
WCET’2002

2nd International Workshop on Worst-Case
Execution Time Analysis

(Satellite Event to ECRTS’02)

Technical University of Vienna, Austria
June 18, 2002

Message from the Workshop Chair

Welcome to the 2nd international Workshop on Worst-Case Execution Time (WCET) Anal-
ysis, a satellite event of the Euromicro Conference on Real-Time Systems held in Vienna,
Austria, 18th June 2002. This is the second event in the series after the successful first
meeting held in Delft.

The aim of the workshop is to provide a forum for discussing current trends and issues
related to the timing analysis of Real-Time Systems with special emphasis on bridging the
gap between industry and academia. The meeting encourages debate and interaction be-
tween participants through short presentations followed by active discussion. The program
of the workshop presents contributions on the following areas of timing analysis:

� Within the context of high-level analysis techniques contributions address path anal-
ysis techniques and issues related to object oriented programming models.

� On low-level analysis techniques the focus is on modelling timing behaviour of pro-
cessor features such as cache effects, branch prediction and speculative execution.

� The industrial view presents timing requirements in the aerospace industry and cur-
rent models of analysis and current tool support.

I would like to express my congratulations to all participants, authors, reviewers, and the
organisation committee that have made this event a successful one.

Dr. Guillem Bernat.
University of York. England, UK

Technical Program

� 9:30 - 10:45 High Level Analysis (chair: Isabelle Puaut)

– A Prototype Tool for Flow Analysis of C Programs.
Jan Gustafsson, Björn Lisper, Nerina Bernmudo, Christer Sandberg and Linus
Sjöberg.
Mälardalen University, Västerås, Sweden.

– A novel Gain Time Reclaiming Framework Integrating WCET Analysis for
Object-Oriented Real-Time Systems.
Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat.
University of York, United Kingdom.

– A Unified Flow Information Language for WCET Analysis.
Andreas Ermedahl, Uppsala University, Sweden.
Jakob Engblom, IAR Systems AB, Sweden.
Friedhelm Stappert, C-LAB, Germany.

� 10:45 - 11:10 Coffee Break

� 11:10 - 12:00 Tools (chair: Jan Gustafsson)

– WCET Estimation from Object Code Implemented in the PERF Environment.
Douglas Renaux, João Goés and Robson Linhares.
Laboratory of Embedded Systems Innovation and Technology, Brasil.

– Status of the BOUND-T WCET Tool.
Niklas Holsti and Sami Saarinen.
Space Systems Finland Ltd., Espoo, Finland

� 12:00 - 12:10 Break

� 12:10 - 13:00 Industrial Views (chair: Peter Puschner)

– You Can’t Control what you Can’t Measure, or Why it’s Close to Impossible to
Guarantee Real-Time Software Performance on a CPU with On-Chip Cache.
Nat Hillary and Ken Madsen.
Applied Microsystems Corp./Wind River Sysrems Inc.

– The European Space Agency’s Involvement and interest in WCET and Schedul-
ing Analysis.
Morter Rytter Nielsen, Eric Conquet and Jean-Loup Terraillon.
ESA, Nordwjik, Netherlands.

� 13:00 - 14:30 Lunch

� 14:30 - 15:45 Low Level Analysis (chair: Stefan Petters)

– Cache Modelling vs Static Cache Locking for Schedulability Analysis in Multi-
tasking Real-Time Systems.
Isabelle Puaut.
IRISA, Rennes, France.

– A Framework to Model Branch Prediction for WCET Analysis.
Tulika Mitra and Abhik Roychoudhury.
National University of Singapore, Singapore.

– Difficulties in computing the WCET for Processors with Speculative Execution.
Christine Rochange and Pascal Sainrat.
Institut de Recherche en Informatique de Toulouse, France.

� 15:45 - 16:15 Coffee Break

� 16:15 - 17:30 Issues in WCET Analysis (chair: Niklas Holsti)

– Why You Can’t Analyze RTOSs without Considering Applications and Vice
Versa.
Jörn Schneider.
Saarland University, Saarbrücken, Germany.

– How Much Worst Case is Needed in WCET Estimation?
Stefan Petters.
University of York, United Kingdom.

– Is WCET Analysis a Non-Problem? - Towards New Software and Hardware
Architectures.
Peter Puschner.
University of Vienna, Austria.

� 20:00 Dinner

Table of content

� A Prototype Tool for Flow Analysis of C Programs.
Jan Gustafsson, Björn Lisper, Nerina Bernmudo, Christer Sandberg and Linus Sjöberg.
Mälardalen University, Västerås, Sweden.

� A novel Gain Time Reclaiming Framework Integrating WCET Analysis for Object-
Oriented Real-Time Systems.
Erik Yu-Shing Hu, Andy Wellings and Guillem Bernat. University of York, United
Kingdom.

� A Unified Flow Information Language for WCET Analysis,
Andreas Ermedahl, Jakob Engblom, Friedhelm Stappert.

� WCET Estimation from Object Code Implemented in the PERF Environment.
Douglas Renaux, João Goés and Robson Linhares. Laboratory of Embedded Sys-
tems Innovation and Technology, Brasil.

� Status of the BOUND-T WCET Tool.
Niklas Holsti and Sami Saarinen. Space Systems Finland Ltd., Espoo, Finland

� You Can’t Control what you Can’t Measure, or Why it’s Close to Impossible to Guar-
antee Real-Time Software Performance on a CPU with On-Chip Cache.
Nat Hillary and Ken Madsen. Applied Microsystems Corp./Wind River Sysrems Inc.

� The European Space Agency’s Involvement and interest in WCET and Scheduling
Analysis.
Morter Rytter Nielsen, Eric Conquet and Jean-Loup Terraillon. ESA, Nordwjik,
Netherlands.

� Cache Modelling vs Static Cache Locking for Schedulability Analysis in Multitasking
Real-Time Systems.
Isabelle Puaut. IRISA, Rennes, France.

� A Framework to Model Branch Prediction for WCET Analysis.
Tulika Mitra and Abhik Roychoudhury. National University of Singapore, Singa-
pore.

� Difficulties in computing the WCET for Processors with Speculative Execution.
Christine Rochange and Pascal Sainrat. Institut de Recherche en Informatique de
Toulouse, France.

� Why You Can’t Analyze RTOSs without Considering Applications and Vice Versa.
Jörn Schneider. Saarland University, Saarbrücken, Germany.

� How Much Worst Case is Needed in WCET Estimation?
Stefan Petters. University of York, United Kingdom.

� Is WCET Analysis a Non-Problem? - Towards New Software and Hardware Archi-
tectures.
Peter Puschner. University of Vienna, Austria.

� ���������	��

������������������������� � ��!"�#

$�%�$&�	��' ������()�*!"+,$

-�.0/21
354768.:9;4<4�=>/�?A@�B�C=>DE/GF5HI47J5KLDM?ON
KLD<HP/5.�@QKLDERS3UT*=V?VW�XVDEHI476EKLDZY�.�/5T*[5KLD<\]?^F5HP/*3U4_Y�B�C=>[5KLDE\
`_KLJ5.�D<6ER�KL/�6Q=09aW�=>R�J]3V6<KMD�b	/V\>HP/VKLKLDEHc/V\
deC.�fI.0D8TV.0fPKL/�g_/VHPh�KLDi4�Hc6�jk?>lSC.m476EKLD�n.>4�?oY�paK�T*KL/

qmr�s�tQu�v5w>xau�t�voy"u{zV|�s5}m~k�U�����8|���u�w]|0s5���V���*�k~o�m�>���;�]�����<|��

�a�>���������i�
�_�������I���I������ Q¡��£¢<¤I¢E¤c¥<¡��a¤I¢i¢7¦V§¨¢���©L¢�ª� 7«M 7¦¬¥i�P�¬��­Z®V¯M�	¡±°��I¡�¢<�I�a¢7§A¤c¯M�)¤I¢i¢�¦V�¬��¤I¢��I¤I <¤c�¬�� �¦�¦¬¥

 �«L �¦¬¥i�I�	²�¡��£¢<³��£ <´	�5��«Q��«�¤I���£´"�����¬ E¤I�	��¢i���O§¨¢7�£´" <¤;µL �«L�a¤I¢¶�; 7¦¬��°�¦¬ <¤I�¶©M¢�ª·��«�§¨¢��£´	 <¤c�¬¢�«>µL¦���¸8�^¦¬¢i¢�¡
�:¢7°�«L����­5®V¯±�¬�5��«±§¨¢��£´	 <¤c�¬¢�«ZªV��¦�¦����O°M�I���Q��¥a 	�c°±�M�¹��º<°M��«�¤O¦¬¢�ªV»¼¦¬�;½<��¦� �«L �¦¬¥i�c�¬�¶¤I¢	�; 7¦¬��°�¦¬ <¤I�	 �¾±«M 7¦
ª]¢7�£�I¤	�� E�I�Q��¿i�;��°L¤c�¬¢�«�¤c�¬´"�<­��
�Q�����I���I���:�_¤c¯M��´	 ���«À�I¤I��¡M�)¢�§�¤c¯M��¤I¢i¢7¦¨µ] 7«M�� 7«M 7¦¬¥i�I�Á _�c�¬´¶¡�¦¬�
�;¿i <´¶¡�¦¬�¶¤I¢���¦�¦�°L�I¤c�£ E¤I�)¢�°±�A´	�;¤c¯L¢i��­

Â Ã*Ä�Å*Æ5Ç
È�É
ÊOÅ]Ë�ÇÌÄ

ÍVÎ�Ï�Ð�ÑÓÒ�Ô£ÑÓÕ�ÖZÔ�×�Ï�ØÚÙ�Î�Û£Ô�Ü�ÝiÛ�Ï�ÞVßLÏ�Ò7à�Ô£ÑÓÙ�ÕÚá�ÑÓâ_Ï�ã¼ØäÜ�Þ]á�å¶Ùiæ�ç�Î£Ù±Ö�Î;Ý�â
Û¶ÑèÛ�Ý�ÕéÏ�Û£Û�Ï�ÕLÔ£Ñ¨ÝiêOÛ£Ô�Ï�çÚÑÓÕéÐ�Ï�Û�ÑÓÖ�ÕLë
ÑÓÕ�ÖZÎ£ÏEÝ�êìë¹Ô�Ñèâ_ÏaÛ�íLÛ£Ô£Ï7â
ÛEîVÏ7Û£ç>Ï�Ò�Ñ¨ÝiêÓêÓíï×>ÝiÎ£ÐÚÎ�ÏEÝiêìëIÔ£ÑÓâ
ÏQÛ£íMÛ�Ô£Ï�â_ÛEðéñZÏ�Ô�×�ÙLÐ�ÛQòmÝiÛ�Ï�ÐSÙ±ÕÚÛ£Ô;Ý�Ô£ÑÓÒÁÝ�ÕmÝiêÓíLÛ£ÑÓÛ	ÒEÝ�Õ
Ö�à>ÝiÎ;Ý�ÕLÔ£Ï�Ï	Ô£×0Ï�Û;Ý8æPÏ�Õ�Ï7Û£Û�Ù�æ�Ô£×�Ï	ç�Î�Ï�Ð�ÑÓÒ�Ô�Ï�ÐZØóÜ�ÞUá�îLô�×:ÑÓêèÏ�â_ÏEÝiÛ�à�Î£Ï7â
Ï�ÕLÔ£Û<î�ÑÓÕ_Ô£×�Ï	Ö�Ï7Õ�Ï�Î;Ý�ê�ÒEÝiÛ�Ï�î�Ò<ÝiÕ
Õ0Ù�ÔEð
õIÕ�Ô£×�Ï¶ç�Î£Ï7Û£Ï�Õ�Ò7Ï"Ù�ækêÓÙLÙ�ç0ÛAÝiÕ�Ð�Î�Ï�Ò�à�Î�Û£ÑÓÙ�Õ*îiömÕ0ÑèÔ�Ï�ÑÓÔ£Ï�Î;ÝiÔ�ÑÓÙ�ÕQòmÙ±à�Õ�Ð�Û5â�à0Û£ÔVòmÏ¶Ö�ÑÓ÷�Ï7ÕaÔ�Ù�Ô£×�Ï�ØäÜ�ÞVá�ÒEÝ�êìë

Ò�à�ê¨Ý�Ô£ÑÓÙ�ÕQâ
Ï�Ô�×�ÙLÐ�ðVñZÙ�Û�Ô5ÙiæPÔ�Ï�Õ�î±Ô£×�Ï7í
ÝiÎ£Ï�Ö±ÑÓ÷�Ï�Õ
Ý�Û�øaù�ú�ûLùiü�ù±ú�ú�ý�þcù�þcÿ¨ý±ú��5òLíaÔ�×�Ï�ç�Î£Ù±Ö�Î�Ýiâ
â_Ï�ÎEð��¶ç�Ô�ÑèÙ±ÕmÝiê
ÝiÕ0Õ�Ù�Ô�ÝiÔ£ÑÓÙ±Õ�Û�ã¨êÓÑ���Ï�ÑÓÕLæcÙ�Î£âZÝiÔ�ÑèÙ±Õ	Ù�Õ
ÑÓÕLæcÏEÝiÛ�Ñèò0êèÏ�ç>ÝiÔ£×0Û;åoâ_Ý<í�ÝiêÓÛ£Ù)òmÏ¶Ö�ÑÓ÷�Ï�Õ*î�Ô�ÙaÎ�Ï�Ð�à�Ò�Ï	Ô�×�Ï�Ùi÷±Ï�Î£Ï�Û�Ô£ÑÓâÁÝ�Ô£ÑÓÙ�Õ
ÙiæVÔ£×�Ï)ÒEÝiêÓÒ�à�ê¨Ý�Ô£Ï�ÐZØäÜ�ÞVá�ðLá�×�Ï�ÝiÕ0Õ�Ù�Ô�ÝiÔ£ÑÓÙ±Õ�ÛAÒ<ÝiÕéò>Ï	Û à�ç�ç0êèÑÓÏ�ÐéÝ�Û�Ò�Ù�â_â
Ï�ÕLÔ£ÛoÙ�Î�ÑÓÕÁÝQÛ�Ï�çmÝiÎ�ÝiÔ�Ï	ömêÓÏ�ð
� ç�Î£Ù±ò�êÓÏ�â ô�ÑèÔ�×
âZÝiÕLàmÝiê�ÝiÕ0Õ�Ù�Ô�ÝiÔ£ÑÓÙ±Õ�ÛAÑÓÛOÔ£×mÝ�Ô�Ô£×�Ï�ÒEÝiêÓÒ�à�ê¨Ý�Ô£ÑÓÙ�Õ_Ùiæ]Ô�×�Ï�Û�ÏaÝiÎ�Ï"Ù�æPÔ£Ï7ÕÁÔ�ÑÓâ
Ï�ëIÒ�Ù�Õ0Û£à�â_ÑèÕ0Ö

