the Maximum

Execution Time of Real-Time Programs” , Real-Time
Systems, vol. 1, pp. 159-176, 1989.

[5] C.M. Bailey, A. Burns, A.J. Wellings, C.H. Forsyth, “A
Performance Analysis of a Hard Real-Time System”,
Control Eng. Practice, Vol. #, No. 4, pp. 447-464, 1995
(http://citeseer.nj.nec.com/burns93olympus.html).

[6] www.pldworld.com/_hdl/1/estec.esa.nl/
ftp/pub/ws/wsd/erc32/doc/gcc.pdf

[7] http://www.cs.umd.edu/projects/omega/omega.html
[8] M. Lindgren, H. Hansson, H. Thane, “Using Measurements

to Derive the Worst-Case Execution Time” , in Proc. of
RTAS 2000, Cheju Island, South Korea, 2000
(http://citeseer.nj.nec.com/lindgren00using.html).

Page 15 / 104

Page 16 / 104

Convenient User Annotations for a WCET Tool

Christian Ferdinand, Reinhold Heckmann, Henrik Theiling
AbsInt Angewandte Informatik GmbH

Stuhlsatzenhausweg 69, D-66123 Saarbrücken, Germany�
ferdinand,heckmann,theiling � @absint.com

Reinhard Wilhelm
FR 6.2 Informatik, Universität des Saarlandes

Postfach 15 11 50, D-66041 Saarbrücken, Germany
wilhelm@cs.uni-sb.de

Abstract

The purpose of AbsInt’s WCET tool aiT is to obtain up-
per bounds for the worst-case execution times of specified
parts of an executable. Apart from the executable, aiT needs
some user information. Originally, this information had to
refer to program points by their address. Now, user comfort
was greatly enhanced by allowing symbolic references and
source code annotations.

1. Introduction and Overview

aiT is a tool for determining upper bounds for the Worst-
Case Execution Time (WCET) of code snippets given as
routines in executables. These code snippets are for in-
stance tasks called in round-robin fashion by a scheduler,
where each task has a specified deadline [11]. aiT works
on executables because the source code does not contain
information on register usage and on instruction and data
addresses. Such addresses are important for cache analysis
and the timing of memory accesses in case there are several
memory areas with different hardware realizations.

Currently there are aiT versions for three processors:
Motorola ColdFire MCF 5307, Motorola PowerPC MPC
755, and ARM7 TDMI. They share a common structure [3]:
First, the control flow is reconstructed from the given ob-
ject code [8, 9]. The reconstructed control flow is anno-
tated with the information needed by subsequent analyses
and then translated into CRL (Control Flow Representa-
tion Language—a human-readable intermediate format de-
signed to simplify analysis and optimization at the exe-
cutable/assembly level). This annotated control-flow graph
serves as the input for the following analysis steps. Next, a
value analysis computes address ranges for instructions ac-

cessing memory. The ColdFire and PowerPC versions use
this information in cache analysis, which classifies memory
references as cache misses or hits [2] (the ARM7 TDMI
has no cache). Pipeline analysis predicts the behavior of
the program on the processor pipeline [6]. The result is an
upper bound for the execution time of each basic block in
each distinguished execution context. Finally path analysis
determines a worst-case execution path of the program from
the timing information for the basic blocks [10].

Apart from the executable, aiT needs user input to find
a result at all, or to improve the precision of the result. The
most important user annotations specify the targets of com-
puted calls and branches and the maximum iteration counts
of loops (there are many other possible annotations). Orig-
inally, program points had to be identified by their address
in these annotations. This is cumbersome and error-prone
since addresses may change after recompilation. Now a
more high-level specification language was introduced for
referring to program points symbolically (e.g., the second
loop in routine R) or via source code annotations (see sec-
tion 4).

2. Targets of Computed Calls and Branches

For a correct reconstruction of the control flow from
the binary, targets of computed calls and branches must be
known. aiT can find many of these targets automatically
for code compiled from C. This is done by identifying and
interpreting switch tables and static arrays of function point-
ers. Yet dynamic use of function pointers cannot be tracked
by aiT, and hand-written assembler code in library func-
tions often contains difficult computed branches. Targets
for computed calls and branches that are not found by aiT
must be specified by the user. This can be done by writ-
ing specifications of the following forms in a parameter file

Page 17 / 104

called AIS file:

INSTRUCTION ProgramPoint
CALLS Target1, ..., Targetn ;

INSTRUCTION ProgramPoint BRANCHES
TO Target1, ..., Targetn ;

ARM7 TDMI processors do not offer return instructions.
Instead, various kinds of computed branches with the re-
turn address as target can be employed. aiT can recognize
most of these branches as returns. The few remaining ones,
mostly contained in library code, can be annotated as fol-
lows:

INSTRUCTION ProgramPoint
IS A RETURN;

Program points are not restricted to simple addresses. A
program point description particularly suited for CALLS
and BRANCHES specifications is "R" + n COMPUTED
which refers to the nth computed call or branch in routine
R—counted statically in the sense of increasing addresses,
not dynamically following the control flow. In a similar
way, targets can be specified as absolute addresses, or rela-
tive to a routine entry in the form "R" + n BYTES or
relative to the address of the conditional branch instruction,
which is denoted by PC.

Example: The library routine C_MEMCPY of the ARM7
TDMI consists of hand-written assembler code. It contains
2 computed branches whose targets can be specified as fol-
lows:

instruction "C_MEMCPY" + 1 computed
branches to pc + 0x04 bytes,

pc + 0x14 bytes,
pc + 0x24 bytes;

instruction "C_MEMCPY" + 2 computed
branches to pc + 0x10 bytes,

pc + 0x20 bytes;

The advantage of such relative specifications is that they
work no matter what the absolute address of C_MEMCPY is.

3. Loop Bounds

WCET analysis requires that upper bounds for the itera-
tion numbers of all loops be known. aiT tries to determine
the number of loop iterations by loop bounds analysis, but
succeeds in doing so only for loops with constant bounds
whose code matches certain patterns typically generated by
the supported compilers. Bounds for the iteration numbers
of the remaining loops must be provided by user annota-
tions. A maximum iteration number of j is specified in the
AIS parameter file as follows:

LOOP ProgramPoint Qualifier MAX j ;

A ProgramPoint is either an address or an expression of
the form "R" + n LOOPS which means the nth loop
in routine R counted from 1. Qualifier is an optional
information. It may be one of the following:

begin indicates that the loop test is at the beginning of the
loop, as for C’s while-loops.

end indicates that the loop test is at the end of the loop, as
for C’s do-while-loops.

If the qualifier is omitted, aiT assumes the worst case of
the two possibilities, which is begin where the loop test
is executed one more time. The begin/end information
refers to the executable, not to the source code; the compiler
may move the loop test from the beginning to the end, or
vice versa.

Example:
loop "_prime" + 1 loop end max 10;

specifies that the first loop in _prime has the loop test at
the end and is executed at most 10 times.

4. Source Code Annotations

Specifications can also be included in C source code files
as special comments marked by the key string ai:

/* ai: specification1 ; ...
specificationn ; */

The names of the source files are extracted from the debug
information in the executable.

Source code annotations admit a special program point
or target here, which roughly denotes the place where the
annotation occurs. More exactly, aiT extracts the corre-
spondence between source lines and code addresses from
the executable. A here occurring in source line n then
points to the first instruction associated with a line number

�
n. Since the line information in the executable is created

by the compiler, it becomes invalid when lines are added or
deleted in the source file. Therefore the application must be
recompiled whenever lines are added while annotating.

For loop annotations, it is not required that here exactly
denotes the loop start address. It suffices that it resolves to
an address anywhere in the loop as in the following exam-
ple:

for (i=3; i*i <= n; i += 2) {
/* ai: loop here end max 10; */
if (divides (i, n))

return 0; }

Page 18 / 104

5. Other Annotations

Apart from branch targets and loop bounds, many other
properties can be declared in parameter or source files.

� To get any WCET results at all, you must specify up-
per bounds for the recursion depths of all recursive
routines. These specifications are similar to the loop
bound specifications described above.

� Flow constraints relate the execution counts of any two
basic blocks. For instance,

flow 0x100 / 0x200 is max 4;

means that the number of executions of the block start-
ing at address 0x100 is at most 4 times the number of
executions of the block starting at 0x200. As always,
relative addresses or semantic program point descrip-
tions may be used instead of these absolute addresses.

� aiT can be informed about the clock rate of the micro-
processor. Knowing the clock rate, aiT can display its
results in real time units such as milliseconds. Without
this information, all results are displayed in processor
cycles.

� End specifications instruct aiT to stop reading the ex-
ecutable at a certain program point. A possible appli-
cation is for instance to inform aiT that an interrupt
routine called by a software interrupt does not return.

� Value analysis tries to determine register values and
addresses of memory accesses. In cases it fails, infor-
mation about exact addresses or address ranges may be
supplied by annotations.

� You may specify that a memory area is read-only or
write-only, contains data or code.

� You may exclude certain routines from WCET analysis
and supply their WCET directly.

� You may specify that a routine never returns (like exit).

� You may specify that a certain basic block is never ex-
ecuted.

� Program points can be given symbolic names for later
reference.

6. Related Work

In contrast to most approaches proposed in the litera-
ture [7, 5, 4, 1], our annotations may refer to the source
code, but do not extend the source language (annotations

are comments), nor do they require a special compiler. In-
stead, aiT can analyze code generated by standard compil-
ers. The correspondence between source code annotations
and low-level object code is exclusively based on the debug
information of the executable. Other than the annotations
proposed elsewhere, ours cover the full spectrum between
reference to source code lines (here) over semantic de-
scriptions (routine R + 1 loop) till routine-relative or
absolute addresses, the latter being useful for annotating op-
timized code with instructions that cannot be attributed to a
particular piece of source code.

The annotation languages proposed in [7, 5, 4, 1] are
generally restricted to loop bounds and flow constraints,
while ours are more general in that they also admit the spec-
ification of targets of computed calls and branches, register
values, and addresses of memory accesses. On the other
hand, the specialized flow languages, in particular the one
proposed in [1], are more expressive and powerful than our
flow constraints. Extensions in this direction are intended,
but not yet realized to get a working system as soon as pos-
sible.

7. Conclusion

aiT is a WCET tool for industrial usage. Information re-
quired for WCET estimation such as computed branch tar-
gets and loop bounds is determined by static analysis. For
situations where aiT’s analysis methods do not succeed, a
convenient specification and annotation language was de-
veloped in close cooperation with AbsInt’s customers. This
effort has contributed to the good acceptance aiT has found
among producers of real-time software.

References

[1] A. Ermedahl. A Modular Tool Architecture for Worst-
Case Execution Time Analysis. PhD thesis, Uppsala
University, 2003.

[2] C. Ferdinand. Cache Behavior Prediction for Real-
Time Systems. PhD thesis, Saarland University, 1997.

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Mar-
tin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a
real-life processor. In Proceedings of EMSOFT 2001,
First Workshop on Embedded Software, volume 2211
of Lecture Notes in Computer Science, 2001.

[4] R. Kirner. The Programming Language WCETC.
Technical report, Technische Universität Wien, Jan.
2002.

Page 19 / 104

[5] L. Ko, C. A. Healy, E. Ratliff, R. D. Arnold, D. B.
Whalley, and M. G. Harmon. Supporting the speci-
fication and analysis of timing constraints. In IEEE
Real Time Technology and Applications Symposium,
page 170 pp., 1996.

[6] M. Langenbach, S. Thesing, and R. Heckmann.
Pipeline Modeling for Timing Analysis. Proceedings
of the 9th International Static Analysis Symposium,
2002.

[7] P. Puschner and C. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. Real-Time
Systems, 1, 1989.

[8] H. Theiling. Extracting Safe and Precise Control Flow
from Binaries. In Proceedings of the 7th International
Conference on Real-Time Computing Systems and Ap-
plications (RTCSA), Cheju Island, South Korea, 2000.

[9] H. Theiling. Generating Decision Trees for Decoding
Binaries. In Proceedings of the ACM SIGPLAN Work-
shop on Language, Compiler and Tools for Embedded
Systems, Snowbird, Utah, USA, June 2001.

[10] H. Theiling and C. Ferdinand. Combining Abstract In-
terpretation and ILP for Microarchitecture Modelling
and Program Path Analysis. In Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS), Madrid,
Spain, 1998.

[11] S. Thesing, J. Souyris, R. Heckmann, F. Randim-
bivololona, M. Langenbach, R. Wilhelm, and C. Fer-
dinand. An Abstract Interpretation-Based Timing Val-
idation of Hard Real-Time Avionics Software. In
Proceedings of 2003 International Conference on De-
pendable Systems and Networks (DSN 2003), pages
625–632. IEEE Computer Society, 2003.

Page 20 / 104

pWCET: a Tool for Probabilistic Worst-Case

Execution Time Analysis of Real-Time Systems

Guillem Bernat, Antoine Colin, Stefan Petters
Real-Time Systems Research Group
University of York. England, UK

{bernat,acolin,petters}@cs.york.ac.uk

January, 2003

Abstract

This paper describes the tool support for a framework for performing
probabilistic worst-case execution time (WCET) analysis for embedded
real-time systems. The tool is based on a combination of measurement
and static analysis, all in a probabilistic framework. Measurement is used
to determine execution traces and static analysis to construct the worst
path and effectively providing an upper bound on the worst-case execution
time of a program. The paper illustrates the theoretical framework and
the components of the tool together with a case study.

1 Introduction

There are two main approaches for the determination of the worst-case exe-
cution time of a real-time program. Static analysis and measurement. Static
analysis relies on a timing model of the hardware and attempts to determine
an upper bound on the longest path of the program. Techniques include tree-
based approaches [10, 4], or path based approaches [8, 12, 13]. Efforts on WCET
analysis are on determining the effect of advanced processor features like cache,
branch prediction and pipelines and their interactions [9, 6, 5, 7], However, these
approaches are very complex as the processors themselves become more difficult
to predict. An alternative approach to static analysis is by measurement. In
this approach the code is run under exhaustive test conditions and the longest
execution time recorded.

Both approaches have their advantages and disadvantages. Static analysis
provides a safe upper bound guaranteeing that the worst case is never underes-
timated. This is adequate for simple programs running on simple 8 bit CPUs,
however for more complex programs which are data dependent and for advanced
CPU’s with acceleration features like cache, pipelines, branch prediction buffers
and out of order execution the analysis is extremely difficult to perform and

1

Page 21 / 104

results in unacceptable levels of pessimism. An additional criticism of the ap-
proach is that it is based on an abstraction of the processor and may fail to
capture effects that occur in the real system. Measurement approaches do ob-
serve the real system and therefore are able to account for these phenomena,
however they may fail to capture the worst case as the set of test cases that
may lead to the worst case may be very difficult to determine. In addition, a
safety margin is usually included in the analysis, however there is no scientific
process by which such safety factors can be determined.

In addition, traditional static approaches to WCET are too focused on ob-
taining an absolute upper bound on the execution time of the program. This
may be unnecessary pessimistic if the probability of such event happening is
extremely small. In probabilistic hard real-time systems the aim is to provide
estimates that the probability of missing a deadline is of the same order of mag-
nitude that other dependability estimates. For instance, probabilities smaller
than 10−12 of missing a deadline should be provided. For such estimates to
be made, it is first required to determine the probability distribution of the
execution time of individual tasks.

This paper presents the pWCET framework, a theory and its tool support for
probabilistic WCET analysis of real-time embedded programs. pWCET com-
bines the best features of both measurement and analysis and allows to draw
the benefits from both approaches. The framework is based on determining the
execution times of individual blocks by observing the real-system (instead of re-
lying on a processor model) but combining the worst case effects observed locally
using static analysis techniques. In this way, no timing model of the processor
is needed because the timing information is determined by measurement. There
have been some initial approaches for probabilistic timing analysis of systems,
[3, 2, 11] use extreme value statistics to model the tail of the distributions.

A different approach is the one presented by the same authors in [1]. This
paper presents the general overview of the theory but its main purpose is the
description of the tool support. The paper illustrates these concepts with a case
study at the end of the paper. The following section provides an introduction
of the theory of probabilistic WCET analysis and the description of the tool,
its components and features is deferred to section 3.

2 Probabilistic WCET analysis

The aim of probabilistic WCET analysis is to determine the probability dis-
tribution of the worst-case execution time of a particular code fragment. The
problem is formulated (and solved) in terms of a syntax tree representation of
the program and a probabilistic timing schema.

A syntax tree is a representation of a program. It is a tree where the leafs
are basic blocks (sequences of instructions that have no control flow instructions
except possibly at the end) and inner nodes that correspond to syntactic compo-
sition of blocks: Sequential composition, conditional composition and iterative
composition.

2

Page 22 / 104

A timing schema is a set of rules that allow to determine the execution time
of a program segment as a function of the execution time of its components.
Each rule of the timing schema is associated to a type of node in the tree. For
instance a trivial timing schema for static WCET analysis is as follows:

• W (A)= integer if A is a basic block.

• W (A;B;) = W (A) + W (B). Sequence of blocks.

• W (if E then A else B end if) = W (E) + max(W (A),W (B)). Conditional.

• W (for E loop A end loop;) = W (E)+n(W (A)+W (E)). Loop, where n is
the maximum number of iterations of the loop.

The aim of the pWCET approach is to provide an equivalent timing schema
where integers are replaced by probability distributions and operations on inte-
gers are replaced by operations on random variables.

The problem of probabilistic WCET analysis is therefore:

1. To construct a syntax tree representation of the program. For illustrative
purposes we consider basic blocks as the smallest execution unit, however
there is no reason why other units (larger or smaller) could be used for
the purpose,

2. to determine probability distributions of the individual executions of the
blocks and their dependency,

3. to determine a probabilistic algebra to manipulate probability distribu-
tions,

4. to determine which and when to combine the probability distributions of
the individual building blocks to derive the probability distributions of the
nodes in the tree,

5. to present and visualise the results to the user.

In the rest of the section we concentrate on items 2 and 3 about the proba-
bilistic issues, the rest of the items are discussed in the following section.

In order to provide a probabilistic timing schema we need to define equivalent
operators to the sum and max for random variables. The most important fact
is what assumptions about the dependence between blocks can be made.

2.1 Sequential execution Z = X + Y

The statistical formulation of the problem is as follows. Let X,Y be random
variables that describe the execution time of a program segment. Let F (x) =
P [X ≤ x], G(y) = P [Y ≤ y] be their distribution functions. Consider that
situation in which X and Y are the random variables of two code segments A and

3

Page 23 / 104

B that are executed in sequence: A;B;. Lets denote Z the random variable that
describes the execution time of the sequence. The question is to determine what
is the probability distribution of Z. Clearly Z can be formulated in statistical
terms as Z = X + Y , and therefore we are interested in computing H(z) =
P [X + Y ≤ z].

2.1.1 Dependency

One of the major issues for pWCET analysis is the determination of the depen-
dency between X and Y . This dependence can be:

• X and Y are (assumed to be) independent,

• the joint distribution of X and Y is known and therefore the precise de-
pendence between X and Y is also known,

• the dependency between X and Y is not known (the general case) and it
can not be assumed that they are independent.

The hypothesis of independence is commonly assumed in other probabilistic
analysis frameworks, however, in the framework of probabilistic WCET analysis
this hypothesis is in the general case wrong. As reported in [1] making the hy-
pothesis of independence may lead to severe underestimations of the probability
of the worst case, overestimations of various orders of magnitude are possible.
This is the case, for example, when the condition that makes one block to run
for the worst case is the same that forces the other one for the worst case too.

The joint distribution captures precisely the exact dependence between X

and Y . However, capturing such dependence by measurement is very difficult,
not only for the computational complexity but also because of the nature of
the process. Determining distributions of individual blocks is a difficult task
because of the rare occurrence of extreme events, observing combinations of
rare events in joint distributions makes the problem much harder.

In any case, there are situations where the joint distribution is not available
because it can not be computed and therefore some assumption of the worst
dependence between X and Y should be made. The situation when two random
variables are positively correlated is called “comonotonicity”. This means that
both can be expressed as a non-decreasing function of another random variable
U (X = f1(U) and Y = f2(U)) meaning that the values of X are large when the
values of Y are large too and as a consequence the probability of the extreme
is not the product of probabilities (but the minimum of them).

The determination of H(z) as the cumulative distribution of Z = X +Y can
be therefore performed as follows:

If X and Y are independent (or the assumption that they are independent
is feasible) then H can be computed by performing the standard convolution
between F and G:

H(z) =

∫

x

F (x)G(z − x)dx

4

Page 24 / 104

If the joint distribution between X and Y is known and given by J(x, y) =
P [X ≤ x, Y ≤ y], then the distribution H can be computed as follows:

H(z) =

∫

x+y=z

j(x, y)

where j(x, y) is the joint probability density function of J(x, y).
Finally, if the dependence between X and Y is not known, we assume that

the random variables are comonotonic. The distribution in this case is given by:

H(z) =

∫

x+y=z

∂2 min(F (x), G(y))

∂x∂y

It may be the case that even the comonotonic case is not the adequate
hypothesis to make about the dependency between the random variables. In
such a case a general bound on the distribution of H(z) should be provided
that determines a limiting distribution for Z given any possible dependency.
This is one of our current lines of research and a paper describing this analysis
is under preparation.

The same results can be extended for an arbitrary sequence of blocks (or
random variables): Z = X1 + X2 + · · · + Xn. For details see [1].

2.2 Conditional execution Z = max(X,Y)

The above discussion has shown how the distribution of the sequence of blocks
can be computed probabilistically. The other main construct in the syntax
tree is the conditional execution. In that case the formulation of the problem
is very similar. Let X, Y and T be random variables that correspond to the
expression, true and false parts of a conditional execution of E, A and B of
a program segment of the form if E then A; else B; end if;. Let Z denote the
distribution of the sequence. Z can be described as Z = E +max(X,Y). Where
max(X,Y) is the distribution of the maximum of two random variables. The
distribution H(z) is given by:

H(z) =

∫

max(x,y)=z

∂2 min((F (x), G(y))

∂x∂y

The same approach can handle other types of constructs including other
types of conditionals,including case statements.

2.3 Iteration

The operation for loop constructs is a combination of conditional and sequential
composition. The only requirement is the identification of the maximum number
of iterations of a loop, denoted by n. Then, if X, Y are the random variables
that correspond to the expression guard of a loop and the body of a loop of the
form for E loop B then, the distribution of the sequence Z is given by

5

Page 25 / 104

Z = E +

n

︷ ︸︸ ︷

(E + B) + · · · + (E + B)

Other types of loops can be analysed in a similar way. The only requirement
is the ability to determine maximum number of iterations of loops. Calls to
other subprograms are handled by considering the call as a basic block and
using the distribution of the execution time of the subprogram.

As the distributions of individual blocks do not follow standard distributions
a numeric approach is the only effective solution.

2.4 Determining probability distributions

The second issue to address is to determine the actual distributions of the ex-
ecution times of individual units. We use a measurement approach in which
the program to be analysed is run under a large number of tests scenarios and
the execution time recorded from which the probability is determined. This is
a frequentist determination of probability. Other approaches are possible, more
in the line of reliability analysis, the distribution could capture the distribution
of the execution time on a “per incident” basis instead on a “per run” basis.
In this case, the distribution of execution time is determined under particular
situations (incidents) only. For example, at the critical instant or when a mode
change is requested. This makes it easier to reason on probabilities of missing
a deadline on a “per incident” way rather than a “per hour” measure. The
method and tool described is transparent to both types of distributions, the
only implication is the interpretation of the results.

It is generally easy to determine the distribution of a particular piece of
code, however joint distributions are a much harder problem. The most difficult
problem is that the number of experiments to perform needed to determine the
probabilities grows quadratically. Besides, there are blocks in the tree for which
it is not possible to determine the joint distribution because of lack of data or
because the elements are not in the same level in the tree.

3 pWCET

A theory is of little use if it can not be put into practice. We have implemented
the above framework into a complete toolset for probabilistic WCET analysis
that covers the whole process. From automatic code analysis and syntax tree
construction, to trace generation and evaluation to an efficient probabilistic
calculation engine.

The pWCET toolset has the following features:

• Portable: There is a minimal dependence on the processor architecture.
The structure of the program is extracted from the object code represen-
tation which requires minimal changes to a parser for different architec-
tures. The determination of timing information is done by trace analysis
and therefore a timing model of the processor is not required.

6

Page 26 / 104

System

Instrumentation

Instrumented
System

Structure
Analysis

Extended Syntax
Tree

Timing Prog.
Generator

Timing program

Timing progr.
execution

Analysis

Trace Generation

Traces

Prob. Distributions

Gui

Figure 1: Overview of the pWCET toolset

• Fully flexible timing program generation: The generation process is user
programmable and therefore allows different types of timing programs to
be produced. The tool is able to generate both static (integer) timing
programs, probabilistic programs and symbolic programs. In this paper
we describe the probabilistic framework only.

• Generic: The source of the data for tracing analysis can be provided in
different ways. For experimental purposes the trace can be generated using
a processor simulator or by directly measuring the execution of the code
on the target platform.

• Automatic loop analysis: maximum number of iterations of loops are de-
duced automatically from trace analysis.

The general process of the analysis and tool components is described in
Figure 1.

The stages of the analysis are as follows:

• Structure analysis: the program is analysed and a syntax tree representa-
tion of the program is generated.

• Instrumentation: insertion of calls of a trace logging mechanism into the
program.

• Trace generation: this step produces execution traces which capture the
execution times of individual blocks for different runs of the program.

• Trace analysis: traces are parsed and distributions of individual blocks
produced. Also joint distributions are captured and loop analysis deter-
mined.

7

Page 27 / 104

• Timing program generation: a traversal of the tree generates a program
that will compute the WCET of the program.

• Timing program execution: calculation of the WCET.

• Analysis of results: graphical user interface for browsing the program
under analysis and the visualisation of the probability distributions.

The following subsections review each of these stages and the tool support
in detail.

3.1 Instrumentation and trace generation

The aim of the instrumentation stage is to enable obtaining execution traces. An
execution trace is a list of pairs (instruction,timestamp) that describe the time
at which a particular instruction in the program was executed for a particular
run. From this execution trace the path that the program followed as well as
the different timing of the block is determined.

There are two modes of analysis, using a cycle accurate processor simulator
or by directly executing the program on the target architecture. If using a cycle
accurate simulator, the program does not need to be instrumented as the trace
is produced by the simulator. The structural analysis determines which are the
starting and ending addresses of each block of code and by parsing a log of the
execution trace produced by the simulator it is able to produce the execution
traces.

If the traces are determined by direct observation of the program then a
mechanism to determine execution traces has to be embedded into the program
and support by the OS included. This is done by manually or automatically
inserting instrumentation calls into the source code, or by automatically adding
the instrumentation code into the already compiled assembly code. The execu-
tion of the code results in a set of observed execution traces. The traces need
to be extracted from the target hardware. These traces can then be processed
by the pWCET tool (at the time of writing, the automatic program instrumen-
tation is not yet functional).

The current demonstration version uses the simplescalar processor simulator
to generate the traces, however the tool also accepts traces generated externally.
The simplescalar is a MIPS cycle accurate simulator 1. The MIPS processor
has two levels of cache (second level is an integrated cache) as well as branch
target buffers and out-of-order execution. Simplescalar allows the configuration
of several processor configurations like changing cache size and arrangement,
memory latencies, branch target prediction sizes and algorithms, etc. This is
very useful to evaluate the impact of such features on the WCET of a program.

1http://www.simplescalar.com

8

Page 28 / 104

3.2 Structure analysis

The structural analysis reads the non-stripped object code of the program(s)
under analysis and builds a control flow graph. The program is first disassembled
and the assembly code analysed. By manipulating the code at assembly level,
transformations of the code included by the compiler are captured. The control
flow graph is then converted into a syntax tree, called the extended syntax
tree (XST). It may be the case that there are irreducible constructs (usually
generated by the compiler), in this situation the analysis assumes that the whole
section of the code is a block. Portability of the whole approach to a different
machine architecture requires the rewriting of the lexical and syntactic analyser
of assembler code which is a small task. By analysing the code at the object
code level, there are no dependencies on the programming language used or only
minimal.

The XST is stored as an XML file, structured as a set of trees which are
made up of five types of nodes: (a) basic blocks, (b) sequences, (c) conditional
code (d)loops and (e) calls. A tree is build for each subprogram, and therefore
the XST of a program is made up of a series of such trees, the first one being
the main program. The structure analysis also adds into the XST information
for each node regarding which sections in the code it corresponds to, as well as
annotations present in the source code.

3.3 Trace analysis

The trace analysis computes the distribution functions of each node in the tree
from the execution traces. It uses information in the XST to determine the set
of addresses that mark the start and end of each block and parses each trace
accumulating the result over multiple traces. The result of the analysis is a set
of execution time profiles (or ETP for short) which correspond to the discrete
probability density function of individual blocks.

For selected pairs of nodes, the trace analysis is also able to determine the
joint distribution function of pairs of nodes. The list of pairs of nodes to analyse
is indicated before the analysis starts in a configuration file. The result of
the analysis is a set of joint execution time profiles (or JEP for sort) which
correspond to the discrete joint probability density function of pairs of blocks.

This is a computationally very expensive process. There may be available
large number of execution traces, each one holding information of potentially
long executions of the program. For example, if an execution trace records in
average one every 10 instructions, then a program that runs for 1 second on
a 10 MHz machine may generate up to 106 sampling points per second. Tests
involving several hours of computation should be expected. In order to address
the computational complexity the process of trace generation and analysis has
been parallelised and the current implementation is able to generate the traces
in a local mode (single node) or on a distributed mode using a Beowulf cluster.
A special program running on a node of the cluster is responsible to distribute
the work to the different nodes and merge the results after the computation has

9

Page 29 / 104

been performed.
A second component of the trace analysis is loop identification. The infor-

mation of which blocks form a loop and the nested loop structure is extracted
from the syntax tree. From this information, a loop trace can also be generated.
A loop trace is an indication of the index counters of each loop hit for a partic-
ular run of the program. From this loop trace, the maximum loop iteration for
each loop is extracted.

3.4 Timing program generator

pWCET has a powerful mechanism for computing the WCET of programs. This
is based on separating the timing analysis into a program generation part and
an execution part. This enables different types of analysis to be implemented
using the same framework by providing different timing program generators.

The timing program generator traverses the tree in postorder and applies
the timing schema rules to each node in the tree. The result of such procedure
is a set of commands on how to compute the timing program for the given tree.

The user can direct the way the analysis is performed and which rules are
applied by directly manipulating the tree and modifying the rule associated to
each node. For example, one common assumption is to rewrite non-rectangular
loops to indicate precisely the exact number of iterations of a block, not the
(possibly) pessimistic estimate obtained by the loop analysis.

We have experimented with different formats. We currently are able to
generate timing programs as Ada programs, matlab scripts and ml programs.

Matlab scripts are very helpful because it allows for fast prototyping and
experimentation with different operators, however in general the computation
is very slow compared to a custom build solution.

The timing program reads the distributions of its sons and computes the
distribution for each node in the tree. We have implemented all probabilistic
algebra very efficiently exploiting the properties of the sparse data structure
used to capture probability distributions. As an illustration, a convolution of
a discrete distribution in Matlab can take as long as 10 times longer than the
Ada version for small data sets. For large distributions the difference grows
quadratically.

3.5 Analysis of results

The different parts of the tool can be used as either scripts or through a graphical
user interface depicted in Figure 2. The set of steps to perform is indicated as
a toolbar at the top of the screen. The log of the output of the different phases
is recorded in the log screen. Commands can also be typed in directly at the
command prompt at the bottom.

The user first selects the main file of the program to analyse, secondly the
program is compiled for the MIPS architecture with the necessary libraries.
After compilation the program needs to be analysed. The user may select which

10

Page 30 / 104

Figure 2: pWCET main window.

functions to include in the analysis. The function selection dialog can be seen
in the figure too.

After code analysis traces should be generated. By selecting the simulate
option the simplescalar simulator is invoked to run the program. Each run is
invoked with a different run number which allows to set up a seed for random
number generation, for instance. The parameters that determine the configu-
ration of the simulator can be changed in the pWCET configuration file. This
enables the evaluation of the effect that particular processor features have on
the execution time of the program. The trace generation also performs the trace
analysis by merging the results with previous processed traces.

After the code is analysed and traces generated the XST can be browsed
using the code browser, shown in Figure 3. The browser allows to select which
function to display. It displays a tree of the selected function. Different types of
nodes are indicated by different colors. Each node has information of the type,
source line and rule for the timing program generator. The same figure shows
the screen that allows the modification of the evaluation rule for a loop node.
Several operations can be performed for each node, displaying the source code
corresponding to the node, the textual representation of the execution profiles,
as well as the graphic plot of the distribution of probability of the node. The
graph can show both measured and computed distributions.

The final stage is to launch the timing program generation and calculation.

11

Page 31 / 104

Figure 3: XST Browser showing information window of a node, some graphs
and textual output.

12

Page 32 / 104

The program performs the postorder tree traversal, extracts the rule for per-
forming the WCET calculation from the node attributes section and generates
the corresponding program to perform the calculation. The program is then
executed by invoking the calculation engine.

After the timing program has been generated and executed, the computed
distributions can be viewed with the XST browser. For example when plotting
the profiles, both measured and computed profiles are displayed. Examples of
such visualisation are shown in the next section.

4 Evaluation

In this section we illustrate the operation of the tool with an example. The
program is an implementation of a message processing system. It takes packets
from array ptr and decodes them. The type of message and the sign of the
data part is encoded in the header. Depending on the different configurations
he message is either stored in array tab1 or tab2. A fragment of the program
is shown below (for full listing of the program together with other example
programs see the pwcet web page).

void test() {

int i,j,p,index;

char header;

char * ptr = (char*)data_stream;

int * tab_result = tab1;

int * tab_error = tab2;

char * ptr2;

char * ptr3;

for(i=0;i<N;i++) {

header = *ptr;

index = header & 0x3f;

if (header & 0x80) {

tab_result[index] =tab_result[index]+1;

tab_result[index+1]=tab_result[index+1]+1;

tab_result[index] =tab_result[index+1]-1;

tab_result[index+1]=tab_result[index]+1;

// jump to the next element

ptr=ptr+5;

}

else {

index = header & 0x3f;

if (header & 0x40) {

// is positive

tab_result[index]=-tab_result[index];

}

else {

// is negative

13

Page 33 / 104

tab_result[index]=+tab_result[index];

}

// jump to the next element

ptr+=2;

}

}

}

The Syntax tree of the fragment of code is shown in Figure 3. Node 54
is the head of the loop. The figure also shows the fragment of the code that
corresponds to node 54 as well as the editing window where the expression to
calculate the node can be modified by the user. This description is automatically
generated.

The simulation generated 1000 traces. The following is a fragment of one of
such traces that shows first three iterations of the loop. Note that the trace only
shows execution of basic blocks (not of inner nodes in the tree), the analysis part
is then responsible to derive the execution of these other nodes. The format is
(timestamp node number)*. The timestamp is the cycle number in which the
first instruction of the basic block is fetched. For example, in the first iteration
node 66 runs for 83 cycles (34943-34860), however in the second iteration it runs
for only 13 cycles (and for the rest of iterations in the loop). This is a common
behaviour due to cache effects.

34399 53 34490 55 34519 57 34631 60 34692 63 34832 64 34860 66

34943 72 34974 55 34978 57 34995 60 35008 62 35098 64 35103 66

35116 72 35123 55 35127 57 35144 60 35157 63 35179 64 35183 66

35196 72 ...

The loop analysis determines that in the worst case loop 54 iterates 31 times
(this number is the number of times the header is hit). This is indicated with
the following maxiter rule:

$maxiter54 #= {31}

The timing program generated by the tool is shown below. This is an au-
tomatically generated ml program. Each node corresponds to an ml function
that invokes in its computation recursively the functions that evaluate the sons
of the node. The operation of the node is then performed, saved and control
returned to the callee. The Following fragment shows the calculation of node 67.
Nodes 69, and 71 are basic blocks and its distribution is read from the measured
data. Node 70 is a function call to swap tabs. Node 68 is the convolution of
the distributions of node 69 and 70. Node 71 was never executed, and therefore
is empty. Node 67 is the maximum (probabilistically) of 68 and 71.

(*--------- Node 69 -----------*) let w69 () =

let result = read "ETP69" in

write (result,"ETP69");

result;

14

Page 34 / 104

;;

(*--------- Node 70 -----------*) let w70 () =

let result = (ext_call "swap_tabs") in

write (result,"ETP70");

result;

;;

(*--------- Node 68 -----------*) let w68 () =

let result = conv [(w69());(w70())] in

write (result,"ETP68");

result;

;;

(*--------- Node 71 -----------*) let w71 () =

let result = epzero () in

write (result,"ETP71");

result;

;;

(*--------- Node 67 -----------*) let w67 () =

let result = max ((w68())) ((w71())) in

write (result,"ETP67");

result;

;;

Figure 4 shows the result of the analysis compared to the end to end mea-
surement. The pWCET estimate is an upper bound on the WCET. The distance
between the two estimates comes from the fact that the input data does not cor-
respond to the worst possible sequence of data (this is just random messages).
The pWCET builds the equivalent of the worst set of input data and plots the
profile.

Generation of 1000 traces took 15 minutes on a Pentium 3 at 500 MHz,
the generation and evaluation of the timing program was performed in under a
minute. The complexity of the timing programs is not greatly affected by the
size of the traces.

5 Conclusion

This paper has outlined the theory for probabilistic timing analysis of real-time
programs and described the main components of its tool support. The main
features are: portability to analyse programs running on different processors
and platforms by processing execution traces obtained either by examining the
log of a cycle accurate processor simulator or by observing the real system;
flexibility: by allowing users to define the way the timing program is generated
and therefore enabling different types of analysis. A small case study illustrates
the formats of the files involved and the steps of the analysis.

15

Page 35 / 104

Figure 4: pWCET analysis of node 54. M= Measured, C=Computed. overesti-
mation is due to lack of generating the worst possible input data.

16

Page 36 / 104

References

[1] G. Bernat, A. Colin, and S. Petters. Wcet analysis of probabilistic hard
real-time systems. In RTSS, Real-Time Systems Symposium, Austin, TX,
USA, December 2002.

[2] Alan Burns and Stewart Edgar. Predicting computation time for advanced
processor architectures. In Proceedings of the 12th Euromicro Conference
on Real-Time Systems, Stockholm, Sweden, June 19–21 2000.

[3] Alan Burns and Stewart Edgar. Statistical analysis of WCET for schedul-
ing. In Proc. of the IEEE Real–Time Systems Symposium (RTSS’01), Lon-
don, United Kingdom, December 4–6 2001.

[4] Antoine Colin and Guillem Bernat. Scope-tree: a program representation
for symbolic worst-case execution time analysis. In Proceedings of the 14th
Euromicro Conference on Real-Time Systems, Vienna, Austria, June 19–21
2002.

[5] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a
processor with branch prediction. Journal of Realtime Systems, 18:249–274,
2000.

[6] Christian Ferdinand and Reinhard Wilhelm. On predicting data cache
behavior for real–time systems. In Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES’98), Montreal Canada, June 19–20 1998.

[7] Y. A. Liu and G. Gomez. Automatic accurate time–bound analysis for
high–level languages. In Frank Müller, Azer Bestravros, et al., editors,
Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Embedded Systems (LCTES’98), Lecture Notes in Computer
Science, pages 31–40, Montreal Canada, June 19–20 1998. ACM SIGPlAN,
Springer–Verlag.

[8] Thomas Lundqvist and Per Stenström. An integrated path and timing anal-
ysis method based on cycle-level symbolic execution. Journal of Realtime
Systems, 17(2/3):183–207, November 1999.

[9] Frank Müller. Timing analysis for instruction caches. Journal of Realtime
Systems, 18:217–247, 2000.

[10] C.Y. Park and A.P. Shaw. Experiments with a program timing tool
based on source–level timing schema. IEEE Transactions on Computers,
24(5):48–57, May 1991.

[11] Stefan M. Petters. Worst Case Execution Time Estimation for Advanced
Processor Architectures. PhD thesis, Institute of Real–Time Computer
Systems, Technische Universität München, Munich, Germany, 2002.

17

Page 37 / 104

[12] F. Stappert, A. Ermedahl, and J. Engblohm. Efficient longest executable
path search for programs with complex flows and pipeline effects. In Inter-
national Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems (CASES 2001), pages 132–140, Atlanta, Giorgia, USA,
November 16–17 2001.

[13] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and
precise WCET prediction by spearated cache and path analysis. Journal
of Realtime Systems, 18:157–179, 2000.

18

Page 38 / 104

Industrial Requirements for WCET Tools
— Answers to the ARTIST Questionnaire —

Reinhard Wilhelm∗

Compiler Design Lab
Saarland University

66041 Saarbrücken, Germany
wilhelm@cs.uni-sb.de

Jakob Engblom∗

Department of Information Technology
Uppsala University

SE-751 05 Uppsala, Sweden
jakob.engblom@it.uu.se

Stephan Thesing∗

Compiler Design Lab
Saarland University

66041 Saarbrücken, Germany
thesing@cs.uni-sb.de

David Whalley
Computer Science Department

Florida State University
Tallahassee, FL 32306-4530, USA

whalley@cs.fsu.edu

Abstract

This paper presents the results of a questionnaire for
WCET tool users undertaken by the ARTIST project. The
aim is to get information on the requirements for a WCET
tool as seen by the possible users of such a tool.