ÝiÕ0Ð�Ï�Î£Î�Ù�ÎIëIç�Î�Ù�Õ�Ï�ðoõIÔ5ôOÙ�à�êÓÐQòmÏ	ÝiÐ�÷�Ý�ÕMÔ�ÝiÖ±Ï�Ù�à�ÛVÑìæ�Ô£×0Ï�Û£Ï"ÝiÕ�Õ�Ù±Ô;Ý�Ô£ÑÓÙ�Õ�ÛoÒ�Ù�à�êÓÐ�ò>Ï�ÒEÝiêÓÒ�à0ê Ý�Ô£Ï�ÐZÝià�Ô�Ù�âZÝiÔ£ÑÓÒEÝ�êÓêèí±ð
á�×�ÑÓÛ�ÑÓÛ�Ô£×�Ï�Ý�Ñèâ�Ùiæ]Ô�×�Ï�ç�Î�Ù���Ï�Ò7Ô�Ð�Ï�Û£Ò7Î£ÑÓòmÏ7ÐïÑÓÕZÔ£×�ÑÓÛ�çmÝ�ç0Ï7ÎEð
á�×�Ï	ØäÜ�ÞVá�ç0Î£Ù���Ï7Ò�Ô�ÑÓÛ�Ý�Û�à�òLëIç�Î£Ù��#Ï�Ò�Ô�ô�ÑÓÔ�×�ÑÓÕÁÜ	��
	Þ
� ãPÜOêÓà�Û�Ô£Ï�Î�Ù±Õ�
¶ÑÓÛ£Ô�Î£ÑÓò�à�Ô�Ï�ÐéÞVâ�ò>Ï�Ð�Ð�Ï�Ð���ÏEÝ�êìë

á�ÑÓâ
Ï��:íMÛ�Ô£Ï�â_Û;å¶ÑÓÕïÔ�×�Ï � �:á�Þ5Ü�� � �Lá������OÒ�Ù�â_çmÏ�Ô�Ï�Õ�Ò#Ï�Ò7Ï�ÕLÔ£Ï�Î<ð
á�×�ÏQç�Î�Ù���Ï�Ò�ÔQÒ�Ù±Õ�Û£ÑÓÛ£Ô�Û�Ùiæ�ÔIôOÙÁÖ±Î£Ù±à�ç�ÛEî
Ù�Õ0Ï"ÝiÔ���ç0ç�Û;Ý�ê Ý���Õ�ÑÓ÷�Ï7Î£Û£ÑÓÔIíéã¼êèÙiôOëIêÓÏ�÷�Ï7êmÝiÕmÝ�êÓíMÛ�ÑÓÛ;å5Ý�Õ�Ð
Ù�Õ�Ï"Ý�ÔAñ��Ýiê¨Ý�Î£ÐmÝ�êèÏ7Õ���Õ�ÑÓ÷�Ï7Î£Û£ÑÓÔIí�ÑÓÕ� ��Ý�Û£Ô�Ï�Î"!Ý�ÛEð5á�×0Ï
Ùiô�Ý�ÕmÝiêÓíLÛ£ÑÓÛ�Î�Ï�Û£ÏEÝ�Î£Ò�×éÑÓÛ�ÝiÕéÝ�Ò�Ô£ÑÓ÷LÑÓÔIí�Ùiæ]Ô�×�Ï$ %�ÝiÛ£Ô�Ï�Î"!Ý�Û^Ö±Î£Ù�à0ç�ð
á�×�Ï # Ùiô�Ý�ÕmÝiêÓíLÛ£ÑÓÛ5Ô�ÙMÙ±ê�ÑÓÛ Ý)çmÝiÎ�Ô�Ùiæ]Ý)ç�ê¨ÝiÕ�Õ0Ï�Ð�îLÒ�Ù�â
ç�êÓÏ�Ô�Ï�ØäÜ�ÞVáäÔ�ÙMÙ±ê]ã¼Û£Ï�Ï&� ÞoÞ
��'
�(����æPÙ�ÎOÐ�Ï�Ô�ÝiÑÓêÓÛ;å�ð

á�×�Ï # ÙiôGÝiÕmÝ�êÓíMÛ�ÑÓÛAçmÝ�Î£Ô¶ô�ÑèêÓê>ÒEÝiêÓÒ�à0ê Ý�Ô£Ï	Ô£×0Ï�çmÙ±Û£Û�Ñèò0êèÏ # Ù8ô{ÙiæVÔ£×�ÏQÝiÕmÝ�êèíLÛ�Ï�ÐZç�Î£Ù±Ö�Î;Ý�âïð�á�×0ÑèÛ�ÑÓÕLæcÙ�Î£âZÝiÔ�ÑèÙ±Õ
ô�ÑÓêÓê¹î±Ô£Ù±Ö�Ï�Ô�×�Ï�Î¶ô�ÑèÔ�×
Ô�×�Ï�Î£Ï7Û£à�êÓÔ£Û^æPÎ£Ù±âeÔ£×0Ï"êÓÙiôOëIêÓÏ�÷�Ï�ê�Ý�Õ0ÝiêÓíLÛ£ÑÓÛ<îLòmÏ	à�Û�Ï�ÐéÔ£Ù�Ò<ÝiêÓÒ�à�ê¨ÝiÔ�Ï�Ý	ömÕ>Ýiê�ØäÜ�ÞVá�ð

) *,+�-�Æ.+
Ë/-10 Ç�2�Å435-76SÇ_Ç�8

9;:�< =?>�@BA"CED�F	GIHKJLG�>E@M=%H	H
N

á�×�Ï5Ô�ÙLÙ�êMÝ�ÕmÝiêÓí�O�Ï�ÛVÜoë¹ç0Î£Ù�Ö±Î;Ý�â
Û>ÑèÕ	ÑÓÕLÔ£Ï�Î�â
Ï�Ð0Ñ Ý�Ô£Ï*Ò�ÙLÐ�Ï5æPÙ�Î£âZÝiÔ<ð�ØÚÏ5ô�ÑÓêÓêià�Û£ÏoÔ£×�Ï
P¶õ£Ü�ãQP¶Ï�ôÚõIÕLÔ£Ï�Î�â
Ï�Ð�Ñ¨Ý�Ô£Ï
ÜOÙLÐ�ÏEå*æcÙ�Î£âZÝiÔOã¨Ð�Ï�÷±Ï�êÓÙ�ç>Ï�Ð�ô�ÑÓÔ£×�ÑÓÕ�Ü	�R
"Þ4��å�ð�á�×�ÏOæPà�êÓê � P��Lõ5ÜÚê¨Ý�Õ�Ö�àmÝ�Ö�ÏOô�ÑÓêèêLò>Ï�Û£à�ç0çmÙ±Î£Ô£Ï7Ðïã¨ÑÓÕ�Ò7êèà0Ð�ÑÓÕ�Ö
ç>Ù�ÑÓÕLÔ£Ï�Î�ÛEî�Î�Ï�Ò�à�Î�Û£ÑÓÙ�Õ�ÝiÕ�ÐZà�Õ�Û�Ô£Î�à�Ò�Ô£à0Î£Ï�Ð�Ò�ÙLÐ�ÏEå7ð
ØÚÏAÝiÛ�Û£à�â_Ï5Ô£×>ÝiÔVÔ£×�ÏOÒ�ÙLÐ�ÏOÎ£Ï�ç0Î£Ï�Û�Ï�ÕLÔ£Û�Ý�Û£íLÕLÔ;Ý�Ò�Ô£ÑÓÒEÝiêÓêèí�Ý�Õ�ÐaêÓÙ±Ö�ÑÓÒEÝiêÓêÓí�Ò�Ù±Î£Î£Ï7Ò�Ô5ç�Î�Ù�Ö�Î�Ýiâ�ðTS0Ù�Î*Ï�ß�Ýiâ_ç�êÓÏ�î

ôOÏ�Ý�Û£Û£à0â
Ï�Ô�×mÝiÔ	ÝiÎ£Î�Ý<íZÑèÕ0Ð�ÑÓÒ�Ï�Û�ÝiÎ�Ïaô�ÑÓÔ£×0ÑèÕZò>Ù�à�Õ0Ð�ÛEð	ØÀÏaÝ�êÓÛ£ÙÁÝ�Û£Û�à�â
Ï�Ô�×mÝiÔ	Ô�×�ÏaÒ7Ù�ÕLÔ£Î�Ù�ê # ÙiôGÖ�Î�Ýiç�×�Ùiæ
Ô£×0Ï"ÝiÕ>ÝiêÓíLÛ£Ï�Ð�ç�Î�Ù�Ö±Î;Ýiâ&ÑÓÛ5Ô£×�Ï¶Û;Ý�â
Ï�ÝiÛ5ÑÓÕ�Ô£×0Ï�ömÕmÝ�ê�âÁÝiÒ�×�ÑÓÕ�ÏAÒ7ÙMÐ0Ï�îLÑIð Ï±ðèî�Ô£×mÝ�Ô5Ô£×�Ï^ömÕmÝ�ê�Û£Ô�Ï�ç�Û�Ô£Ù)âÁÝiÒ�×�ÑÓÕ�Ï
Ò�ÙLÐ�Ï�Ð0ÙMÏ7Û�Õ�Ù�Ô�Ò�×mÝ�Õ�Ö�Ï	Ô£×0Ï�Ò�Ù�ÕLÔ�Î£Ù�ê # Ùiô�ð
ñéÝiÕLàmÝ�ê�ÝiÕ�Õ0Ù�Ô;Ý�Ô£ÑÓÙ�Õ0Û Ý�Î£Ï�à�Û�Ï�ÐéÝiÛ�ÝQÒ�Ù±â
ç�êÓÏ�â_Ï�ÕLÔ5ô ×�Ï�ÕZÔ�×�ÏaÝià0Ô£Ù�âZÝiÔ�ÑèÒ # Ùiô�ÝiÕmÝ�êÓíMÛ�ÑÓÛ5æ¹Ý�ÑÓêèÛ<ð

�

����� �����
	���
�����
����������
�����! ��#"�$&%'%)(*�,+.-*/10�0�$&(2$&%'$'35463�/678�2/9/10��#()�!35"��:�!;�+,0�%'/<"��: �(�=23�>?/@ ����!A�+<7!3�+B;*+<%'4C0�$'0�/1 D+FEG+B0�3��: �(�=�3�%'�!0�0
+<7:7!=� 8+B3��@H.I53�"�$'%'%J+B%&0�/K(*�6-)/@0�0�$'(�%'�L3�/?7M�*+<;2N@�67!�! �3M+<$';O7!/1>?-�$'%'�! �P�/@ Q0�4C0�3��!>KP50�-)�!7!$SR*7KT*+B38+U=�0��!T�$';O3��2�
+<;)+<%'4C0�$'0WVX%'$&Y1��$';C3��!N1�! �354C-)�#0�$'Z!�!0M[!H

���]\ �����
^_����`��a�
�����#-�=� �-*/10��,/BEJ3����#3�/C/@%�$'0�3�/67b+B%&7:=�%c+<3��Qd*/<"e$&;�Ef/B �>g+<3�$'/@;hV!i5d)/<"jEG+<7:3�0�k)l�0��!�?mon�n�p1p:qX[:lC%'$&Y1��;C=�>K()�! r/<E
$'3��! M+<3�$&/1;�0�+<;2Tg ��!7!=� �0�$'/@;s%&�:t@�!%'0bl2$';CEf�b+B0�$'(�%'�#-*+<3���0D�!3�71H&l)3��*+<3�"�$'%'%�(*�#=�0��!TO$';h3����.0�=�(�0��!uC=��!;C3#%'/<"rPG%'�!t1�!%
+<;)+<%'4C0�$'0bH�������d)/<"_E5+<7!3�0D+B ��W+B3�3M+<7M���!Tv3�/,3����#0�7!/@-*�QN@ 8+B-���mon�nwp@p:q�/<Ex3��2�W+<;)+<%'4C0��!Tv-� �/1N@ 8+B>�H�ye0�7!/1-*�
N@ M+<-���$'0,+?-)+< �3�$'3�$'/@;�/<E�3����K-� �/@N@ M+<>z$&;C3�/?0�7:/@-)�!0:{r+?0�7!/@-)�K$'0,+?-)+< �3#/BED3����K-� �/1N@ M+<>|"����! ��?7!�: �38+B$';
d*/<"jE5+<7!3�0W+< ��#t@+<%'$'TxH

���]} ~K
��������Q��
5���C����^������C�������
��+<0�$'7b+B%'%&4Cl13����L+B;*+<%'4C0�$'0r/<E�+K�j-� �/1N@ M+<>�$&0r-)�! 5Ef/1 �>?�!Th=�0�$';�NK3����#0�3��:-�0�T��:0�7! �$&()�!T�$';g��$'N@=� ����1H

�������@�1�8�<� ���<�����!� ���@�' C¡�¢!£¤ ¤<¥'¦C§ � § ¨Q©�ª�«&¬v«'­b®<ª�«&¯1°
±Q²�³�´&µ?´'¶!·!¸
¹�º�»�¼!½ ¸�·

¾�¿�ÀeÁ!ÂCÃ�Ä
Å)Æ<Ç�È Ä Ç
É5ÊCË�Ì!Í�Ê*Î<Ï

Í�Ì!Ð2Í�Ì!Ñ�Ì!ÊCË8Î<Ë�Ò'Ó@Ê
Ô�Ô�Õ

Ö!×@Ø�Ù�Ú�Û�Ü�Ö!Ú�Ý'×1Ø
Þ�Þ�ß
àfá@â�ã

ä�å9æCçMè<é!çëê
è<æ)è<ì'åCí�î'í

ï�ð!ñ�ò2ó!ð!ñ
ô�ôCõ÷öfø1ù�ú

û�ü�ý�þ�ÿ����!þ
���Cþ��!ÿ
	�ÿ��

����������
� � ����� � �����

�� �!�"�#�
$ " $�%�& " $�'�(

)+*�,.-�/
0�1�2�3547698;:�3=<

>�?�@9ACB
D�E�F A�G
HJI.K�L
M�N�OQP
R

SJT.U�V=W
XZY�[]\�^�_�T�`7^baC^�c.d�_
T._+_
e
XQf�_hg

ikj ^bW
�X�Whgml�n�X7op`�q�r�XsT��f5^�W
_�X�rte
qZf�W�q�r�V�`�Xu^wvyx
okz5c�X9g

ikj q9T.a{e�X�WZ^�aC^bc�d�_�T�_�g j q�T.a�e
XQW
_wT�a|e�n�Xtf�W
q9U�W�^�}~^�W�X�^�a5^�c.d���X�r�g�x�a���q9W
}t^�e
T.q9a�^��5q�V�ewe
n=X�W
XQ_
V�c.e
T.a�U
fCq9T�a�e�_���e
qw_
X�e�_�^�W�X7_
e�q�W�X�r�T.a�e�n�X7v�x
o�zCc.X�g

ik� f=e
T.}�T.�h^be
T.q�a�g�l�n�X7v�x
o�`�q�r�X7T._�q9f�e
T.}�T.��XQr�g�l�n=X�_
X�z5W
_
eye
n�W
X�Xw_
e
XQf�_�^bW
X7r�XQ��X�c.q�f5X�rt��T.e
n�T.ate
n=X
� j�� f=W
qh��XQ`�ehg

�

���������
	���
���������
���������
�	���� �"!#�%$

�&�'���(��)�*
+�%�����,� ��

�-��	.��� 	���/��

0��12�"1��

��1���34�

����
���

1��5�����%	�16�
�����%���"1��

��1���3879	�� !:���;�%������
=<������%�>79	�����3%3�� /�<?��
�@)/*

1��+��1��,3%A����%�>���

�����

��B�1DC�C?BFE9C?�5�,� �%�0C��%1�G�3%
�B'��� �"GH1�!&
�1)�JI>�
	�1�KH

�L� �"	H1D�%�'��

�L79	�� !&

�6������
�����3%�
/�3M�,�

�N�����5�.�%�=�,����
��
��	.���*
O
�P)�%� ���%1�G.�%1���

� 1��,3Q�

����
���

1��5�����%	�16�

����	�1?RS�
	H1����%���%	H1��,3%���,�
0�

!&	,KH

�4�'B�3%3T����� �"GH1�!U
�1)� ��� 	&K��,� �M�,<�3%

�'�������O�*	&1�	H�O�WVQ

�
���
	�1���� 	�36X�	,Y
EM���J�,1�� �%���%K�

3%A�I=�,�
.�"�*

1����[Z�

�\��1��]��

!#	,K�

�^7_� 	�!`� ��
.��� 	�G��J�,!-�0�a7��,3%3;�
J79

�

1��

��&��	N�2K������M�,<*3"

�,��
���

!#	,K�

�4b*����
cK��,� �M�,<�3%
=Y��%3"3Q<8
c��

!#	,K�

�:�
	H!&��3%

�

3%A)�>����
��
��,� 	�1-�%����	#���%!&�*3"�[79A.�,1*�N���8

�
/��2����
=��
�����	�7;����
��,18�,3%A����%���

�dC��
	��8
cG��5�����-�
	�1�� ��� /��
���%	H14�c����
0� �
	��8
.G��J�,�?�-�%���
	H1���� ��/�����

��/����%1�G2���*
0�
	H1�����	H3eX�	,Yf� ���,�=����1
<�
=

P����J�,�
�

�^79��	H!g����
=�%1���

� 1��,36��

�*��

�

1��5�,� �"	�14�

�dC�A�1)�J�,�
� �%���,3��,1���3%A)� �%���-����
&��)�*
:�%�-h�� ���,1�1*

�?i^79	��c���%!&�*3"
Hb4�

�
	�GH1��%$��,<*3"
#3%)	H�\�
	H1���� ��/������:��1��
����
.�
	H���

���8	�1��*�"1*GN3%)	H�D��	�/�1����c�,��
.�W�,3%�
/�3M�,��

�4b6�[7j�8	�� ���%<�3%
��.����
.3%	�	��*�+����
.�

��3M�,�

��]Y��"� �\�,�LR
���%G�1�!#

1����=��	^����
UZ�1��,3kK��,3%/�

�=7a	���� ��
&K������M�l<�3%

�=/��8������

���"1]� ��
.3%	�	��4b6��

� /�3%���%1�GN�%1\�2� �%!&��3%

�
����	HG��5��!g��	&��1��,3%A�$

=�%1&� ��
'79	�3%3%	,Y��%1�G����

�4�

������
0�

!&	,K���34	�7j1�	H1�Rm�
	�1��*�"� �%	�1���3"�'�%�O� /�1]�,G)�,�%14b8���%1��

.K������M�,<�3%

�=!2�WA&<8

�
	�!#
01*	�1�Rm�
	�1*���%���%	�1���3
��/����%1�Gc��A�1��5���
���%����3T��1��,3%A����%���

��B�<�� ���5���
�&�%1���
������

�5�����%	�14�n����
^��

!2�,�%1��%1�GN�o	���
�E9�W7a��

�#����
2���

K��"	H/��&� ��

�8I.�%�:��1��,3%A���

�d/�� �%1�G
�,<�� ���5���
���%1���
������

�5�����%	�14�e���*
O�

��/*3"� �%1�GcX�	,Y(7S�,�
� ���,�
+�����8

1���

�^��	.���*
���

� /�3%���pZ�3%
��

���a7�����
���
��,�
q��	�1�� ����/*�
���k79	��eY����%�J��� ��
��,<�� ���J�,�o�e�%1���

� ����

�J�,� �"	H1c7S�,�%3%��b�����
�/*��

�;�%�e�,��rH

��79	��e!:��1�/��,3
�,1�1�	H�5�����%	�1��p79	��'����
���
��.���*
s��1��,3%A����%����	�1����%1)/�

��Y��%� �N����
���
.�mY>	:3M������� ��

�*�0/�1�� �"3e� ��
0��	�!&�*3"
���

�
	���
=�"��� /��
�

����m7a/�3%3"AN��1��,3%A���

�6�

t uwvUxzy2{
|�}e|�~��&�cxzy2{
|

����
>�
	���
��%10�6�%G�/��
j�'�
	H1)�J�,�%1��e��� �%!&��3%
;�,1��c!&	H���%K��,� �%1�G;

P��,!#��3%
�b,�,�
� �%K��,���%1�G���3%3)� ��
>����
����q	�7�	�/*�T� 	�	�3m�
�*	������%!#��3%�"���"�mA���
�����	�1*��b8�%����	�

��1�	H���
	�1��J�,�%12��	H�"1��
o���Wb��,� �5�WA���b*	��'/�1���� ��/�����/��

�D��)�*
��>����
�K��,� �M�,<�3%
0�
�%���,� ��/�!#

�&� 	.��

�

��"KH
0�cK��,3%/�
'<�
��mYq

�1D�.�,1��N��<�AU���H�?�H�����H�?�6���H�

�%�������J�%�l�[��� �a�J�O� �%�����5�m�
�_�%���c�J�q�
�%���c�5�e���k���6�= O¡a¢��>£> �¤��¦¥l§ �%�����5�k¨m©�ª_«5¬a�� �¢�§
�5�a¨&�_�q �­m©m��®a�m��¬_«J©��a�5§+�j¯a p�l§��; ��q°=£ �k� �5�a¨.�_�� �¢�§>��¯�¡a¢m¢�§p�M°m°J���
¥= ��j±'£�²p¤�§e¨m©�ª_«5¬a��°m '¤�§ ¨m©�ª_«5¬a�c°m �¤�§
�%�:�³¥
�q�' ��>°�¤�§ ´
´ ¨m©m�a«�¨a�l�[¨m©Jª_«5¬m�J�
§

�� ��q°���§ ´
�� p�5�m�
�³¥
�5§
¨m©m�a«�¨a�l�[¢
�5§
´

�6�%G�/��
���µ;¶eP��,!&��3%
�����	HG��J�,!
·
>Z���� �q�8�,���
�� ��
��
	���
'��	0�+������Z�3%
��e�>	�1�KH

�����"	H1.��	0C*C�B(7a	���!w�,1��.�

!&	,K���3�	,741�	H1�RS��	�1����%� �"	H1��,3%�

E9¸8bH¹4b�ºQb���1��&»��*¼,�?�H��IkA)�%

3%�������������
	���
�� ���,���%��
o@�/��%K���3"
�1)�>��	.� ��
��(��)�*
��%1:�6�%G�/��
+½*�
��

P��2���

�n�"�#��	����,3%�
/�3M����
N� ��
N����	��8
]���%

�5�����J�)A¾<8

3%	,Y�� ·
N�

-�������&
����5��79/�1*�
���%	�1(��1��(3%	�	��

�
	H1���� �"� /���
��O�c����	��8
��

¿�À�ÁWÂ

Ã�Ä8Å�Æ Ç4È É�Ê�Ê

Ë�Ì�Ì Í4Î

Ï

�������������
	���
�������� ��������
�
�	������������
������������� ��!"�$#��&%"�('
) �����*��)
��
�+,	����&-�.���/�����0�1�."	���)2�43��5�
)��6�*��7 #���� ��
�+8	����&!")$��3&��!�!")5�97�7�����:
' �;�4<=#&>5%") +�.���1�+��
	�!���)
���?	@'�����: :
:
��
�
�	�!���)
+�.���1�+��
	�!���)
:

A�B�CEDGF�H2IKJ6LNMGOQPSRGT�H�RGF�UVCEF�OWPXO
Y[Z�H\F�F�H�P,UQ]EOQTGUWY_^KUE^a`�b�UE^KcGB�Z�B�UE^dOWT�e

f�gGH;e�hi^aZ�OQb�Z�BjbkOQTlOQ^mOQT�hae�B�e�n�B�TjTmF�H\b�UECV^GB�o�H;Z�gKH�T�UaUERSB�^SpGqaq8OQe&OW^dOQT�hao"OWrGT�H�OQ^Kc?UVDGZ�RKDGZ�Z�gGH=sdUQntYuOWb�Z

pvqaq wlxzyi{S|�y�}v~������������������ �����6���k�E�

���G�������,�k�Q�G�=���d�W�&���K�����a�E���������\�E�m�8�v�a� l¡*¢j£�¤�¥�¦W£�¤�§ ¤�¨G¦W©�£�ª�«­¬k®E®�£�¢�¯,¤�§"°=±�²G¤;³G´V£�¢�´E³¶µa·�¸�¹�º�¸�»�¼�½�¾�¾ ¿�À�Á
Â�ÃÅÄ[Ã�Â�ÆÈÇ�É&Ç�ÊGÃ$ËjÇ�Ã�Â�ÌWÇ�Ë�ÉEÍ Î�ÉVÏGÍaÇNÉQÄGÇ�ÊGÃ$Ð�ÉaÉEÑ;ÊGÃkÌQÒGÃ�ÂkÓlÔ�ÊKÃ6Ä[ÏKÍGÎ�Ç�Ë�ÉVÍ;ÕGÖiÖ=×�Ë�Ð�ÐQØdÃ$Î�ÊdÌQÍKÙEÃ�Ò�ØaÚ�Ç�ÊGÃ$Æ�ÚaÍaÇ�ÌQÎ\Ç�ËjÎ"ÌQÐ
ÌQÍmÌQÐ�ÚaÆ�Ë�Æ4ÌWÆ�Æ�ÊGÉQ×�Í�ØmÃ�Ð�ÉQ×;ÓNÛÜÃ&Æ�Ã�Ã;Ç�ÊmÌQÇ�Ç�ÊKÃ;Ð�ÉiÉVÑ,ÊdÌWÆ�ØdÃ\Ã�Í�Â�Ã\ÑGÐ9ÌQÎ�Ã�ÒÝØiÚ,ÌWÍ�ÌQÆ�Æ�Ë�ÙEÍGÞSÃ�ÍaÇ"Ó

ß�à�á=â�ã�ã�ä�ß�à�á;å�æ�ç
ß�à�á�ß�è À�é�é"ê
ë�ì á�í ë à
ä é æ ê
î

ï ÍKÃ�×ðÂ�ÏKÍ8ÉQÄlÂ�Ã\Þ,ÉQñEÌQÐaÉWÄlÍGÉEÍaò�Î�ÉVÍGÒGË�Ç�Ë�ÉEÍmÌQÐ�ÆNÂ�Ã�ÞSÉQñEÃ�Æ6Ç�ÊGÃ&ñEÌWÂ�Ë9ÌQØKÐjÃ;ó=Ë�Í8ÕGÖiÖ*Æ�Ë�ÍGÎ\Ã&Ë�Ç6ÒGÉaÃ�Æ$ÍGÉEÇ$ÌkôõÃÅÎ�Ç
Ç�ÊKÃ�Î\ÉEÍaÇ�Â�ÉEÐõömÉQ×;Ó
ï ØGÆ�Ç�Â�ÌQÎ�ÇSËjÍaÇ�Ã�Â�ÑGÂ�Ã�Ç�ÌWÇ�Ë�ÉEÍ÷ÉQÄ&Ç�ÊGÃ�Â�Ã�Þ�ÌQË�ÍGË�ÍGÙ�ÑGÂ�ÉVÙEÂ�ÌQÞø×�Ë�ÐjÐ$ÚaË�Ã�Ð�ÒÜÇ�ÊGÃSÄ[ÉVÐjÐ�ÉQ×�Ë�ÍGÙùödÉQ×úÄuÌWÎ�Ç�Æ*Ä[ÉEÂ�ÇûÊKÃ