1 Introduction

ARTIST (Advanced Real-Time Systems) is an IST
project of the EU. It’s goals are to coordinate the R&D ef-
fort in the area of Advanced Real-time Systems so as to:

• Improve awareness of academia and industry in the
area, especially about existing innovative results and
technologies, standards and regulations.

• Define innovative and relevant work directions, iden-
tify obstacles to scientific and technological progress
and propose adequate strategies for circumventing
them.

ARTIST undertakes several Actions:

• Hard Real-Time Systems: Consolidate and further im-
prove a strong European competence and know-how
that is strategic for safety- or mission-critical appli-
cations (Synchronous languages, TTA, Fixed priority
scheduling).

1supported by ARTIST, an IST project of the EU

• Component-based Design and Development: Trans-
fer, enhance interaction between teams working on
compositionality/composability problems and soft-
ware and systems engineering teams involved in the
definition of standards e.g. UML, SDL.

• Adaptive Real-Time Systems for Quality of Service
(QoS) Management: Soft real-time approaches and
technology for telecommunications, large open sys-
tems and networks teams with expertise in real-time
operating systems and middleware.

The Work Directions are

• to establish a roadmap for future directions in ad-
vanced real-time systems.

• to propose curricula for Education and Training in ad-
vanced real-time systems.

• to disseminate results and to undertake international
collaboration.

• to create strong two-way ties with industry.

ARTIST will

• Focus on system-centric approaches by adapting or
further extending them to real-time software and hard-
ware technology.

• Consider generic approaches and will not be biased to-
wards particular application areas.

Page 39 / 104

• Use a diverse selection of suitable applications to eval-
uate and further specialize the approaches, whenever
appropriate.

• Establish good contact and interaction with applica-
tion-specific projects for essential technologies and in-
frastructure as well as relevant projects on control the-
ory and dynamic systems.

ARTIST established several Working Groups, one of
them on Timing Analysis. It was put under the direction
of Reinhard Wilhelm. This working group set out to

• identify the requirements of (potential) customers of
timing-analysis technology,

• collect information about available implementations of
this technology.

This article reports about requirements of industrial users
for WCET tools. The commonly used term worst-case exe-
cution time (WCET) is a misnomer. In general, worst case
execution times cannot be determined, even for terminat-
ing programs. The reason is that the worst-case input may
be unknown. All existing so-called WCET tools actually
compute upper bounds on execution times. These upper
bounds may occur for some execution or they may be over-
estimations, in which case they never occur. The term ”up-
per bound” on execution times indicates that these bounds
are safe, they never underestimate potential execution times.
But they should also be tight, i.e. as close as possible to the
worst-case execution time.

A questionnaire containing the questions listed below
with their answers was put on the web and potential cus-
tomers in the aeronautics, automotive, and electronics in-
dustry asked to fill in their answers. Only 12 persons an-
swered the questionaire. However, as one can see below,
they were in quite influential positions taking decisions for
quite large groups of developers. Therefore, we feel that the
results should be accepted as significant.

2 Results

In this section we present the results as they have been re-
ceived in the questionnaire. For every question of the ques-
tionnaire, we first give the question itself and then the (sum-
marized) answers. In the tables, the column titled ‘#’ gives
the number of answers corresponding to the item in the first
column.

1. What is your job title? The answers showed that the
right people were asked. Jobs title given were Devel-
oper, Engineer, Fellow, Systems Engineer, CTO R&D,
Team Leader, Project Manager, Manager System De-
velopment, Director, Program Manager, Chief Scien-
tist.

2. What is the size of the group you are supervising?

Number of People #

1-5 9
6-10 1
21-100 2

3. For which applications/systems do you need WCET
tools in your own development?

• Automotive (Engine Control), guiding systems,
automotive control units

• automotive applications

• avionics, on-board SW on satellites

• Operating systems, but also customers applica-
tions.

• Synchronous programs.

• Embedded controllers

• DSP embedded systems development

• Evaluation of supplier systems

• Embedded real-time software

4. For which target software platforms (OS, middleware)
would you like to have Timing Analysis tools avail-
able?

Platform #

Real-Time OS 11
Hardware 7
Middleware 2

5. What should the functionality of the tools be?

Functionality #

Very rough first estimate 6
Back annotation of results into the source code 6
Proposals for cache locking 7
Stack-Extent Analysis 9
Best Case Execution Time 7
Annotated Assembly listing 1

Other analyses that the tools should be able to perform
include

• Execution time coupled to its probability

• Average Execution Time

• Assure WCET to safety/criticality level required;
distributions/histograms

• Maybe verify some pre-, postconditions and in-
variants of functions

• analysis of code parts with disabled interrupts

• measure OS and communication impact

2

Page 40 / 104

Other functionality that should be included into WCET
tools include

• Must be possible to exclude ”uninteresting” paths
(e.g. fatal error handler code)

• Graphical representation,

• stack-frame over-run identification

6. What is the tolerable learning effort for users of the
tool? (days)?

Effort #

2 days 2
3 days 2
5 days 1
5-10 days 1

7. How much effort for annotation of the code is tolera-
ble?

Effort #

Bound for Loops and Recursion 7
Locked Cache Contents 3

Other answers include

• Loop bounds often obvious, recursion prohibited,
at high criticality levels

• As least as possible

• As much annotation as possible

8. What would be tolerable analysis times on realistic
code sizes, e.g. 100k instructions? (minutes)

Anwers included

• 1-10 minutes

• 10 minutes

• 10-120 minutes

• 60-120 minutes

• 100000 minutes (somebody with a lot of time!
RW)

9. Would you adopt a processor with high predictability
with some loss in average case performance? Note,
this may mean improved WCET!

Answers #

Yes 9
No 3

10. Which other tools should a WCET tool be integrated
with to suit your development flow? Answers were

• Enea ASF/DART, some UML-tool

• Ascet SD, Matlab/Simulink

• Schedulability, CM, traceability, requirements
capture

• WCET and flow analysis must be integrated.
Other tools less important

• RTOS

• Operating system configuration tool

• Version control for source and binary

• Functional simulation

• Debugger, profilers, RTOS

• Does not apply; We review supplier data.

• High-level compilation

11. Under which formal rules do you work, e.g. DO 178B?
Answers included DO178B 5x, US DoD services,
NASA, IEC61508, ISO9000, ECSS, ESA rules, DO-
248; DO-254; AC 20.115B, usually project-tailored.

12. Do you use coding guidelines to support WCET anal-
ysis?

Answer #

No 9
Yes 3

13. Do you need/plan to use processor architectures with
cache memories, complex pipelines or branch predic-
tion hardware for critical applications?

Processor feature #

Instruction or data cache 8
Branch Prediction 7
Multi-level cache hierarchy 3
Superscalar out-of-order execution 5

14. For which hardware platforms (monoprocessor, mul-
tiprocessor) would you like to have Timing Analysis
tools available?

Platform #

Mono and multi processor 4
Mono processor 8

15. Do you use tools for schedulability analysis?

Tool #

Based on Response Time/Rate Monotonic
Analysis

7

Based on Time Triggered Scheduling 4
ARINC 653 (hierarchical model) 1

16. Do you use measuring of the execution time to esti-
mate WCET?

3

Page 41 / 104

Method #

Via Code Instrumentation 8
Via Debug Tools (BDM, JTAG, or other in-
terface)

6

Via a Logic Analyzer 4

Other methods mentioned:

• RTOS includes support

• Chip-internal counter.

• Review supppliers’ analyses

17. How much effort do you spend in timing validation (%
of development)? The 3 answers were

• 15 % of development

• 5-10 % of development

• 1 % of development

18. How much development time is spent in measuring the
execution time of code pieces in addition to estimat-
ing the worst-case execution time (% of development)?
Only two answers were given:

• 10 % of development

• 5 % of development

19. Are you willing to adhere to coding guidelines to help
WCET analysis?

Answers #

Yes 10
No 2

20. For which processor architecture (PowerPC, x86, etc)
would you like to have Timing tools available?

Architecture #

PowerPC 7
ARM (ARM7/ARM9) 4
C166/7 4
x86 2
V850 2
Pentium, MIPS, Tricore, Coldfire, TMS,
sharc, HC12, M16C, TX49, PPC G4,
TS101, 68K

1

21. What is the maximum tolerable price per seat for such
a tool (under the assumption that its use saves money
spent in validation otherwise)?

Price #

Up to 5000 $ 7
Up to 10000 $ 1
Up to 50000 $ 1
Don’t know 3

22. The following notes have been added by the respon-
dents.

• I’m not sure answers fully capture issues due to
mixed criticality. Different applications have dif-
fering criticalities, need different levels of WCET
and deadline assurance. Most systems are in-
feasible when all threads are at guaranteed-to-
highest-assurance WCETs. Final timing analysis
considers WCET bound versus assurance level,
implementations use controlled load shedding to
assure any inaccuracies (transient overruns) have
no significant impact. Also, development process
issues need to be considered. Early in the pro-
cess, guestimates are used and budgets are con-
structed. Tools/methods must support an over-
all performance management process, from early
capture of derived timing requirements through
certification and into deployment and upgrade.

• It is hard to give good answers to these questions,
since I reply both on behalf of what we would
like to use internally and what we would like to
offer to the broad market. The broad market has
a hard time making up it’s mind ;-)
Some comments: (question number in paran-
theses) (8) The faster, the more useful it is, of
course. If the output made it worthwhile, we
could leave a machine crunching for two weeks
per MB, computing the WCET. (9) Limiting the
scope of the processors limits the market for the
tool somewhat. It is quite reasonable that some
processors are excluded from the scope however.
(19) I believe we and most customers have no
trouble with limiting the language. Until you tell
us what’s not supported... (21) Pricing is very
difficult issue.. Higher prices reduces the avail-
able market considerably. Higher prices also re-
duces the license seat count.

• The tools have to work without requiring intelli-
gence on the part of the user. People that are new
to programming in C have to use these tools, so
there’s no chance of them understanding WCET
principles or schedulability analysis techniques.

• We use the suppliers to provide us with data to
review, for certification efforts.

• We are tool vendors potentially interested in cou-
pling out certified code generators

3 Conclusions

Developers of Embedded Systems and the people man-
aging them are busy people. It is hard to motivate them to

4

Page 42 / 104

fill out a questionnaire. We can be happy about the number
of influential people answering our questions. The answers
show that quite a zoo of processors is used by the groups
concerned. Many of them have architectural features that
make the determination of WCET difficult. The answers
show a growing awareness of the problem that run-time
guarantees for hard real-time systems are difficult to give
for these processors. The answer to question 9, the willing-
ness to go for a processor with predictable timing-behaviour
shows that a new research and development area is opening
up, namely the design of such processors. The high num-
ber of respondents willing to enforce coding guidelines to
support WCET analysis proves the same awareness.

5

Page 43 / 104

Page 44 / 104

Requirements of WCET tools
These are notes written by Jan Lindblad, ENEA OSE, Sweden in conjuction with the panel
discussion.

Different Needs

The survey “Industrial requirements for WCET tools” conducted by Reinhard Wilhelm, Jakob
Engblom et al. is really a market survey. The answers received were hard to interpret, since
there is such a great variation in what different users need.

I think the picture would have be clearer if the answers were plotted against different types of
industries. I propose the following simple categorization:

Safety, “Airbus”
§ Have money to spend on tools
§ Long sales and development cycles (many years)
§ Must prove T correctness
§ Uses multitude of approaches to do so
§ Missing a deadline may cause loss of lives and market (Concorde)
§ Small amount of code, have all sources

Motor control, “Volvo”
§ Have research budget
§ Medium sales and development cycles (a year or many months)
§ Improved Q with T correctness
§ Q work using some tools, plus testing
§ Missing a deadline may cause expensive machine to crash
§ Medium amount of code, usually have sources

Communication, “Ericsson”
§ Have research budget
§ Medium sales and development cycles (a year or many months)
§ Improved QoS with T correctness
§ Q work by testing
§ Missing many deadlines causes penalty fees plus bad market reputation
§ Huge amount of code, have some sources

Consumer, “Sony”
§ Minimal research budget
§ Short cycles, one shot sales
§ Improved Q/QoS with T correctness
§ Q work by testing
§ Missing many deadlines causes bad market reputation
§ Medium amount of code, have some sources

Testing vs. Calculation

Some people say testing is useless, some say testing is the only thing we can do. I say both
approaches are necessary. Neither of them is good enough to stand on their own today.

Page 45 / 104

Especially in the safety industry, large sets of verification methods are required. Here, both
testing and calculation are corner stones.

The Future of WCET

Processing power demands are growing more rapidly than Moores law, so more and more
processors have to be connected into a cluster to solve the application needs. This makes the
analysis of the system behaviour more challenging since more complex processors and
interconnections are being used.

The WCET researchers often tell the users to “use simpler/more predictable processors”, and
for a good reason. But to use simpler processors will often increase the number of processors,
and we don’t know if that makes the problem easier.

Multiple processor cores within one piece of silicon is already happening in industry.

Legal Issues

There is a licensing problem with software you buy today. When a licensing contract is
signed, there is usually a paragraph that says something like “you shall not reverse engineer
this code”. Users with few or no suppliers may think of this as a minor problem, but for users
with many suppliers this is an issue when applying WCET tools.

New Research Field

I propose a new research field: how to combine the results of all the different methods, be that
WCET, pWCET or measurement. Use flow information where there is such, inspect the
source code when available.

Page 46 / 104

���������
	��
�����������������������
� ���"!�#"�%$&#'�(���)��*,+ �)��*�-.#/�10 23�4��#657�����3�8�
9 �;:<�%= ����� �>23! �,��*���?@�BAC�D���1*FE�*G�@�H�I���"���

JIKML�NPORQ7S�KMT�UWVYX�L�V)T�V[Z \G][^/_`UPOba�KMc�T�V[^/NPV[U(d<KfegKMNWhfKMcji'V
k�V[T�V)^'KMNml�c�UWeMV[^/ZnUWipo.OMq�J(V[^/c�KMrbS�L�h[O

dsV[cjinV[^tquO`^Dvpc�quO`^/rwKginUPh)Z

xzy|{F},~��8��}

�M�C�����H�������M�����"���g���������/�����������1�������M�����'�p���4�u�
�C�����(�M���¡ ¢����£��(�¤�f����¥¢ n�¦�)§p�p�P���¢¨"���©�ª�����P�`���"�«���W�����M¬<�M�ª�
�p�'�p�«�"£>¥C�`­¢�"�®­¢�"�'�"�¯�6�M£D���g���`�����n��­¢���b�C�° n�C±��¯�����"���©�g±
�����p£D���P�����ª���©�ª���s£<���®§6��¥f�"�6­®§"�®���¤�²�"��£D�/­�¥C�¯�p� �©�
���¡­¢�"�|���t�M�����/��­)���¤�²��³�´,µ8�¶���M­�·8´,µ8�R������¬©¨��¯���6�
¸ �¹�p�6º����©�¤�²��¥C�;�¤�²���M�6�6­��u�8¨6�n­¢�<���g�M���«���W�����²�"¬
³�´,µ8�.���`�����'�p�����«�n�����8¨6��¥C�¯­D�¤�²�"�����²�������©�ª���"��£D�

 ¢����¥C�`­t�����Y¨6��£�£D���»�«���¼���"¬��M�C�������©�¯�������©�ª���©�g�«�« ¢±
�����W�����w�u�7­�� ½(�"���"�ª�¾£<�n­�¥C�¯�������`­��6�¢�M�¡�/�)¨¡�ª�p�I�����t�¤�²�
�¯����±��¯�����"�����`­�¨6���¹¨�¥C�¯���W�����Y�p���«�M�"¬<�`�ª�8£D���©�¦)�n���¿�������
�ª���p���¢§"�©���©�W�'ºt�6�'�"�Y�¼�¦¥f�"�pºs�¡À)�«�"�²�p��§"�©���©�P�®���M­b���6��£��¯���6�
�©�ª���« ��¡���P�����4���Y�¤�²�
�M�¯��� �����p£<¬

Á Â`Ã },~�ÄDÅ7Æ|��}�Ç�Ä Ã

È1É/Ê¢Ë°ÌPÍ�Î¹Ï<ÉHÐ¼ÑCÐ¼Í�É/Ï<ÐGÊ�Ò¡É�Í�Ó²Ô[Ð¼ÉHÔ¢Õ�Ö1Ó²Î�×6Ó�Í�Ó²É;×�Ô)Ò�Ò¡É/×�Í
Í�É/Ï<ØgÔ)Ò¡Ê¢ËMÙMÉ"ÓgÊ'Ú[Î¹Ô¢Ò@Î¹Ð
Ê)Ð@Î¹Ï<ØgÔ)Ò¼Í6Ê�Õ[Í1Ê¢ÐHÍ�Ó²É�É�ÛCÉn×�ÜCÍ¡Î¯Ô)Õ
Î¯Í¡Ð�É"Ë¯ÝuÞ�ß�ÕtÔ¢Ò6àCÉ"Ò@Í�Ô�Ø²Ò¡Ô�Ú[Î�àCÉIá¢ÜªÊ¢Ò¡Ê¢Õ)Í¡É"ÉnÐ�Ý¤Ô¢Ò@Í�Ó²É¾É�ÛCÉn×�ÜCÌ
Í�Î¹Ô¢Õ<Í¡Î¯Ï<ÉnÐ"â)Í�Ó²É/Ò�ÉIÎ¹Ð�Í�Ó²É(Õ²É"Énà<Í�Ô8Ï<ÔCàCÉ/ËgÐ�ÑfÐ¼Í�É/Ï¶Í6Ê¢Ð�ãCÐ"â
Ê�Õgà�Ó²É/Õª×�É¾Í¡Ó²É�Õ²É"ÉnàtÍ¡Ô<ØgÉ/Ò¼Ý¤Ô)Ò�ÏäÊ�Í¡É"Ï<ØgÔ)Ò¡Ê¢ËFÊ�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð
Ê�Õgà�ÉnÐuÍ¡Î¯ÏDÊ�Í¡É�Í�Ó²É�åçæ@èHé�Þ
ê Ë¯Í�Ô¢Üªá¢Ó�Í¡Ó²É"Ò¡ÉHÎ�ÐGÊ¢Õ8É�ë`Ô¢Ò�Í,Í¡Ô�Ö;Ê¢Ò¡àªÐjÍ�ÓªÉ@×�Ò¡É/Ê�Í�Î¹Ô¢Õ�Ô¢Ý

Ê<Ò¡É�Ý¤É"Ò¡É"Õg×�É�Î¯Ï<Ø²Ë¹É"Ï<É/Õ)Í6Ê�Í¡Î¯Ô)Õ7Ý¤Ô)ÒmÈ1É/Ê¢Ë°Ì�é
Î¹ÏsÉ8ì[Ê'Ú�Ê|í¯îpï«â
Í�ÓªÉ"Ò¡É1Î¹ÐHÕ²Ô�Í�Ñ)É�Í@Ê�Ð¼Í¡Ê¢Õªà²Ê�Ò6àsÖ;Ê'Ñ8Í�Ô�É/Ð¼Í�Î¹ÏDÊ�Í¡É1Í�Ó²É(É�ÛCÉ�Ì
×�Ü²Í�Î¹Ô¢Õ�Í¡Î¯Ï<É@Ý¤Ô¢Ò�ì)Ê'Ú�Ê1Ø²Ò¡Ô¢á)Ò¡Ê¢ÏDÐ"â/Ö1Ó²Î¹×6Ó�Î¹Ð�ÊmÙgÊ¢Ð�Î¹×�ÕªÉ"É/à
Ô¢Õ7Í�ÓªÉ8àCÉ"Ú)É"Ë¹Ô¢Ø²Ï<É"Õ[Í1Ô�Ý�Ò¡É/Ê�Ë¯ÌPÍ�Î¹ÏsÉ�Ð�ÑfÐ¼Í�É/ÏDÐ"Þ
é
Ó²Î¹Ð1à²Ôf×"Ü²Ï<É"Õ[Í1Ø²Ò¡É/Ð�É"Õ[Í¡Ð;Ö;Ô¢Ò¡ãsÎ¹Õ¦Ø²Ò¡Ô¢á¢Ò¡É/Ð¡Ð�Í¡ÔsÍ�Ó²É

×�Ò¡É/Ê�Í�Î¹Ô¢Õ Ô¢Ý�Ê�Ï<Ôfà²Ü²Ë¹Ê¢Ò(Ø²Ë�Ê�Í�Ý¤Ô¢Ò¡ÏäÝ¤Ô)Ò(ðgÔ�Ö&Ê¢ÕªÊ�Ë¹ÑCÐ¼Î�Ð1Ô¢Ý
ì[Ê'Ú'Ê�Ï<É�Í�ÓªÔfàªÐ"âCÖ1Ó²Î�×6Ó�Î�Ð@Í�Ó²ÉIñªÒ6ÐuÍ1Ð¼Í�É"Ø|Î¹ÕtÍ�ÓªÉ¾ØªÒ�ÔC×�ÉnÐ�Ð
Ô�Ý�Ù²ÜªÎ¯Ë�àCÎ¹Õ²á�Ê<Í¡Ô[Ô)ËjÝ¤Ô¢ÒIå�æ@è@é»ÉnÐuÍ¡Î¯ÏDÊ�Í�Î¹Ô¢ÕFÞ1é
Ó²É8Ê¢ÕªÊ�Ì
Ë¹ÑfÐ�Î�Ð(Î�Ð(ØMÉ"Ò�Ý¤Ô¢Ò¡Ï<É/à Ô)Õ Í�ÓªÉ�ÙfÑ[Í�É/×"ÔCàCÉ�Ë¹É"Ú)É"ËPÞ¾é
Ó²É�Õ²É�ÛfÍ
Ð�É/×pÍ¡Î¯Ô)ÕªÐ�Ø²Ò¡É/Ð�É"Õ[Í�Í�Ó²É
Í¡Ô[Ô)Ë²ÐuÍ¡Ò�Üg×pÍ�ÜªÒ�É1Ê�Õgà8ðªÔ�ÖwÊ�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð
Ý¤Ô¢Òmì[Ê'Ú�Ê²âCÊ<Ð¼ÏDÊ¢Ë¯Ë,Ð¡Ê�Ï<Ø²Ë¹É�Ê�Õªà|×�Ô)Õª×�Ë¹ÜªÐ�Î¯Ô)ÕªÐ/Þ

ò ó ÄDÄ�ôõ{j},~�Æ7�H}GÆ7~�ö

é
Ó²É�Ê�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð�Í�ÔfÔ¢ËMÎ�Ð@ÙgÊ¢Ð�É/àDÔ)Õ�Ê�Õ|Ê�ÙªÐ¼Í�Ò6Ê¢×�ÍHÏ<Ôfà²É"ËMÝ¤Ô¢Ò
Í�ÓªÉtì¢÷¾øõÞFß�ÕbÔ¢Ò6àCÉ"Ò�Í¡Ô Ü²ÕªàCÉ/Ò¡Ð¼Í¡Ê¢Õªà�Î°Ínâ�Ê|Ù²Ò¡Î¯É"Ý;Î¹Õ[Í�Ò¡Ô�Ì
àCÜª×�Í�Î¹Ô¢ÕsÎ¹Ð�Ø²Ò¡É/Ð�É"Õ[Í¡É/à8Ê¢Õªà8Í¡Ó²É"Õ,â�Í�Ó²É
Ê�ÙgÐuÍ¡Ò¡Ê)×pÍ�Î¹Ô¢Õ�ÜªÐ¼ÉnàjÞ

ù
ú�û ü4ýmþ ÿ ��� ����� þ
	
é
Ó²É�ì)÷Iø í �'ï�Î�Ð7ÊRÐ¼Í¡Ê)×6ã�ÙgÊ¢Ð�É/à.ÏDÊ¢×6Ó²Î¹Õ²É�Ö1ÓªÔ)Ð�É

É"ÛfÉn×�ÜCÍ¡Î¯Ô)ÕçÐ¼É
�[Ü²É"Õª×"É�Î�Ð�×�Ô)Õ[Í�Ò¡Ô¢Ë¹Ë¯Énà�ÙfÑ.ÊR×"Ê¢Ë¯Ë¾ÐuÍ6Ê¢×6ã��nÞ
é
Ó²ÉsÙªÊ)Ð¼Î�×8Ü²ÕªÎ°Í6ÐIÔ)Õ Í�ÓªÉs×/Ê�Ë¹Ë�Ð¼Í¡Ê)×6ã|Ê¢Ò�ÉsÐuÍ6Ê¢×6ã7Ý¤Ò¡Ê¢ÏsÉnÐ"â
Ö1Ó²Î�×6ÓRÊ�Ò¡ÉDÒ¡É/Ð�ØgÔ)ÕªÐ¼Î¹Ù²Ë¹É<Ý¤Ô¢ÒsàCÉ/Ð¡×�Ò¡Î¯ÙªÎ¯Õ²á¦Í¡Ó²ÉtÉ"ÛfÉn×�ÜCÍ¡Î¯Ô)Õ
Ð¼Í¡Ê�Í�É Î¹ÕªÐ¼Î�àCÉ ÉnÊ¢×6ÓwÏsÉ"Í�Ó²ÔCà.×�Ô)Õ[Í�É�ÛfÍnÞ ê Ð¼É
�)ÜªÉ"Õª×"É Ô�Ý
Ý¤Ò6Ê�Ï<É/ÐG×"Ê¢Õ�à²É/Ð¡×�Ò¡Î¯ÙMÉ�Ô¢ÕªÉ�ØgÔ[Ð�Ð�Î¹Ù²Ë¯É�×/Ê�Ë¹Ë)Ð�É��[Ü²É/Õª×�É�Î¹ÕªÐ�Î¹à²É
Í¡Ó²É
Ø²Ò�Ô)á¢Ò6Ê�Ï¦ÞFß�Õ�Ô¢Ü²Ò�Ð�Î¯Ï<Ø²Ë¹É@Ï<ÔCàCÉ/ËWâ�ÉnÊ¢×6ÓsÐuÍ6Ê¢×6ã¾Ý¤Ò¡Ê¢Ï<É
Î�Ðm×�Ô)Ï<ØgÔ[Ð¼Énà�ÙfÑDÍ¡Ó²Ò�É/É�×�Ô¢Ï<ØMÔ¢Õ²É/Õ[Í¡Ð��
î)Þ��
æ.Ì�Í¡Ó²É�Ø²Ò¡Ô¢á)Ò¡Ê¢Ï ×"Ô¢Ü²Õ[Í¡É"Ò
� Þ
é
ÓªÉ�Ë¯ÔC×"Ê¢ËjÉ�ÛCÉ/×"ÜCÍ�Î¹Ô¢Õ¦Ð¼Í¡Ê¢×6ã
�ªÞ
é
ÓªÉ�Ë¯ÔC×"Ê¢ËjÚ�Ê�Ò¡Î¹Ê¢Ù²Ë¯É¾ØMÔ[Ô)Ë
é
Ó²É<Ø²Ò¡Ô¢á¢Ò6Ê�Ï�×"Ô¢Ü²Õ[Í�É/Ò�ã¢É"É/Ø�Í¡Ò¡Ê)×6ã Ô�Ý�Í¡Ó²Ét×�Ü²Ò¡Ò¡É"Õ[Í

Î¹ÕªÐ¼Í�Üª×�Í�Î¹Ô¢Õ ÙMÉ"Î¹Õ²átÉ�ÛCÉn×�ÜCÍ¡É/àjÞ@ß�ÕªÐuÍ¡Ò�Üg×pÍ�Î¹Ô¢Õ É"ÛCÉ/×�Ü²Í�Î¹Ô¢Õ¦Î¹Ð
àCÔ)Õ²É�ÜgÐ¼Î¹Õ²átÍ¡Ó²ÉsÉ�ÛCÉ/×"ÜCÍ�Î¹Ô¢ÕYÐ¼Í¡Ê)×6ã|Í�Ô�ÓªÔ¢Ë�à ØªÊ�Ò�Í�Î�Ê�Ë�Ò¡É/Ð¼Ì
Ü²Ë¯Í¡Ð/Þ�ß�ÕªÐuÍ¡Ò�Üg×pÍ�Î¹Ô¢ÕgÐ�×/Ê�Õ8Ï<Ô�Ú)É@à²Ê�Í¡ÊmÙMÉ�ÍuÖ;É"É/Õ�Ë¹ÔC×"Ê�ËfÚ�Ê�Ò¡Î¯Ì
Ê¢Ù²Ë¯ÉnÐtÊ�Õgà®Í¡Ó²É�Ð¼Í¡Ê¢×6ã`Þ��ªÔ¢ÒDÉ/Ê)×6Ó.ÏsÉ"Í�Ó²ÔCàjâ;Í¡Ó²É"Ò¡É�Ê�Ò¡É
ÏDÊ�ÛCÎ¹Ï�Ü²ÏäÚ'Ê¢Ë¯ÜªÉ/Ð@Ý¤Ô¢Ò
ÙMÔ�Í�Ó¦Ð�Î��/É/Ð/â)Í¡Ó²É�Ë¯ÔC×/Ê�ËjÐuÍ6Ê¢×6ãtÊ¢Õªà
Ú�Ê�Ò¡Î�Ê�Ù²Ë¹É/Ð/Þ
é
Ó²É�ÏDÊ¢×6Ó²Î¹Õ²É¾Ö@Ô)Ò¡àDÎ�Ð
Ê�� � Ì«Ù²Î¯Í;Î¹Õ[Í�É"á)É"Ò;Ú�Ê�Ë¹Ü²É¢â²Ê¢Õªà

ÙfÑ[Í�Én×�ÔCàCÉ/Ð|×"Ê¢ÕçÏ<Ô�Ú¢ÉYàªÊ�Í¡ÊRÍ�ÔwÊ�Õªà.Ý¤Ò¡Ô¢Ï
Í¡Ó²É4Ð¼Í¡Ê)×6ã`â
×6ÓªÊ¢Õ²á¢É@×�Ô¢Õ[Í¡Ò�Ô)Ë�ðªÔ�ÖRÊ¢Õªà�É"Ú)É"Õ�Ô)ØgÉ/Ò¡Ê�Í�ÉHàCÎ¹Ò¡É/×pÍ¡Ë¯Ñ�Ô)Õ�Í�Ó²É
Ë¹ÔC×"Ê�ËjÚ�Ê¢Ë¯Ü²ÉnÐ"Þ�èHÚ¢É"Ò¡ÑDÙfÑ[Í�É/×"ÔCàCÉ�Î¹ÐmÊsÔ)Õ²É�Ù[Ñ[Í¡É¾ÏDÊ)×6Ó²Î¯ÕªÉ
Î¹ÕªÐ¼Í�Ò¡Üª×pÍ¡Î¯Ô)ÕFâªÊ�Õgà�ÏDÊ'ÑtÕ²É/É/à|ØªÊ¢Ò¡Ê¢ÏsÉ"Í�É/Ò¡Ð@Ô¢Ò1Õ²Ô¢Í/Þ

ù
úPù ü4ýmþ������! #"$�&%' �ÿ��)(�� ���

*IÜ²Ò¡Î¯Õ²á¦Ø²Ò¡Ô¢á)Ò¡Ê¢ÏzÊ¢ÕªÊ�Ë¹ÑCÐ¼Î�Ð/âgÍ¡Ó²É"Ò¡ÉsÎ¹Ð¾Í¡Ó²É<Õ²É"Énà Ý¤Ô¢Ò�É"Û[Ì
Í¡Ò¡Ê)×pÍ�Î¹Õ²áwÎ¯Õ²Ý¤Ô¢Ò¡Ï<Ê�Í�Î¹Ô¢Õ Ê¢ÙgÔ)ÜCÍ¦Ú'Ê¢Ò�Î�Ê�ÙªË¯É�Ú'Ê¢Ë¯ÜªÉ/Ð/Þ é
Ó²Î¹Ð
Î�Ð1àCÔ¢ÕªÉIÜªÐ�Î¹Õ²áDÊ�ÙªÐ¼Í�Ò6Ê¢×�Í;Î¹Õ[Í�É"Ò¡Ø²Ò¡É�Í6Ê�Í�Î¹Ô¢ÕYí � ïPâ²Ê¢Õªà�ÓªÉ"Õª×"É
Í¡Ó²É"Ò¡É@Î�Ð,Í�Ó²É;Õ²É"Énà�Ý¤Ô¢Ò�Ê�ÕsÊ�ÙªÐ¼Í�Ò6Ê¢×�Í,Ï<ÔCàCÉ"Ë[Ý¤Ô¢ÒGÍ�ÓªÉ@ì)÷IøõÞ
é
Ó²É�Ê¢ÙªÐ¼Í�Ò6Ê¢×pÍIÏsÔCàCÉ/ËGÎ�Ð(Ê)à²Ê�Ø²Í�É/à|Ý¤Ô)Ò¾Ê¢ÕªÊ�Ë¹ÑCÐ¼Î�ÐmÊ¢Õªà

×/Ê�Õbã¢É/É"Ø4Ô¢ÕbÉ/Ê)×6Ó�Ë¹ÔC×"Ê�ËHÚ'Ê¢Ò�Î�Ê�ÙªË¯ÉDÊ�Õgà�Ô)Õ�ÉnÊ¢×6ÓõÐ¼Í¡Ê¢×6ã
ØMÔ)Ð�Î°Í¡Î¯Ô)Õ®ÊYÐ�É�Í<Ô�ÝmÚ�Ê¢Ë¯Ü²ÉnÐ"Þ4é
Ó²Î�ÐsÊ¢Ø²Ø²Ò¡Ô)Ê)×6ÓbÊ¢Ë¯Ë¹Ô�ÖmÐ�Ê¢Õ
Ð¡Ê�Ý¤É8ÙªÜCÍIÎ¹Ï<Ø²Ò�Én×�Î�Ð¼É8Ê¢ÕªÊ�Ë¹ÑCÐ¼Î�Ð
Í¡ÔtÙgÉ�ØgÉ/Ò¼Ý¤Ô)Ò�Ï<Énà7Ô)Õ¦Í�Ó²É
ÙfÑ[Í�Én×�ÔCàCÉ.Ë¯É/Ú¢É/ËWâ<ÙªÊ)Ð¼Énà Ô¢Õ Í�ÓªÉwØMÔ)Ð¡Ð�Î¯Ù²Ë¹É.Ú�Ê�Ë¹Ü²É/Ð�Ý¤Ô¢Ò
Ï<É�Í¡Ó²ÔCà®ØgÊ�Ò6Ê�Ï<É�Í¡É"Ò6Ð"Þbé
Ó²É"Ò¡É�Î�Ð/â�Ô�ÝI×"Ô¢Ü²Ò6Ð�É¢â�ÊYÍ�Ò6Ê¢àCÉ"Ì
Ô¢ë4ÙMÉ�ÍuÖ;É"É/Õ+�[ÜªÊ�Ë¹Î°ÍuÑ¦Ô¢Ý�Ò�ÉnÐ¼Ü²Ë¯Í¡Ð¾Ê�Õgà�×�Ô[ÐuÍ(Ô¢Ý�Í�Î¹Ï<ÉsÊ¢Õªà
Ï<É"Ï<Ô)Ò�ÑtÕªÉ"É/à²É/à7Í�Ô<É�ÛCÉn×�ÜCÍ¡É�Í�Ó²É�Ê�ÕgÊ�Ë¹ÑfÐ�Î�Ð"Þ

,.-0/2143517698
:<;
1&=?>A@9@B8DCE>A=GF�HI:<301J>A=G/LKM>JNA>O-0/23D1J>AP

î

Page 47 / 104

é
Ó²É�ÜªÐ�É¾Ô¢Ý�Ê¢ÙªÐuÍ¡Ò¡Ê)×pÍ
Î¯Õ[Í¡É"Ò¡Ø²Ò�É"Í¡Ê�Í�Î¹Ô¢Õ|Î¹Ð1Ê¢Õ|Ê)àCÚ�Ê�Õ[Í¼Ì
Ê�á)É¢â�Ê¢Ð�Î¯Í�Ê¢Ë¯Ë¹Ô�ÖmÐ�É�ÛCÎ�ÐuÍ¡Î¯ÕªáY×�ÔCàCÉ<Í¡Ô�ÙgÉ|Ê�ÕªÊ¢Ë¯ÑCÐ�É/àbÊ�Õgà
Ó²É/Õª×�É�Í�Ò¡Ü²Ë¹Ñ Ò�É/ÜªÐ¼ÉnàjâjÐ¼Î¹Õª×"É�Í¡Ó²É"Ò¡É�Î�ÐIÕ²Ô7ÕªÉ"É/à�Ý¤Ô¢Ò�Ï<Î°ÛfÌ
Î¹Õ²á�Ê¢àªàCÎ°Í¡Î¯Ô)ÕªÊ�Ë,Î¯ÕCÝ¤Ô)Ò�ÏDÊ�Í�Î¹Ô¢Õ¦Ö1Î°Í¡Ó Ø²Ò¡Ô¢á¢Ò6Ê�Ï ×�ÔCàCÉ¢Þ ê Ë¯Ì
Í�ÓªÔ¢Ü²á)Ó<Ð�Ô¢Ï<É
É�ÛfÍ¡Ò¡Ê¾Î¹ÕCÝ¤Ô¢Ò¡ÏDÊ�Í�Î¹Ô¢ÕsÏDÊ'Ñ�Ð¼Í�Î¹Ë¯ËªÙgÉ1Õ²É/É/àCÉnàjâ
Í�ÓªÉ�Í�Én×6Ó²Õ²Î �)ÜªÉ8×"Ê�Õ Ê)Ð¼ã � ÜgÐuÍmÍ¡Ó²É�Ð¼Í�Ò¡Î¹×�Í�Ë¹Ñ�Õ²Én×�ÉnÐ�Ð¡Ê�Ò¡ÑDÎ¯Õ
Ô¢Ò6àCÉ/Ò7Í¡Ô.ØgÉ/Ò¼Ý¤Ô)Ò�Ï%Í¡Ó²ÉRÊ�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð/Þ é
ÓªÎ¹Ð¦Î¹ÕCÝ¤Ô¢Ò¡ÏDÊ�Í¡Î¯Ô)Õ
àCÔfÉ/Ð�Õ�� Í�Õ²É/É/à�Í�ÔõÙMÉYÊ�ÕªÕ²Ô�Í6Ê�Í�ÉnàwÎ¯ÕªÐ�Î�àCÉ Í�ÓªÉ Ø²Ò�Ô)á¢Ò6Ê�Ï
×�ÔCàCÉ)Þ�é
Ó²Î�Ð�Î�Ð�Ê�ÕõÊ¢àCÚ�Ê¢Õ)Í6Ê�á)É�Ô�Ú)É"Ò�Ô�Í¡Ó²É"Ò�Í¡É/×6Ó²ÕªÎI�[Ü²ÉnÐ"â
Ê¢Ð(Î¯Õ®í��/ï«âMÖ1Ó²Î¹×6Ó�Ê�Ò¡É�ÙªÊ¢Ð�É/à¦Ô)Õ�¨6�/­)�D���ª�`�������P�����ª�6âMÙMÉ�Ì
×"Ê¢ÜªÐ�É�Î°Í�Ê'Ú¢Ô)Î¹à²ÐjÍ�Ó²É@Õ²É"Énà�Í�ÔmÎ¹ÕªÐ�É"Ò�ÍGÉ"Û[Í¡Ò¡Ê(×�ÔCàCÉ�Í¡Ô(á¢ÜªÎ¹àCÉ
Í�ÓªÉ8Ê�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð@Í�ÔfÔ)ËWÞ
ê Ï<Ô¢Õ²áwÔ�Í¡Ó²É"Ò Ê)àCÚ�Ê�Õ[Í¡Ê¢á¢É/ÐtÍ�Ó²ÉbÏ<É�Í¡Ó²ÔCà Î�Ð¦Ê�ÜCÍ¡Ô�Ì

ÏDÊ�Í¡Î¹×¢â²×"Ê�Õ|ÙMÉ�Ê¢Ø²Ø²Ë¹Î¯ÉnàtÍ¡ÔDÊ�ÕfÑtØ²Ò¡Ô¢á)Ò¡Ê¢Ï Ö1Ò¡Î¯Í¼Í�É/Õ7Ö1Î¯Í�Ó
Í�ÓªÉ Ë¹Ê¢Õ²á¢ÜªÊ¢á¢É¦Ê�ÕªàwÑfÎ¹É"Ë�à²ÐtÊ�Õ.Ê�ØªØ²Ò�Ô'ÛCÎ¹ÏDÊ�Í�É¦Ê�ÕgàwÐ¡Ê�Ý¤É
àCÉnÐ�×"Ò�Î¹ØCÍ�Î¹Ô¢Õ|Ô�ÝGÍ�Ó²É�ØªÒ�Ô)á¢Ò6Ê�Ï ÙMÉ"ÓªÊ'ÚfÎ¹Ô¢Ò�í � ïPÞ