Â�Ã\Þ?ÌQË�ÍGË�ÍGÙ*ÐjÉaÉVÑlü

ý ÓÈþKÿmó�� �������
	��
���
�������������
����� �
�����!
"$#&%$')(�* +�,�-�.
/�-
0�1
2�3�4�2�5�6�7
3�8�9 :
;�<�=!>
?$@&A$B)C�D E�F�G
HJI�K�KML�N&G
OQP�RTS
U�VXW

Y[ZQ\^])_
`
aba�cedgf)dhcjilknmoa
`[pq\rkhs$`[a
Ztkna[a
ZQ\vu�d�dxwzy�s|{t})~���y�a
\�_�kha�\o`��)\oa�c�\o\os��|khsQ���ga�y�pq\o`r�&Y[ZQ\^`
\om�dxsQ�
p
\�khsQ`[a�Ztkhaba
ZQ\vw$_
dx�J_�knp�c[y�u�u�khu�c[k���`[a�kh�J\va
ZQ\�a
_
�$\�\o�Q�x\vy�s�a�ZQ\vy�i���`
a�kna
\opq\os�a[y�s�y�a�\o_�kna
y�dxsQ`b�|a
dz�gdhi
a
Z$\�u�d�dxw��

�����J�[¡�^¢
£[�b¤

¥ ¦�§ Y�¨$W�© ¦�§ Y�ª&«­¬ ¦ �$®xkhsQmo\�� § dhi¯a�c[kh_�\�Y�ª&«�ZQsQdxu�dJ�x��°¡±²±j±´³bdxp
\�wtkh�J\x��µ^¶�·&¸
¹�º�º�» G
¼�¼x½�½�½�K
}Q¾ ºQ¿$À KlÁ�Á�K
¾ ¿ ¼)Â�Ã�dh®x\�p|�t\o_[Äx¨x¨QWJ�

¥ ª¡ª¡¨J¨�© Åt��ªÆsQ�x�Qu�dJpÇkhsQ� ¦ ��ªÈ_�p
\o�tknZQu���Ézd��Q\�u�y�sQ�
modxpqwQu�\oÊ|f)dhc[`�iTdx_^cedJ_
`�a���mrkh`�\|\oÊ�\omo�Qa�y�dJs�a
y�p
\
khstknu���`�y�`r�ÌË�s!ÍÏÎ
Ð�ÑrÒbÓ�Ô�Õ�Öz×�Ø¡Ø¡Ø­Ù[Ú�ÛhÜ�ÝrÞÈß�à�Úzátâ�ãoä¯Ú�àvãzátâhàÏåQÐhãoß�æ�àèçTÙ^Þ�áQáeé êxê�ëxÂ�Ã�dh®J\op|�)\o_
Äx¨J¨x¨Q�

¥ ª¡ª §Qì ¨QW�©^Åt��ªÆsQ�x�Qu�dJpíÂ ¦ �[ªÈ_
pq\o�tkhZ$ulÂ[É�� §oînïdx�Qy�s�Â[Å)�ñð^�Q`
a�k�i¯`�`
dJs�Â�khs$�j³���³�knsQ`
`�dxs��­±�dJ_
`�a���mrkh`�\
\oÊ�\omo�Qa�y�dxs���a
y�p
\�khstknu���`�y�`òi¯dx_�\op|�)\o�Q�Q\o��_
\rknuó�la
y�pq\ô`���`
a
\�p
`r�$áhå�Îoß�õxöJÚrÎ�×�õQäTÚrÎoõ$ÛxäTß�ÐxõQÛnÜt÷�Ðxæ�ÎoõQÛnÜ
Ð
ø^á)Ð
øoäTù¡ÛxÎ�Ú
Þ)ÐrÐnÜóã¡øoÐJÎúÞ)Ú�Ñ�ûQõQÐnÜ�Ð�öxâ�Þ)Î
ÛJõ�ã�øoÚ�Î�üeç�áÈÞ[Þ[Þ$ënÂ�Äx¨J¨QWJ�

¥ ª¡ðvýJþ�© ¦ �ÈªÈ_
pq\o�tknZQu¡khsQ�ÿÅt�Èð^�Q`�a�k�iT`
`
dJs����b\o_
y�®�y�sQ� ¦ sQsQdJa�kna
y�dxsQ`bi¯dJ_^Y[y��JZ�a «[knu�mo�Qu�kha�y�dJs�dhi�ªÈÊ�\��
mo�Qa�y�dJsíY[y�pq\x�^Ë�s ÍÏÎ
Ð�ÑrÒ������z×�õ$ä¯Ú�ÎoõQÛJä¯ß�ÐJõQÛhÜÈØñæ�Î
Ð�åQÚ�Ûxõ	�¡ÐJõoøoÚ�Î
Ú�õQÑ�Ú
Ðxõ�ÍÏÛxÎ
ÛnÜ�Ü�Ú�Ü�Í[Î
Ð�Ñ�Úoã�ãoß�õxönü
çTØ[æ�Î
ÐhÝ¯ÍÏÛxÎQé
��Tëhü�
����Èá Ô���êxêJÂQwtkn�x\o`vW�Äxý���� W��n¨JþQÂ ¦ �Q�x�Q`�a�W�ýxýxþ$�

�

A Novel Gain Time Reclaiming Framework Integrating WCET Analysis for
Object-Oriented Real-Time Systems

Erik Yu-Shing Hu∗, Andy Wellings and Guillem Bernat

Real-Time Systems Research Group
Department of Computer Science

University of York, York, YO105DD, UK
{erik,andy,bernat}@cs.york.ac.uk

Abstract

This paper proposes a novel gain time reclaiming frame-
work integrating WCET analysis for object-oriented real-time
systems in order to provide greater flexibility and without loss
of the predicability and efficiency of the whole system. In this
paper we present an approach which demonstrates how to im-
prove the utilisation and overall performance of the whole sys-
tem by reclaiming gain time at run-time. Our approach shows
that integrating WCET with gain time reclaiming not only can
provide a more flexible environment to develop object-oriented
real-time applications, but it also does not necessarily result in
unsafe or unpredictable timing analysis.

Keywords : Gain Time, Real-Time Java, Worst-Case Execu-
tion Time (WCET) Analysis, Object-Oriented WCET

1. Introduction

There is a trend towards using object-oriented programming
languages, such as Java and C++, to develop real-time appli-
cations. The success of hard real-time systems, undoubtedly,
relies upon their capability of producing functionally correct
results within defined timing constraints. In order to achieve
this, the processor and resource requirements of the hard real-
time tasks have to be reserved. However, this may result in
under utilisation and lead to very poor performance for ape-
riodic tasks. Unfortunately, object-oriented programming lan-
guages support more dynamic behaviour than procedural pro-
gramming languages, and some of these features may bring
about object-oriented applications having a more pessimistic
worst-case behaviour. In consequence, object-oriented real-
time systems may suffer from significantly lower utilisation and
poorer overall performance of the whole system than procedu-
ral real-time systems.

Most scheduling algorithms assume that the WCET of each
task is known prior to doing the schedulability analysis. Typi-
cally, the WCET analysis and schedulability analysis are car-
ried out separately. On the one hand, sophisticated tech-
niques for WCET analysis [6, 14, 13], for instance to model

∗This work has been funded by the EPSRC under award number GR/M94113

caching and pipelining, are used in order to achieve safe and
tight WCET estimation. However, most WCET analysis ap-
proaches are only considered in relation to procedural program-
ming languages. Some research groups have proposed various
approaches [8, 15] to address these issues, but most approaches
result in developing environments which are inflexible and very
limited. On the other hand, in order to develop more flexible
real-time systems, a number of research groups have proposed
various flexible scheduling algorithms [5, 12], for instance pri-
ority server algorithms [5] and slack stealing algorithm [12].
In general, these flexible scheduling algorithms are mainly fo-
cused on the use of WCET to improve the performance of the
aperiodic tasks at run-time. They have, however, paid insuf-
ficient attention the fact that, for the most part, hard real-time
tasks are not executing via the worst-case execution time path.
Therefore, even though they have demonstrated very complex
scheduling algorithms to improve the average performance of
the whole system, the improvements are still limited and the
overhead of the implementation is extremely high or it is some-
times not even possible to implement them in practice.

In general, the spare capacity of the real-time system may
be divided into three groups [7]: extra capacity, gain time, and
spare time. Extra capacity is the capacity which is not allocated
for hard real-time tasks during the design phase. This can be
identified off-line. The gain time is produced when the hard
real-time tasks execute in less than their worst-case execution
times. This may only be reclaimed at run-time since it depend
on the actual executions of the tasks [7]. The spare time may be
defined as a situation in which the sporadic tasks do not arrive
at their maximum rate. Most flexible scheduling algorithms are
mainly focused on reclaiming the extra capacity of the system.
Only some research approaches [9, 1] have discussed how to re-
claim the gain time. However, they have tended to focus on pro-
cedural programming languages, rather than on object-oriented
programming languages.

In this paper we propose an approach which demonstrates
how to improve the utilisation and performance of the whole
system by reclaiming gain time at run-time. We use a gain
time reclaiming mechanism to compensate for the tradeoff
among the flexibility, efficiency and predictability. Our ap-
proach shows that integrating WCET analysis with gain time
reclaiming not only may achieve high utilisation and high per-

formance of the whole real-time system, but also keep the flex-
ibility of the object-oriented real-time applications. The major
contributions of this paper are:

• presenting how to address the dynamic behaviour of
object-oriented programming features with minimum an-
notations

• demonstrating how to reclaim the gain times of object-
oriented real-time systems with the gain time reclaiming
graphs

• balancing the flexibility and predicability of object-
oriented real-time applications by integrating WCET anal-
ysis

The rest of the paper is organised as follows. Section 2 gives
an overview of our previous work. Section 3 demonstrates how
gain times can be reclaimed in object-oriented real-time sys-
tems. Finally, the conclusion and future work are presented in
Section 4.

2. Previous Work

Our previous work, called Extended Real-Time Java
(XRTJ)[11], extends the current Real-Time Java architecture
[4] proposed by the Real-Time Java Expert Group. The XRTJ
architecture has been developed with the whole software de-
velopment process in mind: from the design phase to run-time
phases. For example, using our approach, the system can be
evaluated during the design, and the timing constraints of the
application can be validated during run-time. We integrate our
approach with the portable WCET analysis, proposed by Bernat
et al. [3] and extended by Bate et al. [2], for the WCET estima-
tion.

In our previous approach [11], we have introduced the Ex-
tensible Annotations Class (XAC) format, which stores extra
information that cannot be expressed in the source code. The
XAC format is an annotation structure that can be stored in files
or as an additional code attribute in Java Class Files (JCF).
We have also addressed dynamic dispatching issues in object-
oriented real-time applications [10]. Here, minimum annota-
tions are provided to ensure the predictability of dynamic bind-
ing methods and estimate safe and tight WCET for hard real-
time applications. However, our previous work mainly focused
on the analysis of the hard real-time object-oriented tasks.

3. Gain Time Reclaiming

In order to balance the tradeoff between the flexibility and
efficiency of the real-time systems, gain time reclaiming needs
to be applied. For the most part, the gain time reclaiming in
object-oriented programming languages may be classified in
three groups: structural constraints reclaiming, functional con-
straints reclaiming, and object constraints reclaiming. We use
some WCET annotations, which are presented in our previous

//@ GainTime(Units /path /mode /method) –A1
//@ Dyn GainTime(maxLoopcount, Scope Name) –A2
//@ OO GainTime(Object Name) –A3

Table 1. Gain Time Reclaiming Annotations

approaches [11, 10], in figures 1 and 2 . Further details of each
reclaiming mechanism are discussed below.

Note that the WCET annotations used in the following ex-
amples to discuss the gain time reclaiming mechanism can be
added either manually by developers or automatically by mod-
ified compilers or tools.

3.1. Structural Constraints Reclaiming

From the point of view of the syntax of the programming
languages, the real-time tasks allow construction with a num-
ber of basic blocks, conditional branches, and call procedures.
These components of a real-time task, in general, may be rep-
resented by a control flow graph (CFG). It can be observed that
the actual execution time of real-time tasks may vary, if the
execution paths of the task or iteration times are varied at run-
time. This section is mainly concerned with reclaiming gain
times, which depend on the structural constraints of a specific
real-time task.

1 ...
2 public check data () {
3 int i , morecheck, wrongone;
4 i =0; morecheck=1; wrongone=−1;
5

6 //@ DefineScope(checkLoop)
7 while (morecheck) {
8 // Say WCET=20 cycles
9 if (data [i] < 0) {

10 //@ GainTime(100 cycles);
11 wrongone=i; morecheck=0;
12 //@ GainTime (Error mode);
13 }
14 // Say WCET=120 cycles
15 else {
16 ...
17 if (++i >= DATASIZE)
18 morecheck=0;
19 }

20 }
21 //@ Dyn GainTime(50, checkLoop);
22 ...
23

24 // Say WCET=10 cycles
25 if (wrongone >= 0) {
26 //@ Mode(Error mode);
27 ...
28 return 0;
29 }
30 // Say WCET=50 cycles
31 else {
32 //@ Mode(Noml mode);
33 ...
34 return 1;
35 }
36 }
37 ...

Figure 1. An example of gain time reclaiming [13]

Our approach is similar to Audsley et al.’s approach [1],
which is proposed for procedural programming language. We
have defined two annotations (A1 & A2), which are given in Ta-
ble 1, to cope with structural constraints reclaiming. As shown
in Figure 1, we can annotate the static gain time, such as pre-
calculated unites or paths, with annotation A1, and the dynamic
gain time, defined for unknown iteration times, with annota-
tion A2. In Figure 1, the if-then-else basic block can reclaim
100 cycles at Line 10, if the condition expression is TRUE (i.e.
data[i] < 0) and the while-loop is part of its worst case path.
With respect to the dynamic gain time, we can simply add an
annotation to a non-constant iteration loop, such as for-loop or
while-loop, in order to reclaim gain times at run-time.

Essentially, the gain time can be reclaimed as soon as the

2

exact execution path of the task or iteration time are identified.
Note that either the run-time system, such as the Virtual Ma-
chine, must support a mechanism to count the exact iteration
of the loop at run-time or addition code must be introduced by
an annotation aware compiler to count the loops. It should also
be noted that it could be possible that the actual reclaimed gain
time is less than the run-time overhead of the reclaiming. In
this situation, the gain time should be either neglected or accu-
mulated until it is worth reporting.

3.2. Functional Constraints Reclaiming

This section is mainly concerned with reclaiming the gain
times which suffer from functional constraints. This covers the
issues that remain from the previous sections, which did not
take into account the functional and data dependencies of the
exclusive paths or modes of the real-time task.

Identifying the exclusive paths [13] or various modes [6] in
order to calculate the WCET estimation of the real-time pro-
gram is widely used in the WCET field. Based on design
knowledge, the annotations of the exclusive paths or modes
may be distinguished during the design phase. Using these an-
notations, the WCET estimation of each exclusive path or mode
may be calculated. However, one should note that it is possible
that the WCET estimations of the exclusive paths or different
modes are spread over a wide range, and the exact execution
path or mode cannot be determined during the design phase.
As a result, the WCET estimation could be very pessimistic. In
order to address this, we propose a gain time reclaiming frame-
work which takes into account the functional constraints of the
structure of the programs.

In our approach, we use the gain time annotation (A1), given
in Table 1, to identify where the exclusive path or mode can be
determined. As soon as the specific execution path or mode
is determined or executed, the associated gain time of the exe-
cuted path or mode can be reclaimed. Again using the previous
example in Figure 1, the A1 annotation can be annotated at Line
12 to reclaim the functional associated gain time at run-time.
It can be observed that using functional constraints reclaiming
may reclaim the gain time earlier than the structural constraint
reclaiming.

3.3. Object Constraints Reclaiming

So far, we have only discussed the gain time reclaiming
which may apply to both procedural and object-oriented pro-
gramming languages. We have argued for the need to use
dynamic dispatching and demonstrated how to guarantee the
deadline of hard real-time tasks in our previous work [10]. Our
previous approach has shown that allowing the use of dynamic
dispatching not only can provide a more flexible way to develop
object-oriented hard real-time applications, but it also does not
necessarily result in unpredictable timing analysis. Essentially,
a //@maxWCET() annotation is used to indicate the WCET of
a dynamic dispatching method call. However, we cannot avoid
the fact that the use of //@maxWCET() might have relatively
pessimistic results if the class family is too large or the WCET

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Assume that Class A is a parent
class . Class B, C and D extend A,
and override the m1() methd.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
...
class App extends RealtimeThread {

...
public void run () {

//@ OO GainTime (aa);
A aa= new A();
//@ OO GainTime (bb);
B bb= new B();
C cc= new C();
D dd= new D();
...

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Initial values of x , y and z

are from the environment.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
...
if (x > 5) {

...
cc = dd;

}
...

if (y == 5) {
...

aa = dd;
}
else {

...
aa = bb;

}
...
// type changing

bb = cc;
...
if (z == true) {

...
aa .m1;
...

aa .m1;
} else {

...
aa .m1;

}
...

bb.m1;
...

bb.m1;
}

}

Figure 2. An example of object constraints re-
claiming

estimations for different classes are spread over a wide range of
values. In order to compensate for the penalty of the flexibil-
ity of the object-oriented programming, gain time reclaiming is
required.

Before discussing further details of the object constraint re-
claiming, two novel terminologies are introduced below.

• An Object Type Lifetime Graph (OTLG) is a diagram
which represents lifetimes of types of particular objects
in a specific task. An OTLG is made of two types of com-
ponent: node and edge. A node denotes a place where
the type of the object is changed, whereas an edge illus-
trates the lifetime of a particular type of object between
two nodes.

• An Object Gain Time Reclaiming Graph (OGTRG) is a di-
agram which illustrates places where the object constraint
reclaiming may take place. An OGTRG also consists of
two types of component: node and edge. A node denotes
a place where the gain time can be reclaimed, whereas an
edge illustrates that there is no gain time reclaiming taking
place.

Essentially, the value of the dynamic dispatching gain time
of each object can be calculated as follows: //@GainTime()=
//@maxWCET()-//@UseWCET(). The annotations of the object
gain time reclaiming may be generated by using design knowl-
edge or by producing an OGTRG. In order to reduce the run-
time overhead, annotation A3 may be applied to define which
object’s gain times are going to be reclaimed. The procedure of
object gain time reclaiming is given as follows.

The control flow graph (CFG) can be produced from the
source code (or Java class file) for each hard real-time task.
Based on the CFG, the OTLG, which illustrates the lifetime

3

run method
object aa

true

false

//@GainTime(?.m1) * 2

Object Type Lifetime
Graph (OTLG)

Object Gain Time
Reclaiming

Graph (OGTRG)

CFG

//@GainTime(?.m1) * 1

If there is no
invocation on object
bb until it is changed
to the cc type, gain
times of the object bb
can be reclaimed in
the first if−statement.

CFG

aa= dd or bb

object aa

object bb CFG
object bb

y==5

x>5

z==true

run method

y==5

x>5

z==true

//@GainTime(?.m1) * 2

bb= @cc

run method

y==5

x>5

z==true

true

true

false

false

Figure 3. A diagram of producing OGTRG

of an object, can be produced. In the OTLG diagram, symbolic
references may be applied to represent the relationship between
the dynamic dispatching objects of the same class family dur-
ing run-time. Using the CFG diagram and the OTLG diagram
of each object, the exact places and amounts of gain time re-
claiming can be identified. These gain time reclaiming places
can be illustrated in an OGTRG for each object. Following this,
the gain time reclaiming of all objects in the real-time task can
be merged together and provided for the run-time environment
(or Java virtual machine) to reclaim them. A diagram which
illustrates the transformation from CFG to OGTRG is given in
Figure 3.

Solving the symbolic expression of an associated class fam-
ily can improve the reclaiming as early as possible. As shown in
figures 2 and 3, the gain time of the object bb can be reclaimed
as soon as the type of the object cc is determined.

4. Conclusion and Future Work

This paper has demonstrated a novel gain time reclaiming
framework integrating WCET analysis for object-oriented real-
time systems. Our approach shows that integrating WCET with
gain time reclaiming not only can provide a more flexible envi-
ronment to develop object-oriented real-time applications, but
may achieve high utilisation and high performance of the whole
real-time system.

Here, we have mainly discussed the dynamic behaviour of
object-oriented features, which is exclusively restricted to a
consideration of the language syntax and semantic aspects.
In order to cover as much dynamic behaviour of the object-
oriented programming features as possible, our future work has
to take into account: memory management, dynamic loading

and extension, and remote method invocation (RMI) issues.

References

[1] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms for En-
hancing the Flexibility and Utility of Hard Real-Time Systems.
In Proc. of the 15th IEEE Real-Time Systems symposium (RTSS),
pages 12–21, December 1994.

[2] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-Level
Analysis of a Portable Java Byte Code WCET Analysis Frame-
work. In 6th IEEE Real-Time Computing Systems and Applica-
tions (RTCSA2000), pages 39–48, December 2000.

[3] G. Bernat, A. Burns, and A. Wellings. Portable Worst-Case Ex-
ecution Time Analysis Using Java Byte Code. In proc. 6th Eu-
romicro conference on Real-Time Systems, pages 81–88, June
2000.

[4] G. Bollella, J. Gosling, B. M. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull. Real-Time Specification for Java.
Addison Wesley, 2000.

[5] G. Buttazzo. Hard Real-Time Computing Systems: Predictable
scheduling algorithms and applications. Kluwer Academic Pub-
lishers, 1997.

[6] R. Chapman, A. Burns, and A. Wellings. Integrated Program
Proof and Worst-Case Timing Analysis of SPARK Ada. In Proc.
of the Workshop on Language, Compiler, and Tool Support for
Real-Time Systems, June 1994.

[7] R. I. Davis. On Exploiting Spare Capacity in Hard Real-Time
Systems. Ph.d. thesis, Department of Computer Science, Uni-
versity of York, UK, July 1995.

[8] J. Gustafsson. Analysing Execution Time of Object-Oriented
Programs with Abstract Interpretations. Ph.d. thesis, Depart-
ment of Computer Systems, Information Technology, Uppsala
University, Sweden, May 2000.

[9] D. Haban and K. Shin. Application of Real-Time Monitoring to
Scheduling Tasks with Random Execution Times. IEEE Trans-
actions on Software Engineering, 16(12), December 1990.

[10] E. Y.-S. Hu, G. Bernat, and A. J. Wellings. Addressing Dynamic
Dispatching Issues in WCET Analysis for Object-Oriented Hard
Real-Time Systems. Proceedings of the 5th IEEE International
Symposium on Object-Oriented Real-Time Distributed Comput-
ing ISORC-2002, pages 109–116, April 2002.

[11] E. Y.-S. Hu, G. Bernat, and A. J. Wellings. A Static Timing
Analysis Environment Using Java Architecture for Safety Crit-
ical Real-Time Systems. Proceedings of the 7th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable
Systems WORDS-2002, pages 77–84, January 2002.

[12] J. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive
Systems. In Proceedings of 13th IEEE of Real-Time Systems
Symposium (RTSS), pages 110–123, December 1992.

[13] Y. Li and S. Malik. Performance Analysis of Embedded Soft-
ware Using Implicit Path Enumeration. ACM SIGPLAN Work-
shop on Language, Compilers and Tools for Real-Time Systems,
June 1995.

[14] F. Mueller. Static Cache Simulation and its Applications. Ph.d
thesis, Department of Computer Science, Florida State Univer-
sity, July 1994.

[15] P. Persson and G. Hedin. An Interactive Environment for Real-
Time Software Development. Proceedings of the 33rd Interna-
tional Conference on Technology of Object-Oriented Languages
(TOOLS Europe 2000), June 2000. St. Malo, France.

4

A Unified Flow Information Language for WCET Analysis

Andreas Ermedahl†

IT-Dept. Uppsala University

Box 337, SE-751 05 Uppsala

Sweden

andreas.ermedahl@it.uu.se

Jakob Engblom†

IAR Systems AB

Box 23051, SE-750 23 Uppsala

Sweden

jakob.engblom@iar.se

Friedhelm Stappert∗

C-LAB

Fürstenallee 11, 33102 Paderborn

Germany

friedhelm.stappert@c-lab.de

Abstract

In this paper we raise the question if it is possible

to create a unified flow information language that all

WCET research groups can agree upon, and that is in-

dependent of flow analysis and calculation methods.

We discuss desired characteristics of such a flow in-

formation language and describe the type of flows that

it should be able to express. We present our previ-

ously published flow fact annotation language and dis-

cuss how it fulfils the desired language properties.

1. Introduction

A correct WCET calculation method must take into
account the possible program flow, like loop iterations
and function calls. For expressing program flows nu-
merous annotation languages have been presented in
the WCET literature. The expressiveness and the type
of flows that can be handled by these languages mostly
depend on the characteristics of flow analysis meth-
ods used, rather than being targeted for the potential
WCET tool user.

To generate a WCET estimate, we consider a pro-
gram to be processed through the phases of program

flow analysis, low level analysis and calculation. Most
WCET research groups make a similar division nota-
tionally, but sometimes integrate two or more of the
phases into a single algorithm.

The program flow analysis phase determines pos-
sible program flows, and provides information about
which functions get called, how many times loops iter-

† This work is performed within the Advanced Software Tech-
nology (ASTEC, http://www.docs.uu.se/astec) competence
center, supported by the Swedish National Board for Industrial
and Technical Development (NUTEK, http://www.nutek.se).
∗ Friedhelm is a PhD student at C-LAB (www.c-lab.de), which

is a cooperation of Paderborn University and Siemens.

ate, if there are dependencies between if-statements,
etc. The information can be obtained by manual anno-

tations (integrated in the programming language [14]
or provided separately [6, 9, 19]). The flow informa-
tion can also be derived using automatic flow analysis

methods [7, 10, 13, 22].

In the calculation phase a program WCET estimate
is derived, combining the information derived in the
program flow and low-level analysis phases. There are
three main categories of calculation methods proposed
in literature: tree-based, path-based, and IPET (Im-
plicit Path Enumeration Technique).

In a tree-based approach the WCET is calculated in
a bottom-up traversal of a tree generally corresponding
to a syntactical parse tree of the program, using rules
defined for each type of compound program statement
(like a loop or an if-statement) to determine the exe-
cution time at each level of the tree [1, 2, 16, 20].

In a path-based approach the possible execution
paths of a program or piece of a program are explored
explicitly to find the longest path [10, 12, 22, 23]. The
path-based approach is natural within a single loop it-
eration or function.

In IPET, program flow and low-level execution time
are modeled using arithmetic constraints [6, 9, 15, 18,
21]. Each basic block and program flow edge in the
program is given a time (tentity) and a count vari-
able (xentity), and the goal is to maximize the sum∑

i∈entities
xi ∗ ti, subject to constraints reflecting the

structure of the program and possible flows.