� Â`Ã Ç6}GÇ��8ô���}�ö
	|{

é
Ó²Î¹Ð�Ð¼Én×pÍ�Î¹Ô¢ÕõÐ�Ó²Ô�ÖmÐ8Ð�Ô¢Ï<ÉDÐuÍ¡É"ØªÐ8Í�Ô Î¹Ë¯Ë¹ÜªÐ¼Í�Ò6Ê�Í¡É<Í�Ó²É
ÙªÊ)Ð¼Î�×®Î�àCÉ/Î¹ÊªÞ ê Ë¯Í�Ô¢Üªá¢Ó Í¡Ó²ÉwÍ�ÔfÔ¢Ë<Î�ÐbÐuÍ¡Î¯Ë¹ËDÜ²ÕªàCÉ/ÒõàCÉ�Ì
Ú¢É/Ë¯Ô)Ø²Ï<É"Õ[Í/âIÍ�ÓªÎ¹Ð Ð�Ó²Ô�ÖmÐ�Í�Ó²ÉbÙªÊ)Ð¼Î�×YÔ)ØgÉ/Ò¡Ê�Í�Î¹Ô¢ÕªÐ7Ý¤Ô)Ò¦Ê
Ð�Î¯Ï<Ø²Ë¹ÉHÝ¤ÜªÕª×pÍ¡Î¯Ô)ÕFÞ�é
Ó²É;×"ÔCàCÉ@Î¹Ë¹Ë¯ÜªÐ¼Í�Ò6Ê�Í¡É/Ð�Ê¾ÐuÍ6Ê�Í�Î�×��pØMÔ�Ö
�
Ï<É�Í¡Ó²ÔCàjâ�Ö1Ó²Î�×6Ó Í6Ê�ã¢É Ê à²Ô¢Ü²Ù²Ë¹É Ú'Ê¢Ë¯ÜªÉ���ÙªÊ¢Ð�É��wÊ�Õgà
Ê�ÕzÎ¹Õ)Í¡É"á)É"ÒwÉ�ÛCØgÔ)Õ²É"Õ[ÍçÊ�Õgà ×/Ê�Ë�×�Ü²Ë�Ê�Í¡É Í¡Ó²É&Ú'Ê¢Ë¯ÜªÉ»Ô¢Ý
��������������� �!����" Þ

Flow Analysis Structure

Compiled Files
 (.Class)

Program Instructions

Load Bytecodes
 (BCEL)

Basic Block Graph
 (Instructions)

Control Flow Graph
 (jDFA)

Abstract Interpretation

Static Analysis

High Level Information:
 (Flow Facts)
 Loop bounds

 Variable ranges
 Error conditions
 Infeasible paths

 Relations between blocks

�GÎ¹á¢ÜªÒ�É<î �&��Ë¹Ô�Ö»Ê�ÕgÊ�Ë¹ÑfÐ�Î�ÐHÍ6Ê¢Ð�ãCÐ

é
Ó²É�ÙgÊ¢Ð�Î¹×�Í¡Ê)Ð¼ãCÐ¾Ê�Ò¡É �mË¹Ô)Ê)à Í�ÓªÉ<×"ÔCàCÉ¢âjÉ"Û[Í¡Ò¡Ê)×pÍIÍ�Ó²É
ÙfÑ[Í�É/×"ÔCàCÉ/Ð/âIÙªÜ²Î¯Ë�à Í�Ó²ÉõÙªÊ)Ð¼Î�×�Ù²Ë¯ÔC×6ã�á)Ò¡Ê¢Ø²Ó»Ê¢ÕªàçÍ¡Ó²É"Õ
Ð¼Í¡Ê�Ò�Í(Í¡Ó²ÉDÊ�ÕªÊ¢Ë¯ÑCÐ�Î¹ÐIÊ¢Ð�Ð�Ó²Ô�Ö1Õ�Ô¢Õ�ñªá¢Ü²Ò¡É|î¢Þ�é
Ó²Ô)Ð�É�Ê¢Ò�É
ØMÉ"Ò�Ý¤Ô¢Ò¡ÏsÉnà<ÜªÐ�Î¯Õ²á8Í�Ó²É�#mæ@è%$õí &�ïjÊ�ÕªàDìB*�� ê í '�ïMË¹Î¹Ù²Ò¡Ê¢Ò¼Ì
Î¹É/Ð/Þ
é
Ó²É�Ð�Ê¢Ï<Ø²Ë¯É�×"ÔCàCÉ Î¯Õçì[Ê'Ú�Ê4Î¹ÐtÐ�Ó²Ô�Ö1ÕwÕ²É�ÛfÍnÞ»é
Ó²É

Î¹ÕªÐuÍ¡Ò�Üg×pÍ�Î¹Ô¢Õ Ý¤Ô¢Ò¡ÏDÊ�Í7ÜgÐ¼ÉnàçÙfÑwÍ�Ó²É4Ë¯Î¹Ù²Ò6Ê�Ò¡Î¯ÉnÐ�Î�Ð7Ô�ëjÐ¼É"Í/â
ÙfÑ[Í�É/×"ÔCàCÉ@ÕgÊ�Ï<É¢â�àCÉn×�Î¹ÏDÊ�Ë[Ù[Ñ[Í¡É/×�ÔCàCÉ;Ú�Ê�Ë¹Ü²É
Ê�Õªà�Í¡Ó²É1Ð¼ÎI�"É
Î¹Õ|ÙfÑ[Í�ÉnÐ"Þ)(fÔgâCÝ¤Ô¢Ò1Î¹ÕªÐ¼Í¡Ê¢Õª×�É¾Í�ÓªÉ�Ý¤Ô¢Ë¹Ë¯Ô�Ö1Î¹Õ²á<ÐuÍ¡Ò�Î¹Õ²á��
*%+-,/.!0!132�4653798�7;:=<?>;7!@

Ï<É/Ê¢ÕªÐ�ÊmÙfÑ[Í�É/×"ÔCàCÉHÕªÊ¢Ï<É/à8à²×"Ô¢ÕªÐ¼Í�A�î@Ê�Í�Ë¯ÔC×"Ê¢Ë¢Ï<É"Ï<Ô)Ò�Ñ
Ô¢ë`Ð�É�Í �/É"Ò¡ÔªâfÖ1Ó²Ô)Ð�É�Ù²Î¹ÕªÊ�Ò¡ÑDÚ�Ê�Ë¹Ü²É�Î¹Ð�î;BsÊ�Õªà�Í�Ó²É8Ð�ÎI�"É�Î¹Ð
Ô)Õ²É1ÙfÑ)Í¡É¢Þ?(fÔ¢Ï<É
ÙfÑ[Í�É/×"ÔCàCÉ/Ð�Ê)Ð�Í�Ó²Ô[Ð¼É1Î¹Õ<Ô�ëjÐ¼É"Í¡Ð&��Ô¢Ò1î�C
Ô)Õ7ñgá¢Ü²Ò¡É � ÕªÉ"É/à7ØªÊ¢Ò¡Ê¢ÏsÉ"Í�É/Ò¡Ð;Ë¹Î¯ã)É�Ê¢Ò�Î¯Í�ÓªÏsÉ"Í�Î�×�Ú�Ê�Ë¹Ü²É/Ð/Þ

DFEHGIE�JHKFEHLFMINOJ�PRQOSFJ=TVUXWYLZJHQOSI[H\] MF^O_FNZ`HabaHNFEFcFc!dFKFEHLFMFNFJOef MO^F_FNZ`Habc�QIEHQZ`OaR\F[H^F_FNFJbMF[HgXh \I[H^O_INOJ=_FEIcHJjik `�lOQ�JHKFMF[HlIJHlFQImHen ` lFQo`qpr _F[F[ONOJFEHlbsFJOGFJOsIcHJbtbuIEONFcOJvpw \F[O^O_FNFJ=sFJFcH^FNOQ�t6xqy zjp{| ` u}h JOKOMI[HlFJOlOQo~bzFmOe� sFJHGIJHsZcHJ=tbQOsO^IJvp]v� JHKOMI[HlIJHlOQbt6P=JHKFMF[OlFJHlFQjp]X] �]vf JONIcHJOe]vk sFJHGIJHsZcHJ=tbuFEONIcHJjp]qn �]vr uF[Osjh `!t�zvp�`=~bJHKFMF[OlFJHlFQjp�` �F�Im=e]vw sFJFcH^FNOQ=tbsIJFc�^INHQ6�R_FEIcHJjp]j{ �]v| ` u}h sIJHGIJHsIcOJFmOe]v� sFJFcH^FNOQ=t/xqy z��=sFJIc�^FNOQjpfX� �f�] sFJOQO^OsFlbsFJFcH^FNOQjpfXf �fXk �

æ@Ô¢Õªà²Î°Í¡Î¯Ô)ÕªÊ�Ë � ÜªÏsØäÎ¯ÕªÐ¼Í�Ò¡Üª×�Í�Î¹Ô¢ÕªÐR×6ÓgÊ�Õ²á)Éç×�Ô¢Õ[Í¡Ò�Ô)Ë
ðªÔ�ÖzÊ¢Ð<Ð�Ó²Ô�Ö1Õ®ÙfÑõÍ¡Ó²Éb�W�p¥ª�<Ê¢Õªà������¿�"�<Ë�Ê�ÙMÉ"Ë�Ð<Î¯Õ�Í�Ó²É
Ê¢Ò¡×/Ð"Þ ê �g¥C�©�jË¹Ê¢ÙgÉ/ËHÏ<É/Ê¢ÕRÐ¼É
�)ÜªÉ"Õ[Í�Î�Ê�Ë�É"ÛCÉ/×�Ü²Í�Î¹Ô¢ÕbÍ�Ô�Ê
ÙfÑ[Í�Én×�ÔCàCÉ�Í¡ÓªÊ�Í(Î�Ð(Ê � ÜªÏsØ�Í¡Ê�Ò¡á¢É"Í/Þ@è�ÛCÉ/×�Ü²Í�Î¹Ô¢Õ�Ð¼Í¡Ê�Ò�ÍIÊ�Í
ØMÔ)Ð�Î°Í¡Î¯Ô)Õ��sÊ¢Õªà�ðªÔ�ÖçÍ¡Ô�Ö;Ê¢Ò¡àtÍ�Ó²É�Ë�Ê¢Ð¼Í1Ù²Ë¯ÔC×6ã`â²Ê�Í��=C²Þ

public static double pow(double base, int exponent)

 0: dconst_1[15](1)
 1: dstore_3[74](1)
 2: iload_2[28](1)
 3: ifge[156](3) -> iconst_0

 15: iconst_0[3](1)
 16: istore[54](2) 6

true

 6: iload_2[28](1)
 7: ineg[116](1)
 8: istore_2[61](1)
 9: iconst_1[4](1)
 10: istore[54](2) 6
 12: goto[167](3) -> iconst_0

false

 18: iconst_0[3](1)
 19: istore[54](2) 5
 21: goto[167](3) -> iload 5

null goto

 31: iload[21](2) 5
 33: iload_2[28](1)
 34: if_icmplt[161](3) -> dload_3

goto

 24: dload_3[41](1)
 25: dload_0[38](1)
 26: dmul[107](1)
 27: dstore_3[74](1)
 28: iinc[132](3) 5 1

true

 37: iload[21](2) 6
 39: ifeq[153](3) -> dload_3

falsenull

 46: dload_3[41](1)
 47: dreturn[175](1)

true

 42: dconst_1[15](1)
 43: dload_3[41](1)
 44: ddiv[111](1)
 45: dstore_3[74](1)

false

null

��Î¯á)Ü²Ò¡É � �)#
Ê¢Ð�Î¹×�#;Ë¯ÔC×6ã��¾Ò6Ê�Ø²Ó7Ý¤Ô¢Ò
Í¡Ó²ÉL��Ô�Ö Ï<É�Í¡Ó²ÔCà

�

Page 48 / 104

�
ú¼û � ���! #"$�&%' ���� Cþ0"�� "²þ) #� �� � �

é
Ó²ÉYÊ¢ÙªÐ¼Í�Ò6Ê¢×pÍtÎ¹Õ[Í�É/Ò�Ø²Ò¡É�Í6Ê�Í¡Î¯Ô)ÕwÐ¼Í�É/Ø�ÜªÐ¼É�Í�Ó²ÉYÊ¢ÙªÐ¼Í�Ò6Ê¢×pÍ
ÚfÎ¯Ò�Í�ÜgÊ�Ë[Ï<Ê)×6Ó²Î¹Õ²É�Í¡Ô(Í¡Ò¡Ê'Ú)É"Ò6Ð¼É�Í¡Ó²É@Ï<É"Í�Ó²ÔCà�Ð¼Í�Ò¡Üª×�Í�Ü²Ò¡ÉHÔ)Õ
Í�ÓªÉ8ÙªÊ¢Ð�Î�×�Ù²Ë¹Ôf×6ã|á¢Ò6Ê�ØªÓFÞ�*IÜ²Ò¡Î¯ÕªátÉ"Ú�Ê�Ë¹ÜªÊ�Í�Î¹Ô¢ÕFâªÊ¢ÙªÐ¼Í�Ò6Ê¢×pÍ
Ú�Ê�Ë¹Ü²É/Ð1Ê¢Ò�É�×"Ò�ÉnÊ�Í�Énà�Ê¢Õªà¦ÐuÍ¡Ô¢Ò¡É/à|Ê�ÜCÍ¡Ô¢ÏDÊ�Í¡Î¹×/Ê�Ë¹Ë¯Ñ í ��ï«Þ
é
Ó²ÉRÍ6Ê�Ù²Ë¹É®Î¹Õ ñªá)Ü²Ò¡É � ×"Ô¢Õ[Í¡Ê¢Î¯ÕªÐ�Í�Ó²É�Ú�Ê�Ë¹Ü²É/ÐYÝ¤Ô¢Ò

Ø²Ò¡Ô¢á)Ò¡Ê¢Ï ×"Ô¢Ü²Õ[Í�É/Ò � �;æ
��â�×�Ô)ÕªàCÎ¯Í�Î¹Ô¢ÕªÐ�Í�Ô»Í�ÓªÉ � �4Ê�Õgà
�����(Ù²Ë¯ÔC×6ãCÐ/âªÍ¡Ó²É�Ê¢ÙªÐuÍ¡Ò¡Ê)×pÍIÐ¼Í¡Ê)×6ã Ê�Õªà|Í¡Ó²É�Ò¡É/Ð�Ü²Ë¯Í�������¥ª�"Þ
é
Ó²Î�ÐmÚ�Ê�Ë¹Ü²ÉnÐIÊ¢Ò�É8×/Ê�Ë�×�Ü²Ë�Ê�Í¡É/à àCÜ²Ò¡Î¹Õ²áDÍ�ÓªÉ�Ê�ÕgÊ�Ë¹ÑfÐ�Î�Ð�	'Þmß�Õ
Í�ÓªÎ¹Ð8Ð¡Ê�Ï<Ø²Ë¹É¢â,Í�Ó²ÉDØgÊ�Ò6Ê�Ï<É�Í¡É"Ò6Ð¾Ê¢Ò�É<Ë¹Î¯Ï<Î¯Í�Énà4Í�Ô ��������

��
�� ������� ��� Ê�Õªà������
 ��
������ Þ ê Í¦É/Ê¢×6Ó�ØMÔ¢Î¹Õ[Í/â(Í�Ó²É
Ú�Ê�Ò¡Î¹Ê¢Ù²Ë¹É/ÐtÊ¢Õªà.Í�ÓªÉ�Ð¼Í¡Ê¢×6ã.Ð�Ë¯Ô¢Í¡ÐtÔ¢Ý�Í�Ó²É4Ê�ÙªÐ¼Í�Ò6Ê¢×�Í�ÏDÊ�Ì
×6Ó²Î¹Õ²É<×"Ê�ÕYÓ²Ô¢Ë�à�Ê�ÙgÐuÍ¡Ò¡Ê)×pÍIÚ�Ê¢Ë¯Ü²ÉnÐ"Þ�èHÊ)×6ÓYÊ�ÕgÊ�Ë¹ÑfÐ�Î�Ð(Ð¼Í�É"Ø
Í�ÓªÉ"Õ¦É"Ú�Ê�Ë¹ÜªÊ�Í�É�Ê<Ð¼É"ÍmÔ�ÝGÚ�Ê¢Ë¯Ü²ÉnÐmàCÜ²Ò¡Î¹Õ²á<É�ÛCÉ/×"ÜCÍ�Î¹Ô¢ÕFÞ

��� � �"! # $ %'& (*) + ,�-/. 021 & 34*5 4"5 4*56 7 4"4 6"8 7 5*5 4"5 4*59 6 4*5 4 6"8 7 5 4*5: 9 4*4 92;': 5*5 4 6"8 7 5 4*5< : $ 4 -/=?>'& @ 5 4 6"8 7 5 4*5A : & 4 92;2: 5 4 6"8 7 5 4*5B 6CA 4"4 7 5"5 4 6"8 7 5 4*5D 6EB 4*5 4 6"8 7 5 4*5F 6EF 4"4 7 5"5 4 6"8 7 5 4*5G 6EG 4*5 4 6"8 7 5 4 7 56E7 926 4*5 4 6"8 7 5 4 7 56"6 : 6 4"4 7 5"5 4 6"8 7 5 4 7 56C9 :": 4"4 7 5 ; 4 92;2: 5"5 4 6"8 7 5 4 7 56E: : < $ 4 -/=?>'& @ 5 4 6"8 7 5 4 7 56 < : < & 4"4 7 5 ; 4 9';': 5"5IH J�4"5 4 6"8 7 5 4 7 56CA 9 < 4"4 6"8 7 5*5 4 6"8 7 5 4 7 56EB 9"A 4*4 6*8 7 5 ; 4 9'8 7 ; A28 7 5"5 4 6"8 7 5 4 7 56 D 9*B 4"4 928 7 ;2A28 7 5"5 4 6"8 7 5 4 7 56EF 9 D 4*5 4 9'8 72;2A28 7 5 4 7 56EG 9*F 4*5 4 9'8 72;2A28 7 5 4 6 59*7 : 6 4"4 6 5"5 4 9'8 72;2A28 7 5 4 6 5926 :": 4"4 6 5 ; 4 9'; : 5"5 4 9'8 72;2A28 7 5 4 6 59"9 : < $ 4"4 6 5 ; -E=K>'& @ 5 4 9'8 72;2A28 7 5 4 6 59*: : < & 4*4 6 5 ; 4 92; : 5"5�H JL4*5 4 9'8 72;2A28 7 5 4 6 59 < 9 < 4"4 928 7 ; A28 7 5"5 4 9'8 72;2A28 7 5 4 6 59"A 9"A 4"4 9'8 7 ; A28 7 5 ; 4 928 72; A28 7 5*5 4 9'8 72;2A28 7 5 4 6 59*B 9*B 4*4 < 8 72; 6E7 8 72; 9"A28 7 5"5 4 9'8 72;2A28 7 5 4 6 59 D 9 D 4*5 4 < 8 72;M6E7 8 72; 9"A28 7 5 4 6 59*F 9*F 4*5 4 < 8 72;M6E7 8 72; 9"A28 7 5 4 9 59*G : 6 4"4 9 5"5 4 < 8 72;M6E7 8 72; 9"A28 7 5 4 9 5:"7 :": 4"4 9 5 ; 4 92;': 5"5 4 < 8 72;M6E7 8 72; 9"A28 7 5 4 9 5: 6 : < $ 4*4 9 5 ; 4 9 5*5NH JL4*5 4 < 8 72;M6E7 8 72; 9"A28 7 5 4 9 5:'9 : < & 4*4 9 5 ; 4 : 5*5NH JL4*5 4 < 8 72;M6E7 8 72; 9"A28 7 5 4 9 5:": : D $ $ -/=?>'& @ 4 < 8 72;M6E7 8 72; 9"A28 7 5: < : D $ & 4"4 7 5"5 4 < 8 72;M6E7 8 72; 9"A28 7 5:'A :"G $ & 4*5 4 < 8 72;M6E7 8 72; 9"A28 7 5:"B < B $ & 4"4 < 8 7 ;M6E728 7 ;29"A'8 7 5"5 4 < 8 72;M6E7 8 72; 9"A28 7 5: D <2D $ & 4"4 < 8 7 ;M6E728 7 ;29"A'8 7 5"5 4 < 8 72;M6E7 8 72; 9"A28 7 5:"F 9 < & 4"4 < 8 7 ;M6E728 7 ;29"A'8 7 5"5 4 9 5:"G 9"A & 4"4 < 8 7 ; 6/7 8 7 ; 9"A'8 7 5 ; 4 928 7 ; A'8 7 5C5 4 9 5< 7 9*B & 4*4 F 8 72; 9C7 8 7 ; AC7 8 7 ; 6E9"A28 7 5*5 4 9 5< 6 9 D & 4*5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5 4 9 5< 9 9*F & 4*5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5 4 : 5< : : 6 4"4 : 5"5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5<"< :": 4"4 : 5 ; 4 : 5"5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5< A : < & 4"4 : 5 ; -E=K>'& @ 5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5< B : < $ 4*4 : 5 ; 4 : 5*5NH JL4*5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5<2D : D 4"4 7 5"5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5< F :"G 4*5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5< G < B 4*4 F 8 72; 9C7 8 7 ; AC7 8 7 ; 6E9"A28 7 5*5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5A*7 <2D 4*4 F 8 72; 9C7 8 7 ; AC7 8 7 ; 6E9"A28 7 5*5 4 F28 7 ; 9*728 7 ; A*728 72; 6C9"A'8 7 5

9

��Î¯á)Ü²Ò¡É ��� ê ÙªÐ¼Í�Ò6Ê¢×�ÍmÎ¯Õ[Í�É/Ò�ØªÒ�É"Í¡Ê�Í¡Î¯Ô)Õ

$FÎ¹Õ²É�îbÎ¹Ð¦Í¡Ó²ÉõñªÒ6Ð¼Í¦Î¹ÕªÐ¼Í�Ò¡Üª×pÍ¡Î¯Ô)Õ&Ô�ÝsÍ�Ó²ÉõÏ<É�Í¡Ó²ÔCàjÞ
$FÎ¹Õ²ÉnÐ �<Ê�Õgà�B�Ê�Ò¡ÉmÍ�ÓªÉIñgÒ¡Ð¼Í
×6ÓªÔ¢Î�×�É¢âfÔ)Õ�Ö1Ó²Î�×6ÓtÍ¡Ó²É"Ò¡ÉIÎ�Ð
Ô¢ÕªË¯Ñ8Ô)Õ²É;ØgÔ[Ð�Ð�Î¯ÙªË¯É
Ù²Ò6Ê�Õª×6Ó�Ý¤Ô¢Ò�Í¡Ó²É
Ú'Ê¢Ë¯ÜªÉ/Ð�Ô�Ý �?O �P��Q � QLRpÞ
é
Ó²É/Ò�É;Ê�Ò¡É�ÍuÖ;Ô(Ë¹Î¯Õ²ÉnÐGÝ¤Ô¢ÒGÍ�Ó²É
Ð�Ê¢Ï<ÉHÎ¹ÕªÐuÍ¡Ò�Üg×pÍ�Î¹Ô¢Õ�ÙgÉn×"Ê¢ÜªÐ¼É
Î¯ÍtÏ�ÜªÐ¼ÍDÙgÉ Ê�ÕgÊ�Ë¹ÑfÐ�É/à®Ô¢Õ�Í�Ó²É¦É/Õ[ÚfÎ¹Ò�Ô)Õ²Ï<É"Õ[Í<Ö1Ó²É"Ò¡É¦Î°Í
ÏDÊ'ÑDÙgÉn×�Ô)ÏsÉIÍ�Ò¡Ü²É�Ê�ÕªàtÝ�Ê�Ë�Ð¼Ésí ��ï«Þ ê Í�î
��Ê¢Õªà�î��ªâ[Í�Ó²É/Ò�É

S -
/
1&:ACE/214358�>A3517=J:<;
8DCE>A; CD8 :<3LT)14351 :IUVU�6 CD14P

Î�Ð;Í�Ó²É¾ñªÒ6Ð¼Í@Í¡Î¯Ï<É�Í�ÓªÉ¾Ë¹ÔfÔ¢Ø|×�Ô¢ÕgàCÎ°Í¡Î¯Ô)Õ�Î�Ð
É"Ú�Ê�Ë¹ÜªÊ�Í�É/àFÞ ê Í
Í¡Ó²Î¹Ð1Í�Î¹ÏsÉ)âCÍ�ÓªÉ"Ò¡É�Î¹Ð
Õ²Ô¢ÍmÑ¢É"Í1Ê¢ÕfÑtÚ�Ê�Ë¹Ü²É¾Í�ÓªÊ�Í(×"Ê�Õ|ÏDÊ�ã)É
Í¡Ó²É�Ë¹ÔfÔ¢ØõñªÕªÎ¹Ð�ÓFÞYé
Ó²Î�Ð�ÏsÉnÊ�ÕªÐ8Í�ÓªÊ�Í�Í¡Ó²É�Ë¹ÔfÔ¢ØõÖ1Î¹Ë¯Ë;ÙgÉ
É"ÛfÉn×�ÜCÍ¡É/à¦Ê�Í1Ë¹É/Ê)ÐuÍ1Ô¢Õg×�É¢Þ
é
Ó²É8ØMÔ¢Î¹Õ[Í¡ÐmÊ�ÍmË¯Î¹Õ²É/Ð � î�Ê�Õªà �!� Ê�Ò¡ÉIÍ¡Ó²É8Õ²É"ÛfÍ1Í�Î¹ÏsÉ

Í¡Ó²É(Ë¹ÔfÔ¢Øt×�Ô)ÕªàCÎ¯Í�Î¹Ô¢ÕDÎ�Ð�É/Ú'Ê¢Ë¯ÜgÊ�Í�ÉnàjâfÊ¢Ð�Ö;É"Ë¹ËgÊ)Ð�Î¹Õ �²î(Ê¢Õªà
� � Þ $FÎ¹Õ²É/Ð7�ªî1Ê�Õªà � � Ê¢Ò�É;Í�ÓªÉ1ñªÒ6ÐuÍ�Í¡Î¯Ï<É1Ö1Ó²É/Ò�É
Í¡Ó²É"Ò¡É1Î¹Ð
Ê<Ú�Ê�Ë¹Ü²É¾Í�ÓgÊ�ÍIÊ¢Ë¯Ë¹Ô�Ö�Í�ÓªÉ�Ë¯ÔfÔ¢Ø|Í¡ÔtÐuÍ¡Ô¢ØFÞ�é
Ó²É/ÕFâ²Õ²Ô�Ö Í�Ó²É
Î¹ÕCÝ¤Ô¢Ò¡ÏDÊ�Í¡Î¯Ô)Õ¦Ê¢ÙgÔ)ÜCÍmÍ¡Ó²É8Ï<Î¯ÕªÎ¯Ï�Ü²Ï Ú�Ê¢Ë¯Ü²É8Ý¤Ô¢Ò1Í¡Ó²É8Ë¹Ô[Ô)Ø
×"Ô¢Ü²Õ[Í
� � �
Î�ÐmãfÕ²Ô�Ö1ÕFÞXW(É"Ò¡É8Î¯ÍmÎ¹Ð(Õ²É/×"É/Ð¡Ð�Ê¢Ò�ÑDÍ¡ÔtÊ�ÕªÊ¢Ë¯ÑCÐ�É
ÙMÔ�Í¡ÓtÐ¼Î�àCÉ/Ð��GÍ�Ó²ÉmÙªÒ¡Ê¢Õª×6Ó<Ö1Ó²É"Ò¡É
Í�Ó²É(Ë¯ÔfÔ¢Ø<Ö1Î¹Ë¯ËMÐuÍ¡Ô¢ØtÊ¢Õªà
Í¡Ó²É�Ô�Í¡Ó²É"Ò1Ö1Ó²É/Ò�É¾Í¡Ó²É�Ë¯ÔfÔ)Ø|×"Ô¢Õ[Í�Î¹ÕfÜ²É/Ð/Þ

$FÎ¹Õ²É/Ð � �|Í�Ô �b�|Ê�Ò¡ÉsÍ�Ó²ÉtÉ"ÛCÉ/×�Ü²Í�Î¹Ô¢ÕbÔ�Ý;Í�Ó²É�Ù²Ò¡Ê¢Õª×6Ó
Ý¤Ô)ÒIË¹ÔfÔ¢Ø�×�Ô)Ü²Õ[Í � Þ¾é
Ó²É�Ï<É"Í�Ó²ÔCà ÏDÊ'Ñ|Ò�É"Í�Ü²Ò¡Õ Ó²É"Ò¡É¢â`Ð�Ô
Í¡Ó²É<ñªÕªÊ¢Ë�Ú�Ê�Ë¹Ü²É/Ð¾Ý¤Ô)Ò�Í�Ó²ÉtÒ¡É/Ð�Ü²Ë¯Í8Ê�Ò¡ÉsØgÊ�Ò�Í�Î�Ê�Ë¹Ë¯Ñ ãfÕ²Ô�Ö1ÕFÞ
�ªÒ�Ô)Ï �!&8Í�Ô �=B8Í�Ó²É/Ò�É�Î�Ð;Ô¢Õ²É�Ï<Ô¢Ò¡É(Î¯Í�É/Ò¡Ê�Í�Î¹Ô¢Õ¦Ê�ÕªàtÍ�Ó²É/Õ
Í¡Ó²É�Ë¹ÔfÔ¢ØYñªÕ²Î�Ð¼Ó²ÉnÐ"Þ�ß�ÕYÍ�Ó²Î�Ð¾ØgÔ)Î¯Õ[Í¾Í�Ó²ÉsÏDÊ�ÛCÎ¯Ï�Ü²Ï�Ë¹Ô[Ô)Ø
×"Ô¢Ü²Õ[ÍIÎ�Ð¾ãfÕ²Ô�Ö1Õ �5�=�pÞ�é
Ó²É�Ï<É"Í�Ó²ÔCàY×/Ê�Õ ñgÕ²Î¹Ð�ÓYÊ�ÍIË¹Î¯Õ²É
B!�²â(Ð�Ô®Ó²É/Ò�É�Ê�Ë¹Ë(Í¡Ó²ÉYñgÕªÊ�Ë¾Ú�Ê�Ë¹Ü²É/Ð�Ý¤Ô¢Ò7Í�Ó²É4Ò¡É/Ð�Ü²Ë°Í¦Ê�Ò¡É
ãfÕ²Ô�Ö1ÕFÞ
ß«Í(Î�Ð1ØgÔ[Ð�Ð�Î¹Ù²Ë¯É�Í¡ÔDÕ²Ô�Í¡Î¹×"É�Í�ÓªÊ�Í(àCÜ²Ò¡Î¯ÕªátÊ�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð/âfÍ�Ó²É

×"Ôfà²É
Ý¤Ò�Ô)Ï C¾Í�ÔDî � Ê�Õªà�Ý¤Ò¡Ô¢Ï � � Í�Ô �=B¾ÕªÉ"Ú¢É/Ò�É�ÛCÉ/×"ÜCÍ�ÉnÐ"Þ
é
Ó²Î�ÐDÎ�ÐDÎ¹Õ)Í¡É"Ò¡É/Ð¼Í�Î¹Õ²ábÙgÉn×"Ê¢ÜªÐ¼É¦Î¯ÍtÏ<É/Ê�ÕgÐsÍ�ÓªÊ�ÍDÝ¤Ô¢Ò<Í�ÓªÎ¹Ð
ØªÊ¢Ò¼Í¡Î¹×"Ü²Ë�Ê�Ò�Î¹Õ²Ø²ÜCÍnâ¢Í¡Ó²Ô)Ð�ÉmÙ²Ë¹ÔC×6ãCÐ�×"Ê¢ÕsÙMÉmÉ"ÛC×"Ë¯ÜgàCÉ/àsÝ¤Ò¡Ô¢Ï
Í¡Ó²É�å�æ@è@é»×/Ê�Ë�×�Ü²Ë�Ê�Í¡Î¯Ô)ÕFÞ

�
úPù �Y� �&	[Z �\�J� "²þ
�\]�	. $�

é
Ó²É/Ò�É1Ê¢Ò�É;ÍuÖ;Ô¾ØMÔ¢Î¹Õ[Í¡Ð�Ô)Õ�Í¡Ó²Ém×�ÔCàCÉ1Ö1ÓªÉ"Ò¡É@Í¡Ó²É1Ï<É�Í¡Ó²ÔCà
×/Ê�ÕçÒ¡É�Í¡Ü²Ò�Õ,âmÊ�Í�Ë¹Î¯ÕªÉ/Ð �=�bÊ¢Õªà�B��ªÞ é
Ó²É�ñªÕgÊ�Ë¾É/Ð¼Í�Î¹Ï�Ì
Ê�Í�É/àYÚ�Ê�Ë¹Ü²É�Ý¤Ô)Ò(Í¡Ó²É_^ ���K`ba RmÚ�Ê�Ò¡Î�Ê�Ù²Ë¹É8Ö1Î¹Ë¯Ë�ÙMÉ<×/Ê�Ë�×�Ü²Ë¯Í�Énà
ÙªÊ)Ð¼ÉnàYÔ)ÕYÍ¡Ó²ÉDÚ�Ê�Ë¹Ü²É/Ð�Ê�Í�Í�Ó²Ô[Ð¼É<ØMÔ¢Î¹Õ)Í6Ð"Þ<é
Ó²Î�Ð�Ú�Ê�Ë¹Ü²É<Î¹Ð
^ ���K`�a R
 �KcP� ���ed?��� ����
f��� ���hgi��j�� ���N
k��� ���N�k��� ���ed?
f��� ��� Þ
ß�Õ Í¡Ó²ÉçÐ�Ê¢Ï<É�Ö;Ê'Ñ)â<Í�Ó²É/Ò�É�Î�ÐõÎ¹ÕCÝ¤Ô¢Ò¡ÏDÊ�Í�Î¹Ô¢Õ Ê'Ú�Ê�Î¹Ë�Ê�Ù²Ë¹É
Ê¢ÙgÔ)ÜCÍ1Í�Ó²É�ñgÕªÊ�ËjÚ�Ê�Ë¹Ü²ÉnÐ
Ô�Ý�Í�Ó²É�Ô¢Í�Ó²É/Ò1Ú'Ê¢Ò�Î�Ê�ÙªË¯ÉnÐ"Þ
é
Ó²É�Ò¡É/Ê¢ËHÚ�Ê�Ë¹Ü²ÉnÐ�Ý¤Ô¢Ò�Í�Ó²ÉnÐ¼É�Î¯Õ²ØªÜCÍsØgÊ�Ò6Ê�Ï<É�Í¡É"Ò6Ð8Ê�Ò¡É

^ ���K`�a R
 �?c�� ���N
l��� ���Vg���j�� ���Kd?
l��� ��� âFÖ1ÓªÎ¹×6ÓRÓgÊ�Ø²ØMÉ"ÕªÐ
Ö1Ó²É/Õ É�ÛCØMÔ¢Õ²É/Õ[Í®Î¹Ð � Ê¢Õªà �²Þ ß«Í.×"Ê�Õ ÙMÉ ÕªÔ�Í�Î�×�Énà
Í¡ÓªÊ�Ím^ ���K`�a R®Î�ÐçÐ¡Ê�Ý¤É"Ë¹ÑäÔ�Ú)É"Ò¡É/Ð¼Í�Î¹ÏDÊ�Í�ÉnàjâYÊ)Ð�Ê�Ë¹Ë�ØgÔ[ÐuÌ
Ð�Î¯ÙªË¯É�Ú'Ê¢Ë¯ÜªÉ/Ð�Ö;É"Ò¡ÉbÝ¤Ô¢ÜªÕªà Ê�Õgà Í�Ó²É/Ò�ÉwÊ�Ò¡ÉRÐ¼Ô)ÏsÉ®Ú'Ê¢Ë°Ì
Ü²ÉnÐ � �ndK��� ����
k��� �����l��� ��� �sÖ1ÓªÎ¹×6Ó�Ê¢×�Í�ÜªÊ¢Ë¯Ë¹ÑçÕ²É/Ú¢É/Ò ÓªÊ�ØCÌ
ØMÉ"ÕªÐ(àCÜ²Ò¡Î¯Õ²ásÍ¡Ó²É�É�ÛCÉ/×"ÜCÍ�Î¹Ô¢Õ,Þ
é
Ó²ÉsË¯ÔfÔ¢Ø�×�Ô¢ÜªÕ)Í¾Î¹Ð¾×�Ô)Ò�Ò¡É/×�Í�Ë¹Ñ|×/Ê�Ë�×�Ü²Ë�Ê�Í¡É/àjâ`Ê¢Ð(Í�ÓªÉ"Ò¡É

Î�ÐDÕ²Ô¢ÍDÊ¢ÕfÑ®ÐuÍ6Ê�Í¡É"Ï<É"Õ[Í¡Ð<Ö1ÓªÎ¹×6ÓwÏDÊ'ÑRÎ¯Õ[Í¡Ò�ÔCàCÜª×"É¦É�ÛfÍ�Ò6Ê
Ú�Ê�Ë¹Ü²ÉnÐFàCÜ²Ò¡Î¯Õªá1É"Ú�Ê�Ë¹ÜªÊ�Í¡Î¯Ô)ÕFÞ,ß�Õ¾Í¡Ó²ÉHÐ¡Ê�Ï<É�Ö;Ê'Ñ)â�Í¡Ó²É�Ô�Í¡Ó²É"Ò
Ú�Ê�Ë¹Ü²ÉnÐ1Ê�Ò¡É�×"Ô¢Ò¡Ò�Én×pÍ¡Ë¯Ñt×/Ê�Ë�×�Ü²Ë�Ê�Í¡É/à�Ý¤Ô¢Ò
Í�ÓªÎ¹Ðm×/Ê¢Ð�É¢Þ
ß�Õ�Í¡Ó²Î¹Ð�Ð�Î¯Ï<Ø²Ë¹ÉsÉ�Û²Ê�Ï<Ø²Ë¹É¢â`Í¡Ó²ÉsÊ¢ÕªÊ�Ë¹ÑCÐ¼Î�Ð1ñgÕ²Î¹Ð�Ó²ÉnàYÊ¢Ð

É"ÛfØMÉ/×�Í�ÉnàjÞ�é
Ó²Î¹ÐHÎ¹ÐHÕ²Ô�ÍHÍ�Ó²ÉIá¢É"ÕªÉ"Ò6Ê�Ë²ÙMÉ"ÓªÊ'ÚfÎ¹Ô¢Ònâ�ÙMÉ/×"Ê¢ÜªÐ�É
Í¡Ó²É"Ò¡É�ÏDÊ'Ñ�ÙMÉ8ÐuÍ¡Ò�Üª×�Í�Ü²Ò¡É/Ð1Í�ÓªÊ�ÍmÏ<Ê'Ñ�Õ²Ô�ÍIÐ¼Í�Ô)Ø|Ð�Üª×6Ó Ê¢Ð
Ü²ÕfÙMÔ¢Ü²ÕgàCÉ/àDË¹ÔfÔ¢ØªÐ/Þ�ß�ÕtÔ¢Ò6àCÉ"Ò�Í�Ô�àCÉnÊ�ËgÖ1Î°Í¡ÓtÔ�Í¡Ó²É"ÒHÍuÑ[ØMÉ/Ð
Ô¢ÝfØªÒ�Ô)á¢Ò6Ê�ÏDÐMÎ°Í,ÏDÊ'ÑmÙMÉ�Õ²Én×�ÉnÐ�Ð¡Ê�Ò¡Ñ1Í�Ô1Ë¹Î¹ÏsÎ¯ÍFÍ¡Ó²ÉHÊ�ÕgÊ�Ë¹ÑfÐ�Î�Ð
Î¹Õ Ð¼Ô)ÏsÉ�Ö
Ê'Ñ í �¢ïPÞ
ê Õ²Ô¢Í�Ó²É/Ò8Î�Ð�Ð�Ü²É<Î¹Ð�Í�ÓªÊ¢Ò�É/Ê¢×6ÓbÐ�É"Ë¹É/×pÍ¡Î¯Ô)Õ4à²Ô¢Ü²Ù²Ë¹ÉsÍ�Ó²É

Ð¼Í¡Ê�Í�É<Ð¼ØªÊ)×�É)Þ�ß�ÕYÍ¡Ó²ÉDÐ�Ê¢ÏsÉ�Ö;Ê'Ñ)â`É/Ê¢×6Ó�Ë¯ÔfÔ)Ø�àCÔ)Ü²Ù²Ë¹ÉsÊ�Í
É/Ú¢É"Ò¡ÑõÎ¯Í�É"Ò6Ê�Í¡Î¯Ô)ÕFÞ®é
Ó²Î�ÐsÏDÊ'ÑõË¯ÉnÊ¢àõÍ¡ÔõÊ�Õ®É"ÛCØgÔ)Õ²É"Õ[Í�Î�Ê�Ë