2. Representing Program Flow

The program flow phase can be further divided into
three different subphases:

1. Flow analysis: Obtaining flow information. By
manual annotations or automatic flow analysis.

2. Flow representation: Representing the results of
the flow analysis.

1

3. Calculation: Using the control flow information (as
represented in the flow representation) in the final
WCET calculation.

Some WCET methods integrate two or more of the
phases. We believe that the separation of the flow anal-
ysis from the calculation reduces the complexity of each
stage. Also, by keeping the flow analysis phase separate
from the flow representation, results from several dif-
ferent flow analysis methods and manual annotations
can be integrated and used together in the calculation
phase.

When designing a language for expressing flow infor-
mation there are a number of choices to be made:

• Expressiveness: What type of flows should be pos-
sible to express? What type of language constructs
should be used?

• Code relation: How is the information related to
different entities in the program code?

• Calculation conversion: How should the information
be used in the final calculation phase?

2.1. Expressiveness
We first note, that a natural way to give flow infor-

mation is by constraining the number of times different
program entities, e.g. loops, statement, nodes or edges,
can be taken. This can either be precise bounds, e.g.
that a loop is iterated exactly ten times, or upper or
lower bounds, e.g. that node A can’t be taken more
than five times. It is also beneficial if we can relate the
executions of different program entities, e.g. that node
A and node B will always be executed together.

The language can consist of named special rela-
tions between entities (e.g. using constructs like Parks
samepath(A,B) and nopath(A,B) [19]). An alterna-
tive is to use a more generic style based on math, like
our flow fact language [6]. The benefit of a generic
math-based language is that it can express flows that
are hard to put in words and that there is no obvious
limit to the types of flows that can be expressed. On
the other hand, a special purpose language is easier to
understand, but requires that new language constructs
are invented in order to express new flows.

The language must reflect the flows found in real-
world programs. Researchers have investigated em-
bedded software [4], the RTEMS operating system [3]
and common signal-processing algorithms [8]. The re-
sults are not in complete agreement on the properties
and flows typical for embedded software, showing that
more research and knowledge is needed here.

One observation is that flow information is mostly
local in its nature, specifying something valid for a
small part of a program or a particular invocation of
a function. Thus, it is not always suitable to specify

flow information once for each entity in the program.
E.g. we would like to be able to specify that some node
A can’t be executed during the first five iterations of a
loop or give a loop bound valid for just some particular
executions of a loop. A language should allow for such
local flow information to be expressed.

2.2. Code Relation
First we note that it is natural to express flow in-

formation in relation to the entities available in the
program code. Flow information can be provided in
relation to the source code, intermediate code in a
compiler, or the object code. If provided on source
code level, the information must be mapped to the ob-
ject code to be used in the WCET calculation. In the
presence of optimizing compilers, this problem is non-
trivial [5, 17].

Automatic flow analysis is probably easier to per-
form at the source code or intermediate code, since
variables and other entities of interest are harder to
identify in optimized object code. Also, for the po-
tential WCET-tool end-user manual annotations are
typically easier to provide at the source-code level.

Another issue is if the flow information should be
included as a part of the programming language or pro-
vided outside the program. The benefit of language in-
clusion is that it forces the programmer to write code in
an analysable manner. However, this requires compiler
support and makes it harder to try different scenarios.

Specifying the flow information outside the program
source allows it to free itself from the static structure
of the program. For example, by using a call-graph

representation, we can differ between invocations of the
same function when called from different places in the
code. An example of the extended version is our scope

graph represention [6].
A good language should provide stability in that pro-

gram changes not related to annotated code should not
force the annotations to change. For example, a prob-
lem with expressing flow information on the object code
level is that the information might need to be regener-
ated every time the program code changes.

An important issue is the ability to handle unstruc-

tured code, e.g. due to uses of goto and jumps into
loops. An optimizing compiler might produce unstruc-
tured object code from structured source code, and au-
tomatic code for state machines also tends to be un-
structured. A general purpose flow information lan-
guage must be general enough to express flows over
such unstructured code.

2.3. Calculation Conversion
Regardless of the flow information language used

the extracted flow information must be ”compiled” or

2

if(i < 10) A; // Stmt B and C

else B; // can not be
if(i <= 7) C; // taken together
else D;

for(i=0;i<10;i++) // bound: 10
for(j=i;j<10;j++) // local bound: 10

E; // E executed at
// most 55 times

if(cond)

x = true; // stmt: F
for(...) // Execution of G

if(x) G; // is implied by F

(a) Infeasible path (b) Triangular loop (c) Deeply nested dependency

Figure 1. Example of Code with Different Type of Flows

”adapted” to the calculation method used. The adap-
tation must be safe: never exclude execution paths
which are considered possible by the flow information,
and tight : including as few extra execution paths com-
pared to the provided flow information. Figure 1 gives
example code showing that not all calculation methods
can take advantage of all types of flow information.

The tree-based method [1, 2, 16, 20] is conceptually
simple and computationally cheap, but has problems
handling flow information, since the computations are
local within a single program statement and thus can-
not consider dependencies between statements. For ex-
ample, the code and flow information in Figure 1(a)
causes problems in a tree-based calculation method
since the timing of the first if-statement will be cal-
culated in isolation from the second if-statement.

The path-based approach is natural within a sin-
gle loop iteration or other executions of one loop
[11, 23]. The method has problems with flow informa-
tion stretching over loop borders and/or flow informa-
tion on the total number of times entities are taken. For
example, the path-based method has problems han-
dling the “triangular” loop dependency in Figure 1(b).
If WCET calculation is performed locally, the WCET
calculation for the inner loop will assume 10 iterations,
and the WCET calculation for the outer loop will use
10 executions of the inner loop, leading to the body
of the inner loop being counted 100 times, when it is
actually never executed more than 55 times.

For IPET very complex flows can be expressed using
constraints, but all flow information needs to be given
on a global program level [6, 9, 15, 18, 21]. This con-
tradicts the need to specify flow information in a local
context. As shown in [6], local flows can be handled by
unrolling the program and lifting the information to a
global level. Since flow information is given as relations
over count variables some type of flow implications are
problematic to express. E.g. Figure 1(c) shows an ex-
ample of code where we would like to express an impli-
cation dependency like: “if F is taken once then (and
only then) G can be taken several times, but if F is not
taken then G can not be taken either”.

3. Our Flow Fact Language

This chapter describes our previously published flow
fact annotation language [6] and discusses how it fulfils
the desired language properties.

(a) Program code

do
{
 if(...) A
 do
 {
 if(..) B
 ... C
 else
 ... D
 if(...) E
 ... F
 else
 ... G
 }
 while(..) H
 else
 ... I
 }
while(...) J

(b) Scope graph with attached flow facts

loopbound: 10

outer:<1..5>:xJ
= 1

outer:[]:xB
£ 55

loopbound: 10

inner:<>:xC + xF
£

1

inner:<6..10>:xC
=

0

inner:[1..10]:xG
=

3

D

E

C

B

s
c
o
p
e
 i
n
n
e
r

s
c
o
p
e
 o

u
te

r

x
A

x
Dx

C

x
BD

x
BC

x
DE

x
CE

x
HB

x
B

x
I

x
HJ

x
AI

x
IJ

GF x
G

x
F

x
EG

x
EF

x
GH

x
FH

H

A

x
AB

J

I

Figure 2. Scopes with Attached Flow Facts

The program representation used is the scope graph.
It is a hierarchical representation of the dynamic struc-
ture of the program. Each scope corresponds to a
certain repeating or differentiating execution context
in the program, e.g. loops and function calls, and de-
scribes the execution of the object code of the program
within that context. Figure 2(b) shows the scope graph
generated for the code in Figure 2(a).

A scope consists of a number of nodes and edges. A
node belongs to exactly one scope, and represents the
execution of a certain basic block in the program in the
environment given by the scope and its ancestors. For
each scope, a header node must be given. If the scope
iterates, each iteration must pass the header node, and
a bound on the number of iterations has to be provided.

To express more complex program flow information
than just basic loop bounds each scope can carry a set
of flow facts [6]. The flow facts use constraints local
to a scope to describe the flow. The constraints can
be given for a range of iterations, or all iterations of
a certain loop. They can also be local within a single
iteration (“foreach facts”) or represent a total over all
iterations (“total facts”).

The scope graph in Figure 2(b) has been decorated
with some flow facts.

Flow fact inner:<>:xC + xF ≤ 1 is a foreach fact
and gives that the nodes C and F cannot be executed
on the same iteration of the scope inner (an infeasible
path), while the flow fact inner:<6..10>:xC = 0 gives
that for each entry of inner, during iterations 6 to 10
of inner, node C can not be executed.

Flow fact inner:[1..10]:xG = 3 is a total fact that
gives that, for each entry of inner, during the ten first

3

iterations, node G must be taken exactly three times.
Compared to the criteria given above, we note that

the flow facts language uses the math-based style and
allows us to give local information. The information is
given outside the code and uses an expanded version of
the call graph (and thus the control flow graph). In its
current version, it cannot handle all types of unstruc-
tured code due to the need for a header, and since it
relates to the object code, it is very sensitive to pro-
gram changes.

It has been used to perform both IPET- and path-
based calculations [6, 23], but not all facts could be
used in the path-based approach. It is interesting that
the path-based calculation recognized certain types of
facts as meaning “samepath” or “not samepath”, and
exploited these by rewriting the graph.

References

[1] R. Chapman. Program Timing Analysis. Dependable Com-
puting System Centre, University of York, England, May
1994.

[2] A. Colin and I. Puaut. Worst Case Execution Time Analysis
for a Processor with Branch Prediction. Journal of Real-
Time Systems, May 2000.

[3] A. Colin and I. Puaut. Worst-Case Execution Time Anal-
ysis for the RTEMS Real-Time Operating System. In
Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[4] J. Engblom. Static Properties of Embedded Real-Time Pro-
grams, and Their Implications for Worst-Case Execution
Time Analysis. In Proc. 5th IEEE Real-Time Technology
and Applications Symposium (RTAS’99). IEEE Computer
Society Press, June 1999.

[5] J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating
worst-case execution times analysis for optimized code. In
Proc. of the 10th Euromicro Workshop of Real-Time Sys-
tems, pages 146–153, June 1998.

[6] J. Engblom and A. Ermedahl. Modeling Complex Flows
for Worst-Case Execution Time Analysis. In Proc. 21th

IEEE Real-Time Systems Symposium (RTSS’00), Novem-
ber 2000.

[7] A. Ermedahl and J. Gustafsson. Deriving Annotations for
Tight Calculation of Execution Time. In Proc. Euro-Par’97
Parallel Processing, LNCS 1300, pages 1298–1307. Springer
Verlag, August 1997.

[8] R. Ernst and W. Ye. Embedded program timing analysis
based on path clustering and architecture classification. In
International Conference on Computer-Aided Design (IC-
CAD ’97), 1997.

[9] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Com-
piler Techniques to Cache Behavior Prediction. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), 1997.

[10] C. Healy, R. Arnold, F. Müller, D. Whalley, and M. Har-
mon. Bounding Pipeline and Instruction Cache Perfor-
mance. IEEE Transactions on Computers, 48(1), January
1999.

[11] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van
Engelen. Supporting timing analysis by automatic bound-
ing of loop iterations. Journal of Real-Time Systems, May
2000.

[12] C. Healy and D. Whalley. Tighter Timing Predictions by
Automatic Detection and Exploitation of Value-Dependent
Constraints. In Proc. 5th IEEE Real-Time Technology and
Applications Symposium (RTAS’99), pages 79–88, June
1999.

[13] N. Holsti, T. L̊angbacka, and S. Saarinen. Worst-Case
Execution-Time Analysis for Digital Signal Processors. In
Proceedings of the EUSIPCO 2000 Conference (X European
Signal Processing Conference), September 2000.

[14] Raimund Kirner and Peter Puschner. Transformation of
Path Information for WCET Analysis during Compilation.
In Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[15] Y-T. S. Li and S. Malik. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In Proc. of the
32:nd Design Automation Conference, pages 456–461, 1995.

[16] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Ki. An Accurate
Worst-Case Timing Analysis for RISC Processors. IEEE
Transactions on Software Engineering, 21(7):593–604, July
1995.

[17] S-S. Lim, J. Kim, and S. L. Min. A Worst Case Timing
Analysis Technique for Optimized Programs. In Proc. of
the fifth International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA); Hiroshima, Japan,
pages 151–157, Oct 1998.

[18] G. Ottosson and M. Sjödin. Worst-Case Execution Time
Analysis for Modern Hardware Architectures. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), June 1997.

[19] C. Y. Park. Predicting Program Execution Times by Ana-
lyzing Static and Dynamic Program Paths. Real-Time Sys-
tems, 5(1):31–62, March 1993.

[20] P. Puschner and C. Koza. Calculating the Maximum Exe-
cution Time of Real-Time Programs. The Journal of Real-
Time Systems, 1(1):159–176, 1989.

[21] P. Puschner and A. Schedl. Computing Maximum Task Ex-
ecution Times with Linear Programming Techniques. Tech-
nical report, Technische Universität, Institut für Technische
Informatik, Wien, April 1995.

[22] F. Stappert and P. Altenbernd. Complete Worst-Case Exe-
cution Time Analysis of Straight-line Hard Real-Time Pro-
grams. Journal of Systems Architecture, 46(4):339–355,
2000.

[23] F. Stappert, A. Ermedahl, and J. Engblom. Efficient
Longest Executable Path Search for Programs with Com-
plex Flows and Pipeline Effects. In Proc. 4th International
Workshop on Compiler and Architecture Support for Em-
bedded Systems, (CASES 2001), November 2001.

4

WCET Estimation from Object Code
implemented in the PERF Environment

Douglas Renaux, João Góes, Robson Linhares
Laboratory of Embedded Systems Innovation and Technology – LIT

CEFET-PR
Brasil

Abstract

“The estimation of the Worst Case Execution Time of a function produces results that are safe and that

have a low error, even in architectures using pipelines and caches.” This is our thesis; in this paper we
present results that indicate that this thesis is correct.

The two basic approaches to obtain WCET of a piece of code are estimation and measurement. At LIT, a
tool called PERF is under development. This tool uses both approaches so to obtain the best of both
worlds. Measurement provides precise results, but requires the target to be built and running the worst
possible scenario, which is often hard to determine. On the other hand, the precision of estimation
methods is highly dependent on the complexity of the estimation model. PERF is a design and evaluation
environment: a project can be defined, files can be edited, compiled, linked; the resulting code can be
analyzed from a timing perspective both via estimation and via measurement. In this way, we intend to
encourage the developer to perform time estimations as early as possible in the design cycle. Any tool
(commercial or academic) can be inserted in PERF via plug-ins. This was the case of the text editor, the
compiler and the linker. Hence, PERF is actually a framework to which many tools can be added. PERF
works with the object code generated by the integrated tools, in order to obtain execution time limit
estimations for functions that compose a real-time systems’ software project.

In this paper we present the PERF environment’s architecture, with emphasis on the integrated time
estimation model and the results obtained using this model.

1. Introduction

Any tool which intends to estimate execution times should take two different domains into
consideration: the source code, which the developer usually uses to develop his software project, and the
executable code, on which the time estimations are actually performed.

The problem of execution time estimation of a program is usually divided into 3 sub-problems:
execution path analysis on source level; source code and machine code correlation; and execution time
analysis for each individual machine instruction at each path of the object code.

A strategy based on these 3 sub-problems would search for existing paths in the source code and tries
to relate them with the corresponding paths in the object code. Meanwhile, this relationship may not be
easily determined, especially in cases where the code optimizations are enabled. The correlation between
source-code and object -code may not be trivial, specially for a tool which intends to do this automatically;
so, it is possible to concentrate the estimation tool’s work on the object -code path’s determination and on
the estimation of each of its execution times, leaving to the compiler the responsibility of doing the
correlations and interpreting the results obtained through the analysis of object code. Another advantage
of this strategy comes from the possibility of analyzing object-code present in code libraries, to which the
source code is usually not available.

The resolution of the third sub-problem, concerning to the individual execution times of any machine
instruction, is affected by the quality of the model that expresses the hardware platform on which the code
is to be executed. In order to minimize the estimation error, when compared to the measured time values
for a given execution path, this model should consider internal architectural features that have any
influence over the execution times of the instructions, such as cache memories and pipelines (if
available). Moreover, it is useful for the model to be reconfigurable, so that the estimation tool is able to
address several target architectures of real-time systems. The reconfigurability feature can be available to
the tool’s user, in a way that allows him to adapt the estimation process to the architectures of his interest,
using configuration parameters; that requires the estimation algorithms to be generic and able to use the
configuration parameters of any architecture in a similar way.

2. The PERF environment

PERF is a tool, under development at LIT, which intends to be a complete design and evaluation

environment. At PERF a software project can be defined, edited, each of its modules can be compiled and
linked; moreover, the resulting object code can be analyzed from a timing perspective both via estimation
and via measurement, which makes PERF suitable for development of software for real-time systems. In
this way, the use of PERF intends to encourage the developer to perform time estimations as early as
possible in the design cycle.

PERF’s architecture is composed of a central core, controlled through a graphical interface. This core
is intended to manage a set of integrated tools, each one performing a determined task in the development
process (editors, compilers, linkers, time analyzers, etc.) and configured via a plug-in. Any tool
(commercial or academic) can be inserted in PERF via plug-ins, allowing the developer to use only the
functionalities which are strictly needed for the target platform and the type of design /evaluation process
of interest.

2.1 Time estimation tool

PERF aggregates an execution time estimation tool, whose estimation process is shown in Figure 1.
This figure shows that an important design decision of PERF’s estimation tool was to analyze object
code, instead of source code or executable code. Object code has all the information that is relevant for
timing analysis and it may include debug information that relates the executable code to the source code.
Also, by analyzing object code, all the libraries can have their tim ing information extracted, even the
commercial libraries.

Figure 1 - Time estimation process used in Perf

Figure 2 shows how PERF presents the different views of a function to the developer. It is worth

noticing that the correlation between source and machine code can also be obtained through debug
information (as it is shown by the gray shaded areas on the source code, machine code and control flow
graph views); nevertheless, the developer can still be asked to provide data flow information necessary
for the estimation, such as number of loop iterations, so that the several execution paths found in the
control flow graph (CFG) are correctly estimated and the correct values for BCET, TCET and WCET are
show n in their respective view.

How does PERF obtain execution time estimations (Figure 1):

1) Analyze the object code and extract the control flow graph.

Each node of the graph represents a code segment, i.e., a sequence of machine instructions at which

only the last instruction can be a branch (absolute jump, conditional jump, procedure call, software
interrupt,...) and only the first instruction is the target of a branch. The control flow graph is obtained in a

function-by-function fashion, even for the commercial libraries, and each function can have its CFG
individually shown, as well as the possible correlation with the source code (if available).

Figure 2 - The PERF tool presenting several views of a function: source, machine code, control
graph and timing information

2) All possible paths in a procedure call are analyzed.

Loop structures require information from the user specifying the minimum, typical, and maximum

number of iterations. This information can be given in the form of comments in the source code or
requested interactively during the analysis (Figure 2).

3) For each path, a time estimation (BCET, TCET and WCET) is obtained based on the configured

hardware model for the target platform.

The hardware model is the main functionality of the execution time estimation tool. This model

intends to address the third sub-problem of the execution time estimation problem (the analysis of the
individual execution times for each machine instruction) by considering internal architectural features of
the target platform’s hardware.

The computation model implemented at PERF is divided in two basic parts: the estimation algorithms,
which are generic and should work in a similar view, independent of the target platform; and the
architecture configuration parameters, obtained from an external plugin.

The generic estimation algorithms consider the influence, on machine instruction execution times, of
multi-stage pipelines, instruction caches of several sizes and associativity degrees and prefetch queues. It
is possible, considering the influence of these features in a correct way, to obtain time estimation values
with estimation errors lower than 10%, comparing to measured time values; this is valid not only for
RISC architectures but for CISC architectures too. The efficiency of the model’s work depends on a
correct configuration for the architectural parameters via the configuration plugin; it is conceived as a
series of data structures in C++ programming language, which can be configured by a developer using the
manufacturer information about the target platform.

The model differentiates the values of BCET and WCET, for each analyzed path, by a pessimistic
factor introduced in the algorithms. For this factor to be correctly addressed, the best and worst case
execution time values for each machine instruction should be modeled during the configuration of the
model; moreover, pessimistic and non-pessimistic considerations are also made concerning to the removal
of instructions from the prefetch queue and the existence of bus conflicts between instruction and data
accesses.

TCET values, by their way, are obtained through typical-case annotation, provided by the user for the
number of loop iterations; in functions where no loop structure is present, the TCET value is the same as
the WCET value.

The loop processing, for any analyzed path, is done using a strategy that eliminates loop redundancies.
This decreases the processing times for loops with a great number of iterations.

4) A report is generated to inform BCET, TCET and WCET of each function.

The execution time of called functions is included in the execution time of the caller, as long as the

execution time of the callee is known. Several iterations may be required to evaluate all these
dependencies.

3. Results

Two processor architectures were initially considered for the time estimation process and modeled,

using the proposed hardware model. The first one was a Intel 80C186EC processor, a CISC core with two
pseudo-pipelined stages, a 6-byte prefetch queue and no instruction cache memory; the second one was a
Motorola PowerPC MPC860 processor, a RISC core with an 8-stage pipeline and a 2-set associative
instruction cache memory of 4 Kb.

The estimation tool was used to estimate the execution time of about a hundred functions, including
all the functions of a real-time kernel. The results obtained from the estimation tool are all safe (the
estimated WCET is never lower than the actual) and the maximum error was of 10% for the 80C186EC
architecture and 15% for the PowerPC architecture. This error, above the initial requirement of 10%, is
due to the inadequate equipment used to validate the model by comparison with measured values; this is
one of the difficulties that can be faced by the developer which intends to configure his own processor
model, provided that the manufacturer information for each instruction’s execution time of a certain
processor are not always accurate.

Some weaknesses are still detected on PERF ‘s execution time estimation tool:

- The inefficiency of solving all kinds of jump tables, used for indirect branch operations (for example,
the compilation of most ‘switch’ structures). PERF is only capable at this moment to find jump tables
in architectures for which the base address is encoded in the instruction code (for example, the Intel
80C186EC architecture).

- For optimized code and code for which the source is not available (for example, libraries), it can be
difficult for the developer to determine the exact number of some loops’ iterations, when asked by the
tool to provide those values.

4. Conclusions and future work

On going work in the PERF environment include: improving the computational models for the
PowerPC architecture to reduce the estimation error, development of computational models of data
caches (currently only instruction caches are modeled) and a tool for scheduling analysis is also under
development.

The results obtained so far with PERF are very encouraging. Our previous work on timing analysis
included the analysis of source code, of the assembly listing produced by the compiler and of binary code.
Each one has strong aspects, but from our perspective, object code analysis is the best option.

References

RENAUX, D. P. B. and DASIEWICZ, P. RTX-Parlog: Real -Time Extended Parlog. In Euromicro’93

Workshop on Real-Time Systems, p. 147-153. IEEE Computer Society Press, June 1993.
GÓES, João Alexandre. PERF: Ambiente de Desenvolvimento e Estimação Temporal de Sistemas em

Tempo Real . Dissertação de Mestrado - CEFET-PR / CPGEI - Julho / 2001
LINHARES, R. Modelamento de Hardware Visando À Estimação do Tempo de Execução de

Programas. Dissertação de Mestrado, CPGEI, CEFET-PR. Curitiba, PR, Dezembro 2001

You Can’t Control what you Can’t Measure, OR

Why it’s Close to Impossible to Guarantee Real-time Software Performance on a

CPU with on-chip cache

Nat Hillary

Manager of Technical Marketing

Applied Microsystems Corp.

nath@amc.com

Ken Madsen

Manager, Product Marketing

Wind River Systems, Inc.

ken.madsen@windriver.com

June 3, 2002.

1. Abstract

 Steady increases in CPU core speeds continue to

extend the range of applications for computer-based

solutions, resulting in the creation of ever more

responsive systems. At these higher core speeds, on-chip

cache architectures are used to prevent the CPU from

stalling when accessing relatively slow off-chip memory.

In normal operation, most fetch-execute cycles occur

internally, guaranteeing the execution of the maximum

instructions per second. However, this also serves to hide

the state of executing code from the user. Given the fact

that it is not possible to directly monitor the execution of

code within such a CPU when it is running at full speed,

is it possible to guarantee and control the performance of

Real-Time software on these cache-based CPU

architectures?

 This paper investigates this issue by first offering a

definition of Real-Time software, together with a

discussion on what must be done to prove that the system

will meet its performance objectives in all circumstances.

In addition, the range of software performance

monitoring techniques that are currently available will be

discussed, together with a summary of the pros and cons

of each measurement technique. The conclusion of this

paper is that it is close to impossible to make

deterministic software performance measurements using

traditional techniques on a CPU that heavily utilizes on-

chip cache, so it is therefore almost impossible to

guarantee the performance of Real-Time software based

on these styles of microprocessor architectures unless

new measurement techniques are utilized.

 Real-Time software is distinguished from any other

application by the fact that performance criteria are

included in the specifications. This means that for Real-

Time software to be verified as being correct, it has to be

proven that the software will always meet its performance

objectives. With cache based microprocessor

architectures, software performance measurements are

extremely difficult to do without causing serious

perturbations, affecting measurement accuracy. This

holds true across all possible measurement techniques.

Accurate, hardware only performance measurements are

generally not possible on architectures utilizing on-chip

cache.

 Software performance measurement techniques range

from hardware assisted solutions, to software only ones.

All techniques, however, rely on being able to get

information about the current state of the executing code

off-chip.

 Pure hardware or hardware assisted solutions such as

Logic Analyzers (LAs), In Circuit Emulators (ICEs), or

dedicated pure software performance monitoring devices

cannot determine what code is executing in the cache-

based CPU core by monitoring external microprocessor

signals. It is therefore necessary to force the activation of

off-chip signals (such as an off-chip write or an assertion

of a hardware signal) in order for the monitoring

hardware to determine the state of the executing code in

the CPU core. Due to the performance limitations on the

external busses of cache-based CPUs, these external

writes have the side effect of stalling the CPU, affecting

the accuracy of any performance measurements based on

them.

 Software only solutions (such as instruction pointer

sampling) do not require off-chip writes during

measurement, but they introduce their own limitations.

As they necessarily require extra software components to

be executing on the CPU in addition to the application

under test, they cause their own perturbations that affect

software performance measurements. By placing extra

demands on the CPU, these software measurements are

limited in their accuracy. In addition, the introduction of

additional code will affect cache flush and update

intervals, significantly impacting the accuracy of any

performance measurements.

 Guaranteeing the performance of real-time software

relies on being able to prove that the software will meet

its performance objectives in all circumstances. As this

paper suggests, obtaining accurate timing measurements

is very difficult for systems utilizing CPUs with on-chip

cache based architectures. Does this mean, then, that this

type of CPU should not be used for real-time systems?

The answer is no. This type of CPU is often ideally suited

for maximum performance real-time systems and must

often be used by system designers in order to build a

system possessing top competitive performance

characteristics. However, the full maximum real-time

performance of these systems cannot be easily guaranteed

with any single measurement approach.