�

Page 49 / 104

É�ÛCØ²Ë¹Ô)Ð�Î¹Ô¢Õ®Ô)ÕwÍ�Ó²É�Ð�Î��/É¦Ô�Ý(Í¡Ó²É�Ð¼Í¡Ê�Í¡É�Ð¼ØgÊ¢×�É)Þ *(ÉnÊ�Ë¹Î¯Õ²á
Ö1Î¯Í�Ó7Ð¼Í¡Ê�Í�É¾Ð¼ØªÊ)×�ÉIÉ�ÛCØ²Ë¹Ô)Ð�Î¯Ô)Õ�×"Ê¢ÕtÙgÉ�Ê¢×6ÓªÎ¯É/Ú¢É/àsÍ¡Ó²Ò¡Ô¢Ü²á)Ó
Í�ÓªÉ ÜªÐ¼É¦Ô¢Ý¾Ï<É"Ò¡á¢Î¹Õ²ágâHØMÔ)Ð¡Ð¼Î¹Ù²Ë¹Ñ®Ê�Í<Í�ÓªÉ�×�Ô)Ð¼ÍDÔ�Ý�Ê4Ë¯ÉnÐ�Ð
Ø²Ò¡É/×"Î¹Ð�É¾ñªÕªÊ�ËFÊ¢ÕªÐ�Ö@É/Ò/Þ
ê Ý©Í�É/Ò1Í�ÓªÉ¾É"ÛCÉ/×�Ü²Í�Î¹Ô¢ÕFâfÍ¡Ó²É�Ð¼ÑCÐ¼Í�É"ÏäÖ1Î¯Ë¹ËFØ²Ò¡É/Ð�É"Õ[Í;Í�Ó²É

ðªÔ�Ö Î¯Õ²Ý¤Ô¢Ò¡Ï<Ê�Í�Î¹Ô¢Õ&×"Ê¢Ë¹×"Ü²Ë¹Ê�Í�Énàjâ8Ð¼Üg×6Ó&Ê)Ð¦Í�ÓªÉRÉ�ÛCÎ�ÐuÍ¡Î¯Õ²á
ØªÊ�Í�ÓªÐ/Þ)(fÔ¢Ï<É1Ý�Ê¢Ë¹Ð�É1ØªÊ�Í¡ÓªÐ�ÏDÊ'Ñ<Ê�Ë�Ð¼Ô�ÙMÉ(ØªÒ�ÉnÐ¼É/Õ)Í¡É/àjâ)Ë¯Î¹ã¢É
É�ÛCÉn×�ÜCÍ¡Î¯Õ²áRÍ�Ó²ÉR�P�p¥ª�<Ù²Ò6Ê�Õg×6ÓwÔ)Õ.Í�Ó²É�ñªÒ¡Ð¼Í�� �DÊ�ÕgàwÍ�Ó²É
���������mÙ²Ò6Ê�Õª×6Ó7Ô¢Õ|Í�Ó²É8Ð�É/×"Ô¢ÕªàFÞ

� � Ä Ã �;ô�Æ|{,Ç�Ä Ã {

é
Ó²Î¹Ð8Ö@Ô)Ò�ã Ø²Ò¡É/Ð�É"Õ[Í¡É/à4Ê Ð¼ÑCÐ¼Í�É"Ï3Ý¤Ô¢Ò�ðªÔ�Ö Ê�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð
Ô�Ý � Ê'Ú�ÊõØªÒ�Ô)á¢Ò6Ê�ÏDÐ"â;Ö1Ó²Î�×6ÓçÎ�ÐDÍ�ÓªÉ�ñªÒ6ÐuÍ¦ÐuÍ¡É"Ø.Í¡Ô�Ö;Ê¢Ò¡à²Ð
Ê|×�Ô¢Ï<Ø²Ë¹É�Í¡É�åçæ@èHé¶É/Ð¼Í�Î¹Ï<Ê�Í�Î¹Ô¢ÕYÍ�ÔfÔ¢ËPÞ8é
Ó²É<Ð¼ÑCÐ¼Í�É"Ï�Î�Ð
ðªÉ"ÛfÎ¹Ù²Ë¹É7àCÜªÉtÍ�ÔYÍ�Ó²É|Ê�Ù²Î¹Ë¹Î°ÍuÑ�Í�Ô�Ö@Ô)Ò�ã4Ö1Î°Í¡ÓRÙfÑ[Í�É/×"ÔCàCÉ/Ð
àCÎ¹Ò�Én×pÍ¡Ë¯Ñ)Þ�é
Ó²Î�Ð�Î¹Ð�Ê7á¢ÔfÔCàY×6ÓªÔ¢Î�×�É�Ý¤Ô¢Ò�Ð¼É/Ú¢É/Ò¡Ê¢ËGÒ¡É/Ê)Ð¼Ô)ÕªÐ"â
Î¹Õª×�Ë¹ÜªàCÎ¹Õ²ábÍ�ÓªÉ Ý�Ê¢×�ÍDÍ�ÓªÊ�ÍtÍ�Ó²É/Ò�É�Ê¢Ò�É¦ÏDÊ�ÕfÑRË�Ê�Õªá¢ÜªÊ¢á¢É/Ð
Ê�Õgà�Í¡ÔfÔ¢Ë�Ð
Í�ÓªÊ�Í(á¢É/Õ²É"Ò6Ê�Í¡É�×�Ë�Ê¢Ð¡Ð;ñªË¯ÉnÐ
Ý¤Ô¢ÒmÍ�Ó²É�ì[Ê'Ú�Ês÷(Î¹Ò¼Ì
Í�ÜgÊ�Ëjø�Ê¢×6ÓªÎ¯Õ²É)â²Ê�ÕªàtÍ�Ó²É¾ØMÔ)Ð¡Ð¼Î¹Ù²Î¹Ë¯Î¯ÍuÑ<Í�Ô<Ò¡É"ÜªÐ�ÉIÊ¢Õªà�Ê¢ÕªÊ�Ì
Ë¹ÑB�/É�×�Ë�Ê¢Ð¡Ð¼ÉnÐ
Ö1Ó²Ô)Ð�É¾Ð�Ô¢ÜªÒ¡×"É�×"ÔCàCÉ�Î¹Ð1ÕªÔ�ÍmÊ'Ú�Ê�Î¹Ë¹Ê¢Ù²Ë¯É)Þ
ê Ø²Ò¡Ô�Í�Ô¢ÍuÑfØgÉ�Í¡Ô[Ô)Ë,Î�ÐmÜ²ÕgàCÉ"Ò(à²É"Ú¢É/Ë¯Ô)Ø²Ï<É"Õ[Í/âªÍ�ÔtÊ¢ÕªÊ�Ì

Ë¹ÑfÐ�É�×�Ë�Ê¢Ð¡Ð4ñªË¹É/ÐõÊ�Õgà¶É"Û[Í¡Ò¡Ê)×pÍbÍ�ÓªÉ.ðªÔ�Ö Î¹ÕCÝ¤Ô¢Ò¡ÏDÊ�Í¡Î¯Ô)Õ
Õ²É/É/àCÉnà¾Í�Ô1Í¡Ó²É�Ô�Í¡Ó²É"ÒGÐuÍ¡É"ØªÐ,Ô�ÝfÍ�Ó²É�Í�Î¹ÏsÏ<Î¹Õ²á(ÉnÐuÍ¡Î¯ÏDÊ�Í�Î¹Ô¢ÕFÞ
�²ÜªÒ¼Í¡Ó²É"Ò¾É�ÛfÍ�É/ÕªÐ�Î¯Ô)ÕªÐmÎ¹ÕfÚ¢Ô¢Ë¹Ú¢É�Í¡Ó²É<×�Ò¡É/Ê�Í¡Î¯Ô)Õ¦Ô�Ý�Ï<ÔCàCÜ²Ë¹É/Ð
Í�Ô�É�ÛCÉ/×"ÜCÍ�É�Ë¯Ô�Ö
Ì«Ë¯É/Ú¢É/ËHÊ�ÕªÊ¢Ë¯ÑCÐ�Î¹Ð�Ê�Õªà4Í¡Ó²É�åçæ@èHé ñªÕgÊ�Ë
×"Ê¢Ë¹×"Ü²Ë�Ê�Í�Î¹Ô¢Õ,âCÙªÊ¢Ð�É/à7Ô¢Õ¦Ê<Ð¼ØMÉ/×"Î°ñg×�ØªË¹Ê�Í¼Ý¤Ô¢Ò¡Ï¦Þ

� ö���ö
~�ö Ã �@ö1{

í¹î�ï #;Ô¢Ë¹Ë¹É"Ë�Ê²â��sÞ��!�¾Ô[Ð¼Ë¹Î¯Õªáªâ�ìªÞ���#;Ò�Ô[Ð¼á)Ô¢ËPâ�#¾Þ/øRÞ�� *IÎ¹Ù²Ù²Ë¹É¢â
��Þ�� �²ÜªÒ�Ònâ (`Þ�� WIÊ�Ò6àCÎ¹ÕFâ�*�Þ��|Ê�Õªà¶é,Ü²Ò¡ÕfÙ²Ü²Ë¹ËWâsøõÞ
�
	���
���
�����	�����
�����
!
�#"$ %�'&(�*),+.-/)10�2��
3��4� Þ
ê à²à²Î¹Ð�Ô¢Õ|å�ÉnÐ¼Ë¹É"Ñ)â � �R�!�²Þ

í � ï
�¾ÜªÐ¼Í¡Ê�Ý�Ð�Ð�Ô¢Õ,â�ìªÞ �
5�+����#687
�*+�9;:=<8
� %>?&@�*),+�	A�*��

),-CBED�F@
� %&HGIBJ0K�*
�+L&@
�MONP0K)Q9Q0K����RASTR(�*+�9U5�D4G
R@&V0K�� %&XWV+L&@
!0Y�?0K
!&@�'&(�*),+Z� Þ �HÓ�* é
Ó²ÉnÐ¼Î�Ð/â *IÉ�Ì
ØªÊ¢Ò¼Í¡Ï<É"Õ[Í|Ô¢Ýtæ@Ô)Ï<Ø²ÜCÍ�É/Ò (fÑCÐuÍ¡É"ÏDÐ"â�Î¹ÕCÝ¤Ô¢Ò¡ÏDÊ�Í¡Î¯Ô)Õ
éGÉ/×6Ó²ÕªÔ[Ô)á¢Ñ)â\[mØ²ØªÐ¡Ê�Ë�Ê][mÕªÎ¯Ú)É"Ò6Ð¼Î¯ÍuÑ¢âR(CÖ@Énà²àCÉ"Õ,Þ¢ø�Ê'Ñ
� �!�!�ªÞ

í ��ï $,Î¯Õªà²Ó²Ô¢Ë¹Ï¦âbé�Þ��»Ê¢Õªà_^�É"Ë¹Ë¹Î¯ÕFâ �@Þ �
	��?
`28�%3��
a �#0Y&@>�����bc�1 (���*+�
d����
!
�#"$ %�'&(�*),+Z� Þ � Õgà»ÉnàjÞ
ê à²à²Î¹Ð�Ô¢ÕCÌ«å4É/Ð�Ë¯É/Ñ¢â`î�'R'!'²Þ

í ��ï
�¾ÜªÐ¼Í¡Ê�Ý�Ð�Ð�Ô¢Õ,â�ìªÞ��wÊ¢Õªà è�Ò�Ï<ÉnàCÓªÊ�ËPâ ê Þ �%5;>4&()�G
����&@�* eM�
!0Y�*3��'&@��)Q+f)Q-gNh��&@�i��+?Mfjk)8)Q�l5;+8G
+�)1&(�'&@��)Q+�RE�*+mBED�F(
� \&HGHBE0K�*
�+L&(
!M.�;
����nGo	��*��

NP0K),-�0K���pR!� Þ�å�Ô)Ò�ãCÐ�Ó²Ô¢Ø Ô¢Õ ØªÊ¢Ò¡Ê¢Ë¯Ë¹É"ËtÊ¢Õªà àCÎ�ÐuÌ
Í¡Ò�Î¹Ù²ÜCÍ¡É/àçÒ¡É/Ê¢Ë°ÌPÍ�Î¹Ï<ÉYÐ�ÑfÐ¼Í�É/ÏDÐ"â8î�'!'b�fÞ(î)î�Í¡Óçß�è�è�è
ß�Õ[Í�É/Ò�ÕgÊ�Í�Î¹Ô¢ÕgÊ�Ë ��Ê�Ò6Ê�Ë¹Ë¯É/ËL��Ò�ÔC×"É/Ð¡Ð¼Î¹Õ²á (fÑfÏsØMÔ)Ð�Î¹Ü²Ï
��ß.�7� (� '=�!�pÞ

í�B'ï ê Ë°Í¡É"ÕfÙgÉ/Ò�Õgàjâ ��Þ �!Bq+r&(�?
l-s�1�*R(
t�$�'&(�X�?0K)QD4G
��
!�u�*+.���'0KM.0K
!�1�nGv&(�*��
T��0K)Q9Q0K����R�� ÞCß�Õ ��Ò¡Ô�Ì

×"É"ÉnàCÎ¯Õªá)Ð7Ô�Ý�Í�ÓªÉ &�Í¡Ó èk[IÈCw¾ø ß�æ;ÈCw Ö@Ô)Ò�ãCÐ�Ó²Ô¢Ø
Ô)Õ|ÈmÉ/Ê�Ë¯Ì�é
Î¯Ï<É (fÑCÐuÍ¡É"ÏDÐ/âFî�'R'!C²Þ

í C�ï�èHÒ�Ï<É/àªÊ�Ó²ËPâ ê Þ��&è�Õ²á)Ù²Ë¯Ô)Ï¦â®ìªÞ Ê¢Õªà ([Í6Ê�Ø²ØMÉ"Ò�Í/â
�;Þ �
5 ST+?�*"�
�Myx��*)�z WH+�-/)10K���'&(�*),+uj���+8G
9,>���9Q
{-/)10}|_~�:=	 5�+����*68R@��R!� Þ � ÔªÞtß�Õ[Í�É/Ò¼Ì
ÕgÊ�Í�Î¹Ô¢ÕgÊ�Ë1å4Ô¢Ò¡ãfÐ�Ó²Ô)Ø�Ô)Õwå4Ô¢Ò6Ð¼Í¼Ì¼æ;Ê¢Ð�É7è�ÛCÉn×�ÜCÍ¡Î¯Ô)Õ
é
Î¹Ï<É ê ÕªÊ�Ë¹ÑCÐ¼Î�Ð"Þ'éGÉ/×6Ó²Õ²Î�×"Ê¢Ë
[(Õ²Î¯Ú)É"Ò6Ð¼Î¯ÍuÑ¾Ô�Ýª÷IÎ¯É/Õ²ÕªÊ²â
ê ÜªÐ¼Í�Ò¡Î¹ÊªÞ²ì¢Ü²ÕªÉDî�&²â � �!� � Þ

í��'ï #;É/Ò�ÕªÊ�Í/â �sÞ�� #@ÜªÒ�ÕªÐ/â ê Þ��¶Ê�Õªà å4É"Ë¹Ë¯Î¹Õ²á[Ð"â ê Þ
�
Nh)Q0Y&@�'D$�*
�|l)Q0YR@&HGH~���R@
�:h<8
� %>?&@��)Q+�	��*��

5;+?�1�#68R(�*RpSTR(�*+�9�28�%3��f�A6�&(
!
)8M�
L� ÞHß�Õ ��Ò¡Ô�Ì
×"É"ÉnàCÎ¯Õªá)Ð�Ô¢ÝFÍ�ÓªÉ�î � Í�Ótè�[(ÈCw¾ø ß�æ;ÈCw»×�Ô¢Õ²Ý¤É"Ò¡É"Õª×"É
Ô)Õ|ÈmÉ/Ê�Ë¯Ì�é
Î¯Ï<É (fÑCÐuÍ¡É"ÏDÐ/â � �R�!�²Þ

í &�ïL*¾Ê�ÓªÏ|âsøõÞ �A6�&(
r~�)8M?
�:�+?9,�*+�
�
!0Y��+?9 Þ ��Ò¡Ô�Ì
×"É"ÉnàCÎ¯Õªá)Ð1ìgî/é 'R'²â`î�'R'!'ªÞ

í '�ï�ø�Ô¢Ó²Õ²É/ÕFâçøõÞ 5�+�BJ�k
�+�x80K���p

z�)10Y��-s)Q0
� �'&(��G�x���)�z}5�+����*68R@��RJ�*+�28�%3�� Þgå4Ô¢Ò¡ãCÐ¼Ó²Ô)Ø7Ô)Õ
ß�Õ[Í¡É"Ò¡ÏsÉnàCÎ�Ê�Í�É�È1É/Ø²Ò¡É/Ð�É"Õ[Í¡Ê�Í�Î¹Ô¢Õ¶èHÕ²á¢Î¹Õ²É"É/Ò�Î¹Õ²á Ý¤Ô¢Ò
÷IÎ¯Ò�Í�ÜgÊ�ËFø�Ê)×6Ó²Î¯ÕªÉ/Ð/Þ²ì¢Ü²ÕªÉ � �!� � â *(ÜªÙ²Ë¯Î¹ÕFâgß�Ò�É/Ë¹Ê¢ÕªàjÞ

�

Page 50 / 104

�����������
	��
�������������������������
���� "!�#$�%��&'�(���*)+���-, ./�
	0�213�
���

465�798;:=<?>@7'A
BDCFEFGH>I7KJ
L >IM�BN7K<?O+>IC�<QPDR�46PSO+MFT�<9>I7�A
UI8V>ICFU@>

WYXBDZ;BD79E�BNZ;>IC�[3CF8V\D>I7K:98V<�]D^F_ XBD:=<?>@7�`BD:@^HAba6>@EF>IC
ced
fhg�iejFkSfml9iDnDo
pSqFkSfbrbsNt�pSd%l9iDk

u TFC�>wvSxb^hvDySySz

{}|�~������I�9�
�������������b�$�F�b���K�I�K���������S���I�K�I�����������K������ ¡�F�= I���
���H�¢�=�¢�@���b£��9���D¤����I�@�D�=¥I¦�§��9¨=§��K£©���K�I����§��@�2����ª

« �I����§��@�2���@§����¬���­�9¦I�®�=§����I���I�K�����Q��¯?�9���@���°�I��±��K�I�����²���%���³����±�§����������% ­�°�³�@£}�K�I��´@ I���h���I�2�6£}���
 ¡�¬¨9�2�I�2§��������µ ­�����­�K����´��9ª ¨@ª
�����=���6£}�K���I���I�¬���³�@�m¨9���@�2§��=���=§���ªw�F�@�2��£}���¶�=������ ¡�6���­��§��³�@�@�����
 ­�
�=�·�9¦�����£���¸2���@¨'���K£�¦I�����2§�ª¹�F�@�2§��2¥º�=§��9´����I�m�$�F�b�»�K�¢�=���@�����}���I�K�I���µ ¡�6¦@§���¦I�=§����¶�����¢�=�¢�@���
�@�I����§��@�2���@§����}���­�9¦@��ª
¼ �K�����K¥
���³�I�����®½¢��±¾�K�I�K���������®§���¿³�@��§����-���³�@�0±h�����@�9���-�I�@����§��I�2����§����%���­�K¦I��ª��F�I���-¦¢�=¦¡�2§�¦@§��=À

¦¡�K���������I�=�
�I�I����§��@�2���@§��������­�K¦I�����@�9�I���� ¡�h��§��K�I��¥Á�K§�£��������­��������§��I�2����§��������­�9¦I�h�=���-¦@§���¦�§��­�����������I¨
�����2¦Â���®���I�H�K�Ã���¢�K�@½¢��±w�=�¢�=����������ªb�F�I�H�K�@¯K�K�­���K¨K���b±h�����}������£����¢�=�����K���K¥Ä�I�@����§��I�2����§����0���­�9¦@�F��§��9Å
Æ �F�I�"¯9��§����K�I��������¦@���K¥N���I�®�=�¢�=���������H�@�­�����@�K���@���������Â�I�K�¢�����®�I�@����§��I�2����§��������³�@�®���2¦¢�=§����������­ª�F�I���H���I�����¢�������9ª ¨@ª

ÆwÇ ���­���K�Ã�������K�N�K�¢�=���@�����h¥º�=§²ÈI�¢�@���@¨Â���­�9¦@�h���I�=�²�=§��-¦¡�K������ I���-���Â§����@�@���
Æ·É ���¢�����@¨�£��2§�¨K�-¦¡�9���­���F¥º�K§H½¢��±+���@¥Á�K§�£}�=�����K�
Æ �Ê�����I¨K���-�I¦I¦¡�Ã§h ¡�9�I�I�m�=¥b�Â���­�9¦

Æ �N§����ÃÀV I�K�����°���K�����I���������K�����K�% ¡���I�����6±h�����@�9�@�"£��³�@��È¢���=�����9�@��´¡�����I�������-�=�����I£����²�K���S���­�9¦@�²��� ¡�-����§��I�Ã���@§����

Ë Ì�Í6Î�Ï�Ð3Ñ¶Ò�Ó"ÎFÔ�Ð6Í
�F�@�"���K��¤¬�K¥��2������£}�������I¨0�w�F�b�+�@�����@¨Â���I�"�����=�������K¦I¦�§��?�=�Ã�°���K�6 ¡������¯��������m���­���Â���@§��2�®¦I�I�K������Å
ÆwÉ ����±©�=�¢�K���������
ÆwÕ ��±Ö����¯?���Ä�K�I�K���������
Æ �F�K�����@���=�����9�

�'�'��§�������¯?�����9¦@���I¨
�¶���­�K�®���¢���°��£�¦I����£����­���}���I������¦I�I�K�����m���Ö��£��³�@�@�×��§°£}�=�I�I�Ã§�Ø Ù ÕDÚ�Û�Ü9Ý ´��§�£ Ü9Þ�ß ª%�F�I�}¨K�?�K���������%��������£}�=�������@���$�F�b��¥Á�K§��K����¦�§��9¨K§��=£à�2�9�I����§��@�2���¬áâ¦@§���¯³�×�����3���I�=�����I�
¦�§��9¨=§��K£����2§�£����I�=������ã
 I�K�����¬�9�m�K�6�K�@���K£}�=�����®�=�¢�=����������´¢�âª �9ª�±h�����I�K�@�F���@�"�I�2���¬¥Á�K§h£}�K�³�I�K�e�K�@�I�=À
���������9�I��ª��F�I�-¦@�@§�¦¡�K���-�K¥S���@�®½¢��±Ö�K�¢�=���@�����H���H�������2�����2�H���@¥Á���K���� @����¦I�=���I�H�=�¢�m�������K�����I���������@¦I¦¡�2§
���­�K¦m ¡�K�I�¢����ª��F�I�Ã§��®�=§��"�@��äe�2§����­�F�K¦I¦�§��?�=�Ã�@����±h�����6����äe�2§����­�F¦�§��9¦¡�2§����������������I���¬�K�¬�K�I�K����������´I�����
Ø ��§�£ Ü9Þ�ß ª²�����¢��¯?�����I�9���2�Q���¬�I���0�K @����§��K�2�"���³���Ã§�¦@§��2���������K���K�3�K�Q���³���Ã§�£����@���=�������³���Â����¯?�2�åª-æ"�I��K�@¯K�K�­���K¨K���K¥�±F�=§�¤����@¨}±h�����Q���­���2§�£����@�������-���³�@�����²���¢���®�����Ã§����K���Q�K£��K�I�­�"�=¥b�9¦@����£���¸��������K�I�²£}���
�I��¯?�® ¡�����6�@�K�I�- ¡�2¥Á�K§��®���I�²½¢��±Ö�K�¢�=���@�����h���K¤?�-¦@���K���9ª
�F�@�h�K @����§��K�2�
���³���Ã§�¦@§��2���������K�����K�����@���=�����
���=¥º�H¯K�K���I�����=¥e¯9��§��×�= I������±h������§�����¦¡���2�b���®���­�9¦} ¡�9�@�¢����ª

�H I����§��=�2�h���³���Ã§�¦@§��2���������K�6£}����§���¿­�I��§��-�0���=�H�K¥����K£�¦I�����=�����9�I�K�e¦¡��±F�2§�´@���I�-�=£��9�I�­�h����¦¡���I�@���I¨��9�
���@���K�¢�=���@¸2���°¦@§��K¨K§��K£ç�K�H±F�������=�"�����"���I¦@�@�²�I������ªHè;�%�=§��@�2§H���}����£�¦I����¥Á�6���@�����K�����@�×�������9�I�²±F�����K�
���3�Q�³�@£Â ¡�2§��K¥"�K¦@¦@§���é���£}�=�����9�@��´
�Kª ¨�ª�£��2§�¨K���@¨Q�K¥²�����=�������=�¢������£�¦I����È¢�������=�����I���=�����K�I���K¥²���­�9¦
 ¡�K�I�I�@��ª�èV¥��K¦@¦@§���é���£}�=�����9�@�-�=§���£}�K�@�����I���-£}���°�����K�3���¬�=¯9�2§���������£}�=�����9�@��áå�¬�������-����¨9�­�®�w�F�b�hã
���I�"���0���I�"§���¿­�@��§��2£����­���K¥� ¡�2���@¨����=¥Á�9ª
��±����=¥h���I�}¦@§��K I����£��0���I�=�Â�°�$�F�b�ê���­�9�
���¢�=�Â���Â�I���Ã¥º�I�����¶¦�§��K�2�������¬�¢�=�0���%¥â�=���°��§��9Å����I�

�2�9£�¦I�����=�����9�I�K�I§���¿³�@��§���£����­���
�=¥N���@�"�=�¢�=�����������=�¢�����I�²�K���2�@§��K�Ã�}�K¥Ä���I�h§������I����ªb�F�I�²�­������§�§����I���²�K¥
�@�I����§��@�2���@§����}���­�9¦@�²���m���@���K�I�K���������h£}���¬���I����§�¨9�-���I�����"¦@§��9 @����£���ª
ë�ì�ë íÊî
ï�ð�ñ�òÃó�ôöõµ÷Hø(ù0ð�ú¡û
úeò�÷Hó�û�ümíÊî
ý"ð0ò�þeî
øçî
óHúeÿ
èV�6�=§��@�2§H����§����@�@���-���K£�¦I�@���������9�¢�=�N§���¿­�@��§��2£����­����´@±����@���-���I�®¥º�K������±h���I¨¬£��2���@�³�@��Ø Ù Ú�Ç@ÜKÞKß Å�§���¦�À§��2�����­�����@¨6�= I����§��=�2��¯9�=���@���® ­�3�m�����@¨9�������­���2§�¯9�=�â´D£��2§�¨K���I¨¬�����=������´D���9�����K¦@�����@¨°���­�9¦@�0�=�¢�%§����@�@�����I¨

�

Page 51 / 104

���@�®���@¥Á�K§�£}�=�����K�°�I�����@���}¥º�K§²�����2§��=�����K�°���9�@�­�h�K¥����­�9¦@��ª
�������	��

�����	��������� ����
��������
�����
��
��������� !��"#�$

%&�('��)�*%&�������+�����), �²���= I����§��=�2�Â¯K�K���@���������@�����2���K¥

�=����¦¡�9������ @���¬�����������@�2��¯9�=���@�������¢�=�0�6¯K�=§����= I���}���K���@�9���������6�2�2§����K����¦¡�9���­���K¥����@���2é������@�����K�Nªmè;�
�=§��@�2§²���}�@���Ã§����K�������I�0�K£��9�@�­�²�=¥F�@�=�������}¦@§��­���2���²±F�0�����K§������I������¯K�K���I���"�K�"�}�����@¨9���Â���­���2§�¯K�K�D���
���@�-���@§�§��2�³�²��£�¦I����£����­���������K�°�K¥b�K�@§"���­�K�âª²èV�%���K���0��¯9�=���I���K¥
��¯K�=§����K @�������K�³��§��K���²���I���³�I£0 ¡�2§H�K¥
�����2§��������9�I���=¥��0���­�K¦m���I���h�=¦I¦@§���é���£}�=�����9�m�@�­�2���I�K�h�@���������������2§����=���®���I�²����¨K�³���@�������K¥N���I�H�$�F�b�
¯K�K���@�9ª

-.���/'�%&�0'21�3�

�4������
�, Ç �@¦I¦¡�K���}���@�2§��¬�=§��}�;±��������������@�2�����@ �¦¢�����I�Â�������@�}½I��± ¨K§��=¦I�Ä´�5�6��=�¢�
587=´F���¢���}�¢��¯?�6�=�¬�����K���}���I�6�����=§��m�K�I�
���I�µ�@�³�@���}���·���K£�£��9�Äª É �=§}���K���w�K¥"���I�����°¦I�=���@��´F���I��= I����§��=�2�����­���2§�¦�§��2���2§b±h�����¡���=�����I���=���"�@��äe�2§����­�b�����=���2��´³�åª �9ª
����äe�Ã§����­���= I����§��=�2�F¯K�K���I�2�
�=¥Ä���@�h���³¯?�K��¯?���
¯K�=§����= I������ª%�N�°§����@�@�������I�}�=£��9�I�­���=¥"�@�=���m���% ¡��¦�§��­�����������e´����I�����}�����������0���K�� ¡�}£��2§�¨K���3���Q�
�����@¨9���������=�������%�9�I���=¥����I�����9£�£��K�6�@�³�@���H�K¥95:6²�=�¢�;5 7 ´¢£����=�I���I¨����I�=�h¥º�=§"���=�Ã�%¯K�=§����= I�������Q�=�­�
�=¥F���I�Â�����=�����-���I���K I����§��=�2��¯9�=���I���������@���I�Ã±ê�����������������K�����I�����������K�-���@�����³���Ã§�¯9�=�b�2�9�­���K���I���@¨%�K���
¯K�K���@����ª-�������K�������I���3���9£�£��K�%�I�³�@�2�-£��2§�¨9��¦¡�9���­����ª�è;�Q¨9���@�2§��K�b�}£��2§�¨9�0£}���°�����9�Q���6�}���=§�¨K�2§
��¯?�Ã§���������£}�=�����9�� @�@�0�9�����I�}�=���I�2§Â�¢�K�I�'�������=�¶��¦¡�������I¦����@�¬�K�¢�=���@�����Â����£������K�I�����@�Ã§��K I���­ª É �=§�ÃéI�=£�¦I���9´³���I�²¥º�9������±h���I¨}¦¡�9���������9�@���@¨��K¥�£��2§�¨K�®¦¡�9���­���h���K�6 ¡�®���9�@�����@�2§����eÅ
Æ �=�h¥Á�I�I�Ã�����K�°���I�
Æ �=�H���­�9¦°���Ã§�£����I�=�����9�
Æ �=�H���=�Ã�6���­�K¦°�����2§��=�����K�
Æ �=¥×���2§²��¥S�����=����£����­���

�F�@���=�����Ã§��¢�=����¯?�Â���"���������2���K @�������3�9��§®���­�9�âªÂ�¾���@�����K I����£��Ã§�¨9�Â¦¡�K���³�"���¢�=�®���"�2é�¦¡���2�����%���m�I��¯?���
 @��¨��2äe���2�²���²�K�I�������°���=�Ã�%�����2§��������9�%�K¥
�Â���­�K¦3���6���@�®½¢��±Ö¨K§��K¦@�Nª Ç ���I���®���@�����­�K¦%�I���K�@�2§H�@�³�@��������@�®�9�@���m�@�³�@�-���%�����­�K¦°���¢���h���H¨9�I�=§��=�³���2���¬���� ¡�®���=¤?���m���m��¯?�2§��¬�����2§��������K�N´I���H���=�° ¡�®�@�����°�K�H�
£��Ã§�¨9�®¦¡�K���­��ª

< 1��&�=���>

%&�0'?�=1@1���
A, Ú �·�I���Q�K¥������­���K�2�������=�®�K�I�K���������m±F�3���=�$�×�����­����¥Á�·�����2§����K���¹���2�m�K¥����­�9¦�2�9�I����§��@�2���h���¢�=�H���=�% ¡�-��§��K�I��¥Á�K§�£����6���}���2���K�����°¥º�=§�£ç�2é�¦�§����������9�NªCB®��¦¡���I�@���I¨��K�°���I���K�I�K����¸����
¦�§��9¨=§��K£°´³���I���h£}���m�I��¯?�-�Â @��¨Â����½¢�@���I���"�9�m���@�-�I�����m�K¥S���9£�¦@�@���=�����K�Nª

D+����������%/1��E�
1��(���F1�3$�=1@1+�>
�, �F�@�°�����2§��=�����9�·���9�@�³�����=¥-���I�@�2§����­�9¦@�m£}���� ¡�°�2�����@�2§}���=���2�I���=�����
���2¦¢�=§�����������¥Á§��K£à���@�m�K�@���2§Â���­�K¦¶�K§}�=���%���I£ö�K¥"�K���������2§��=�����K�I���=¥²���@�¬�K�@���2§Â���­�9¦Nª��²¨9�K���N´b���I�
§����@�I�Ã�����K���K¥N�I�����®�I�����@���Â���� ¡�h�¢�=�¢�@�������������=�����I���=�����K�¬±h�@�����Ã�@�­�9�����I¨-���@�H���������2§F����¦I���­���Â¥º�=§��=�
��¦¡�K������ @���Q���2���"����¨9�­�"ÈI�¢�K�S§��2���I����ªHG²��±���¯?�2§�´¡¥Á�K§-����£�¦@�������­�9¦@�®���I�2§����I�����Q�@�K�" ¡�Â�=�³�6§����@�@�2�����9�
�=¥S���I�²����¨K�­���I������ª

ë�ì�I J®ñS÷hù�îLK þeûFùNM
�'�m�Ã§����=���%�
��
1�����'�������� ���3¦@§���¯³���@�¬�9�@§Â���­�9��±h�����·�Q����§��I�2����§��6�=¥"���I�¬¦@§��K¨K§��=£ �9�µ�3�@��¨9�I�Ã§
����¯9���
���I�K�'���@�}½I��±�¨=§��K¦I�$Ø Ù Ú�Ç�Ü9ÞKß ª3�F�@�¬���2�9¦¡�¬¨K§��K¦@�����Â�Q�@��§����Ã�������K�Ã�@�2�����¬¨K§��=¦I���K¥H�����K¦¡����ª�b�K���������K¦¡�����0�m���9�­���K���@�2§�¥º�K§Â�6���Ã§����K����¦¡�9������ @�������­�9¦@���@¨%¦@§��K¨K§��K£ ���K�I����§��@�2������¤?���6���­�9¦��K§0�
¥Á�I�@�2�����9�Nª6�F�I�����2�9¦¡�}¨K§��=¦I�����-���I�2§��2¥Á�K§��¬ ¢�=�����'�9���°���K����¨=§��K¦@��£��2§�¨9����±h���������I�Â½I��±ê¨K§��=¦I�@�
Ø �b� ÜKÜKß ª²�F�I�������9¦¡��¨K§��=¦I�%���=�Q���I¦I¦¡�=§��" ¡�=���6���I�-½I��±©�K�I�K���������"�K�I�6���I������±Ê����¯?�����=�¢�=���������²±h���������§��@�2���@§��"����¥º�=§�£}�=�����9�m�K¥����I�²¦@§��K¨K§��K£°ª
�+�����9¦¡�-���K�­���K���I�H�0�@�9��ÀV�2£�¦@�;�����2�H�K¥��@�³�@���F���I�=��§��2¥Á�2§��
���0 ¢�=������ @���­��¤³�h���¬���I�®½I��±+¨=§��K¦I�Äª
É ��¨K�@§��PO��@��¦@���2���®�¬���­�K¦3±h�����3���I�������@¨9�����@�³�@�*Q­´Ä���9�@���������������I¨°�}�����K¦¡�9ª0�F�I�0¥Á�I�@�2�����9�3�������2��¥±h�����D�2�9�I�������������-�Â�����K¦¡�9´I±h�@�����°���@ ¡�K§��@���I�=���������I�"���­�K¦%�����9¦¡�Kª Ç ���9¦¡�2�h¥Á�K§�£��H�0��§����-�@���2§��=§����­�­ª�F�@�-½¢��±Ê����¥º�K§�£}�������9�%����¤?�������Ã§��=�����9�Q���K�I�­���²�=¥b���­�K¦I�"�K�¢�m���@¨K���"���H�2é�¦@§����������°�@�����I¨��������=�������

½I��±¾¥º�K�2����´b�����QØ �b� ÜKÜ9ß ª°�
�=�Ã�����­�K¦��I�����������% ¡�}�=�I�@�K���=�����'±h�����¶�¬½¢��±ê¥º�K�2�Â¨9��¯³���I¨°���I���@¦I¦¡�2§ ¡�K�I�I�3�=¥F���I�������2§��������9�����K�I�­��ª�èV�'�K�I�@�������9���K���@�2§�½¢��± ¥â�=�2���0���K�' ¡�Â�2§����=�����3���°�K @���K���'�6£��K§��
����¨K�³��ÈI�¢�=�Ä�w�F�
�"ª¢�F�I�®½I��±¹¥º�K�2���h���=�%�K������ ¡�- ¡�9�@�¢���������2§����=���%���9�I�@�������9�I��ª
�H����£�¦¡�K§����K�­��¥º���=���@§��²�K¥e���I�H�����K¦¡�²¨=§��K¦I�}���
���I�=�
���I�h�I�³�������������I�h�����K¦¡�����=§��H�I�=�
���@�"�=�2���¢�=�

�@�³�@���²�K¥b���I��½¢��± ¨=§��K¦I�Ä´e I���"§��=���@�2§®¦¡�K���³���Ã§��"�������I�����máâ���%ÈI¨9�@§�� Þ ���I�������I�³�����-�=§��0�K�@�I�=���=�����±h���������@�¬�³�@£Â ¡�2§����K¥h���@�¬�@�³�@�����������I�}���9�­��§��K��½¢��±ê¨K§��K¦@�����¢�=�����I�Ã��§��2¥Á�2§����?ãÃª3�F�I���Â¨K��¯9�����
½I�2é��� I�������V�%���°�2é�¦@§��2���®���I�Â½I��±¾���@¥Á�K§�£}�������K�������6�2�9�­���2é³�������I��������¯?��£}�=�I�@�2§�´D�����@���}�6�����I¨K����½I��±
¨=§��K¦@���I�³�������K�� ¡��¦¡�K���³���������6¥Á§��K£ö�@��äe�2§����­�������K¦¡�¬�@�³�@����ª6�F�I����¥º�������@§���±h������ ¡���I�����'���'���I�
¥Á�9������±h���@¨@ª

R SUTWVYX Ï�Ð[Z!\]V_^ Ð�`ba ÍWc�ÎFÏhÒ�Ó"ÎFÒ�ÏdV�Ñfe+ÐQÐPgWc
�H�D�2é�¦@�×�=���I�����������@�
���­��§��³�@�@�2�����9��±F�
�¢��¯?�����²£}�=�¢�K¨K���@�I����§��I�Ã���@§����®���­�9¦@��ª��²���@�I����§��I�Ã���@§����-���­�9¦
���²�����­�9¦%±h�����I�9���®�������@¨9���0�@���9���2§�´¡�âª �9ªh���I�³����áâ ¢�=������ I���­��¤@ãh���6���@��½I��±Ê¨=§��K¦I�°���I�=�"�@�K£����I�=�����
�=���N�@�³�@���h���6���I�"���­�K¦% ¡�³���3Ø � Ç «Hh�i ß ª�N���K�I�K����¸��-�I�@����§��I�2����§����¬���­�K¦I�H�9�I�-�=¥S���I�®¥Á�9������±h���@¨}£}���} ¡���0���9���@�����9�ÄÅ

j

Page 52 / 104

0

5

foo

9

foo1

foo1_L1

0

5

9

kmlonqp9r�s �qtvuHw sFxzy0{|nqrA}(~ w }(�z��� w s��]yqr�r�s���~�y��z�8lo�9n[���]y�~�sFn�r�}q~ w�� y�r�} � p9�z�@��l�y��!�]yq���A}(lo�9l��zn$}[�oy>yq~��

Æ Ø Ù Ú�Ç@ÜKÞ9ß �@�����2§��� ¡���b�"£��Ã���I�³�- ¢�=�����Â�9�Â�=�����=�Ã�@���@¨®�9�@�F�����2§��=�����K�����9�����2§����®���=�Ã�0���­�9¦��@���9���2§�ª�F�I���H£}���}�����9�m������¯?�Ã§���������£}�=�����9�Äª
Æ �F�����K���I���I¨��K�I�H�����Ã§��=�����9�¬���9�@�­���2§��������=�Ã�} ¢�=�����" I���­��¤¡ªb�F�I����±h�����¡¨9��¯?�²�����K���K¥Ä½¢��±$���@¥Á�K§�£}��À�����9�Äª

Ú �K���Â���K���@�����9�@�b�I��¯?�F��������§��������9�@¯K�K�­���=¨9����ªb�F�@�2§��2¥º�=§��9´?±����¢��¯?�F����¯?�����K¦¡���Â�"£��Ã���I�³�-���²��§��K�@��¥º�=§�£�@�I����§��@�2���@§����}���­�9¦@�²���­���Â����§��@�2���@§����eª
���8���	�>�v�����8�����
�

�0���+��� ���
�8� � ������

¡ � �
�>¢>¢
���¤£
�>¢>¥8¦

§�¨>© �(ª�«¬���z� � ���
�9«���­8���|�

§

kmlonqp9r�s j8tv® ��l�¯$~9�os�°²± � p9���@��loyq�!��yq����}ql��9lo�9n$yq�zs;pz�z�
��r�p��@��pzr�s����oy>yq~��

³ ´µ\KÔ�^ Ô=ÍW¶ÂÎFÔKÍW·¸a ÍWcbÎ�ÏhÒ�Ó"Î�Ò�ÏdV�Ñfe¹ÐQÐ[gWc
« �I����§��@�2���@§��������­�9¦@�������"���K�­��§��9�@½I��±µ¨=§��K¦@�����K�� ¡�����2�����K�b���­�9¦@�b±h���������­��§������@¨K�������®£��K§��F���I�K�
�K�I���I�³���Â���3���@�0���­�K¦Nª��²�Ã���¢�K�����­´N�K�Q�I�@����§��I�2����§����%���­�9¦3���K�3 ¡�0���2���'�=���@��äe�2§����­�"���­�K¦I�-���I�=§����I¨
áâ¦I�=§������=¥�ãD���I�����K£������³�@�9ªSè;�Â���K£������K���2�b���@�F�I�@����§��I�2����§��������­�K¦�£}�����=�2���¢�=�����Â�¢��¯?�F ¡�2���Â�2§����=�����
¥×§��9£Ê�@��äe�2§����­������§��@�2���@§����-���­�9¦@��´9£��Ã§�¨9���-���9¨K�2���I�2§S ³�-�H���³��������¸��F�K¦@����£���¸����I¨H���9£�¦@�����Ã§�ª��F�I�Ã§��2¥º�=§��
������§��=��¨9�­��¥º�=§�±��=§��°±F���m����������£����I�=���-�@�I����§��I�Ã���@§����6���­�K¦I�"���h����§���¯?�2§����®���I�=�²������¦NÅb¥º�=§®���=�Ã�6���­��§��
�=¥H�K���@�I����§��I�Ã���@§����'���­�K¦¶±��}�2§����=���m�°�����K¦¡�¬���I�=�0���9�­���K���@�Â�9�@�������I�=�0���­��§��'����¨9�¬��¨9�I�=§����I¨%���I�
�=���I�2§�´N�I�2�I����§������I�������I¨°�����m�����K¦¡�����¢���-�¢�=���6�����I¨9�����@���9���2§�´S���2� É ��¨9�@§�� Þ ª��F�@�������K�'���K�������� ¡����9�@�Â ¡�����=�I�����=¥����@�Â�����K¦¡��¨K§��=¦I�'�2�9�I����§��@�2�-¦�§��9¦¡�9������ ­�¶Ø �
� Ü9ÜKß ª Ç ���I�2�����K���3�����9¦¡���@�³�@�Â�����¦¡�K���³���Ã§Â�����Q I�K�����° @���­��¤'§������I�2§����I�K�����I�¬ ¢�=�����6 I���­��¤�����������¥;´��������Â¦¡�9������ I���6���Q�¢��¯?�m�@�@¦I�������=���
���2�9¦¡����§��2¥Á�2§����I¨����Â���@�®���K£��-¦@���2���-�K¥��2�³�@�9ª
������£����I�=�����9�}�=¥N�@�I����§��@�2���@§����0���­�K¦I�F�������@���b±��������K�} ¡�H�@�9�@�h���¬�-����§��K��¨K�³��¥Á�K§�±F�=§��}£}�K�I�@�2§b ­�

�@���®�K¥�±�������ÀV¤³�@��±h�m�����Ã�@�I��¿­�I����ª��F�I���9��¯9�=�­���K¨9�2�h±h�����°�2����£����¢�������9�°�=¥��I�I����§��@�2���@§����¬���­�9¦@�"��§��9Å
Æ ¼ �2§�¨K�H¦¡�K���³���������= I����§��=�2�����³���Ã§�¦@§��2���������K�����=�� ¡��¥º�K�I�I��±h�����I�K�@�b�2é³��§��²�2äe�=§��b�������I���=�¢�=����������ª
Ç ���@���b���@���I�I����§��@�2���@§����"���­�9¦I�N±h�����­ ¡����§��K�@��¥º�K§�£����"���H����§��@�2���@§����®���­�K¦I�D���@�2§������S�I�h����äe�Ã§����I������6���I�"�¢�K�I�@�����I¨�ª

¹

Page 53 / 104

irr1

irr1_L1

0

4 5

8

6

12

irr1

irr1_L1 irr1_L2

0

4

5

8

6

12

8

6

kml�n�p9r�s ¹9t;º �]y�~�sPnqrA}(~ w � � yqrN� w sPp9���
��r�pz�]��p9r�s��?~9r�y�nqrA}(¯�l��»kml�n�p9r�s j � uHw s[��s � �Fn�r�}q~ w ¯¼}(~z�;�8lor�s��@����½
��y[� w s*p9�z�+��r�pz�@��p9r�s��W�]y�����r�y��:xzy0{¾n�r�}q~ w �²¿N��� w sF� w s*r�lon w � w }(���2��l&�8s;� w s�r�sFl&��}$����yq~:s;n�r�}q~ w.� yqrH� w s
��}(¯$sF~9r�y�nqrA}(¯¬{ w s�r�s;� w s*p9�z�+��r�pz�@��p9r�s��.��y>yq~2l&��r�s�~9�&}q�]s��#À>½#�
{Áy¼�
��r�p��@��pzr�s����

Æ �F�I�%�@¦I¦¡�2§� ¡�9�I�I�µ�=¥-�K§���¨9���I�K�����w�I�@����§��I�2����§����¶���­�K¦I��±h�����"�I�=�} ¡�%������������¨K�­��´F±h�I�����µ���I�Ã�±F�K�I���6�I��¯9�® ¡�����°��¥S���@�®���­�9¦%�I�9�m ¡�2���%�K�I�K����¸����¬���6�I�I����§��@�2���@§����}¥Á�K§�£°ª
Æ èV�®£}�K¤?���H��§����2À ¢�=�����Q���K�����@�×�������9��¦¡�K������ @���Â���m�@���9ª0�F�I�Â��§��2�2À ¢�K�����3���=�����I���=�����K�'���-�I�=���K @��������I�K�¢�����-�I�I����§��@�2���@§����¬���­�9¦@��ª
Æ �F�I�Â¯9��§����K�I�-������¦@�-�K¥
���I���=�¢�=���������-±h�����b ¡�Â����£�¦@���Ã§-��¥F���I�2�°���K�'�K�����I£������¢�����K�������­�K¦I���=§������§��I�Ã���@§����eª

�F�@�2§����2é��������"����¯?�Ã§��K���=��¨K�K§������I£��h���¢���"���K�% ¡���I�����m���}���@�2�³����¥×�°�I�@����§��I�2����§����m���­�K¦I��Ø Â²�K£ Ü?Ý�ß ªhè;��K�@§���£�¦I����£��2�³���������9�Q±F���I���;B�ÃKÀ ¨K§��=¦I�I��´D I�����K�I�=���I�2§����K�' ¡���@�����'�=�-±F�����âªmæ"�I���K�@¯K�K�­���K¨K���K¥
BHÃKÀ ¨K§��K¦@�I�b���
���¢���
���@�2����§��H§��2�×������¯?����������£�¦I����������£�¦I����£����­��ªSæ"�I�H�@�����9��¯9�=�­���K¨9�H���
���I�=�b���I�h������£�À
���I�=�����9�%�=¥
£0�I������¦I���-���­��§��¬���@¨K���"�=¥b�K�%�@�I����§��I�Ã���@§����6���­�K¦%£}���m�2é�¦¡�9�����@���������6���­�9¦@��´e����§��I�2����§����
�=§H�I�I����§��@�2���@§����Ä´­���¢���h±��K�h�@�K�²�@��������¯?�2§����m ­�}���I�-�=��¨K�K§������I£°ª

Ä Å Ð6Í�Ó�\=ÒWcFÔ�ÐmÍWc
�F�@���"¦¢�=¦¡�2§-���@¨9¨9�2�����"��§��K�@��¥º�K§�£����@¨m�@�I����§��I�Ã���@§����°���­�9¦@�"���}����§��I�2����§����%���Q���@��½I��± �K�I�K���������®¦¢��§��
�=¥����$�F�b�©���=���2�I���=�����9�����­�9�âª��F�@�Â£��2���@�³�%���- I�K�����Q�9��¤³�I��±h�%�����Ã�@�I�K���K¨9������ª0���Â�I��¯?�0��£�¦@���ÃÀ
£��2�³�����6���I���®�=���¬¦�§���¦@§��­���2�������@¨6������¦3���Q�9�@§"���­�9��¥º�=§-�$�F�b�Ê���=���2�I���=�����9���K�¢�%¯?�Ã§���ÈI���°���¢���®���I�
�= I����§��=�2�����­���2§�¦@§��2���������9�}���F���K¦I�K @���²�K¥D�K�I�K����¸����I¨Â�=§���¨9���¢�=�����¬�I�@����§��I�2����§��������³���9´­±h�����I�9���h�K�­����¦¡�ÃÀ
�2�×�=��£��³�@��È¢���=�����9�3�2é�����¦��"���I��¦@§��2¦@§��­�����������@¨6������¦Äª®�����¢��¯?�0�K�����6¯9�2§���È¢���°���¢���"���@��ÈI�¢�K�N�$�F�b�
���K�����I���������K�N´I���@�����¢�����@¨�¦¢�����@À ¢�=�����m���K�����I���������K�N´@±F�K§�¤³�²�K�h�2é�¦¡���2�����Äª

Æ Ç�Ò�ÎFÒ�ÏdVÉÈ Ð¬ÏdÊ
èV�����K�������I�Â������£����I�=�����9���=¥��I�@����§��I�2����§����Q���­�K¦I���2é�¦¡�9���2�����­�K¦I�-���¢���-±��K���@�K��¥º�K�I�¢�3 ­�%���I�FB�Ã=À
�=��¨9�K§������@£°´³�9�@§����K�����@���=�����9�@�F±h�����¡¥â�=���åª
�D�����K��¯9�®�K���¡���=�����F�=¥D�@�I����§��I�Ã���@§��������­�9¦@��±F�²�I�����Â����§��2ÈI�I�
���@�Â��£�¦I����£��2�³���������9�%�K¥����I�Â���­�K¦��K�I�K���������-�����9��§®���­�9�âª}æ"�@�0����§��=��¨9�­��¥º�=§�±��=§���£��Ã���I�³�°±F�K�I���3 ¡�
���}�=¦I¦@���6���I��B�ÃKÀV�K��¨K�K§������I£ §������@§�����¯?�2���­´¢�9�I�2��¥Á�K§-���=�Ã�Q���K¦­�°�K¥
�=�3�@�I����§��@�2���@§����m���­�K¦Nª®�²�I�=���I�2§
���K���@�����9�°���K�° ¡�"���Â��£�¦@����£����­�F���I�"�I�³�@�-��¦@�����������@¨�£��2���I�³�e´�������Ø � Ç «Áh�i ß �=�¢��Ø «®¼ Ü?ÝKß ª

Ë

Page 54 / 104

Ì V�`(V�ÏdV�Í�Ó�V_c
Ø � Ç «Hh�i ß ��ªN�²�@�@´�Â�ª Ç �2���@�â´S�=�¢�WÃ@ª « ����£}�K�Äª < 1�ÍÎ�>%��)���+
�Ï;ÐC��%&�>��% �8�)��

ÑN�9���+�(��%/Ò�����
����8 ?�81@1��
 ª�"�I�������9�@Àå�'�������2�­´9O@Ó h�i ªFÙ"���I�Ã§��K�����6¤³�I��±h�6�K�h���I�$Ô�B"§��K¨K�9� Ú �­�K¤(Õ@ª
Ø �b� ÜKÜ=ß Ã@ªS���I¨K I���9£ �=�¢����ªN��§�£����I�K�@�âª ¼ �³�@�������I¨6���9£�¦@���Ãé3½I��±h��¥Á�K§�±F�=§�����À ���K���}�2é������������9�

����£��Q�=�¢�=����������ª¾è;� ÐC��1@�],�Öq×�Ø�ÙPD�Ú¤ÚÛÚÝÜ²�����ßÞ+��%&Í��¼à�"�

����Í;
#à�"�ÍÁ�q1�

%&�(ÍYá&ÜÎ��à�àmâ ã	ã�ä ´
å ��¯?��£0 ¡�2§ ÝKÜKÜ9Ü ª

Ø ��§�£ Ü9Þ�ß ��ª³��§�£����I�=�I�âª�æ -�1@ ��q�=���F�81@1�� æ ���+�(%&���������(�
�¤3A1���ç$1���

�/Þ < ��
��ÁÚ¤è0�
���(��%/1��!��%&Í�� æ �>���ßÞ
"�

%&
 ªêé���B»���I��������´ É �K���@���V���K¥ Ç �������@���°�=�¢�¶�D�����I�@�9���9¨=�­´ « ¦I¦I���=��� « �I��¯?�2§������;�­´¤ÃK�I�I�
ÝKÜ9ÜKÞ ª

Ø Ù Ú�Ç�Ü9Þ�ß Ã@ª�Ù"�I������¥º�����K�N´ å ª Ú �2§�£Â�I�@�@´?�K�I� Õ ª Ç@ëAì�9 ¡�Ã§�¨@ª É ����±$�²�¢�=���@�����b¥º�K§
�$�F�b�µ���K�����I���������K�Nª�D�����I�I�����=�dÂ²�2¦¡�K§�� Ü Q�í0î­´h� Ç ���������9£�¦¡�2�����@���%���2�³���Ã§�´ « ¦I¦I���=��� « �I��¯?�2§������;�­´ « Â Õ Å
ï0ð	ð�ñ¤òôó	ó�õ	õ	õ�ö&÷�ø	ðqù�ö&÷�ú�ï¤ö�û�ü0ó�ñ	ý�þqÿ��	ù���ð�������û�ó��
	�����ö4ñ�û ´ ¼ �=§���� ÝKÜKÜ9Þ ª

Ø Ù ÕNÚ�Û�Ü?Ý�ß Ã?�K�µÙ"�I������¥º�����K�N´ Ú�ëAì�=§�� Õ ����¦¡�Ã§�´ å �2§����¢� Ú �2§��@£Â�I�@�@´����@§��������2§ Ç �K�¢�� ¡�2§�¨@´b�=�¢� Õ ���³�I�
Ç]ëAì�K ¡�2§�¨@ªÂ�¾é�§��=���K�;��¦¡�Â�D�­�9��¥º�=§ É ����±ê�H�¢�K���������®�K¥�� é�§��K¨K§��=£���ªÂèV� ÐC��1@�],v×�
 Ù�� Úd�qÞ
��1�ÍN%/����1 < 1��@3A���
���8�+�;1ô3ÁÜv�����ßÞ+��%&Í���à�"�
+����ÍN

ÑÎáoÚ < ÜÎ��àCâ ã�ÖAä ´I¦¢�=¨9���²Ó���O Ý ´ ÝKÜKÜ?Ý ª

Ø Â²�K£ Ü9Ý�ß Ù0ª>Â²�K£}�K�����I¨9�K£°ª�æ"� Õ �­�9¦I��´�B®�9£����I�=���K§���´¢�K�I�[B®�9£����I�K�I�2� É §��9�­�����2§���ªdæ < -É��������
+Þ
�	����%/1���
_1�3²Ðd��1
'�����ÍNÍ;%&�0'��:���0'����@'0��
N���8 *à�"�

����Í;
 ´ Ý íIá4Q9ãÃÅ í	Q�Q��	í	Ó Ü ´ Ç ��¦�����£Â ¡�Ã§ ÝKÜKÜ?Ý ª

Ø «®¼ Ü?Ý�ß Ç ª « �I¨K�2§®�=�¢� É ª ¼ �@�������2§�ªÁG"�K�I�@�����I¨}èV§�§������I���� @��� Õ �­�9¦I��Å²æ"¦�����£���¸2��� å �³��� Ç ¦I�����������I¨¯?�2§����I��BHÃ%Ù²§��K¦@�I��ªPæ < - ��������
��	����%�1���
�1�3�ÐC��1
'�����Í;ÍN%&�('��:���0'����A'0��
����8 ¼à�"�

����Í;
 ´
Ý íIá�í?ãÃÅ Ý Ó�Ó�� ÞKÞ9Þ ´ Ý=Ü9Ü?Ý ª

�

Page 55 / 104

Page 56 / 104

A Survey of Methods to Improve ILP-based WCET Analysis

Xianfeng Li
School of Computing

National University of Singapore , Singapore 117543
lixianfe@comp.nus.edu.sg

Abstract

Integer Linear Programming technique has been
used in WCET analysis. Its nature of performing the
components of WCET analysis integrately reduces
pessimisms that happen to separated approaches.
However, it has its own problems in terms of both
accuracy and performance. In this paper, we discuss
the two issues and survey/propose several methods
that can possibly improve either or both of them.

1 Introduction

Integer Linear Programing (ILP) technique has been
adopted in WCET analysis. Li, Malik and Wolfe
used it to model instruction cache [2]. In our past
work, we have successfully modeled branch predic-
tion as well as its interaction with instruction cache
[1, 3]. As the ILP-based approach performs low level
instruction timing analysis and longest path calcula-
tion in a integrated manner, pessimism due to lack
of sufficient information between the two tasks in
seperated analysis is reduced. Despite the benefit
that ILP-based approach has, there are several prob-
lems we need to deal with.

2 Improving the Quality of
Program Path Analysis.

As discussed in [2], there are two groups of con-
straints in the ILP-based framework: structural con-
straints and functional constraints. Structural con-
straints are obtained from the program’s Control
Flow Graph (CFG) and low-level timing analysis,
which typically builds a set of graphs where con-
straints on instruction timing are derived (from now
on we use the term timing graph for this sort of
graphs). In [2], a Cache Conflict Graph (CCG)
is constructed for each cache line to capture cache
misses related to that cache line. Then correspond-
ing constraints are derived from those CCGs. Func-
tional constraints are either provided manually or
derived from program analysis to bound loop iter-
ations, recursion depth, or infeasible paths. These

constraints enumerate the paths implicitly, thus
avoid the path explosion problem that happens to
approaches relying on explicit enumeration of pro-
gram paths.

However, this implicit enumeration has its own
disadvantage. It often cannot represent a program
path exactly. In other words, given the constraints
derived from the path information, the ILP solver
can explore a larger set of paths than the actually
feasible ones. Consider the following example.

for (i=0; i<100; i++) {
if (i < 25 || i >= 75)
A; // A maps to cache line X

else
foo(); // B in foo() maps to X

}

Clearly, A and B in foo() are mutual exclusive and
there are only two iterations where one displaces the
other from cache line X (when i = 25, 75). However,
given the constraint A+B = 100, the ILP solver can
explore an infeasible path where A and B execute
alternatively throughout the 100 iterations, hence
the cache misses will be much more than the actual
situation.

We discuss two possible methods to improve the
quality of program path analysis for the ILP-based
WCET analysis:

1. To put functional constraints on timing graphs,
e.g., constraints on CCG edges.

2. To use analysis elements other than basic
blocks, e.g., acyclic paths accross a loop body.

The idea of method 1 is that, once we discover a
program segment whose behavior is independent of
the input data, or there is an infeasible path which
involves several blocks, we can perform program flow
analysis and derive constraints from the hardware
states we are modeling. In the above example, a
path through both A and B in one iteration is an
infeasible path, by doing data flow analysis, it can be
found that A and B displace each other just twice:
once that B displaces A and another time that A
displaces B. These two constraints are put on the

Page 57 / 104

A B

e2 = 1

e1 e4

e3 = 1

Figure 1: Cache Conflict Graph

edges in Figure 1. They prevent the ILP solver from
assigning e1 = 50 and e2 = 50 for the worst case.

The motivation for method 2 is that, given a
loop body, the path representation contains more
global information than the block representation
does. Consider the same example again: with block
representation, the constraint can be generated is:
A + B = 100. By using path representation, we
have a better constraint. Suppose the infeasible path
through both A and foo() is labelled as P , then we
have P = 0, which means that this path is infea-
sible. Another benefit of path representation is to
reduce the problem’s complexity by removing some
of the feasible paths which cannot contribute to the
worst case. Given two paths P1 and P2 acrossing
the same loop body. If P1’s maximal possible cost
is less than P2’s minimal possible cost and P1’s im-
pact on furture execution cannot make up this gap,
then it is safe to conclude that P1 has no chance to
contribute to the worst case because P2 always con-
tributes more than P1 does. Therefore P1 can be
practically deemed as an infeasible path.

Method 2 has the drawback of increasing the com-
plexity of the timing graphs. For example, Cache
Conflict Graphs will have more nodes and edges than
the original ones using basic blocks as elements.

3 Reducing ILP Solving Time

As many researchers in this community have ob-
served, there is a conflict between ILP-based ap-
proach’s tight WCET results and its high compu-
tational complexity. This problem becomes serious
when analyzing real-life programs, which normally
have much larger sizes than benchmark programs, or
when more advanced micro-architectures are mod-
eled, even small programs will result in fairly com-
plex analysis and long computation time.

To reduce the computation time of the ILP ap-
proach, Theiling and Ferdinand combined abstract
interpretation (AI) and ILP for WCET analysis in
[4]. They used AI to compute properties of pro-
grams. After that, the execution time of each analy-
sis unit becomes a constant so that the complicated
timing graphs modeling micro-architectures are not
necessary anymore. It greatly reduces the complex-
ity of ILP formulation and the WCET problem can

S

BA

T

l(X) = [A] l(X) = [B]

l(X) = []

Figure 2: must analysis of Abstract Interpretation

be solved fast. However, this is still a separated ap-
proach and the pessimism discussed in section 1 re-
mains. For example, in Figure 2, suppose both block
A and B map to cache line X. Then the content of
line X will be A/B after executing A/B respectively.
Upon the control flows merging at block T , a must
analysis (refer [4] for details) results in an empty en-
try of X. Therefore in the next iteration, there will
always be a cache miss no matter the previously vis-
ited block is A or B. This is not true if A or B is
traversed in consecutive iterations.

Our observation here is that the trade-off be-
tween accuracy and performance is too aggressive
and not adaptive. We propose a solution that makes
accuracy-performance trade-off adaptively and is
also aware of the potential overestimation it intro-
duced. The basic idea can be described as follows.
Given a program and the target hardware, we first
build an ILP framework which produces WCET re-
sult as accurate as possible (like what were done in
[1, 2, 3]). Then with the framework, we try to iden-
tify elements (i.e., basic blocks) which are ”unim-
portant”. The intuition of ”unimportant element”
is that, if we make pessimistic assumptions on the
execution of the element in question, the overesti-
mation resulted in is neglectable or modest (depend
on our needs). Consider a typical situation, where a
basic block B is visited with two possibilities: cache
hit or miss. This uncertainty is the consequence of
some earlier branch instruction. Now suppose the
path which leads to the cache hit of B has an ex-
ecution cost which is much more significant than a
cache miss, then assuming B always misses intro-
duces trivial overestimation to the overall execution
time.

Unfortunately, this idea is hard to work with cur-
rent ILP frameworks, which typically consist of a
CFG (or CFGs related by a procedure call graph)
and a set of timing graphs (i.e., Cache Conflict
Graphs). Any simplification of one element’s execu-
tion breaks the integrity of the corresponding timing
graph, i.e., in Figure 1, suppose A can be simplified

Page 58 / 104

Approaches #Variables #Constraints

CFG/TGs 67 114
ECFG 43 32

Table 1: ILP formulations of matsum (branch pre-
diction modeling) with the two approaches

as always miss, then the self loop edge e1 of A, which
results in cache hit, is trimed off from the CCG. This
results in the flow increase of e2 and consequently
more cache misses for B. Another reason that makes
current ILP frameworks inconvenient for complex-
ity reduction is that the elements (basic blocks) are
not so fine-grained for finding enough chances where
simplification can be made. Instead, basic blocks an-
notated with hardware states are better candidates
because the future executions are more predictable
with hardware information being carried along.

In response to the above problem with current ILP
frameworks, we propose an alternative approach us-
ing single graph other than a set of graphs. This
approach achieves the same accuracy as current ILP
frameworks. In addition, it is convenient to perform
the adaptive complexity reduction with it. This sin-
gle graph is obtained by expanding the original CFG
(we call the expanded CFG ECFG). We first intro-
duce a concept: block instance. A block instance
is a block under a specific hardware state (i.e., in-
struction cache content). If a block B can possi-
bly execute under N hardware states, then it has
N instances. An interesting property of the block
instance is that its execution time is statically de-
termined because the hardware state, which affects
the execution time of instruction, is known. To
build the expanded CFG, we traverse the original
CFG iteratively with the hardware state being pop-
ulated/updated. If a block B is traversed under a
hardware state which did not appear in any of its
previous instances, a new instance is created for it;
otherwise the control flow is passed to the previous
instance which has this hardware state. This ex-
panding process is guranteed to terminate because
hardware states are finite (quite limited with each
block in practice).

Figure 3 illustrates a simple CFG and its expanded
CFG modeling direct-mapped instruction cache. For
simplicity, we assume block A, B and C are mapped
to three distinct cache lines and the cache content re-
lated to them is annotated beside each block instance
in the ECFG, i.e., (?, ?, ?) of instance A0 means the
contents of the three cache lines are unknown at the
very begining. After A0 is traversed, the correspond-
ing cache line is A and the cache content is updated
to (A, ?, ?). As mentioned ealier, all instances are
free of execution time ambiguity.

We empirically compared the complexity of the
two approaches: the one using CFG/TGs (timing

�

�

�

���

���

�
	��
	���	��

� � ���

� � ��	���	��

� � � � ��	��

� � ���

� � ���

� � ���

� � � � � � �

� � � � � � �

� � � � � � �

� � ��	���	��

� � ��	�� � �

� � ��	�� � �

� � ��	�� � �

Figure 3: CFG and the expanded CFG (model
direct-mapped instruction cache)

benchmarks #Vars #Cons Time

fft (bpred) 594 764 0.06s
fft (bpred+cache) 1063 1254 0.12s
des (cache) 1356 1534 0.06s
djpeg 2153 1812 0.06s

Table 2: Impact of ILP problem size and nature on
solving time (results of the CFG/TGs approach)

graphs) and the other one using single ECFG. In
Table 1, the numbers of variables and constraints
of the matsum benchmark (modeling branch predic-
tion) are presented. Obviously, the ECFG has less
variables and constraints than the CFG/TGs.

Another advantage is that single graph ECFG
fits in the paradigm of network flow problem bet-
ter than CFG/TGs does. Therefore it is likely that
the ILP problem formulated from an ECFG will be
solved faster than the ILP problem formulated from
CFG/TGs if the two ILP formualtions have similar
sizes (in terms of variables and constraints). Our as-
sumption is supported in practice. We give the ILP
problems’ sizes and their solving times for several
benchmarks in Table 2. The fft (bpred) means
benchmark fft with modeling of branch prediction,
(bpred+cache) is the combined branch prediction

A

B

l(X) = [S] / path_len

l(X) = [S] / path_len+cost(A)

Figure 4: CFG traversal with hardware state/time
information

Page 59 / 104

�

�

������� 	�

��� ������� ���������������

���

������� ��!
��"� ���#��� �$�����������%�

������� ���������������'&

���(�)� * ������� * ������� *

�+��� �+���

������� ,�!
(�-�.&

/10 ���32 0 , !4

576(8:9<;>=�?A@(B576(8:9>;<=�?A@(B 5DCE8GFIH>JLKMH5NCO8PFQH>JLKMH

2 0 R /S0 � 2 0 R

5N?T8SUVJXWYK<W�@�?�Z5N?T8SU[J\W�K<W+@�?�Z

��]

�^] �A_

�:_ ��]

�^]

Figure 5: Adaptive complexity reduction example

and instruction cache modeling and (cache) is in-
struction cache modeling. Djpeg is a fairly large
benchmark and we give its ILP problem size and
solving time without micro-architecture modeling .
So the ILP variables and constraints of it are just
from the CFG plus several functional constraints.
We can see that even though djpeg (single CFG)
has much bigger size of ILP problem, its solving
time is roughly the same as those of fft (bpred)
(CFG/TGs) and des(cache) (CFG/TGs). Branch
prediction modeling yields more complicated timing
graphs than cache modeling. This partly explains
why fft (bpred) needs the same solving time as
des (cache) does despite the big difference in prob-
lem sizes.

The approach of using ECFG works with adap-
tive complexity reduction as follows. When we tra-
verse the original CFG for building ECFG, we popu-
late/update not only the hardware state, but also the
time information for each update. In Figure 4, sup-
pose when A is traversed, the cache line X has con-
tent S and S was fetched into cache path len clock
cycles ago, or in other words, the path traversed from
S to A has the length of path len cycles. If A does
not map to line X, then after the execution of A, the
path length is updated to path len+ cost(A), where
cost(A) is the clock cycles for executing A. With
the time information, we are aware that whether a
simplification, which merges two instances of a block
, sacrifices neglectable/modest accuracy or not.

Figure 5(a) is an original sub-CFG. There are two
incoming paths which carry different cache states: if
the flow comes from the left path, block B is in cache
and a cache hit is resulted when B is visited; while if
the flow comes from the right path, B would be miss
from the cache. In Theiling and Ferdinand approach
[4], the cache line where B maps to is empty after
the merge at block A and a cache miss is always re-
sulted for B. In our approach, we make decisions
according to the time information. In Figure 5(b),
suppose the left path is short (the path started from
the last time B is visited), then a cache miss will con-
tribute significantly to the overall execution time of

the path. In this case, we keep two block instances,
which have different cache contents, for each block
along the path. While in Figure 5(c), since the left
path is a long path, a cache miss does not contribute
significantly. Therefore we merge the two paths and
only one instance is kept for each block along the
path. In this case, we trade a modest accuracy loss
for complexity reduction.

Besides the information of path length, the num-
ber of loop iterations is another effective time in-
formation. A path that is short but crosses several
iterations is unlikely to be part of the WCET path if
some longer paths across the loop body exist. There-
fore simplification can be made in such situation.

The idea of adaptive complexity reduction and the
single graph approach for WCET analysis are still
ongoing work and we are trying to mature, imple-
ment and verify them in the near future.

References

[1] X. Li, T. Mitra, and A. Roychoudhury. Accurate
timing analysis by modeling caches, speculation
and their interaction. In ACM Design Automa-
tion Conf. (DAC), 2003.

[2] Y-T. S. Li, S. Malik, and A. Wolfe. Perfor-
mance estimation of embedded software with in-
struction cache modeling. ACM Transactions on
Design Automation of Electronic Systems, 4(3),
1999.

[3] T. Mitra, A. Roychoudhury, and X. Li. Tim-
ing analysis of embedded software for specula-
tive processors. In ACM SIGDA International
Symposium on System Synthesis (ISSS), 2002.

[4] Henrik Theiling and Christian Ferdinand. Com-
bining Abstract Interpretation and ILP for Mi-
croarchitecture Modelling and Program Path
Analysis. In Proceedings of the 19th IEEE Real-
Time Systems Symposium, 1998.

Page 60 / 104

Discussion of Misconceptions about WCET Analysis ∗

Raimund Kirner, Peter Puschner
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1

A-1040 Wien, Austria
{raimund,peter}@vmars.tuwien.ac.at

Abstract

Worst-case execution time (WCET) analysis tools
are needed for the development of hard real-time sys-
tems. Despite the theoretic advances in academic re-
search in WCET there has been hardly any impact on
the industrial practice of timing analysis. The essential
question is why it was not possible to provide more in-
fluential research over the last one-and-a-half decades.
This paper gives constructive answers to this question.
It presents a number of misconceptions about current
WCET analysis. These discussions will help to guide
research to the development of more useful WCET
analysis techniques. This paper deals with WCET anal-
ysis techniques for hard real-time systems.

1 Introduction

The knowledge of the worst-case execution time
(WCET) of tasks is crucial for the design of real-time
systems. Since about more than one and a half decades,
research in WCET analysis has been done to support
the industry by concepts for the development of WCET
analysis tools. Still there is hardly any impact on
the industrial practice of timing analysis. The nu-
merous published WCET analysis techniques and sev-
eral prototype tool implementations did not trigger any
ground-breaking improvements for the wide-spread in-
dustrial use of more advanced WCET analysis tech-
niques. But still there is a strong need for useful WCET
analysis tools: simple runtime measurements or man-
ual counting of instructions are no feasible solutions

∗This work has been supported by the IST research project
“High-Confidence Architecture for Distributed Control Applica-
tions (NEXT TTA)” under contract IST-2001-32111.

assessing the code timing of increasingly complex real-
time systems. This leads to the question why there is
still a lack of industrial-strength WCET analysis tools.

The focus of his paper is on WCET analysis tech-
niques for hard real-time systems (HRTS). The con-
struction of HRTS requires a validation that shows that
the system meets all timing constraints under guaran-
tee [5]. In contrast, soft real-time systems (SRTS) do
not to fulfill such strict requirements.

In this paper we highlight misconceptions about
WCET analysis to present starting points for future
research in this area. One of the main challenges
in WCET analysis is the increasing hardware com-
plexity of processors. The variance between optimal
and worst-case performance of processors is growing
significantly. The advanced hardware features make
the timing prediction of modern processors quite com-
plex. As a result, approximations in static WCET
analysis produce steady increasing pessimism in the
calculated WCET bound. If it is not possible to
test all relevant execution scenarios, the consequences
for measurement-based WCET analysis approaches are
similar. The implementation of precise WCET analysis
tools becomes more and more complex and the compu-
tation time needed to analyze all variations for modern
processors becomes tremendously long.

To overcome the problem of the increasing complex-
ity in WCET analysis it is necessary to make useful
restrictions that lead to more predictable systems. To
achieve this, the fundamental misconceptions about
current WCET analysis approaches have to be ana-
lyzed. Based on these elaborations one can identify
WCET analysis approaches that are more promising
for practical usability.

The rest of the paper presents current misconcep-
tions about WCET analysis. Section 2 discusses the
main misconceptions about WCET analysis. Section 3
concludes this document.

Page 61 / 104

2 Discussion of Misconceptions about
WCET Analysis

For a better understanding of the existing problems,
a short overview about some basic properties of static
WCET analysis and runtime measurements is given.

Static WCET analysis methods usually provide safe
upper bounds for the WCET. To guarantee safeness,
any piece of information that is not available for the
analysis has to be modelled in a conservative way.
Therefore, overestimation becomes the price for the
safeness of the calculated upper WCET bound. In
a static WCET analysis framework, calculating the
concrete execution time for fractions of the code is
called exec-time modeling. The implementation of
exec-time modeling for modern processors with fea-
tures like caches or pipelines becomes quite complex.
The advantage of measurement-based WCET analysis
techniques is that they do not require exec-time mod-
eling. However, the drawback of using simple mea-
surements is that measured execution times may vary
depending on the concrete values of the input data.

Misconception I: “Safe Upper WCET Bounds
Need to be Known for Every Real-Time Task”

It is often argued that strict static WCET analysis
has to be used to analyze the timing of any real-time
system. In reality, only the design of hard real-time
systems (HRTS) really requires the provision of safe
upper WCET bounds. HRTS are only a small category
of real-time systems, having usually simple software
structures.

The timeliness of soft real-time systems (SRTS) is
only a question of quality of service, as sporadic dead-
line misses usually do not cause serious consequences.
Therefore, SRTS are built to handle only typical sys-
tem load scenarios. Since the accurate timing anal-
ysis of SRTS is less stringend than for HRTS, SRTS
tend to have relatively complex software structures,
e.g, MPEG-based video streaming. As a consequence,
for modern processors with pipelines or caches, the ap-
plication of strict static WCET analysis techniques to
SRTS may cause too much pessimism. Furthermore,
for SRTS that use modern processors, the precision ob-
tained by runtime measurements tends to be more pre-
cise than strict static WCET analysis techniques. And
the common drawback of measurement-based analysis
methods – the potential underestimation of the WCET
– is not necessarily so critical for SRTS.

Misconception II: “Measurement is not an Ad-
equate Technique for WCET Analysis”

It is often argued that runtime measurements are
not an adequate technique to obtain the WCET for
HRTS as they typically provide only a lower bound of
the WCET. To discuss properties of runtime measure-
ments in further detail, it is necessary to distinguish be-
tween pure runtime measurements and hybrid WCET
analysis methods.

Performing pure runtime measurements with ex-
haustive search over the value space of the input data
is in general not feasible and as a consequence, only a
lower bound for the WCET can be found. But things
become much more easier on programs with relatively
few input-data dependent control flow.

For target architectures where instruction timing
only depends on the previous program control flow and
the values of the operands, it is sufficient to perform the
measurements for all combinations of the input data
that influence the control flow. For example, the in-
struction timing of an architecture having a pipeline
but no instruction delays due to hierarchic memory de-
pends only on the previous control-flow dependent and
the parameters. Target architectures with features like
caches have an instruction timing that depends on the
previous control flow and instruction parameters. For
these architectures it is required to perform the mea-
surements for combinations of all input data.

Also hybrid WCET analysis methods based on static
analysis and runtime measurements can be used to cal-
culate safe upper bounds for the WCET. Hybrid meth-
ods are relatively new and they are typically designed
to exploit available control-flow information.

As a consequence, runtime measurements are an
adequate WCET analysis method for hybrid analysis
methods or for the analysis of systems with strongly
constrained input-data dependent control flow.

Misconception III: “WCET Analysis Is Simple
To Use!”

The optimal WCET analysis tool would not re-
quire any special knowledge from the user about the
analyzed code. Due to undecidability, the realiza-
tion of such a tool is not possible. However, it is
typically discussed whether static WCET analysis or
a measurement-based approach can be provide more
transparency to the user. In fact, both methods have
their inherent limitations and, in general, will require
additional knowledge about the runtime behavior of
the code.

From the theoretic point of view, static WCET anal-
ysis has various advantages over measurement-based
approaches. Also, the calculated WCET bound is au-
tomatically a safe upper bound if only partial knowl-

2

Page 62 / 104

edge about the possible control flow of a code is avail-
able. In practice, static WCET analysis has numerous
limitations: One of them is due to flow facts, that de-
scribe the possible control flow paths (CFP) of a pro-
gram. In general, flow facts cannot be fully automat-
ically extracted from the program code by semantic
analysis. Code inspection and manual code annotation
by the programmer is required to specify the possible
CFP more precisely. The flow facts together with the
program code are used by the static WCET analysis
tool to calculate a WCET bound. In practice, concrete
flow facts specifications are not powerful enough to ex-
press the possible CFP of generic programs in a precise
way. For relative simple processors without caches or
pipelines it is sufficient to specify flow facts as restric-
tions over the execution frequencies of program blocks.
For modern processors this information is not sufficient
to calculate precise WCET bounds. As the footprints
in pipelines and caches depend on the concrete exe-
cution order of instructions, flow facts need to have a
semantics much closer to the program execution. The
calculation of flow facts about the execution order of in-
structions would be even more complex than flow facts
about the execution frequency, which might lead to ad-
ditional pessimism.

Measurement-based approaches do not directly rely
on flow facts as the knowledge about the control flow is
not required to perform a runtime measurement. How-
ever, to obtain WCET bounds for hard real-time sys-
tems requires to test all relevant execution scenarios
of the code. A concrete execution scenario for a code
is determined by the initial state of the target hard-
ware and the values for the input parameter. The key
question is how to find the relevant values for the in-
put data so that it is ensured that all relevant execu-
tion scenarios are tested. An exhaustive search over
the whole value space of the input data is in general
not feasible. Missing a relevant value instantiation of
the input data can result into an underestimation of
the WCET. Therefore, measurement-based approaches
have an analogous limitation to static WCET analysis
methods. As static WCET analysis methods require
flow facts to describe the control flow of a given code,
measurement-based approaches require the provision
of precise information about execution scenarios to be
tested.

For program code with limited complexity, static
WCET analysis methods as well as measurement-based
approaches can be designed to be simple to use. Due to
undecidability, the analysis of generic code structures
will, however, always require the provision of additional
information about the execution behavior of the code.

Misconception IV: “Static WCET Analysis Pro-
vides Accurate Results”

An important factor for the accuracy of a WCET
analysis tool is the construction of an accurate exec-
time model. To calculate a precise WCET bound, the
WCET analysis tool has to use the underlying exec-
time model to consider all possible execution combina-
tions - a task that becomes quite expensive and com-
plex for modern processors. Static WCET analysis
methods therefore use safe approximations, that inher-
ently cause pessimism. For example, when modeling
the behavior of a cache, it can happen due to approxi-
mations that the number of cache misses is highly over-
estimated. In practice, this means that the “effective
cache size” is only a fraction of the real cache size.
There exist numerous work about modeling of differ-
ent hardware features by static WCET analysis tools.
However, one has to be aware that the support of a
certain hardware feature by a static WCET analysis
tool in general cannot be done without inducing over-
estimations. Though a WCET analysis tool promises
the support of a certain hardware feature, the user may
not be satisfied by the provided accuracy.

Misconception V: “WCET Analysis Has to Con-
sider Task Preemptions”

It is often argued that intra-task WCET analysis
introduces too much pessimism. However, widening
the WCET analysis to the inter-task level creates ad-
ditional complexity in the analysis as the number of
variable analysis parameters increases. The alterna-
tive approach is to construct more predictable systems
that support a hierarchical timing analysis. Such an
approach allows for the calculation of accurate results.
There exist already research in the area of separating
the execution context of tasks to make the execution
time of a single task more predictable [3, 1, 4]. Fur-
ther research in hardware and software paradigms is
required to develop practicable solutions for construct-
ing more predictable systems.

Misconception VI: “Too Much Reserved Time
due to Pessimism in WCET Analysis can be Re-
cycled as Gain Time by Soft Real-Time Tasks”

Due to undecidability, the calculation of safe upper
WCET bounds often induces pessimism. It has been
argued in literature that pessimism is not such a key
problem for WCET analysis methods, since a waste of
resources due to pessimism could be recycled as gain
time by soft real-time tasks.

3

Page 63 / 104

It is in general questionable whether it is a good
strategy to mix hard and soft real-time computation
patterns. An argument from the community of fault-
tolerant computing is that it is a better strategy to
split systems into smaller, redundant distributed parts
to increase fault tolerance.

Another point is that such a combination increases
the complexity of the system, as non-real-time tasks
influence the predictability of the hard real-time tasks.
The existence of non-real-time tasks also hampers the
process of software certification as it becomes more dif-
ficult to argue about the predictability of a system that
includes soft real-time tasks.

The lucid separation of hard real-time and soft real-
time tasks may be also a system requirement. As hard
real-time tasks typically have a quite simple software
structure, their calculated WCETs have few possibil-
ities for allocation of gain time. Therefore, the time
budget for soft real-time tasks in most cases has to be
allocated statically.

It is also a basic question whether the overestimation
of WCET analysis tools is a real problem as computer
systems used a safety-critical environment often have
quite simple code. The overestimation of the WCET
for the simple software in safety-critical systems tend
to be significantly lower than that for generic software
with more complicated code structures.

Misconception VII: “WCET Analysis Tools
Have to Support Generic Programs”

It is often claimed that a WCET analysis tool has
to support generic software structures. For example,
some WCET analysis projects address the full support
of a programming language like ANSI C.

A more promising strategy is to develop WCET
analysis methods for specific application domains. As
already mentioned in misconception I, hard real-time
systems typically have a simple program control flow.
Another point is that code generated automatically
by a code generator often has a restricted shape that
simplifies WCET analysis. The simplified structure
code of programs targeting these application-specific
domains makes WCET analysis easier. In contrast to
this, WCET analysis tools are typically designed for
generic programs, where their analysis limitations be-
come apparent.

There are various ways for a WCET analysis tool
to exploit simplifications from the concrete application
context. As a potential benefit, the precision of the
WCET analysis tool will improve and also the imple-
mentation complexity for the analysis tool will be re-
duced.

3 Summary and Conclusion

This paper discussed misconceptions in current
WCET analysis approaches. An important result is
that one has to analyze which activities of a real-time
system are really time-critical. Only for these hard
real-time activities a safe WCET analsis is required.
For the soft real-time activities a probabilistic timing
analysis is sufficient to guarantee aspects like quality
of service.

To enable safe and precise WCET analysis for hard
real-time tasks, mechanisms are required to ensure
the predictability of them. A promising technique to
achieve this is “WCET-oriented programming”, i.e.,
reducing the number of input-dependent control flow
paths in the code [6, 7, 8]. Development tools like an
intelligent editor can assist the software developer in
using this technique [2].

References

[1] B. Cogswell and Z. Segall. Macs: A predictable ar-
chitecture for real time systems. In Proc. of the IEEE
Real-Time Systems Symposium, pages 296–305, 1991.

[2] J. Fauster, R. Kirner, and P. Puschner. Intelligent ed-
itor for writing wcet-oriented programs. Research Re-
port 30/2003, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2003. submitted to EMSOFT’03.

[3] D. B. Kirk and J. K. Strosnider. Smart (strategic mem-
ory allocation for real-time) cache design using the mips
r3000. pages 322–330, Lake Buena Vista, Florida, USA,
Dec. 1990.

[4] M. Lee, S. L. Min, C. Y. Park, Y. H. Bae, H. Shin, and
C. S. Kim. A Dual-mode Instruction Prefetch Scheme
for Improved Worst Case and Average Case Program
Execution Times. pages 98–105, 1993.

[5] J. W. S. Liu. Real-Time Systems. Prentice Hall, 1st
edition, 2000. ISBN: 0130996513.

[6] P. Puschner. Is worst-case execution-time analysis a
non-problem? – towards new software and hardware
architectures. In Proc. 2nd Euromicro International
Workshop on WCET Analysis, Technical Report, York
YO10 5DD, United Kingdom, Jun. 2002. Department
of Computer Science, University of York.

[7] P. Puschner. Transforming execution-time boundable
code into temporally predictable code. In B. Kleinjo-
hann, K. K. Kim, L. Kleinjohann, and A. Rettberg,
editors, Design and Analysis of Distributed Embedded
Systems, pages 163–172. Kluwer Academic Publishers,
2002. IFIP 17th World Computer Congress - TC10
Stream on Distributed and Parallel Embedded Systems
(DIPES 2002).

[8] P. Puschner. Algorithms for Dependable Hard Real-
Time Systems. In Proc. 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Sys-
tems, Jan. 2003.

4

Page 64 / 104

Compiler Support for WCET Analysis: a Wish List

G. Bernat N. Holsti
Real-Time Systems Research Group Space Systems Finland Ltd

University of York, England, UK Espoo, Finland
bernat@cs.york.ac.uk niklas.holsti@iki.fi

Abstract

Static timing analysis of a computer program needs
both high-level information from the source code of the
program, and low-level information from the compiled
object code. Compilers and linkers could support such
analysis by providing more and better information about
the structure and behaviour of the source and object code
and about the relationship between source and object
code. Moreover, some parts of timing analysis would be
eased by more control over the code generation process.
Finally, timing analysis often depends on annotations or
assertions embedded in the source code, or referring to
the source code. Compilers and linkers could help us
make use of annotations by translating the annotations
from the source domain to the object domain.

To make these needs known to compiler developers
and vendors, we propose the collection of a “ wish list” of
requirements from academic and industrial groups
working in timing analysis. We discuss how such a list
should be selected, presented and motivated, with
emphasis on finding other users with similar needs, for
example other kinds of static analysis, debugging or
program verification.

1. Introduction

Static analysis of a program's timing behaviour, such as
WCET analysis, needs both high-level information from
the source code of the program, and low-level information
from the compiled and perhaps even linked machine code.
Some parts of WCET analysis are easier on the source-
code level, for example path analysis and pointer analysis,
but obviously the actual machine code must be analyzed to
find the actual execution time. Conversely, static analysis
of the machine code alone can be quite difficult. For
example, if the compiler has generated branch instructions
with dynamically computed target addresses, it is hard to
build the machine-level control-flow graph although the

source-level control-flow may be quite static and simple,
such as a switch/case statement.

The information on the high and low levels must also
be correlated, for example to find the correspondence
between source-code control flow and machine-code
branches, or between source-code variables and machine
registers or memory locations.

Since the compiler and linker generate the machine
code from the source code, they are best placed to create
the correlation between the two levels, and to some extent
already do so by emitting debugging information such as
symbol tables and memory maps. Present-day compilers
and linkers also perform quite a lot of program analysis
themselves, but usually do not make the results available
for other tools such as static code analysers and WCET
analyzers. WCET analysis tools have to reconstruct this
information from source code and object code alone; this
is a challenging task and sometimes difficult to perform.
WCET researchers and tool developers would often like
more and better information and support from the
compiler and linker. At WCET 2002 it was proposed the
creation of a “ wish list” of better compiler support for
WCET analysis.

The purpose of this paper is to collect the requirements
from the WCET analysis community from individual
efforts with the long term objective of influencing tool
manufacturers (specially compiler vendors) to generate
intermediate data formats useful for timing analysis.

2. The role of compilers in WCET analysis

The kind of WCET tools we are considering are those
that analyze machine code (or code in a low-level
intermediate language) and perhaps also source code, but
are not integrated with a compiler. For correlating the
source-code with machine code the tools must thus depend
on the additional information generated by the target
compiler and linker, whch is usually just the debugging
information. This information is often insufficient and
creates unnecessary problems for the WCET analysis.

Page 65 / 104

Some WCET researchers have modified existing
compilers or built their own compilers and even new
programming languages with better support for WCET
analysis. They have studied how a compiler can generate
useful information and also how this information, derived
from the source-code, can be maintained and translated
through the compilation and linking process to apply to
the machine code. This is a valid research area but we feel
that it is unlikely to yield useful production compilers with
WCET support. We believe that most WCET R&D
groups, and certainly most software developers who are
potential users of WCET tools, would prefer to use the
common target languages, compilers and linkers, mainly
for customer support and certification issues. This reduces
the threshold for users to adopt WCET tools but it requires
us to persuade the compiler and linker suppliers to change
their tools to support WCET analysis better. The
experience from the development of special languages and
special compilers with support for WCET analysis will be
useful here.

The ultimate goal is the definition of a standard format
of code transformations and code properties that is
produced by compiler tools. The standardisation would
allow the seamless integration of this data across tool
chains.

3. The clients of the compiler and linker

The proposed wish-list for improved compiler and
linker support must of course serve the needs of WCET
analysis, but to make the list persuasive, we should use the
fact that there are many other users (clients) of the outputs
from the compiler and linker. The target processor that
executes the machine code is only of these users, which
include at least:
• The linker (as a client of the compiler and of a

previous run of the linker),

• The loader (as a client of the compiler and linker),

• The compiler itself, in several possible ways: separate
compilation of module specifications and header files;
interfaces between compiler passes; use of run-time
monitoring results for optimization, etc.,

• The debugger (tool and human) and disassembler,

• Machine-code instrumentation, translation and
verification tools,

• Manual machine-code review and tools to support
such review,

• The target program itself, for reflection or intro-
spection purposes such as exception handling, stack
unwinding, garbage collection, run-time verification,
etc.,

• Other code analysis tools, including profilers, memory
usage analysis tools, static code analysers (for
example like Spark), etc

• And, last but in our view not least, WCET analysis
tools.

Any wish for added WCET support is more likely to be
implemented if it benefits other clients, too. Such
collateral benefits should be actively sought and clearly
presented.

4. General guidelines

We invited the WCET03 workshop to discuss and
collect a list of requirements from the community. We
have initially classified the set of requirements according
to the following categories:
• Properties of source code level: Including tree

structure of the code, implicit type conversions,
results of pointer analysis, dead code analysis,
variable sizes of arrays, value-range analysis, loop
induction variable analysis, annotations, type analysis
and range analysis for automatic deduction of ranges
of loop bounds, multiple language support, Virtual
method invocations in OO languages, etc..

• Properties of machine code. For example, the list of
the possible targets of a dynamic branch instruction
that corresponds to a switch/case statement.

• Mapping between the source-code, intermediate code
and machine-code levels. For example, the location in
the machine code that corresponds to a WCET
annotation in the source. Automatic extraction of code
annotations.

• Map of code transformations, mostly code optimi-
sations so that one-to-one mappings between source
code and object code can be derived.

• New compiler controls or options to make the
machine code easier to analyze. For example, special
restrictions on optimization such as creating
irreducible loops.

• New functionality for the compiler tool chain:
automatic instrumentation of programs for coverage
analysis and for timing instrumentation.

• Standard ways to annotate real-time and WCET
aspects in the source code, with translation to the
machine-code level. For example, annotations for
loop bounds and path constraints.

For each wish, the list should explain clearly what is
desired (taking into account that the audience are not
WCET analysis experts) and why it will be useful to
WCET analysis and other tools. The list should suggest

Page 66 / 104

how the wish could be implemented in a compiler or
linker, with reference to any existing implementation in a
research context. For new information to be provided by
the compiler or linker, the list should suggest the format
and medium, for example how the information could be
encoded in ELF or DWARF or in a separate file. All
information about the machine code should also be traced
back to the source code.

5. Discussion

At the WCET03 workshop, we started the discussion
on these requirements recording current developments by
individuals, as well as desired functionality. The issues
discussed include:
• What information is required from compilation tools

• Format of such information

• New compiler functionality for WCET analysis.

6. Conclusions

To enable WCET analysis detailed information already
available in compiler tool chains is required. We propose
to collect an agreed set of requirements from the WCET
Community on the information needed to perform WCET
analysis with the aim of producing a white paper to
influence compiler manufacturers and vendors to make
such information available.

Table 1, below, lists the items we have collected so far.
ordered by requirement category. This list is of course not
yet complete, and also the columns “ Examples” and
“ Supported analyses” are incomplete. The authors would
be most grateful for comments on this list and suggested
additions to this list, dealing with the issues raised in this
paper. Other future work includes finding collateral
benefits, prioritizing the requirements, and defining the
data formats and other interfaces for implementing the
requirements.

T a b le 1. C o m piler a n d lin ker suppo rt fo r tim in g a n a lysis

Requirement
category

Property, mapping or
control

Examples Supported analyses

Properties on
source-code level

Tree structure of the
code

Intra-procedural control
structures: sequence, conditional,
switch/case, loop, exception.
Inter-procedural control
structures: call, return
(normal/alternate), exception.

Control flow.

Implicit type conversions Address to or from integer.
Integer to long.

Values and arithmetic.
Loop bounds.

Types and value ranges
or value sets of variables
and expressions

Range of loop counters.
Range of actual parameters.
Pointer analysis results (“ points-
to” properties).

Feasible paths, loop bounds.
Cache timing (memory access
patterns, dynamic addresses).

Array sizes Dynamically created (heap)
arrays.
Local (stack) arrays with dynamic
size.
Formal array parameters to
subprograms where actual
parameter determines size.

Loop bounds.
Cache timing.
Stack usage bounds.

Loop induction variables Loop counters.
Index expressions that depend on
iteration count.

Loop bounds.
Cache timing.

Content and location of
source-code annotations

Loop-bound annotations.
Memory timing annotations.

Potentially all.

Page 67 / 104

Requirement
category

Property, mapping or
control

Examples Supported analyses

Feasible paths and loop
bounds (as deduced by
compiler).

Dead code detected e.g. by
constant propagation.
Loop bounds for compiler-
generated loops (e.g. copying
loops).

Control flow, feasible paths,
loop bounds.

Source lines to code
instructions

As currently implemented in
“ debug” information.

Support other mappings, e.g.
mapping of path constraints or
annotations.

Mapping source
code to object
code

Source tree to code
instructions and branches

Altered order of then/else in
conditional statement.
Altered order of cases in
case/switch statement.
Changes in the placement of a
loop termination test (test at
start/middle/end of loop).
Other loop transformations,
unrolling etc..

Support other mappings.

Source annotations to
code

Map a loop-bound annotation to
the loop (head) in the object code.
Adapt a loop-bound annotation to
the transformations applied to the
loop.

Loop bounds.

Properties on
object code level

Possible targets of
dynamic branches.

Switch/case structures
implemented with jump tables or
address tables

Intra-procedural control flow.

Possible callees for
dynamic calls.

Late-bound method calls in
object-oriented programming.
Interrupt handlers and trap
handlers, called via vector tables.

Inter-procedural control-flow.

Code that violates target-
processor standards and
needs special analysis

Library routines or compiler-
generated routines that have non-
standard calling sequences.

Control-flow and others.

How target-processor
standards are used, when
there are alternatives

For each subprogram or call:
which of the alternative calling
sequences and parameter-passing
methods is used.

Any aspect of analysis influen-
ced by target-processor stan-
dards, for example inter-
procedural control flow and
data flow.

Logical role of multi-
purpose instructions

Whether an instruction that loads
the Program Counter represents a
jump, call or return.

Control flow and others.

Operand type informa-
tion for polymorphic
instructions.

Signed versus unsigned interpre-
tation of integer arithmetic and
comparison instructions and of
immediate (literal) operands.

Values and arithmetic.
Feasible paths, loop bounds,
pointers.

Logical effect of code
subsequences

On processors with small word
size, e.g. 8 bits, the fact that a
certain sequence of 8-bit
computations has the effect of
adding two 16-bit quantities.

Values and arithmetic.
Feasible paths, loop bounds,
pointers.

Page 68 / 104

Requirement
category

Property, mapping or
control

Examples Supported analyses

Code that relies on over-
flow or other exceptions
for nominal operation

A loop from 0 to 255 using an 8-
bit counter might rely on overflow
from 255 to 0 in the last iteration.

Values and arithmetic.
Loop bounds.

Memory locations that
are initialized dynami-
cally at program start but
are constant during run.

Trap vector tables.
Constants copied from PROM to
RAM.

Values and arithmetic.
Control-flow analysis when the
values enter dynamic branch or
call computations.
Feasible paths, loop bounds,
pointers.

Memory locations with
special semantics

Volatile variables (consecutive
reads may give different values).
Control registers with different
read/write roles (a read does not
return the last written value).

Values and arithmetic.
Feasible paths, loop bounds.

Control the generated
loop structures

Generate only reducible loops.
Prevent loop unrolling or other
specific loop transformations.

Loop analysis, loop bounds.
Support source-to-object
mappings.

Control over
object code
generation

Control the generated
inter-procedural transfers

Prevent or enforce inlining.
Enforce target-standard procedure
calling protocols.

Inter-procedural control-flow.
Support source-to-object
mappings.

Page 69 / 104

Page 70 / 104

Impact of automatic gain time identification on tree-based static WCET analysis

Mathieu Avila, Maxime Glaizot, Isabelle Puaut
IRISA, Campus de Beaulieu, 35042 Rennes Cédex, FRANCE

e-mail: puaut@irisa.fr

Abstract

WCET estimates obtained using static analysis methods
are getting increasingly pessimistic as the complexity of
hardware and software increases. The difference between
the WCET of one task (estimated off-line) and its actual ex-
ecution time (only known on-line) is known as gain time.
Identifying gain time as soon as possible is important be-
cause it increases the number of tasks that can be accepted
dynamically. While some research has already been under-
taken for the identification of gain time, few work has con-
sidered the impact of gain time identification and reclaim-
ing on static WCET analysis methods. This is the objective
of this paper, in which we introduce three classes of meth-
ods for gain time identification, and discuss their impact on
tree-based static WCET analysis methods.

1 Motivations for automatic gain time identi-
fication

Most scheduling algorithms for hard real-time tasks as-
sume that the WCET estimation of each task is known. A
number of dynamic scheduling algorithms have also been
proposed to dynamically accept soft real-time tasks when
spare capacity is left by hard-real-time tasks. Spare capac-
ity is either extra time (time known to be left by the hard
real-time tasks during the design phase) or gain time (spare
time appearing at run-time when hard real-time tasks exe-
cute in less than their WCET).

Static WCET analysis techniques return an upper bound
on the execution time of a task on a given hardware, based
on its source code. Having an upper bound on all possi-
ble execution times (safety) is of prime importance in hard
real-time systems to have confidence in the schedulability
analysis methods. But despite the important progress made
in static analysis methods, safety comes at the cost of pes-
simistic WCET estimations. Two sources of pessimism can
be identified: (i) analysis of the execution paths, or high
level analysis (when it is not known statically which path
will be executed, the longest path is selected), (ii) low-level
analysis (when the execution time of an instruction is not

known a priori due to the use of complex processors with
performance enhancing features such as caching or branch
prediction, the most pessimistic execution time is selected).
As the complexity of software and hardware increases, the
degree of pessimism of WCET estimates also increases. In
such situations, identifying and reclaiming gain time is get-
ting increasingly important. In this paper we concentrate on
the estimation of gain time, and not on its reclaiming.

In our opinion, the methods for gain time identification
should have the following properties:

� Early detection. The presence of gain time should be
detected before the tasks finish their execution. The
sooner the gain time is detected, the earlier new tasks
can be dynamically accepted.

� Predictable cost. Early identifying gain time requires
to monitor the progression of the tasks, which has a
cost in terms of execution time. This cost has to be pre-
dictable and the designer should have means to control
the cost of gain time identification.

� High efficiency. All gain time should be detected,
should it come from the low-level or the high-level
sources of pessimism of static WCET analysis.

� Transparency. No support (or very low support) from
the designer should be required.

� Predictable and low memory requirements.

Several techniques have been proposed for gain time
identification. [3] consists in measuring the execution time
of tasks between so-called gain points using specific hard-
ware, the gain points being placed by the programmer. A
software evolution of [3] is presented in [2]. In this pro-
posal, the gain points are automatically determined, but the
target language is very simple. Both [3] and [2] identify all
gain times because they use measurements to monitor the
tasks progress. Other methods, that only identify gain time
coming from the pessimistic identification of worst-case ex-
ecution paths, have been proposed in [1] and [4] (the latter
tackles object-oriented hard real-time programs). The prin-
ciple of these two methods is to know statically the WCET
of the different paths in the program. Then, each time a
path decision is taken, the gain time can be estimated, but

Page 71 / 104

because there are no measures of the actual execution times,
the low-level analysis pessimism will not be identified.

In the following, we briefly propose three classes of tech-
niques aiming at reaching all the above-identified desirable
properties and study the support that static WCET analysis
should provide in order for these techniques to be imple-
mented.

2 Three methods of gain time identification
and their impact on WCET analysis

All three methods use some general principles. Instru-
mentation code is inserted in the tasks at specific points
called gain points (GP) in which the time actually consumed
by the task is measured. Measurements are used to identify
all sources of pessimism of WCET analysis. All three meth-
ods identify gain time on-line by subtracting the measured
execution time of segments of the task code from the WCET
of the same segments. The methods differ by the rules gov-
erning GP placement and the definition of a segment. Our
discussion hereafter concentrates on the impact of gain time
identification on tree-based WCET analysis tools.

A simple example is used hereafter to illustrate the pros
and cons of each method for GP placement, as well as their
impact on WCET analysis. The source code of the example
is presented in figure 1. Two important things can be noticed
about this code: (i) the maximum number of iterations of the
loop (three, as indicated in the annotation [3] in the source
code) may be overestimated (the loop may execute once or
twice only); (ii) the most time-consuming execution path
within the loop is the “else” path, although the “then” path
can be actually executed too.

int i;

int j;
for (i=0;i<N;i++) { [3]
 /* Known to iterate at most 3 times */

 j=3;
 }
 else {
 j=j+i;
 }
}

 if (j==1) {

Figure 1. Source code sample

We can extract two data structures from this source code:
the program control flow graph (left part of figure 2) and its
syntax tree (right part of figure 2). The latter data struc-
ture is used in so-called tree-based WCET analysis tools to
compute the WCET of a piece of code through a bottom-up
traversal of its syntax tree.

Figure 3 depicts for this sample program the differences
that may exist between the off-line and a given on-line time-
line. It shows that the actual execution time is lower than the
WCET. More precisely, it identifies the different sources of

I

IT

TH EL

FIL

E

FT

FT = FOR / Test part
IT = IF / Test part
TH = IF / THEN
EL = IF / ELSE
FIL = FOR / Incr and Loop
E = END

I = Initialization

FT FIL

EI

TH ELIT

FOR

IF

ROOT

Figure 2. Control-flow graph (left) and syntax
tree (right)

gain time: (i) gain time coming from the pessimism of low-
level analysis (in the figure, the actual execution time of
basic block I is lower than its worst-case counterpart identi-
fied off-line); (ii) gain time due to the pessimistic evaluation
of the worst-case execution path (e.g. the loop iterates two
times instead of three at worst; within the loop the “else”
branch – basic block EL – may be executed whereas it is
not the longest branch).

WCET Time Axis

Actual execution Time AxisEL TH E

EL
I

I

EL EL E

FOR(0) FOR(1)

FOR(0) FOR(1) FOR(2)

Figure 3. Off-line and on-line timelines

2.1 Segment-based method

This method puts almost no constraint on the locations
of GPs. It reasons on segments defined as intervals between
successive GPs in the task control flow. This method is
flexible since the length and location of segments can be
tailored so as to find an appropriate tradeoff between cost
and earliness of gain time identification. However, the off-
line overheads of the method are high. Indeed, the static
WCET analyzer has to generate partial WCETs for any pair
of points that can be consecutive in the task control flow,
leading to a potentially high number of partial WCETs to
be computed.

Page 72 / 104

For instance, if three GPs are placed in our sample code
as shown in figure 4, six partial WCETs must be computed
to cover all possible paths between successive GPs in the
control flow graph. Furthermore, the integration of the com-
putation of WCETs of segments is not natural in tree-based
WCET analyzers because of the mismatch between the lo-
cation of GPs and the data structures used by such analyz-
ers.

I

IT

TH EL

FIL

E

FT

gp1

gp2 gp3

gp1 −> gp2
gp1 −> gp3
gp2 −> gp3
gp2 −> gp2
gp3 −> gp3
gp3 −> gp2

Partial WCETs
to be computed:

Figure 4. Example of GP locations in the
segment-based GP placement method

The large number of partial WCETs, in addition to
increasing the complexity of the computation of partial
WCETs, also increases the complexity of the on-line part of
gain time identification, since all partial WCETs have to be
accessible on-line. Another problem of this method is that,
when a GP is placed in a loop body, it only allows to iden-
tify gain time within the loop but is unable to identify the
gain time arising when the loop iterates less than expected.

2.2 Structural method

This method restricts the locations of GPs to the con-
trol structures in the syntax tree like loops, conditional con-
structs (segments do not cross control structures boundaries
as in the first method). A control structure in which it is
interesting to reclaim gain time is enclosed by a pair of GPs
(immediately before and after the control structure). Par-
tial WCETs are then needed for all “instrumented” control
structures. Figure 5 shows on our example all possible pairs
of GPs (e.g. GPs ��� � and ��� � to define a segment corre-
sponding to the loop).

One can note that the number of partial WCETs to be
computed off-line tend to be less numerous than with the

(a)

(b)

(c) (d)

gb_b

gb_e

gd_b

gd_egc_e

gc_b

(GP pairs a, c and d)

ga_bga_e Partial WCETs
to be computed:

ga_b −> ga_e
gc_b −> gc_e
gd_b −> gd_e

EL

FIL

IT

FT

TH

E

I

Figure 5. Possible GP locations in the struc-
tural GP placement method

first method. On our example, if the TH, EL and FOR con-
trol structures are instrumented (pairs of GPs a, c and d,
which is roughly equivalent to placing GPs ����� , �	��
 and
����� in the first method), only three partial WCETs have
to be computed, compared to six in the first method. The
off-line computation of the partial WCET of segments is
rather straightforward, as tree-based tools actually compute
a WCET for each level of the syntax-tree. However, the
method is less flexible than the first one because of the im-
posed restrictions on the locations of GPs.

2.3 Path based method

This last method is an hybrid one which is halfway be-
tween the first two ones. As in the segment-based method,
no restriction is put on the locations of GPs, thus ensuring
the flexibility of the method (ability to find an appropriate
trade-off between cost and earliness of gain time identifica-
tion). But instead of defining segments as intervals between
successive GPs in the task control flow, it defines segments
as intervals between the beginning of execution of the task
and the different GPs (see figure 6).

Since a GP can be encountered several times if it is
enclosed in a loop (for instance �	��
 in the figure), sev-
eral partial WCETs have to be generated depending on the
loop counters. Instead of generating all possible WCETs of
segments, we propose to represent the WCET as paramet-
ric values depending on the loop counters (functions with
the loops counters as parameters). These functions should
be simple enough to be evaluated on-line, but expressive
enough to represent the WCET time elapsed since the be-
ginning of the program.

On the on-line part, the task must keep track of the values

Page 73 / 104

Partial WCETs
to be computed:

base −> gp1
base −> gp2 (parametric)
base −> gp3 (parametric)

I

IT

TH EL

FIL

E

FT

gp1

gp2 gp3

base

Figure 6. Example of GP locations in the path-
based GP placement method

needed by the evaluation functions (essentially loop coun-
ters). Each time a GP is encountered, these values, the eval-
uation function and the elapsed time are stored. The actual
computation of gain time (especially the calls to the func-
tions that evaluate the segments’ WCETs) can be deferred
until gain time is requested by the dynamic scheduler. The
impact of this method on tree-based WCET analysis is big-
ger when GPs are placed inside loops than outside, because
then parametric WCET representations must be generated.

2.4 Degree of pessimism of partial WCET esti-
mates

A common issue to be addressed is the degree of safety
of WCET estimations of segments (partial WCETs) in order
for the estimation of gain time not to be overly optimistic.

This issue is illustrated in figure 7, which depicts gain
time identification during the execution of a task made of a
sequence of two blocks A and B. Due to the consideration
of pipelining effects, the sum of the partial WCETs of A and
B (6 time units each in the figure) may exceed the WCET
of the sequence A;B (10 time units). Assume that the actual
execution of both A and B is 4 time units (the gain time is
2 time units). If the partial WCETs of 6 are used for gain
time computation, the gain time is overestimated (4 time
units instead of 2), which can cause new tasks to be accepted
dynamically whereas too few spare time is available.

More generally, the requirement is that the partial
WCETs be consistent with the global WCET of the task.
Thereby we mean that the value of the WCET of a segment
of code is lower or equal to its equivalent in the WCET of

WCET Time Axis

Actual execution Time Axis

A: 4 time units

B: 4 time units

WCET of A;B (10 time units)

Partial WCET of A (6)

Partial WCET of B (6)

Figure 7. Pessimism of partial WCET esti-
mates

the whole task. Such consistency problems could occur be-
cause of low-level analysis in architectures with pipelines
(as shown in the example) and in symbolic WCET esti-
mation methods. Possible directions to address this is-
sue would be to provide “optimistic” partial WCETs or to
change the WCET computation method for the whole task
so that partial WCETs are consistent with the global one.

3 Concluding remarks

Early identification of gain time requires to obtain
WCETs of segments of the task code instead of consider-
ing the code as a whole. In this paper, we have proposed
three classes of methods for identifying gain time, differing
by their definition of segments. We have further examined
their impact on tree-based WCET analysis methods.

Except for the second proposed method, which can be
integrated naturally in tree-based WCET analyzers, we are
convinced that the need to compute partial WCETs has a
non negligible impact on the structure of the WCET analy-
sis tools. Earliness of gain time identification comes at the
price of a further increase in complexity of WCET analysis
techniques.

References

[1] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms for en-
hancing the flexibility and utility of hard real-time systems. In
IEEE Real-time systems symposium, pages 12–21, December
1994.

[2] P. Gopinath and R. Gupta. Applying compiler techniques to
scheduling in real-time systems, 1990. Philips Laboratories.

[3] D. Haban and K. Shin. Application of real-time monitoring
to scheduling tasks whith random execution times. In IEEE
Transaction on software enginneering, December 1990.

[4] E. Y.-S. Hu, A. Wellings, and G. Bernat. A novel gain time
reclaiming framework integrating wcet abalysis for object-
oriented real-time systems. In Second workshop on WCET
analysis, June 2002.

Page 74 / 104

Comparison of Trace Generation Methods for Measurement Based

WCET Analysis ∗

Stefan M. Petters
Department of Computer Science

University of York
United Kingdom

Stefan.Petters@cs.york.ac.uk

Abstract

Recent work on a measurement based worst case execu-
tion time estimation method uses observations of small
units of the program. These observations are called execu-
tion traces and contain information of the execution path
as well as the execution time of the units observed. This
paper gives an overview on available options to extract the
traces and highlights the advantages and disadvantages of
these options.

1 Motivation

The measurement based worst case execution time
(WCET) estimation method presented by Bernat et al.
in [1] and [2] relies on the measurement of the execu-
tion time of small sections of code called traces as basic
unit of the analysis. Within the approach, the observed
traces are translated into execution time frequencies of the
units. These execution time frequencies are interpreted as
probability mass distributions and combined with a timing
schema to provide a execution time profile of the worst
case path through the program. The paper [1] focuses on

∗The work presented in this paper is supported by the European
Union under Grant Next TTA ”IST-2001-32111”.

the translation of traces to profiles and the combination of
profiles rather than the production of the traces.

Within this paper we are addressing the different op-
tions for obtaining execution traces. Special attention will
be given the factors of applicability, overestimation and
prolonged execution time. Prolonged execution time in-
dicates the impact of the method on the final executable
code. For example added code will extend the execution
time, if it stays in place. Opposed to this overestimation
assesses the extra time within the measurements, which is
not reflected in the execution time of the final executable
code.

2 Discussion of Methods

Before going into the discussion of the methods a num-
ber of terms need to be defined. A measurement is
made up of two observations. The points in the code
where these observations are made are called observa-

tions points throughout this paper. The observation inter-
val is the time which has passed between two observation
points.

The exact meaning of a time stamp has to be considered
as well. Within the paper a time stamp reflects usually a
certain level of the execution pipeline. In out-of-order ex-

Page 75 / 104

ecution units of some processors1, the observation point
has to be either guarded by serialising instructions, or it
has to be accepted, that the results of the measurements
are fuzzy. Both cases add to the overall estimation of the
execution time profiles. The serialising instruction dis-
ables the execution acceleration of the out-of-order execu-
tion engine, thus leading to a prolonged execution time, if
the serialising instruction stays in place for the final pro-
duction executable, or adds an unknown overestimation
if it is somehow removed from the code. In the case of
accepting more fuzzy results, a potentially considerable
overestimation comes from the fact, that jitter of the time
stamp at an observation point is added as well to the fin-
ished observation interval as well as the started observa-
tion interval.

2.1 Simulation

A simulator may be used to execute the program (cf. [1]).
In this context we are only discussing cycle accurate sim-

ulators i.e. a simulator, which simulates not only the func-
tional but also the temporal features of a processor accu-
rately.

If such a simulator is available very accurate and usu-
ally perfectly reproducible measurements are possible.
The granularity of measurements allows usually the time
stamping of any individual assembler instruction. The
missing requirement of instrumenting the code is a further
plus for simulating the code. However, the cycle accurate
simulator suffers from one of the major problems of static
analysis. Additionally the cycle accuracy of a simulator
usually only applies to the CPU itself and does not im-
ply accurate timing of peripheral hardware e.g. anything
from SDRAM to PCI bus hardware. As the simulation
takes enlarges the execution depending on the complexity
of the modelled processor by up to two orders of magni-
tude on similar hardware, the problem of time needed for

1These effects obviously only occur, if the time stamp is taken within
the out-of-order execution core of the processor. The fetch and commit
stages are always in-order execution units.

the trace generation becomes an issue. This can be some-
what relieved by using a cluster of computers to do the
simulations.

2.2 Light Weight Software Monitoring

Software monitoring relies on instrumentation code
placed in the software to be investigated. The code in-
serted may record various data of the system. In our case
we are interested in event triggered software monitoring
in which the instrumentation code is placed at the desired
observation points in the application code and is executed
whenever the observation point is reached, opposed to pe-
riodic software monitoring (cf. [3]), in which the applica-
tion code is interrupted in merely period distances.

While the term software encoding encompasses all kind
of data collection, we are only interested in identification
of the code executed and the time stamp corresponding
the execution of this code. The prefix light weight indi-
cates, that the code inserted tries to minimise its impact
on the execution time. As opposed to heave weight soft-
ware monitoring, which tries to make a safe estimate by
establishing the worst case state of a processor at the start
of each observation interval. The time passed is usually
taken from an internal cycle counter. The POSIX tracing
standard as used by Terrasa et al. in [4] shows a imple-
mentation of such a light weight software monitor.

On the positive side it can be noted that the instru-
mentation code will be left in place after the measure-
ments are completed. The instrumentation code may be
quite simple, which makes a comparable quick port of the
method to another architecture possible. A major draw-
back of this method is the additional variability introduced
by this method especially on high performance proces-
sors with caches. Either the memory area is mapped as
non-cachable, which makes the access time in storing the
sampled data very long or the cache access patterns add to
the temporal variability of the code. The amount of mem-
ory necessary to store the trace data can be considerable,
which adds to the effort of bounding the impact on code

2

Page 76 / 104

variability.

The code added may be quite computational expensive.
The POSIX tracing standard allows for interfaces to actual
collect the trace. This functionality leads to a prolonga-
tion of the execution time. This prolongation may be up
to one order of magnitude if the distance between two ob-
servation points is just one basic block in control intensive
applications2.

2.3 Heavy Weight Software Monitoring

As has been explained in the previous section heavy
weight software monitoring establishes the worst possi-
ble state at the beginning of each measurement. This has
been used by Petters in [5]. This implies that an obser-
vation point implies two time stamps. One for the com-
pletion of an observation interval, prior to the disruption
of the working sets of caches, branch prediction etc. and
a second one starting a new observation interval after the
disruption.

The code has to be replaced after the measurements
have been completed. In order to limit the code to be
replaced the main code of the instrumentation should be
implemented as a function which is called with an identi-
fier from all observation points. In this case only the calls
to the measurement routine have to be masked or the mea-
surement routine is replaced with an return. Depending
on the architecture the first renders the final operational
executable usually faster than the second solution.

As an advantage the disruption of execution units may
be preceded by a write out of the obtained measurement
data to disc. This limits the amount of memory neces-
sary for the storage of the trace data. The overestimation
by this method may be seriously. Depending on the size
two orders of magnitude are possible, if one tries to trace
individual assembler instructions. By following coding
style and tracing larger code (4̃-10 basic blocks) the over-
estimation may be reduced to a factor of two. However,

2Control intensive applications consist of small basic blocks and are
therefore vulnerable to heavy prolongation

this raises the issue of test coverage. In [5] this has been
solved by enforcing paths within the observation interval.
Adding information about the path taken within the ob-
servation interval by introducing very small additional in-
strumentation code may solve this problem as well.

More than with the other methods this method raises
the question on the validity of the obtained results under
the fact that the code in the final production executable
is not identical to that one under investigation during the
measurements.

2.4 Hardware Supported Software Moni-
toring

As with the previous methods, instrumentation code is
added to the application at the observation points. This
code delivers the location data to a reserved external port.
The timing is taken either by the hardware device probing
the port or is taken from in internal cycle counter and writ-
ten in a separate access. The necessary port pins for this
method are usually quite costly and in the general case
this will only be applicable on micro controller and sim-
ilar complex processors. High performance processors
generally do not have free accessible pins and the ones ac-
cessible via buses raise questions on the time needed for
transactions. The major advantage of monitoring method
is the small impact of the code on the execution time.

2.5 (Software Supported) Hardware Moni-
toring

This option comes in two flavours. On one hand are bus
monitors applied on one or more buses of the processor,
on the other hand is hardware built in by processor manu-
factures to support debugging.

The first case has been used in the past by tracking in-
struction flow on the address bus of some processors. This
has been inhibited by the use of instruction caches and has
almost completely vanished as a tracing mechanism for
the software.

3

Page 77 / 104

However, in recent years debugging interfaces were
equipped with additional features to allow for timing in-
formation to be extracted out of the code. Namely the
Tricore OCDS and the more generally available NEXUS2
(cf. [6]). These interfaces allow the sampling of time at
given points. The NEXUS2, for example, takes a time
stamp at every taken branch instruction. Thus a complete
trace is available for further analysis. The major challenge
is to tap into these ports and extract the data. Commercial
tools initially intended for debugging provide interfaces
to do this. The problem consists here of getting the raw
data out of the tools.

One major advantage is, that no or only minimal soft-
ware instrumentation is needed3. A problem lies in the
potential bandwidth problem. If the observation inter-
vals are too short, the trace data may not be completely
transmitted over the debugging interface. In this case, the
debugging tools try a interpolation of the measurements,
which defeats the purpose of taking the traces in the first
place. Some debugging tools offer to hold the proces-
sor, if two observation points are too close. However, this
can only be applied to the processor itself and peripherals
clocked directly with the CPU clock. More remote hard-
ware may behave differently in the temporal domain, if
the execution is put on hold at an arbitrary instant.

3 Conclusion

As it is, there is no one-fits-all solution to the problem
of trace generation. While especially commercially sup-
ported hardware monitoring has some appealing advan-
tages over the other methods, the still limited availability
of processors makes it necessary to look at the alterna-
tives.

3In some cases one might want to enforce a observation point. This
is generally possible by adding hand crafted code

References

[1] G. Bernat, A. Colin, and S. M. Petters, “WCET anal-
ysis of probabilistic hard real–time systems,” in Pro-

ceedings of the 23rd Real-Time Systems Symposium
RTSS 2002, (Austin, Texas, USA), pp. 279–288, Dec.
3–5 2002.

[2] G. Bernat, A. Colin, and S. M. Petters, “pWCET: a
tool for probabilistic worst case execution time anal-
ysis of real–time systems,” technical report YCS353
(2003), University of York, Department of Computer
Science, York, YO10 5DD, United Kingdom, Apr.
2003.

[3] L. Svobodova, Computer Performance Measurement
and Evaluation Methods: Analysis and Applications.
No. 2 in Elsevier Computer Science Library, New
York: American Elsevier Publishing Company, Inc,̇
1976.

[4] A. Terrasa, I. Paches, and A. Garcia-Fornes, “An eval-
uation of the posix trace standard implemented in rt-
linux,” in Proceedings of the IEEE International Sym-

posium on Performance Analysis and Software, 2000.

[5] S. M. Petters, Worst Case Execution Time Estimation
for Advanced Processor Architectures. PhD thesis,
Institute for Real–Time Computer Systems, Technis-
che Universität München, Munich, Germany, Sept.
2002.

[6] IEEE-ISTO, IEEE-ISTO 5001-1999, The Nexus
5001 Forum Standard for a Global Embedded

Processor Debug Interface, 1999. Available at
http://www.nexus5001.org/

4

Page 78 / 104

Evaluating reasons for unexpected results when

measuring execution time of code.

V. Lorente A. Espinosa A. Terrasa A. Garcia
A. Crespo

1 Summary

In our research group, we are working on developing and testing the POSIX-
Trace standard, that defines a common application interface for trace manage-
ment. POSIX-Trace standard has been defined to cover all the requirements
for testing and debugging a real-time system in an efficient and portable way.
So, POSIX-Trace standard provides an efficient an portable way of monitoring.
One of the advantages of this approach is that it can be used from the source
code level, which facilitates its use. POSIX-Trace approach can be also used for
measuring execution time of code, providing additional information besides the
time.

Currently, we are developing this standard for two Real-Time operating sys-
tems : MarteOS and RT-Linux.

Testing and debugging real-time systems requires the accurate timing of
the process being studied. However, most of the best current approaches are
expensive and ad-hoc solutions. Nowadays, however, processors provide a very
accurate way (Time Stamp Counter) of knowing how long a piece of code takes
to execute without the need for external hardware. This feature can be exploited
at source code level to measure the execution time of code by counting the clock
cycles that a piece of code takes to execute.

In one of our last accepted papers, we tested some software approaches in
order to study their bounds and resolution, from the most intrusive way of mea-
suring time (POSIX Trace) to the least intrusive way (Time Stamp Counter).
Two types of tests was made:

• One to measure how long each approach takes to execute, that is, the
intrusive bounds of each approach.

• The other to test the accuracy of each approach, measuring with each
approach different amounts of time known in advance (from nano seconds
to mili seconds) and calculating the difference between the actual time
spent and the time measured by the approach.

The main conclusions we showed in this paper was :

1

Page 79 / 104

• POSIX-Trace mechanism can be used for measuring execution time of
code, achieving as good results as the CPU-Time Clock mechanism.

• Reading the Time Stamp Counter (TSC) register, it is possible to reach
a very good resolution when measuring execution time of code. However,
it can not be used for monitoring during system operation and its use
depends on if the processor used has this feature available or not.

• It would be possible to measure the execution time of code obtaining a
quite good resolution using software approaches from a high-level lan-
guage. This would allow us to instrument the source code, eliminating
drawbacks such as finding the right map between the source code and the
assembler code in order to make accurate measures.

When we studied the results obtained in the tests made for this paper, we
realised some unexpected results.

The first unexpected result was that the time spent by the rdtsc instruction
was not constant, observing from 20 cicles to 150 cicles. Take in account that
this result not only reflects the cicles needed to execute the assembler rdtsc
instruction but there are also some other instruction involved (assignment in-
struction, etc).

The second unexpected result was the increase of time consumed by the
method itself with load (second type of test) and without load (first type of
test). The difference of time between the actual time and the measured time
should be close to the results obtained in the first test (execution time of the
approach), but it was not. When using cache, the results showed that the time
consumed by the method itself was twice the time obtained in the first test.
This might be attributed to cache effects, and it is almost true. However, when
no cache was used there was still a small difference of time between these two
tests. Without cache, the time consumed was around 4 percent higher with load
than without load.

Now, we are working on evaluating the sources of this unexpected results,
testing several features of the pc architecture that can affect the results men-
tioned before.

The features we are testing are :

• Out of order execution when using rdtsc assembler instruction. [2]

• Several methods to define cache policies. [1]

• TLB entry invalidation. [1]

2 RDTSC and the out-of-order execution.

RDTSC instruction allows users to obtain the current value of the Time Stamp
Counter register (TSC). The Intel TSC is a 64-bit model specific register (MSR)
that is incremented every clock cycle. On reset, the time-stamp counter is set

2

Page 80 / 104

to zero. This counter provides the best resolution when measuring execution
time of code.

Although RDTSC instruction will always give back a proper cycle counter,
a user could obtain different execution time when measuring the same piece
of code. The variations when using this instruction to monitor perfermance,
appear because there are many things that happen inside the system, invisible
to the application programmer, that can affect the cycle count returned in a
specific situation.

The main problem when using this instruction to monitor performance is
the out-of-order execution, that means that instructions are not necessarily
performed in the order they appear in the source code. This feature is supported
by Intel processors since the Pentium r©Pro architecture and it can be a very
big issue when using the RDTSC instruction, because it could potentially be
executed before or after its location in the source code, giving a misleading cycle
count.

In order to keep the RDTSC instruction from being performed out-of-order,
a serializing instruction must be used. A serializing instruction will force every
preceding instruction in the source code to complete before allowing the program
to continue. One such instruction is the CPUID instruction, which is normally
used to identify the processor on which the program is being run. For the
purposes of this paper, the CPUID instruction will only be used to force the
in-order execution of the RDTSC instruction.

When using the CPUID instruction, however, the programmer must also take
into account the cycles it takes for the instruction to complete, and subtract this
from the recorded number of cycles. A strange quirk of the CPUID instruction
is that it can take longer to complete the first couple of times it is called. Thus,
the best policy is to call the instruction three times, measure the elapsed time
on the third call, then subtract this measurement from all future measurements.

Example of this technique:

static inline void measure(long long *time){
long long t1,t2;

__asm__ __volatile__ ("cpuid;cpuid;cpuid; rdtsc" : "=A"(t1): :"ebx","ecx");

/********* Code to measure *********/

__asm__ __volatile__ ("cpuid; rdtsc" : "=A"(t2): :"ebx","ecx");

*time=t2-t1;
}

3

Page 81 / 104

3 Cache

Currently, in Intel Processors there are several methods to specify cache policies
:

• CD and NW bits.

• Memory type range register (MTRR).

• Page attribute table (PAT).

CD and NW bits are global flags that control overall caching behaviour.
However, while the MTRR allow mapping of memory types to regions of the
physical address space, the PAT allows mapping of memory types to pages
within the linear address space.

MTRR and PAT use Model Specific Registers (MSR’s). That means that
not all the processors have these functionalities. We need be sure if the processor
we are using has these functionalities before we use them. One way to know it
is through the instruction CPUID.

3.1 CD and NW bits.

CD and NW flags in CR0 register control overall caching of system memory.

CD Flag: Controls caching of system memory locations. If the CD flag is
clear, caching is enabled for the whole of system memory, but may
be restricted for individual pages or regions of memory by other cache-
control mechanisms. If the CD flag is set, caching is restricted in the
processor’s caches

NW Flag: Controls the write policy for system memory locations. If the NW
and CD flags are clear, write-back is enabled for the whole of system
memory, but may be restricted for individual pages or regions by other
cache-control mechanisms.

• Disable Cache.

__asm__ __volatile__ ("movl %%cr0, %%eax \n\t");
__asm__ __volatile__ ("orl $0x60000000, %%eax \n\t");
__asm__ __volatile__ ("movl %%eax, %%cr0 \n\t");

• Enable Cache

__asm__ __volatile__ ("movl %%cr0, %%eax \n\t");
__asm__ __volatile__ ("orl $0x60000000, %%eax \n\t");
__asm__ __volatile__ ("movl %%eax, %%cr0 \n\t");

4

Page 82 / 104

3.2 Memory Type Range Register

The memory type range registers (MTRR’s) provide a mechanism for associating
the memory types with physical-address ranges in system memory. These mem-
ory types and its values can be seen in the kernel mtrr.h file, (/usr/include/asm/mtrr.h
in my system)

/* These are the region types */
#define MTRR_TYPE_UNCACHABLE 0
#define MTRR_TYPE_WRCOMB 1
/*#define MTRR_TYPE_ 2*/
/*#define MTRR_TYPE_ 3*/
#define MTRR_TYPE_WRTHROUGH 4
#define MTRR_TYPE_WRPROT 5
#define MTRR_TYPE_WRBACK 6
#define MTRR_NUM_TYPES 7

The MTRR mechanism allows up to 96 memory ranges to be defined in
physical memory, but only 8 of these ranges are variable ranges. Rest of them
are fixed ranges, being these fixed ranges below the address 0x100000 (1 Mbyte).

We can define any of these 8 variable ranges by means of a pair of registers for
each of these ranges. MTRRphysBasen and MTRRphysMaskn. MTRRphys-
Base defines the base address and memory type for the range and MTRRphys-
Mask contains a mask that is used to determine the address range.

In the file mtrr.c we can see correspondences between Model Specific Regis-
ters (MSR’s) and MTRR registers.

#define MTRRcap_MSR 0x0fe
#define MTRRdefType_MSR 0x2ff

#define MTRRphysBase_MSR(reg) (0x200 + 2 * (reg))
#define MTRRphysMask_MSR(reg) (0x200 + 2 * (reg) + 1)

#define NUM_FIXED_RANGES 88
#define MTRRfix64K_00000_MSR 0x250
#define MTRRfix16K_80000_MSR 0x258
#define MTRRfix16K_A0000_MSR 0x259
#define MTRRfix4K_C0000_MSR 0x268
#define MTRRfix4K_C8000_MSR 0x269
#define MTRRfix4K_D0000_MSR 0x26a
#define MTRRfix4K_D8000_MSR 0x26b
#define MTRRfix4K_E0000_MSR 0x26c
#define MTRRfix4K_E8000_MSR 0x26d
#define MTRRfix4K_F0000_MSR 0x26e
#define MTRRfix4K_F8000_MSR 0x26f

Variable range registers count (VCNT) field, in the MTRRcap register, indi-
cates the number of variable ranges implemented on the processor. MTRRcap

5

Page 83 / 104

register
MTRRdefType sets the default properties of the regions of physical memory

that are not encompassed by MTRR’s.
MTRR ranges programming can be done by means of WDMSR and RDMSR

assembler instructions or by the /proc/mtrr file. For example, this is the result
of reading /proc/mtrr in my system with 256 Mbytes.

reg00: base=0x00000000 (0MB), size= 256MB: write-back, count=1
reg01: base=0xf8000000 (3968MB), size= 64MB: write-combining, count=2
reg07: base=0xfc000000 (4032MB), size= 32MB: write-combining, count=1

An interesting test is to delete the reg00 line, observing an slower behaviour
of our machine. This test can be done by executing echo "disable=0" >
/proc/mtrr

3.3 Page table and Page attribute table(PAT)

PCD and PWT flags in control register CR3 control the global caching and
write policy for the page directory. The PCD flag enables caching of the page
directory when clear and prevents caching when set. The PWT flag enables
write-back caching of the page directory when clear and write-through caching
when set. These flags do not affect the caching and write policy for individual
page tables. These flags only have effect when paging is enabled and the CD
flag in control register CR0 is clear.

PCD and PWT flags in the page-directory and page-table entries control
caching for individual page tables and pages, respectively. The PCD flag and
the PWT flag have the same effect than in the CR3 register.

This mechanism offers an advantage compared to the MTRR method, not
limiting the number of pages where we can define a cache policy.

The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table
format to allow memory types to be assigned to regions of physical memory
based on linear address mappings. The PAT is a companion feature to the
MTRR’s. The PAT was introduced into the IA-32 architecture in the Pentium
III processor and is also available in the Pentium IV processor.

MSR 0x277 is a 64 bit register that contains eight page attribute fields: PA0
through PA7. Each of the eight attribute fields can contain any of the memory
type that can be encoded with PAT, being the same that those used for encoding
memory types in the MTRR mechanism.

To select a memory type for a page from the PAT, a 3-bit index made up
of the PAT,PCD, and PWT bits most be encoded in the page-table or page-
directory entry for the page.

6

Page 84 / 104

TABLE 1: Selection of PAT entries with
PAT, PCD, and PWT flags.

PAT PCD PWT PAT entry

0 0 0 PA0

0 0 1 PA1

0 1 0 PA2

0 1 1 PA3

1 0 0 PA4

1 0 1 PA5

1 1 0 PA6

1 1 1 PA7

4 Translation Lookaside Buffer (TLB)

To minimize the number of bus cycles required for address translation, the
most recently accessed page-directory and page-table entries are cached in the
processor in devices called translation lookaside buffers (TLBs). The CPUID
instruction can be used to determine the sizes of the TLBs provided in the
Pentium processors.

The TLBs are inaccessible to application programs and tasks (privilege level
greater than 0); that is, they cannot invalidate TLBs. Only operating system or
executive procedures running at privilege level of 0 can invalid TLBs or selected
TLB entries.All of the (nonglobal) TLBs are automatically invalidated any time
the CR3 register is loaded (unless G flag for a page or page-table entry is set)

The INVLPG instruction is provided to invalidate a specific page-table entry
in the TLB. Normally, this instruction invalidates only an individual TLB entry;
however, in some cases, it may invalidate more than the selected entry and may
even invalidate all of the TLBs. This instruction ignores the setting of the G
flag in a page-directory or page-table entry.

The Page Global Enable (PGE) flag in register CR4 and the global (G) flag
of a page-directory or page-table entry can be used to prevent frequently used
pages from being automatically invalidated in the TLBs on a task switch or a
load of register CR3.

References

[1] Intel Architecture Software Developer’s Manual. Volume 3:System Program-
ming.

[2] Pentium II processor application notes. Using the RDTSC Instruction for
Performance Monitoring.

7

Page 85 / 104

Page 86 / 104

Towards designing WCET-predictable processors

Christine Rochange and Pascal Sainrat
Institut de Recherche en Informatique de Toulouse

118, route de Narbonne
31062 Toulouse cedex 4, France

{rochange, sainrat}@irit.fr

Abstract
Several methods based on a static analysis of the
executable code have been proposed in the past to
estimate the worst-case execution time of programs.
Their main advantage is to limit measurements to small
parts of code (e.g. basic blocks). However these methods
have been designed for basic processor architectures
and recent work by Engblom has shown that they would
not be safe for more advanced designs. Actually, the
execution of a basic block could have an impact on the
execution of a distant subsequent basic block. Ignoring
this impact could result in an under-estimated WCET,
which could be dramatic in a hard real-time context. In
this paper, we suggest that advanced architectures could
include specific hardware that would eliminate all
possible long timing effects. We show how this idea
could permit to make superscalar pipelines analyzable
for the WCET.

1. Introduction

1.1 Evaluating the Worst-Case Execution Time

For the calculation of the Worst-Case Execution Time of
a program, the ideal thing would be to measure (or
simulate) all the possible execution paths. This is
generally not affordable because it would be very
expensive in time. Moreover, while measuring all the
complete paths, parts of code that belong to several paths
would be evaluated several times. Thus, the objective is
to limit measurements, as much as possible, to small
parts of code.

The behaviour of some components of the processor
architecture (like the cache memories or the branch
predictor) is very dependent on the execution history and
the timing analysis has to consider complete execution
paths. To fasten the analysis, techniques like static
simulation examine several paths in parallel, which
might require a large storage capacity.

Some other parts of the processor, like the execution
pipeline, are expected to exhibit a more «local»
behaviour. So, as far as they are concerned, it is possible
to measure parts of code, instead of complete paths,
which limits the redundancy of measurements. These
parts of code can be basic blocks, or bodies of
algorithmic structures. The calculation of the WCET
then consists in combining the individual execution
times of the parts to obtain the execution time of the
longest possible path.

Some WCET computation methods are based on a
bottom-up traversal of the program syntax tree, while

others are based on the control flow graph. In this paper,
we focus on a method of this second category: the
Implict Path Enumeration Technique or IPET [LiMa95],
which consists in representing the control flow graph and
the results of the flow analysis by a set of constraints on
the numbers of executions of each part of code (basic
block), and then in maximizing the total execution time
(which is the sum of the products of the number of
executions by the execution time of each basic block).

1.2 Modeling pipelined processors

To be able to model both correctly and precisely
pipelined processors, the above method has to be
adapted to take into account the pipeline effect that
makes the execution of a sequence of two basic blocks
shorter than the addition of the two individual execution
times.

In section 2, we show how this effect can be included
in the model. We also outline Engblom's analysis of long
timing effects associated to sequences of more than two
basic blocks and we argue that the IPET method cannot
easily take into account these effects. Instead of
restricting the choice for a real-time system to very
simple architectures that cannot generate long timing
effects, we think that high-performance processors could
include a hardware mechanism to eliminate them, as
defended in section 3. In section 4, we apply this
principle to a perfect superscalar processor and show that
the performance loss is very small. Section 5 concludes
the paper.

2. Inter-block timing effects

Processor pipelines generate two kinds of timing effects:
− pairwise effects due to the overlapping of two

adjacent basic blocks in the pipeline
− long timing effects that represent the impact of this

overlap when sequences of three and more blocks are
considered.

In this section, we examine how these effects could be
modeled in the IPET method.

2.1 Pairwise timing effects

Timing effects between two adjacent blocks can be
modeled by defining an execution time for the edge that
connects them in the control flow graph (as illustrated in
Figure 1). The execution time of an edge represents the
gain due to the overlap of the two blocks in the pipeline.
It is always negative. Then, the set of constraints that

Page 87 / 104

express the structure of the control flow graph is
rewritten to link the execution times of blocks and edges.

 Measured times :

tA=7
tB=5
tAB=10

A

B tA=7

tB=5

δAB=-2

Figure 1. Pairwise timing effects

2.2 Long timing effects: Engblom's timing model

Engblom has shown in his PhD thesis [Engb02] that
there could exist timing effects between distant basic
blocks: «A long timing effect for a sequence of
instructions I1…Im, m≥3, occurs whenever I1 has the
effect of disturbing the execution in such a way that the
execution of the instructions I2…Im is different compared
to if I1 had not been present». An example of a long
timing effect is given in Figure 2. Among the sources of
long timing effects, Engblom mentions parallel
pipelines, long latency instructions, dynamic
scheduling, … Engblom has highlighted that long timing
effects could occur for sequences of any length
(potentially infinite), and that they could be either
negative, null or positive.

 Measured times :

tA=10
tB=5
tC = 7
tAB=10
tBC=10
tABC=16

A

B tA=10

tB=5

δAB=-5

C
tC=7 δAB=-2

δABC=+1

Figure 2. Long timing effects

Engblom proposed a timing model where a timing
effect δi…j is associated to each sequence of basic blocks
Bi … Bj. The execution time of a sequence of basic
blocks B1 … Bn is then given by :

∑∑
≤≤≤=

δ+=
nkj

kj

n

i
in tt

11
1

Whenever a long timing effect is negative, it can be

ignored, which might lead to WCET over-estimation.
But when it is positive, it has to be taken into account for
a safe WCET analysis. To model long timing effects
when applying the IPET method, one should add some
weighted edges between non-adjacent blocks. The main
difficulty is then to obtain the weight of these edges
because it requires to measure the execution time of the
corresponding sequences. Since a long timing effect can
exist between two blocks that are very far from each
other, all the possible sequences of blocks have to be
measured, which could be even longer than measuring
all the possible execution paths and obviously goes
against the principle of the IPET method (that is to limit
measures to small parts of code). Expressing constraints
on the number of executions of long edges might be
difficult too.

3. Towards a high-performance processor
without long timing effects

Pipelined processors can be safely analysed using the
IPET method if they are guaranteed not to generate
positive long timing effects.

What has been proposed until now is to restrict the
choice of a processor architecture to one that does not
exhibit any possibility of positive long term effects.
Engblom has shown that a single in-order pipeline has
this property.

However, this kind of architecture might not meet
higher and higher performance requirements. This is
why we suggest a new approach that consists in adding
to the processor hardware the ability to prevent the
appearance of positive long timing effects, as illustrated
in Figure 3. This mechanism analyses the instruction
flow to detect conditions that could engender long timing
effects (LTEs): occupation of a resource during several
clock cycles, access to the memory hierarchy with
default in the first-level cache memory, … Then, the
mechanism controls the pipeline to prevent the next
basic block to enter the pipeline until the end of the risk
of long timing effects.

p
ip

e
lin

e

LTE
Analyser

pipeline
synchronizer

Figure 3. A mechanism to eliminate long timing effects

We feel that this approach could be implemented in
high-performance processors, and the challenge is to
limit the induced performance degradation.

In the next section, we show how this principle could
be applied to a processor with a superscalar in-order
pipeline (that was shown by Engblom to possibly
generate infinite positive long term effects).

4. Case study: superscalar pipeline

4.1 Evaluation methodology

In order to focus on the impact of parallel pipelines, we
make the following assumptions: perfect multiple branch
prediction, perfect cache memories, no interlocks due to
data dependencies, all instructions executed in a single
cycle, … This is what we call a «perfect» pipeline.

Performance results that we will give were obtained
using a simulator of a 6-stage perfect pipelined processor
that we developped within the MicroLib project [MIC]
based on SystemC.

The benchmark codes we used are listed in Table 1.
They were taken from the SNU benchmark suite [SNU],
and were slightly modified to inline function calls. We

Page 88 / 104

only excuted the main function (i.e. not the starting and
ending code).
 # insts
crc CRC computation 54 790
fft1 FFT using Cooly-Turkey algorithm 3163
jfdctint JPEG slow-but-accurate integer

implementation of the forward DCT
 5828

lms LMS adaptive signal enhancement 535 985
ludcmp LU decomposition 7 797

Table 1. Benchmark applications (from the SNU suite)

4.2 Long timing effects in a superscalar pipeline

Figure 3 shows how a sequence of 4 basic blocks
(A-B-C-D) would be executed in a perfect 4-stage 2-way
superscalar pipeline.

 1 2 3 4 5 6 7 8 9
IF A1

A2

A3
B1

B2
C1

C2
C3

C4
C5

D1

D A1

A2

A3
B1

B2
C1

C2
C3

C4
C5

D1

EX A1

A2

A3
B1

B2
C1

C2
C3

C4
C5

D1

WB A1

A2

A3
B1

B2
C1

C2
C3

C4
C5

D1

starting with block A
 1 2 3 4 5 6 7 8 9
IF B1

B2

C1
C2

C3
C4

C5

D1

D B1
B2

C1
C2

C3
C4

C5

D1

EX B1
B2

C1
C2

C3
C4

C5

D1

WB B1
B2

C1
C2

C3
C4

C5

D1

starting with block B
 1 2 3 4 5 6 7 8 9
IF C1

C2

C3
C4

C5

D1

D C1
C2

C3
C4

C5

D1

EX C1
C2

C3
C4

C5

D1

WB C1
C2

C3
C4

C5

D1

starting with block C

Figure 3. Executing a sequence of 4 basic blocks
in a 2-way superscalar pipeline

From this figure, we can compute the execution times

and the timing effects of each sub-sequence of A-B-C-D,
as shown in Table 2.

More generally, we can compute that, whatever the
number of parallel pipelines is, all the long timing effects
(even the timing effects for infinite-length basic block
sequences) equal -1, 0 or +1. Proof is given in Appendix.
As mentioned before, a positive timing effect constitutes
a difficulty for computing the WCET using the IPET
method.

sub-sequence execution time timing effect
A 5 -
B 4 -
C 6 -
D 4 -

A-B 6 -3
B-C 7 -3
C-D 6 -4

A-B-C 8 -1
B-C-D 7 0

A-B-C-D 9 +1

Table 2. Computing inter-block timing effects

We have measured the frequency of positive timing
effects. Results are given in Table 3. They show that
positive timing effects are frequent: on a mean, 14.39%
of the 6-block sequences exhibit a positive effect (+1).
This confirms the importance of the problem, even with
a quite simple pipeline.

seq. length 3 4 5 6

crc 21.28% 13.18% 22.03% 18.33%
fft1 7.85% 10.83% 10.91% 11.02%

jfdctint 38.10% 24.00% 28.13% 23.08%
lms 19.05% 19.10% 18.45% 9.09%

ludcmp 7.07% 11.72% 10.18% 10.41%
MEAN 18.67% 15.76% 17.94% 14.39%

Table 3. Percentage of positive timing effects, as a
function of the sequence length.

4.3 Synchronizing the pipeline to eliminate long
timing effects

We propose to include in the processor a mechanism that
resynchronizes the pipeline whenever a basic block
enters in the fetch stage (see Appendix 2) while the first
slot of this stage is occupied by one instruction of the
previous block. In our example, this would produce the
scheduling shown in Figure 4. Instructions that belong to
the same basic block can then be processed in parallel
but no timing effect can occur between basic blocks.

 1 2 3 4 5 6 7 8 9 10
IF A1

A2

A3 B1

B2

C1

C2
C3

C4

C5

D1

D A1

A2

A3 B1

B2

C1

C2
C3

C4

C5

D1

EX A1

A2

A3 B1

B2

C1

C2
C3

C4

C5

D1

WB A1

A2

A3 B1

B2

C1

C2
C3

C4

C5

D1

Figure 4. Executing a sequence of 4 blocks in a 2-way
superscalar pipeline with a resynchonizing mechanism

In the previous example, resynchronizing increments

the execution time of the sequence by one clock cycle.
Table 4 gives measures of the performance degradation
in terms of instruction throughput (number of committed
instructions per cycle) over a non-synchronized pipeline.

Page 89 / 104

pipeline width 2-way 4-way 8-way
crc -8.55% -15.98% -39.67%
fft1 -3.11% -10.76% -22.44%

jfdctint -1.52% -4.07% -10.15%
lms -5.76% -8.32% -25.13%

ludcmp -2.72% -7.65% -23.32%
MEAN -4.33% -9.36% -24.14%

Table 4. Instruction throughput degradation due to the
synchronization of the pipeline

The reduction of the instruction throughput appears

not to be so high and synchronizing the pipeline does not
give up the benefit of parallel pipelines. For example, the
speedup of a 2-way synchronized superscalar processor
over a scalar processor is, on a mean over the five
benchmarks, 1.91.

5. Conclusion

This paper comes after Englom's thesis which has
highlighted that the execution of a given basic block can
have an influence on the execution of a distant
subsequent block. This influence can be expressed as a
value, called long timing effect, that can either be
positive, negative or null. A long timing effect has to be
taken into account in the computation of the execution
time of any sequence that includes those two blocks.

Now, several methods for WCET computation, like
IPET, aim for restricting measurements to small parts of
code (basic blocks). This does not permit to take long
timing effects into account, and then this class of
methods can only be applied to processors that cannot
generate long timing effects. Engblom has shown that
some simple pipelined processors have this property.

In this paper, we proposed another approach that
consists in including in the processor a mechanism that
dynamically detects conditions that might engender a
long timing effect and synchronizes the pipeline in such
a way that this effect cannot appear. To illustrate this
approach, we applied it to a perfect superscalar pipeline.

Simulation results show that the performance
degradation is limited: the synchronized superscalar
processor is competitive compared to a scalar processor.

References
[Engb02] J. Engblom. Processor Pipelines and Static

Worst-Case Execution Time Analysis. Uppsala
Dissertations from the Faculty of Science and
Technology 36, April 2002.

[LM95] Y.-T. S. Li, S. Malik. Performance Analysis of
Embedded Software Using Implicit Path
Enumeration. 32nd Design Automation
Conference (DAC), 1995.

[MIC] http://www.microlib.org
[SNU] http://archi.snu.ac.kr/realtime/benchmark/

Appendix 1. Computing long time effects in
a superscalar pipeline.

Let us consider an ni-instruction basic block. Its
execution time in a perfect (without any stall) s-stage
scalar pipeline is given by 1−+= ii nst .

To express its execution time in a perfect w-way
s-stage superscalar pipeline, we write iii ywxn += . .

Then, we obtain:

11 −⎥⎥

⎤
⎢⎢

⎡++=−⎥⎥

⎤
⎢⎢

⎡+=
w
y

xst
w
n

st i
ii

i
i or

where ⎡ ⎤q is the upper integer value of q.

Now, the execution time of a sequence of basic
blocks Bi…Bj can be expressed as:

11 −

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

++=−

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

+=
∑

∑
∑

=

=

=
w

y

xs
w

n

st

j

ik
kj

ik
k

j

ik
k

ji...

We can then compute the long timing effect δ1…m

associated to the sequence of basic blocks B1…Bm. In
Engblom's thesis, it is defined as:

1211211 −− +−−=δ mmmmm tttt

So we can write:

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡

+

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡

−

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡

−

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡

++−−=δ
∑∑∑∑

∑∑∑∑

−−

−−

w

y

w

y

w

y

w

y

xxxx

m

i

m

i

m

i

m

im

i

m

i

m

i

m

im

1

2

1

121
1

2

1

121
1...

Since idyi ∀<≤ ,0 , we have:

)(10
1

021 or
w

y

w

y
m

i

m

i

⎭
⎬
⎫

⎩
⎨
⎧

=

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡

−

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
∑∑

and then
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧−
=

⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

=δ
1

0

1

1

0

1

0
1 m...

Appendix 2. Detecting basic blocks.

Hardware designers usually define a basic block as a

sequence of code preceded by a branch and ending with
the next branch. But our mechanism has to detect
compiler basic blocks, defined as sequences of code that
can only be entered at their first instruction and exited at
their last instruction. Their detection requires to have a
full knowledge of the static code, which is not the case
of the hardware.

Then we suggest that the compiler could help the
hardware by marking the beginning of basic blocks. It
could exploit unused bits of the instruction codes, if such
bits are available in the target instruction set. Otherwise,
the compiler could make sure that every basic block ends
with a control flow instruction, by adding a branch to the
next instruction whenever it should not be the case.

Page 90 / 104

A Flexible Tradeoff between Code Size and WCET
by Employing Dual Instruction Set Processors

Sheayun Lee† Jaejin Lee† Chang Yun Park∗ Sang Lyul Min†

†School of Computer Science
and Engineering

Seoul National University
Seoul 151-742, Korea

∗Department of Computer Science
and Engineering

Chungang University
Seoul 156-756, Korea

E-mail: sylee@archi.snu.ac.kr

Abstract

Code size is an important design issue in cost-sensitive
embedded systems. A dual instruction set processor, which
supports a reduced instruction set in addition to a full in-
struction set, can be used to reduce the code size by us-
ing smaller instructions in generating application program
code. In general, however, a program compiled into the
reduced instruction set typically runs slower than its full in-
struction set counterpart. Motivated by this observation, we
propose a technique that enables a flexible tradeoff between
a program’s code size and its WCET (worst-case execution
time) by selectively using the two different instruction sets
for different sections within a single program.

1. Introduction

Embedded systems are often characterized by stringent
constraints imposed on code size, due to a small amount
of available memory. Therefore, a number of techniques
have been proposed to reduce the memory space occupied
by application program code. One promising technique is to
employ a dual instruction set, where the processor supports
both a full (normal) instruction set and a reduced instruction
set, in which an instruction has a smaller number of bits [3].
Examples include the ARM with the 16-bit Thumb instruc-
tion set [2], the MIPS 32/16-bit TinyRISC [5], and the ARC
Tangent [4] processors.

When such a dual instruction set processor is used, the
same program compiled into different instruction sets have
distinguished characteristics in terms of code size and exe-
cution time. Specifically, a program compiled into the re-
duced instruction set is typically smaller but runs slower
than the same program compiled into the full instruction
set. The main reason behind this performance gap is that
the full instruction set program executes fewer instructions,
since a single full instruction can perform more operations

than a single reduced instruction does.
This motivates us to exploit the tradeoff relationship be-

tween a program’s code size and its WCET (worst-case ex-
ecution time) for real-time embedded systems, where the
amount of available memory is often limited and tasks must
meet timing constraints. We propose a technique that en-
ables a flexible tradeoff between code size and WCET by
selectively using the two instruction sets for different sec-
tions within a given program. The technique begins with
the smallest code possible for a given program, and esti-
mates the reduction of the WCET that can be achieved by
utilizing a certain amount of additional code space. We re-
peat this procedure by gradually increasing the code size
limit, until no more reduction of the WCET is possible by
using more code space. The proposed technique is centered
around selective code transformation, where a given pro-
gram is first compiled into the reduced instruction set, and a
selected subset of basic blocks are then transformed into the
full instruction set, in a way that the reduction of the WCET
is maximized within a given code size budget.

2. Overall approach

Our technique for selective code transformation consists
of three steps. First, we compile the whole program into
the reduced instruction set, and estimate its WCET using a
hierarchical analysis technique [7]. This will serve as the
baseline for the code size, i.e., the smallest code possible
for the given program. Second, we determine the set of ba-
sic blocks to be transformed into the full instruction set that
gives the maximum reduction of the WCET, while main-
taining the code size under a given upper bound. Finally,
the selected basic blocks are actually transformed into the
full instruction set, and a mixed instruction set code is gen-
erated as a result.

The procedure of selective code transformation is illus-
trated in Figure 1. In order to determine the set of basic
blocks to be transformed into the full instruction set, we

Page 91 / 104

full
instruction set

code

source
program

reduced
instruction set

code

decision on
which blocks
to transform
into the full

instruction set

transformer:
selective

transformation

mixed
instruction set

code

compile into
reduced instruction set

selection algorithm
based on

path−based
profitability analysis

try transformation
on every block

into full instruction set

code size diff
exec time diff

constraint on
total code size

WCEP and
frequency info

hierarchical
WCET analysis

Figure 1. Overview of selective code transfor-
mation.

need information about the code size and execution time of
each basic block compiled into both the reduced and the
full instruction sets. The code size of each block can be es-
timated in a straightforward manner because it can be stat-
ically determined by examining the instruction sequence in
that block. On the other hand, we assume that the worst-
case execution time of each basic block is estimated by an
existing analysis technique such as the one presented in [6].
We obtain the code size and execution time information of
each basic block in the full instruction set by performing the
transformation without generating code.

In addition to the code size and execution time of each
block, the selection algorithm requires information about
their execution frequency corresponding to the worst-case
execution scenario of the given program. This frequency
information can be derived from the hierarchical WCET
analysis of the given program, since the WCEP (worst-case
execution path) and the corresponding execution count for
each basic block can be extracted from the syntax tree used
in the analysis. The execution frequency information for
each block combined with the code size and the execution
time differences is input to the selection algorithm. Based
on its results, the selected blocks are transformed into the
full instruction set and the final mixed instruction set code
is generated.

3. Selective code transformation

One complication in determining the basic blocks to be
transformed is that the mixed use of the dual instruction set
requires proper handling of transitions between execution
of the different instruction sets. These mode switches are
typically triggered by executing a special instruction or se-
quence of instructions. Since the insertion of such mode
switch instructions incurs overhead in terms of both code
size and execution time, our technique should take the mode
transitions into account.

Intuitively, the blocks to be transformed into the full in-
struction set are those on the WCEP that are frequently ex-
ecuted under the worst-case execution scenario. We cannot,

however, consider the basic blocks individually, since trans-
forming a single block will usually degrade the WCET due
to the mode switch overhead, while nonetheless increasing
the code size. Therefore, we define a cost-benefit model
based on acyclic subpaths [1], which can capture the set
of basic blocks executed together. Section 3.1 describes
in detail the path-based cost-benefit model and the greedy
heuristic that iteratively selects the subpath with the maxi-
mum ratio of its benefit to its cost.

3.1. Cost-benefit model and selection algorithm

A program is given by a control flow graph P = 〈V, E〉,
where V = {vi | i = 1, 2, · · · , n} is the set of basic blocks
and E = {eij = 〈vi, vj〉} is the set of edges which repre-
sent the control flow in the program. Assume that a subset
of basic blocks are in the full instruction set and the remain-
ing blocks are in the reduced instruction set. That is, the
set of blocks V is partitioned into two disjoint subsets F
and R, which denote the set of blocks in the full and the
reduced instruction sets, respectively. We define a set of
functions to denote the code size and the execution time of
a basic block when compiled into the two different instruc-
tion sets. Let sF (v) and sR(v) denote the code size of a
block v compiled into the full and the reduced instruction
sets, respectively. Similarly, we denote by tF (v) and tR(v)
the (worst-case) execution time of block v compiled into the
full and the reduced instruction sets, respectively.

Given a path p, the cost of transforming p can be calcu-
lated by first summing the code size difference for blocks
being transformed, and then adding the mode switch over-
head to the sum. Note that transforming the blocks on the
path not only causes insertion of new mode switch instruc-
tions but also possibly results in removal of certain mode
switch instructions that were previously needed. Specifi-
cally, when a block is transformed into the full instruction
set, we should remove the mode switch instructions that
were previously inserted on the edges connecting the block
with other blocks that are already in the full instruction set.

To account for the removal of mode switch instructions
as well as the insertion of newly introduced mode switch
instructions, we define EM (p) to be the set of edges where
mode switch instructions are newly introduced, and Em(p)
to be the set of edges from which existing mode switch in-
structions are removed. In addition, we let V (p) the set of
all the basic blocks on path p. Then, the set of blocks to
be transformed on the path p is given by V (p)

⋂

R, which
contains only those blocks on p that have not yet been trans-
formed. Then the cost c(p) of transforming path p can be
computed as follows:

c(p) =
∑

v∈V (p)∩R

(sF (v) − sR(v))

2

Page 92 / 104

+ os ×
(

|EM (p)| − |Em(p)|
)

, (1)

where os denotes the total size of instructions required for a
single mode switch.

On the other hand, the benefit b(p) of transforming a path
can be computed by first summing the execution time differ-
ence for each block multiplied by its execution frequency,
and then subtracting the mode switch overhead. That is, the
benefit associated with transformation of a path p is given
by

b(p) =
∑

v∈V (p)∩R

(cV (v) × (tR(v) − tF (v)))

− ot ×





∑

e∈EM (p)

cE(e) −
∑

e∈Em(p)

cE(e)



 (2)

where ot denotes the execution time overhead incurred by a
single mode switch, while cV (v) and cE(e) give the execu-
tion counts of block v and edge e, respectively.

Now we define a reward function r(p) for a subpath p
to be the ratio of its benefit to its cost. That is, r(p) =
b(p)/c(p), which indicates the expected amount of reduc-
tion of the WCET for the unit increase in the code size.

Based on this cost-benefit model, we select the blocks
to be transformed as follows. First, we enumerate all the
acyclic subpaths of the WCEP of the program, and calcu-
late the cost and benefit associated with each of them. Then
we apply a simple heuristic that iteratively selects the sub-
path to be transformed by giving priority to the one with the
maximum reward function value (i.e., r(p)). The selection
is repeated until no more transformation can be done be-
cause one or more of the following conditions are met: (1)
selection of any of the remaining subpaths would violate
the code size limit, (2) no further reduction of the WCET is
possible, or (3) all the blocks in the program have already
been transformed.

Note that, when a subpath is selected and the blocks on it
are transformed, the cost and benefit of other subpaths may
change because (1) certain subpaths share the transformed
blocks with the selected subpath, and (2) the insertion of
mode switch instructions possibly affects the cost and ben-
efit of transforming other subpaths. Therefore, we adjust
the cost and benefit of each subpath as we iterate the se-
lection of the subpath to be transformed. Moreover, since
the execution time of the WCEP has been reduced, it is no
longer guaranteed to have the largest execution time among
all the possible execution paths in the program. When the
WCEP of the program is changed by the iterative procedure
of selective code transformation, we should re-enumerate
the acyclic subpaths of the the new WCEP and resume the
selection procedure. Therefore, we need a mechanism to
update the timing information associated with each of the
intermediate nodes in the syntax tree, so that we can detect

a possible change of the WCEP. The next section describes
the method to handle the update of timing information.

3.2. Augmented Timing Schema

We check whether or not the WCEP of the program is
changed by the transformation of a subset of basic blocks,
by updating the timing information associated with nodes
in the syntax tree. Beginning from the leaf nodes (i.e., ba-
sic blocks) whose execution times have been changed by
selective code transformation, we propagate the timing in-
formation along the tree edges, until we reach the root node.
By recording in each syntax tree node the WCET of the pro-
gram construct that it represents, we can update the changes
in the WCET (and thus the WCEP) by re-evaluating the tim-
ing formula for only those nodes on the paths from the leaf
nodes whose execution times are changed to the root node.

In updating the timing information, our WCET analysis
method should be able to handle the execution time over-
head of mode switch instructions. Therefore, the basic tim-
ing schema [7] is augmented so that the execution times of
control flow edges can be accounted for, as well as those
of basic blocks. Specifically, we augment the structure of
the syntax tree used in the hierarchical WCET analysis, so
that each intermediate node has as its child node the set of
control flow edges contributing to the WCET of the corre-
sponding program construct. When the execution time of an
edge is changed due to insertion or removal of mode switch
instructions, this timing information is propagated along the
tree edges as well as the execution time changes of basic
blocks.

In addition, the timing formulas used for calculating
the WCET of various program constructs are also modi-
fied to incorporate the edge execution times. Specifically,
the execution times of control flow edges are included in
the timing formula for each program construct. Since there
can be more than one edges connecting one program con-
struct to another, the timing formulas take the maximum of
these edge execution times in calculating the WCET of two
program constructs executed sequentially. The actual aug-
mented formulas are not presented in the paper due to space
limitation.

While propagating the timing information updates on the
syntax tree, we can determine whether or not the WCEP
of the whole program is changed, by concentrating on the
conditional statement nodes whose timing formula is re-
evaluated. Since the subtree that represents the WCEP of
the program can only be different when a conditional state-
ment node selects different child node for its WCET calcu-
lation, we can detect any change of the WCEP by check-
ing the conditional statement nodes whose WCETs are re-
evaluated.

3

Page 93 / 104

�¤ £¥

a_a

a_c

a_e

a_g

a_i

b_a

b_c

b_e

b_g

b_i

� ��Q¤�«� �tv�

�

~b

~c

~d

~e

~f

r

��¥�¦�

a_a

a_c

a_e

a_g

a_i

b_a

b_c

b_e

b_g

b_i

� ��Q¤�«� �tv�

�

~b

~c

~d

~e

~f

r

����¥��¥

a_a

a_c

a_e

a_g

a_i

b_a

b_c

b_e

b_g

b_i

c_a

� ��Q¤�«� �tv�

�

~b

~c

~d

~e

~f

r

�£�

a_a

a_c

a_e

a_g

a_i

b_a

b_c

b_e

b_g

b_i

� ��Q¤�«� �tv�

�

~b

~c

~d

~e

~f

r

Figure 2. Code size and WCET for four bench-
mark programs.

4. Results

To demonstrate the validity and effectiveness of our pro-
posed approach, we implemented the proposed technique
for our target ARM/Thumb dual instruction set processor,
and performed a set of experiments. The benchmark pro-
gram used for our experiments were derived from applica-
tions commonly used in embedded systems software. The
isort program performs insertion sort on an array of integer,
and matmul implements matrix multiplication algorithm.
The crc benchmark computes the cyclic redundancy check
code, while jfdctint implements the forward DCT (discrete
cosine transform) for JPEG image compression algorithm.

Figure 2 shows the results from our experiments. For
each of the benchmark programs, we initially set the code
size limit equal to the size of the program compiled en-
tirely into Thumb instructions, which is denoted by T in
the figure. For comparison purposes, we generated code by
transforming all the basic blocks in the program into ARM
instructions, which is denoted by A. Then we gradually in-
creased the code size limit so that the available code space
budget is 20 %, 40 %, 60 %, 80 %, and 100 % of the differ-
ence between code sizes of A and T , and the resulting code
for each code size budget is labeled from M1 to M5. In the
figure, the code size for each program is normalized to that
of T , while the WCET is normalized to that of A.

From the figure, we observe that the code sizes of ap-
plication programs increase as we provide more code size
budget, while the WCET is reduced. One interesting obser-
vation is that the WCET of each program decreases sharply
when the code size exceeds a certain point. After closely
examining the resulting code, we found that this sudden de-
crease of the WCET occurs when a time-critical loop can be
transformed into ARM instructions within the given code
size budget.

The results indicate that a tradeoff relationship exists be-

tween a program’s code size and WCET. The amount of
achievable reduction in the WCET is different from one
benchmark to another, which is dependent on the character-
istics of the program. We expect that we can exploit more
flexible tradeoff between code size and WCET for larger
application programs, whose execution time is spent on a
number of different code sections in the program.

5. Conclusions

We have proposed a technique that enables a flexible
tradeoff between a program’s code size and its WCET, by
employing a dual instruction set processor. In the proposed
technique, we first compile the whole program into the re-
duced instruction set, and then selectively transform a sub-
set of basic blocks on the WCEP to reduce the WCET as
much as possible within a given code size budget. For
the selective code transformation, we defined a path-based
cost-benefit model that can accurately estimate the impact
of transforming a set of blocks on the code size and the
WCET of the entire program. Our technique incorporates
a simple greedy selection heuristic to iteratively select the
set of blocks to be transformed from the reduced instruc-
tion set to the full instruction set. When the algorithm iter-
atively selects the blocks to be transformed, the program’s
WCEP may change because the execution time of the pre-
vious WCEP is now reduced. To rectify this problem, we
augmented the syntax tree and the timing formulas used in
the hierarchical WCET analysis, so that we can easily de-
tect a possible change of the WCEP by updating the timing
information of each program construct on the syntax tree.
The results from our experiments show that there exists a
tradeoff relationship between a program’s code size and its
WCET, and the proposed technique can be effectively used
to exploit this tradeoff.

References

[1] T. Ball and J. R. Larus. Efficient path profiling. In Proceed-
ings of the 29th Annual IEEE/ACM Symposium on Microar-
chitecture, pages 46–57, Paris, France, 1996.

[2] S. Furber. ARM System Architecture. Addison-Wesley, 1996.
ISBN 0-201-40352-8.

[3] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and A. Nico-
lau. An efficient compiler technique for code size reduction
using reduced bit-width ISAs. In Proceedings of the DATE
(Design, Automation and Test in Europe), Paris, France,
March 2002.

[4] A. C. (http://www.arc.com). The ARCtangent-A5 Processor.
[5] K. Kissel. MIPS16: High-density MIPS for the embedded

market. Technical report, Silicon Graphics MIPS Group,
1997.

[6] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, K. Park, S.-M. Moon, and C. S. Kim. An ac-
curate worst case timing analysis for RISC processors. IEEE
Transactions on Software Engineering, 21(7):593–694, 1995.

[7] C. Y. Park and A. C. Shaw. Experiments with a program tim-
ing tool based on source-level timing schema. In Proceedings
of the 11th Real-Time Systems Symposium, pages 72–81, De-
cember 1990.

4

Page 94 / 104

Aspect-Level WCET Analyzer: a Tool for Automated WCET Analysis of a
Real-Time Software Composed Using Aspect and Components

�

A. Tešanović
�
, J.Hansson

�
, D. Nyström

�
, C. Norström

�
, andP. Uhlin

�

�
LinköpingUniversity

�
MälardalenUniversity

Dept.of ComputerScience Dept.of ComputerEngineering
Linköping,Sweden Västerås,Sweden

{alete,jorha}@ida.liu.se {dag.nystrom,christer.norstrom}@mdh.se

Abstract

Increasing complexity in development of real-time sys-
tems requires the integration of new software engineering
techniques, such as aspect-oriented and component-based
software development, with real-time system development.
Since software technology for building real-time systems
has to support timeliness, methods and tools for analyzing
temporal behavior of the software composed out of compo-
nents and aspects are needed. We contribute by providing a
tool that enables automated worst-case execution time anal-
ysis of different configurations of aspects and components.

1 Introduction
Increasingcomplexity in developmentof real-timesys-

temsaccompaniedby the demandfor enablingtheir con-
figurability requiresthe integrationof aspect-orientedand
component-basedsoftwaredevelopmentwith real-timesys-
tem development. We have developed an approachto
aspectual component-basedreal-timesystemdevelopment
(ACCORD)[8] that integratesthe two softwareengineer-
ing techniques,aspect-orientedandcomponent-basedsoft-
waredevelopment,into real-timesystemdevelopment.AC-
CORDintroducesa real-timecomponentmodel(RTCOM)
that provides explicit support for aspectweaving, while
enforcinginformationhiding, i.e., it preservesbasicideas
from component-basedandaspect-orientedsoftwaredevel-
opment.

Sincesoftwaretechnologyfor buildingreal-timesystems
hasto supporttimeliness[5], methodsand tools for ana-
lyzing temporalbehavior of the softwarecomposedout of
componentsandaspectsareneeded.It is well-known that
theworst-caseexecutiontime(WCET)is of primaryimpor-
tancefor timing analysisof real-timesystems.

Wecontributeby providingatool thatenablesautomated
WCET analysisof differentconfigurationsof aspectsand
components.Thetool is basedonaspect-level WCETanal-
ysis [7]. The main goal of a tool for aspect-level WCET

�
This work is supportedby ARTES (A network for Real-Time and

graduateEducationin Sweden).

analysisis determiningthe WCETs of different real-time
systemconfigurationsconsistingof aspectsandcomponents
beforeany actualaspectweaving (systemconfiguration)is
performed,and,hence,help thedesignerof a configurable
real-timesystemto choosethesystemconfigurationfitting
the WCET needsof the underlyingreal-timeenvironment
withoutpayingthepriceof aspectweaving for eachindivid-
ual candidateconfiguration. If necessary, i.e., if very pre-
ciseWCET estimatesareneeded,the tool for aspect-level
WCET analysiscanbe followedby furtheranalysisof the
resultingweavedcodeusingamorespecializedWCETtool
(e.g., that performsboth low level and high level WCET
analysis).

The paperis organizedasfollows. Section2 givesthe
backgroundinformation about RTCOM. The main con-
stituentsof automatedaspect-level WCETanalysis,includ-
ing aspect-level WCET specificationsandthe aspect-level
WCET analyzer, aredescribedin section3. Finally, in sec-
tion 4 wediscusslimitationsandbenefitsof thecurrentim-
plementationof thetool.

2 Background
RTCOM consistsof three parts: (i) functional part,

whichcanbemodifiedby aspectweaving, (ii) run-timepart
describingthe run-time behavior, e.g., WCETs, of com-
ponentsandaspects,and(iii) compositionpart describing
thecompositionrulesof componentsandaspects.Detailed
descriptionof RTCOM can be found in [8], and herewe
presenta brief overview of its functionalpartwhich repre-
sentstheactualcodeof thecomponent.

To enableefficient temporal analysisof components
weavedwith aspectsandfacilitatestructuredaspectweav-
ing, while preservinginformationhiding,RTCOM assumes
the following for the functionalpart (i.e., the actualcode)
of thecomponent.

� Eachcomponentprovidesa setof mechanisms,which
arebasicandfixedpartsof thecomponentinfrastruc-
ture.Mechanismscanbeviewedasfine-granulemeth-
odsor functions.

� Eachcomponentprovidesa setof operationsto other
componentsand/orto thesystem.Theimplementation

Page 95 / 104

of theoperationsdeterminestheinitial behavior of the
component,i.e.,thepolicy framework. Operationscan
beviewedascoarse-granulemethodsor functions.Op-
erationsareimplementedusingtheunderlyingmecha-
nisms,whicharefixedpartsof thecomponent.

Existing aspectlanguagescan be usedfor implement-
ing aspectsand integrating(weaving) theminto the func-
tional part of RTCOM. Aspectweaving is doneby the as-
pectweaver correspondingto the aspectlanguage[3]. In
an aspectlanguageeachaspectdeclarationconsistsof ad-
vices and pointcuts. A pointcut consistsof one or more
join points,and is describedby a pointcutexpression. A
join point refersto apoint in thecomponentcodewhereas-
pectsshouldbeweaved,e.g.,a method,or a type(structor
union). An advice is a declarationusedto specifythecode
thatshouldrun whenthe join points,specifiedby a point-
cut expression,arereached.Differentkindsof advicescan
be declared,suchas: (i) before advice, which is executed
beforethe join point, (ii) after advice, which is executed
immediatelyafter the join point, and (iii) around advice,
which is executedin placeof thejoin point.

Eachaspect,asprescribedby RTCOM, is implemented
usinga numberof mechanismsof a componentandrepre-
senta(new) componentpolicy. Implementationof anaspect
is not limited only to mechanismsof onecomponentasthe
sameaspectcan influenceseveral components,and, thus,
canbe implementedusingthemechanismsfrom a number
of components.Weaving of aspectsinto thecodeof a com-
ponentdoesnotchangetheimplementationof mechanisms,
only the implementationof operationswithin the compo-
nent.Hence,aspectweaving changesthepolicy of thecom-
ponentby changingoneor moreoperations,andchanging
thenumberof mechanismsusedby a particularoperation.

Considera simple exampleof an ordinary linked list
implementedbasedon RTCOM. The mechanismsneeded
are the ones for the manipulationof nodes in the list,
i.e., createNode, deleteNode, getNextNode,
linkNode , and unlinkNode . Operations imple-
menting the policy framework, e.g., listInsert,
listRemove, listFindFirst , define the behavior
of thecomponent,andareimplementedusingtheunderly-
ing mechanisms.In this example,listInsert usesthe
mechanismscreateNode and linkNode to createand
link anew nodeinto thelist in first-in-first-out(FIFO)order.
Hence,thepolicy framework is FIFO.

Assumethat we want to changethe policy of the com-
ponentfrom FIFO to priority-basedorderingof thenodes.
Then,this canbe achieved by weaving an appropriateas-
pect. Figure1 shows the listPriority aspect,which
consistsof one pointcut listInsertCall , identifying
listInsert asa join point in thecomponentcode(lines
2-3). When this join point is reached,the code in the
before advicelistInsertCall is executed.Hence,
the aspectlistPriority interceptsthe operation(a
methodor afunctioncall to) listInsert , andbeforethe
codein listInsert is executed,the advice,using the
componentmechanisms(getNextNode), determinesthe

aspect listPriority {
1:
2: pointcut listInsertCall (List_Operands * op)=
3: call("void listInsert(List_Operands*)")&&args(op);
4:
5: advice listInsertCall (op):
6: void before (List_Operands * op){
7: while
8: the node position is not determined
9: do
10: node = getNextNode(node);
11: /* determine position of op->node based
12: on its priority and the priority of the
13: node in the list*/
14: }
15: }

Figure 1. The listPriority aspect
���	�	
	�
� � � ���	��� ������������ �! "
#�$�%

&	'	()+*-,.	/	0	1+2-34 5 6 7	8 9�:�;	< =?>+@

A	B	C	D+E-FG	H	I	J+K-LM N O P	Q R�S�T	U V W+X
Y[Z \�][^ _�`+a+b+c+dfe gihkj�lm�n�o�p q�r
s�t u	v?w x-y-z { | }�~

� � � � � � � � � � � ��� � � � � � � � �

Figure 2. The overview of the automated
aspect-le vel WCET analysis

positionof thenodebasedon its priority (lines5-14).

3 Aspect-Level WCET Analysis
Figure2 presentsanoverview of theautomatedaspect-

level WCET analysisandits main constituents,including:
(i) theinputfiles thatareaspect-level WCET specifications
of aspectsandcomponents,(ii) theaspect-level WCET an-
alyzerthatconsistsof thepreprocessorandtheWCET an-
alyzer, and(iii) the outputfiles that representthe resultof
aspect-level WCETanalysis.

The following sectionsgive the descriptionof aspect-
level WCET specificationsandthe internalsof theaspect-
level WCETanalyzer.

3.1 Aspect-Level WCET Specifications

Aspect-level WCET specificationsare inputs to the
aspect-level WCET analyzer, and they aredefinedby the
run-timepartof RTCOM [8].

Basedon the descriptionof the functional part of RT-
COM (seesection2), the following can be observed: (i)
aspectweaving doesnot changetemporalbehavior, i.e.,
WCETs,of mechanisms,and(ii) aspectweaving changes
temporalbehavior, i.e.,WCETs,of operations,by changing
the numberof mechanismsthat an operationuses.There-
fore,if theWCETsof mechanismsareknownandfixed,and
theWCETsof thepolicy framework andaspectsaregiven
asa functionof themechanismsused,thentheWCET of a
componentweavedwith aspect(s)canbecomputedby cal-
culatingtheimpactof aspectweaving to WCETsof opera-
tionswithin thecomponent(in termsof mechanismusage).

Thus,aspect-level WCETspecificationsthatarefed into
thetool consistof WCETspecificationsof thecomponents,
i.e., policy framework, and the aspectsas a function of
mechanismused. In the representationof WCET speci-
ficationswe utilize the notion of symbolic WCET analy-

Page 96 / 104

���	�	�	�
��� �+�����
 �¡
¢-£�¤	¥	¦�§�¨�©ª
«+¬+­�®	¯�°�±�²�³´	µ-¶�·¹¸	º	»
¼�½-¾�¿
À+Á�Â[ÃÄ�Å
Æ�ÇfÈÉ�Ê�Ë	Ì	Í	Î�Ï�Ð	Ñ�ÒÔÓ+ÕÖ	×
Ø+Ù
Ú�Û	Ü�ÝßÞ+àáâ
ã	ä
å[æ
ç	èÔé êfë�ìí
î
ï+ð+ñ�ò	ó�ô�õ�ö�÷ø	ù-ú�û¹ü	ý	þ
ÿ����������
	��
��
������
�������
������������� �
!�"�#�$�%�&�')(�*�+�,�-
.�/�0�1�2
3�4�5�6�798
:
;�<�=�>�?�@�A�B�C�DFE
G
H
I�J�K�L�M�N�OQP R�S�T
U
V�W�X�YZ

[)\
]�^
_�`
a�b c�dfe
g)h�i�j�k
l�m�n oqp
r�s�t�uQv�w�x�y�z�{�|)}�~����
�����
��� �����
�
�)�������
����� �q�
�������Q�������������� �¡
¢�£�¤
¥�¦ §�¨�©
ª
«)¬�­�®�¯
°�±�² ³q´
µ�¶�·�¸ ¹�º�»�¼
½�¾�¿�À�Á�Â�Ã)Ä
Å�Æ�Ç
ÈÊÉÌË�Í�Î
Ï

Ð�Ñ�Ò�ÓÔ

Figure 3. The WCET specification of the polic y
frame work

aspect listPriority (noOfElements){
 advice {
 name listInsertCall;
 type before ;
 changes {
 name listInsert ;
 uses {
 getNextNode noOfElements;

}
 }
 intWcet 4ms+0.4*noOfElements;
 }
....
}

Figure 4. The WCET specification of the
listPriority aspect

sis [1]. Hence,we assumethat the WCETsof the mecha-
nismsareknown andcanbespecifiedby symbolicexpres-
sions.Furthermore,thepolicy framework WCETspecifica-
tion consistsof the mechanismusageof eachoperationin
theframework, andtheinternalWCET specification.Sim-
ilarly, the WCET specificationof an aspectdescribes:(i)
thetypeof eachadvicewithin theaspect,(ii) operationsan
advicemodifies,(iii) theusageof mechanismby theadvice
while modifyingtheoperations,and(iv) theinternalWCET
of theadvice. The internalWCET of theoperation/advice
is theWCET of thecodein theoperation/adviceexcluding
theWCETsof themechanismcalls.Weassumethatthein-
ternalWCETsareknown andcanbeexpressedin aform of
asymbolicexpression.

Figure3 presentsan instanceof a WCET specification
for thepolicy frameworkof thelinkedlist component.Each
operationin theframework is namedandits internalWCET
(intWcet) with the numberof times it usesa particular
mechanismaredeclared(seefigure 3). The WCET spec-
ification for the aspectlistPriority that changesthe
policy framework is shown in figure4. Sincethemaximum
numberof elementsin the linked list canvary, the WCET
specificationsareparameterizedwith thenoOfElements
parameter.

Aspect-level WCET specificationsarecurrently imple-
mentedsuch that an aspect-level WCET specificationof
a componentis containedin a file that hasthe extension
cdl (componentdescriptionlanguage),while aspect-level
WCETspecificationsof aspectshave theextensionadl (as-
pectdescriptionlanguage).Ourtool for aspect-levelWCET
analysisoutputsafile with anextensionsdl (systemdescrip-

tion language)that containsall the operationsof the com-
ponentsin the configurationof the real-timesystemunder
analysis,andtheir respectiveresultingWCETs.

3.2 The Aspect WCET Analyzer

The aspect-level WCET analyzerconsistsof two parts:
thepreprocessorandtheWCET analyzer. Thepreprocess-
ing stepis neededto extract the WCET informationcon-
tainedin the input files in a form usableby theWCET an-
alyzer. Hence,the preprocessortakesaspect-level WCET
specificationsof aspectsandcomponentsof areal-timesys-
temconfigurationasaninput. It analyzestheWCET spec-
ificationsgivenandproducesdatastructuresthatstore: (i)
valuesof internalWCETsfor operationsandadvices,(ii)
valuesof WCETsof mechanisms,(iii) parametersexisting
in thesymbolicexpressionsof operations,mechanisms,and
advices,and(iv) dependency information,e.g.,themecha-
nismsusedby anoperation,andadvicesmodifyinganoper-
ation. Thesedatastructuresareinternalto theaspect-level
WCET analyzerand they are coupling the preprocessing
andthe analyzingpart of the tool (seefigure 2). The pre-
processoris implementedusingBison[2] andFlex [4].

SinceinternalWCETsin theaspect-level WCET speci-
ficationsaresymbolicexpressions,thevaluesof theseneed
to bedetermined,andthefist stepis to obtainthevaluesof
parametersin the expressions.This is doneby theaspect-
levelWCETanalyzerin thestepbeforeinvokingtheWCET
analyzer. Theglobal functioncheckParameters() of
theaspect-level WCET analyzerchecksthedatastructures
createdin the preprocessingstepdetectingthe parameters
of operations,mechanisms,andadvices(usedin symbolic
expressions),andpromptsthehumanuserfor their values.
The resultingparameterizeddatastructuresare then used
by theWCET analyzerasaninput to calculatetheWCETs
of all operationswithin the real-timesystemconfiguration
underdevelopment.

The WCET analyzerperformsthe actual aspect-level
WCET analysis. It doesso basedon the resultingparam-
eterizeddatastructuresobtainedin the preprocessingstep
of the analysis,and the algorithmfor aspect-level WCET
we developedpreviously [6, 7]. The algorithmprovidesa
set of rules that definehow to computea new WCET of
an operationweaved with aspects,dependingon the type
of an advice in the aspect. For example, for the advice
of thetypebeforemodifying anoperation,thenew WCET
of the operationwould be computedusingthe valueof an
old WCET (i.e., WCET of an operationwithout aspects),
and augmentingthat value with the WCET of the before
advice. This rule reflectsthe fact that the codeof the be-
fore advicewould,afteraspectweaving, beinsertedbefore
the codeof the operation. Similar rules exist for the ad-
vices of typesafter and around. Following the example
of the linked list component,we cancomputethe WCET
of the operationlistInsert modified with an advice
listInsertCall of thetypebeforeasfollows.

Page 97 / 104

ÕfÖ�×�Ø�Ù Ú�Û
Ü�Ý�Þ ß
à)á â�ã ä å�æ

çéèëêíìïîñðóò ô

õ÷öùøóú

û�ü
ý)þ
ÿ������ ���	��
��
	���������	��� � ��� ��� �� !
"$#�%	&$'�() * +-,	.$/�021436587�9$:$;�< = > ?-@-A B C6D	E

FHG�I�JLKLMON
P QLRLS�T
UWVYX[Z

\^]�_[` a�bdc[e

fhgdihjLkmlnhodphqLr6s
t$u6v$w$x�y z { |�}6~m������6��6�6�	�m� � � �	���O� �h�6����6�$���$�	��� �

�	�6�6 $¡�¢£$¤m¥$¦$§�¨©$ªm«6¬	­	®

¯h°d±L²h³6´µL¶d·h¸L¹6º»$¼h½H¾6¿hÀ$ÁmÂ$Ã ÄhÅdÆhÇLÈmÉÊhËdÌhÍLÎ6Ï
Ð$Ñ6Ò$Ó$Ô�Õ Ö × Ø�Ù6ÚmÛÜ�Ý�Þ6ßà6á6â	ãmä å æ ç	è�éOê ëhì6íî�ïmð�ñmòôó�õmö�÷6ø�ù ú

ûhü�ý�þ�ÿ���������	��

�
��������� � � �������
������

!�"
#�$�% & ' (�)�* + ,�-�.
/�0
1
243
5�687 9

:�;=<=>@?�AB�C�D�E	F�G
H
I�J�K�L�M N O P�Q�R�S
T�U�V�W

X�Y
Z�[�\] ^ _�`�a b c�d�e
f�g�h8i�jlk�m�n�o�prq s

t�u�v�wyx�z�{ |�}
~
�������������������4� �
���
���r���l��� � �
�
���
�
���

¡ ¢�£�¤r¥ ¦ §�¨ª©�«8¬ ­® ¯�°4±y²@³�´
µª¶4· ¸

¹»º½¼ ¾À¿ÂÁ	Ã�Ä�Å�Æ ÇÉÈ	Ê

ËlÌ

Figure 5. An overview of the aspect-le vel WCET analysis lif ecycle
ÍÏÎ�Ð�Ñ�Ò�Ó�Ô�Õ�ÖØ× Ù ÚÜÛ�ÝÉÞ4ßáà â�ãrä ålæ�çÉè4é�êìë�í�î
ïñð ò ó@ô�õ öª÷ùø�ú ûáüþýÜÿ���� ��� �	��

���
�������
�����������	 �!#"�$&%('�)�* + ,.-0/ 1�2�354 6	7985: ; <>=@?�A
BDC.EGFIHKJ L�MON�P�QSRUTWV X&Y[Z
\�]�^

_a`�b
c(d

e f g�h0ikj
l�m5n0oUp(qsr tvu
wyx
zK{
|
}
~
�������
��� ���k�>���#�5�������
���#�5��� ��������������
¡D¢�£I¤�¥�¦�§�¨	©
ª¬«�­&®�¯>°@±�²�³�´�µG¶ · ¸�¹�º¬»�¼
½�¾>¿@À�Á�ÂÄÃ
ÅDÆ�Ç[È
É�Ê�ËIÌ�ÍÄÎ�Ï�Ð@Ñ

Ò�Ó
Ô�ÕUÖy×0Ø�ÙvÚ Û Ü�ÝßÞ à&á�â5ã0äUåçæ�è
é
êìë í@îkïñð@ò�ó(ôI��õ[ö�÷�ø�ù
ú�û ü�ý[þ ÿ �������
�
	���
�� ��������������� �! �"!#%$'&�(
)�*�+-,/.�0%1-243�5!6�798;:�<>=@?�A�BDCFEHG I�J�K!L%MON
P�Q!R�SUT V�W@XZY�[D\F]�^ _U`baUc;dfe

4 Limitations and Benefits

Ideally, thecompleteprocessof theaspect-level WCET
analysisshouldhave a lifecycle as presentedin figure 5.
Theprocessstartswith theimplementationfiles of compo-
nentsandaspects,which arefed into a tool that performs
the symbolic WCET analysison the code, i.e., computes
symbolicexpressionsfor WCETs,andextractstheseinto
aspect-level WCET specifications.Thesespecificationsare
storedin a library andareusedby theaspect-level WCET
analyzer. Basedon the output of the aspect-level WCET
analyzer, i.e., computedvaluesof the WCETs of a real-
time systemconfigurationconsistingof componentsand
aspects,we candeterminethe configurationeligibility for
usein theunderlyingreal-timeenvironmentwith respectto
WCET constraintsof theenvironment. If a givenconfigu-
ration doesnot fulfill the requirementswith respectto the
WCET, thedesignercanchooseanotherconfiguration,i.e.,
anothersetof aspect-level WCET specifications,until the
WCET requirementsaremet, andthe actualweaving can
beperformed.

Figure 5 also illustrates limitations of current auto-
matedaspect-level WCET analysis. The tool that com-
putesWCETsin the form of symbolicexpressionsandex-
tractstheseto aspect-level WCET specificationsshouldbe
an adaptationof the tool for symbolicWCET analysisto
theaspect-level WCET analysis.Thecurrentimplementa-
tion of the aspect-level WCET analyzerworks only with
aspect-level WCETspecifications.

The currentimplementation,althoughgiven the limita-
tions,providesbenefitsovertraditionalWCETanalysisper-
formed on weaved code since it enablescalculationson
WCET specifications,not on actual componentsand as-
pects.This way we reducetheoverheadof performingthe
weaving and thenWCET analysisfor eachpotentialcon-
figurationof aspectsandcomponents.Additionally, aspect-
level WCET analysiscanbe generalizedbeyondsymbolic
WCET analysisif anotherapproach(or a tool) for WCET
analysisis usedfor determiningtheinternalWCETsof op-
erations,mechanisms,andadvices.

References

[1] G. Bernatand A. Burns. An approachto symbolic worst-
caseexecutiontimeanalysis.In Proceedings of the 25th IFAC
Workshop on Real-Time Programming, Palma, Spain, May
2000.

[2] C. Donnely and R. Stallman. Bison: The YACC-
Compatible Parser Generator, 2002. Available at:
http://www.gnu.org/manual/bison-1.25/bison.html.

[3] G. Kiczales,J.Lamping,A. Mendhekar, C. Maeda,C. Lopes,
J.-M. Loingtier, andJ. Irwin. Aspect-orientedprogramming.
In Proceedings of the ECOOP, volume1241of Lecture Notes
in Computer Science, pages220–242.Springer-Verlag,1997.

[4] V. Paxson. Flex: A fast scanner generator, 2002. Available
at: http://www.gnu.org/manual/flex-2.5.4/flex.html.

[5] P. PuschnerandA. Burns. A review of worst-caseexecution-
timeanalysis(editorial).Real-Time Systems, 18(2/3):115–128,
May 2000.

[6] A. Tešanović, D. Nyström, J. Hansson,and C. Norström.
Integratingsymbolicworst-caseexecutiontime analysisinto
aspect-orientedsoftwaredevelopment.OOPSLA2002Work-
shop on Tools for Aspect-OrientedSoftware Development,
November2002.

[7] A. Tešanović, D. Nyström, J. Hansson,and C. Norström.
Aspect-level worst-caseexecutiontime analysisof real-time
systemscompositionedusingaspectsandcomponents.In Pro-
ceedings of the 27th IFAC/IFIP/IEEE Workshop on Real-Time
Programming (WRTP’03), Poland,May 2003.Elsevier.

[8] A. Tešanović, D. Nyström,J.Hansson,andC. Norström.To-
wardsaspectualcomponent-basedreal-timesystemsdevelop-
ment. In Proceedings of the 9th International Conference on
Real-Time and Embedded Computing Systems and Applica-
tions (RTCSA’03). Springer-Verlag,February2003.

Page 98 / 104

Fully Automatic, Parametric Worst-Case Execution Time Analysis

Björn Lisper
Dept. of Computer Science and Engineering, Mälardalen University

P.O. Box 883, SE-721 23 Västerås, SWEDEN
bjorn.lisper@mdh.se

Abstract

Worst-Case Execution Time (WCET) analysis means to
compute a safe upper bound to the execution time of a piece
of code. ParametricWCET analysis yields symbolic upper
bounds: expressions that may contain parameters. These
parameters may represent, for instance, values of input pa-
rameters to the program, or maximal iteration counts for
loops. We describe a technique for fully automatic paramet-
ric WCET analysis, which is based on known mathematical
methods: an abstract interpretation to calculate parametric
constraints on program flow, a symbolic method to count in-
teger points in polyhedra, and a symbolic ILP technique to
solve the subsequent IPET calculation of WCET bound. The
technique is capable of handling unstructured code, and it
can find upper bounds to loop iteration counts automati-
cally.

1 Introduction

Parametric (or symbolic) WCET analysis derives a for-
mula for the execution time, expressed in parameters of the
program, rather than just a single number. The parame-
ters can be either external, or internal like a symbolic upper
bound to a loop count. A parametric WCET formula con-
tains much more information than just a single WCET esti-
mate, and it can be used for applications like online schedul-
ing of tasks where parameters are unknown until runtime, or
to find which parts of a code that has the strongest influence
on the WCET. Thus, it is also potentially much more useful.

Previous approaches to parametric WCET have been
based on the program timing schema model [4], or paths [1,
2]. These methods need manual annotations for constraints
on loop counters and infeasible paths. An iterative method
to compute parametric WCET bounds for simple loops has
also been suggested [10].

Our method is potentially much more powerful than pre-
vious approaches. It can find loop bounds and infeasible
path constraints automatically, and is capable of using such

complex constraints in the calculation phase. Here we give
a short account for the method followed by an explanatory
example. A more detailed description is found in [8].

2 The Method

The analysis consists of a symbolic flow analysis, a sym-
bolic summation, and a symbolic IPET calculation. See
Fig. 1. The analysis uses a control flow graph model for
programs, which means it works also for unstructured codes
with jumps.

In the flow analysis, upper bounds for execution counts
are derived in the form of symbolic expressions. If the pro-
gram terminates, then the actual execution count for a pro-
gram point equals the number of different states encoun-
tered in that point. Our method derives an upper approxi-
mation to the set of possible states in each program point,
and then calculates the number of points in this set approxi-
mation. This yields an upper bound to the actual number of
states and thus, under the assumption that the program ter-
minates, the execution count. The set approximation may
be parameterized: the counting is then performed symbol-
ically. Program variables that affect the program flow, but
do not change during the execution, are classified as param-
eters since varying their values will give rise to more states
than are actually traversed during a single execution.

Set approximations can also be used to limit the num-
ber of states for which certain program paths can be taken.
This can be used to find infeasible paths. It is also use-
ful when analyzing program flows for pipelined processors,
where different execution paths must be explored for possi-
ble pipeline overlap effects.

Sets of states in program points can be approximated
from above by classical abstract interpretation [5]. Ab-
stract interpretation is a framework that covers many pos-
sible ways to approximate sets of states. One abstract in-
terpretation of particular interest is Halbwach’spolyhedral
abstract interpretation [6], which computes polyhedra as
set approximations. Each program variable that may affect
the program flow corresponds to a dimension in the polyhe-

1

Page 99 / 104

(control flow graph)
program Polyhedral

flow analysis
symbolic
counting

Parametric
Integer
Programming

Parametric
WCET
formula

Figure 1. Structure of the method.

dral space. For instance, the set of states in a nested loop
with loop indices�, � and upper (parametric) loop limits
�, � will be bounded by a four-dimensional polyhedron in
��� ���� ��-space.

Polyhedra are convex approximations. They describe
linear loop index dependencies in nested loops, such as tri-
angular loops, well but will overapproximate index sets for
loops with non-unit strides. Other parametric set approx-
imations are certainly possible, and will then provide dif-
ferent tradeoffs between precision and speed. Investigating
these tradeoffs is an interesting topic of future research.

The next step is to count the numbers of points in poly-
hedra. Two techniques are known: through successive pro-
jection using known formulae for sums of powers of inte-
gers [9], and usingEhrhart Polynomials [3]. Both methods
can compute parametric results. In our loop example above
we would count points with respect to� and�, and return a
sum that is parametric in� and�.

The final phase is the IPET calculation. It is done by
Parametric Integer Programming (PIP) [7], which is a para-
metric extension of integer linear programming. This algo-
rithm finds the optimum of a linear objective function over
the parameterized set

� �� � �� � ��� ����	�
 � �� � ��� �� integral�

where�
 is a vector of parameters.
The parametric sums derived by the flow analysis are

typically nonlinear in the parameters. However, each such
sum can be replaced by a new symbolic parameter in the
symbolic IPET calculation. The constraints will then be-
come linear in these new parameters: PIP can compute
an optimum expressed in them, and a subsequent substi-
tution with the original sums followed by a simplification
will yield the optimum expressed in the original parame-
ters of the program. However, the new parameters often
have direct interpretations, such as upper bounds to execu-
tion counts in program points, and can thus be interesting in
their own right. An option is to leave them in the final an-
swer. The resulting formula will then provide information
how sensitive the WCET is for changes in loop counts and
similar, which is interesting when tuning the code for best
WCET.

The procedure outlined above is a fully automatic
method for parametric WCET analysis that goes all the way
from flow analysis to final WCET calculation. As far as we

know, no other parametric method achieves this. The para-
metric calculation generalizes conventional IPET and can
deal with advanced architectural features such as pipelining
and caches in the same way.

3 An Example

Consider the CFG in Fig. 2. We assume each node��

in the CFG has an execution time��. Each arc� has an
execution count��. We first analyze it in order to extract
upper bounds for the execution counts for all statements.
It suffices to analyze the program w.r.t. the possible values
of � and�, since they are the only variables affecting the
program flow. We assume that B1 and B2 are basic block
that update neither� nor �. There is one polyhedron
 �

for each program point�, however
 � �
� and
� �
�

since B1 and B2 touch neither� nor�. We must also have

� �
�. The system is solved byfixed-point iteration for
the simplified system, which converges in nine iterations.
The result is shown in Table 1. (� stands for the universal
set:
� � � thus means that we allow any starting state in
the analysis.)

We now calculate the number of points in the polyhedra.
In the CFG in Fig. 2, the conditions depend on� and� only.
� is never updated, and is thus considered a parameter. For
each node, the number of elements in the abstract state on
the preceding edge provides an upper bound on the execu-
tion count. The execution count for node� � is trivially one.
By the method in [9], we obtain:

�
�
�

�
� � �

�
�
�

�
� �

�
�
�

�
� � �� � � � ���� � ���� �

�
�
�

�
� � �� � � �� ���� �� �� ���� �

�
�
�

�
� � �� � � � ����

�� � � �� ���� �� ���� �

���� �

This yields bounds�� �
�
�
�
�
�, where�� is execution count

for basic block��.

� is overapproximated in the analysis. Therefore, there

is no upper bound for��. This may seem awkward. How-
ever, there arestructural flow constraints on the execution
counts in addition to the upper bounds: for any node in the
CFG, the sum of the execution counts for the input arcs must

2

Page 100 / 104

i := 0 start

i < n

i < n−10

stop
false

B1 B2

falsetrue

i := i+1

true

S2
S10

S3

S5

S6 S7

S8

S9

S4

S0S1
n0

n2

n3

n4 n5

n8

Figure 2. A simple flowchart program.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

� �

� � �� � � � �� �� �� �� � � � �� � � � � � � �

Table 1. Result of abstract interpretation for example flowchart.

x4

x8

s4

s8

20 + 50x4 + 140x8 = k Increasing k

Figure 3. Maximizing the objective function in
the IPET example.

equal the corresponding sum for the output arcs. These con-
straints will ensure finiteness of��, see below.

We finally perform a parametric IPET calculation. The
WCET estimate is��	�

�
�	����������� �����. The execution

count bounds derived from the abstract interpretation yield
constraints�� � ��� � � �� � � � � ��, where�� is a symbolic
parameter for

�
�
�
�
�. We also have non-negativity constraints

�� � �� � � �� � � � � ��.

The structural flow constraints of the CFG can be used to
reduce the number of variables down to two. Selecting� �

and�� as basis yields the reduced problem��	��� � �� �
����� � ��� � ����� � �� � �� � ���� under the constraints
� � �� � ��, � � �� � ��. Let us assume computation
times �� � ��, �� � ��, �� �
�, �� � ���, �� � ���,
and�� � ��. We then obtain the WCET estimate���� �
����� �
� for �� � ��, �� � ��. See Fig. 3. With��,
�� as the functions of� given by the polyhedral abstract
interpretation we obtain (after simplification):

� � ��
 ����� ���
� � � � ��
 �����
�

otherwise

�

4 Conclusions and Further Research

We have described and exemplified a fully automatic
method for parametric WCET calculation, that can deal
with complex flow constraints and advanced architectural
processor features. Future work involves a full implementa-
tion in order to evaluate the method with respect to accuracy
and practical time complexity.

3

Page 101 / 104

References

[1] G. Bernat and A. Burns. An approach to symbolic
worst-case execution time analysis. InProc. 25th
Workshop on Real-Time Programming, Palma, Spain,
May 2000.

[2] R. Chapman. Worst-case timing analysis via finding
longest paths in SPARK Ada basic-path graphs. Tech-
nical Report YCS246, The British Aerospace Depend-
able Computing System Centre, Dept. of Computer
Science, Univ. York, Oct. 1994.

[3] P. Clauss. Counting solutions to linear and nonlin-
ear constraints through Ehrhart polynomials: Appli-
cations to analyze and transform scientific programs.
In Proc. International Conference on Supercomput-
ing, pages 278–285, Philadelphia, PA, 1996. ACM.

[4] A. Colin and G. Bernat. Scope-tree: a program repre-
sentation for symbolic worst-case execution time anal-
ysis. In Proc. 14th Euromicro Conference on Real-
Time Systems, Vienna, June 2002.

[5] P. Cousot and R. Cousot. Abstract interpretation: A
unified model for static analysis of programs by con-
struction or approximation of fixpoints. InProceed-
ings of the 4th ACM Symposium on Principles of Pro-
gramming Languages, pages 238–252, 1977.

[6] P. Cousot and N. Halbwachs. Automatic discovery
of linear restraints among variables of a program. In
Proceedings of the 5th ACM Symposium on Principles
of Programming Languages, pages 84–97, 1978.

[7] P. Feautrier. Parametric integer programming.RAIRO
Recherche Opérationnelle, 22:243–268, Sept. 1988.

[8] B. Lisper. Fully automatic, parametric worst-case
execution time analysis. MRTC report, Dept. of
Computer Science and Engineering, Mälardalen
University, Apr. 2003.
http://www.mrtc.mdh.se/publ.php3?id=0531 .

[9] W. Pugh. Counting solutions to Presburger Formulas:
How and why. InProc. ACM SIGPLAN’94 Confer-
ence on Programming Language Design and Imple-
mentation, pages 121–134, Orlando, FL, June 1994.
ACM.

[10] E. Vivancos, C. Healy, F. Mueller, and D. Whal-
ley. Parametric Timing Analysis. In J. Fenwick and
C. Norris, editors,Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Sys-
tems (LCTES’2001), pages 88–93, Snowbird, Utah,
June 2001.

4

Page 102 / 104

Page 103 / 104

ISSN 1404-3041

ISRN MDH-MRTC-116/2003-1-SE

Page 104 / 104

	WCET2003 final.pdf
	Abstract
	Introduction
	Evaluating the Worst-Case Execution Time
	Modeling pipelined processors

	Inter-block timing effects
	Pairwise timing effects
	Long timing effects: Engblom's timing model

	Towards a high-performance processor without long timing effects
	Case study: superscalar pipeline
	Evaluation methodology
	Long timing effects in a superscalar pipeline
	Synchronizing the pipeline to eliminate long timing effects

	Conclusion
	
	
	
	
	References
	Appendix 1. Computing long time effects in a superscalar pipeline.
	Appendix€2. Detecting basic blocks.

	WCET2003 final1.pdf
	Abstract
	Introduction
	Evaluating the Worst-Case Execution Time
	Modeling pipelined processors

	Inter-block timing effects
	Pairwise timing effects
	Long timing effects: Engblom's timing model

	Towards a high-performance processor without long timing effects
	Case study: superscalar pipeline
	Evaluation methodology
	Long timing effects in a superscalar pipeline
	Synchronizing the pipeline to eliminate long timing effects

	Conclusion
	
	
	
	
	References
	Appendix 1. Computing long time effects in a superscalar pipeline.
	Appendix€2. Detecting basic blocks.