 This paper will show how the best approach to

measuring real-time responsiveness for a system with a

CPU containing on-chip cache is not a single

measurement approach, but is in fact an approach based

on the intelligent, clever, and often simultaneous, use of

multiple measurement techniques, from pure hardware

based techniques, to hardware assisted based techniques

to pure software based techniques.

2. Real-Time Software

Because Real-Time software has performance criteria

included in its specifications, it is essential that software

execution performance be monitored at every step of the

way while it is being created, from the writing of Interrupt

Service Routines (interrupt service routines) to time-

critical sections of application code. So what techniques

may be used to measure software execution performance,

and what are the implications of using them with a cache-

based CPU?

Starting from board bring-up, the measurement

technologies most commonly employed are:
�

Logic Analyzers
�

In Circuit Emulators
�

Hardware-assisted software performance monitors
�

Software-assisted software performance profilers

3. Logic analyzers

 Typically used to monitor hardware signals, logic

analyzers may also be used to make high-resolution

measurements of software performance, normally for

point-to-point type timing measurements.

 All software performance measurements made with a

logic analyzer require external CPU signal lines to be

asserted when particular lines of code are reached. This

results in very high-resolution timing for specific sections

of executed code, and when measuring response time

against external stimulus or events.

 Measuring hardware/software interactions (such as

interrupt latency times) is fairly straightforward; a single

command is placed at the entry to the software routine in

question that asserts a signal on an external CPU pin (e.g.

a spare chip select or programmable I/O pin, which will

not stall the CPU). The logic analyzer is then used to

measure the interval between the external hardware event

and the signal marking entry to the software routine being

asserted. The fine-grained timing measurements obtained

using this technique may also be used for monitoring

critical sections of code. Modern Logic Analyzers (such

as the TLA series from Tektronix) extend this technique,

allowing specific networking signals (such as Ethernet

packets or ATM cell contents) to be used as hardware

trigger events.

 By using instrumentation (e.g. adding statements at

salient points in code), logic analyzers may also be used

for monitoring the performance of a Real-Time

application.

 For some applications, using spare off-chip signals are

restrictive, as a prohibitive number would be needed in

order to correctly identify each unique point in code.

Instead, external writes are required to ensure that enough

unique instrumentation values are included for the

measurements to be meaningful. However, the resolution

of this type of solution is slightly less than the technique

described above for point-to-point measurements.

 Although Logic Analyzers provide a means of making

deterministic A to B type measurements of code, they

typically do not gather profiling data over a statistically

long period. It is therefore necessary to use analytical

techniques to ensure that the correct conditions are

created so that particular measurements accurately reflect

the worst-case execution time of a particular section of

code.

 Logic Analyzers are an excellent solution for making

controllable, minimally intrusive measurements of critical

sections of code, particularly those associated with

external hardware events.

 In some rare cases, inserting additional code into an

application degrades the performance to a point where the

system’s Real-Time characteristics are not being met. In

this case, ‘black box’ performance testing techniques are

required, where measurements are made at points external

to the CPU. E.g. the response time between a particular

Ethernet packet arriving and the system responding might

be measured using a Tektronix TLA Logic Analyzer.

4. In circuit emulators

 Typically used in the early debug stages of target

board bring-up, in circuit emulators may also be used for

software performance measurements.

 Traditionally, the Real-Time bus trace capability was

the most significant feature of an ICE. For non cache-

based CPUs, bus trace can be used to monitor the timing

of higher-level application code, including those that need

to respond to external hardware events.

 Aside from the lack of profiling data, this would be the

ideal solution for performance monitoring of true Real-

Time software, but it requires an off-chip fetch-execute

cycle to occur in order to monitor what’s going on.

 Modern cache-based CPUs tend not to have full ICE

solutions available. Instead, most modern CPUs have

emulators that use serial test access points such as JTAG.

 Most JTAG emulation solutions do not have Trace

measurements. Triggering timing measurements with a

JTAG emulator requires the use of hardware or software

breakpoints, which are intrusive. In addition, the serial

JTAG bus is slow by comparison to processor speed and

events are detected asynchronously to their occurrence.

Any timing measurements made via this bus are going to

be subject to inaccuracies; monitoring the execution speed

of a 400 MHz CPU core by sending information through

a significantly slower serialized communications bus is

not an ideal solution.

 Traditionally the ideal solution for making software

performance measurements on the fly, contemporary ICE

solutions rarely support the features required to make

deterministic timing measurements of code.

5. Hardware-Assisted Software Performance

Monitors

 An extension of in circuit emulation technology,

hardware assisted software performance monitors, such as

the CodeTEST product from Applied Microsystems, are

designed specifically to measure software execution

performance.

 This technology requires the combination of software

instrumentation and hardware data collection, with time

stamping. It may be used to monitor low-level code (such

as interrupt service routines), application level code and

also RTOS activity. In addition, time stamping may be

triggered by external events, making the timing of

hardware/software interactions (such as interrupt

latencies) possible.

 Although the instrumentation of code is automatic, this

technique requires an off-chip write for each

measurement point, producing the same inaccuracies as

with the Logic Analyzers above. However, the

instrumentation required for monitoring the worst-case

execution time of critical sections of code may be limited

to a single manually inserted statement. This technique

may also be used to gather performance data over a

significant period of time, with the automatic collation of

minimum, maximum and average execution times. The

overhead of a single off-chip write is minimal, and is easy

to calculate, making the measurements that this technique

provides highly accurate and deterministic.

 This technology provides the best method for

monitoring critical sections of code and for general code

optimization, by providing application level profiling data

that identifies where the system is spending its time,

ensuring that optimization efforts are focused on the right

areas.

 The ‘call-pair’ data provided by this technology may

also be used to improve software performance. ‘Call-

pairs’ measurements identify highly inter-dependent

functions that make good candidates for either inlining,

fixing in cache, being located close to one another in the

link map of the application.

 This technique has been successfully used in the

CodeTEST product for Performance, Coverage, and

Memory analysis, in addition to Software Execution

Trace.

6. Software-Assisted Software Performance Profilers

 Worthy of mention because of their dominance in the

desktop marketplace, software-assisted performance

profilers use a variety of techniques for monitoring where

an application is spending its time. If this technology is

ever used during the development of a Real-Time system,

it is used to aide optimization efforts, and not to measure

any of the Real-Time characteristics of the code.

 Typically consisting of an in-target data collection

agent and either code instrumentation or stack/IP

sampling, the potential of this technology is intriguing for

two reasons. First, these techniques do not require any

off-chip accesses in order to make their measurements.

Secondly, solutions based on these techniques tend to be

extremely easy to use.

 On the other hand, these techniques rely on a target

based data collection agent, which is intrusive. Any

techniques based on stack/IP sampling are also prone to

aliasing, and in require higher levels of intrusion to

improve their accuracy.

7. What Level of measurement accuracy is required?

For Real-Time systems, ‘Real-Time’ does not

necessarily equate to ‘real-fast’. The environment in

which a system must operate dictates the performance

criteria of Real-Time software. A pacemaker, for

instance, must respond to specific physiological events

within a specific time period before permanent damage to

the heart ensues (response times in the 100’s of mS).

Meanwhile, a commercial flight control system must

process and respond to thousands of inputs a second, from

pilot commands to air data (response times in the mS).

With modern CPUs capable of processing in excess of

2 billion instructions per second, is it really necessary to

measure software performance on a per instruction basis?

The simple answer is no, provided that:

• Worst-case response/execution times of a system

are monitored, verified and managed

• Enough information is to hand during software

creation to ensure that the system performance

objectives can be met.

From this, then, the question then arises whether this is

achievable with CPUs utilizing on-chip cache.

For extremely high accuracy software performance

measurements of worst-case execution time (e.g. nS

accuracy), Logic Analyzers may be used. Alternatively,

if uS accuracy of software performance is required, then

hardware assisted software performance monitoring

technologies show the most promise. The only question

is whether the performance impact of the off-chip writes

that these technologies require is prohibitive, or not. This

is worth a more detailed consideration.

 When measuring the worst-case execution time of a

critical section of code (e.g. the main loop in a control

function) using this technology, a single write statement is

required. Timing is started when the write occurs the first

time, and then the interval between each occurrence is

timed. But what overhead does this introduce?

 Consider a typical environment where a target system

is using a 100 MHz external CPU bus that requires 3

clock cycles to complete a write operation. In this

instance, the delay imposed by each write operation

would be a deterministic 30 nS.

 The impact of a 30nS delay per cycle in the time

critical code of a Real-Time system is negligible. The

impact of being able to deterministically measure the

worst-case execution time of the software under

measurement with uS accuracy, however, is not. This

lends great credence to the power of hardware assisted

software performance monitoring technologies, especially

when these technologies may be used to gather timing

information on the critical sections of code over a

significant period of time, ensuring the true worst-case

execution time is understood.

8. Conclusion

 It is an age-old dilemma in science; how can you

measure something without affecting it? When it comes

to measuring the performance of Real-Time software, the

simple answer to this is – you can’t. Add a CPU that

utilizes on-chip cache, and the situation only gets worse.

It is imperative, therefore, that the right performance

measurement technique be used for the software being

created. If the Real-Time nature of the software under

development requires a timing accuracy in the nS range,

then a Logic Analyzer must be used for software

performance measurements. It must be understood,

however, that data can only be gathered over a limited

measurement period. Therefore, careful consideration

must be made in the creation of the stimulus or

circumstances to make sure that the worst case scenarios

are represented for measurement and analysis.

 Traditionally, Logic Analyzers required intimate

knowledge of memory implementations on the target

hardware, thus they provided very little functionality for

software engineers. However, new products such as LA

Trace from Wind River Systems abstracts the bus

implementation from the user making it easy for software

engineers to configure the circuitry of a Logic Analyzer to

make complex timing measurements. Furthermore, Wind

River’s LA Trace is able to leverage RTOS knowledge to

present acquired information relative to RTOS threads

and events.

 On the other hand, if you want information in the uS

range, use the type of hardware assisted software

performance monitoring technology available with the

CodeTEST product from Applied Microsystems. This

not only provides accurate one-shot timing information,

but it also gathers performance information over an

indefinite period of time, ensuring that the worst-case

execution time of the software being measured is

encountered. In addition, the same technology provides

function profiling data that greatly enhances optimization

efforts, and call-pair information that enables immediate

performance improvements through in-lining or prudent

link-map ordering.

 Real-Time bus trace data from in circuit emulators

have traditionally the fall back solution for Real-Time

software performance measurements. Most modern

CPUs utilizing on-chip cache, however, only have serial

JTAG emulation solutions without Real-Time bus trace

capabilities. Emulators do not, therefore, provide the

performance information that they once did.

 Software only profiling solutions, popular in the

desktop market, are too intrusive and/or inaccurate to

make accurate worst-case execution time measurements

for Real-Time systems. However, they do provide the

profiling information that may be used to yield significant

performance improvements during code optimization.

 As with all measurements in science, it is impossible

to measure the worst-case execution time of Real-Time

software without affecting the system. Nevertheless,

technologies are available that are appropriate for the

required level of accuracy, ensuring that the Real-Time

nature of software executing on a CPU utilizing on-chip

cache can be controlled.

The European Space Agency's involvement and
interest is WCET and scheduling analysis

Extended Abstract

Morten Rytter Nielsen, ESA (morten.nielsen@esa.int)

Eric Conquet, ESA (eric.conquet@esa.int)

Jean-Loup Terraillon (jean-loup.terraillon@esa.int)

Abstract

We consider the use of scheduling analysis as not being a standalone exercise but a

system-level activity, congruent with the conscious decision for a 'correctness by

construction' development model. We describe how ESA have incorporated the ideas

of scheduling analysis into our required standard practices; how we have ensured that

the enabling technology is available; and where we see the future of WCET

technology and scheduling analysis.

The development approach

The traditional development model, which is used in software space projects under

the responsibility of ESA, follows the classical waterfall V-model [ESA-PSS-05]. In

this development model the User Requirements are ESA's requirements towards

industry and the Software Requirements (or Technical Requirements) are industry's

refinement of these. These Software Requirements are then followed by Architectural

Design, Detailed Design and coding. On the ascending part of the V-model Unit Tests

(verifies Detailed Design), Integration Tests (verifies Architectural Design), System

Tests (verifies Software Requirements Definition) and Acceptance Tests (verifies

User Requirements) are performed. The testing effort is usually 50-60 percent of the

total development effort. Each phase of the development model is finalized with

reviews and acceptance together with associated payments.

Historic Space Systems

The V-model has proven its value through many years and projects. Traditionally

onboard software-systems have been quite simple and with well separated functional

blocks. The utilized software technology centered on fixed cyclic schedulers and

dedicated proprietary kernels and very often the I/O mechanism was polling or well

characterized interrupts. The required method in the ESA standards for controlling the

performance behavior was limited to requirements for CPU utilization at the different

stages of development (projects typically used 50% at Architectural Design, 60% at

Detailed Design and 70% on final acceptance of the software code). Real-time

requirements in the form of reactivity/responsiveness and jitter where either non-

existent or at best occasional. The CPU utilization was typically acquired by

estimation and later by measurement performed on the final code.

Current Space Systems

The new generation of onboard space systems is significantly richer in functionality

and complexity, with much more interaction between functional blocks than

traditional onboard systems. Among other reasons, this trend originates from:

• Added throughput (dedicated services)

• More intelligent Autonomy and Failure, Detection, Isolation and Recovery

(FDIR) functionality

• Intelligent instruments that sporadically interrupt the main computer

• Added capability of the onboard system in general

Many real-time requirements are now part of the requirement baseline to ensure

reactivity and enable different units of the satellite to be developed to lesser

tolerances.

Several new problems have surfaced in the new generation of onboard systems [ESA

STR-260]. Many of these problems occur in the real-time behavior area. Since CPU

utilization is not a sufficient way to ensure real-time behavior, the development

approach has to be adapted. ESA have thus sponsored and funded a number of

initiatives and supported (and still supports) the introduction of scheduling analysis in

the ways outlined in the following paragraphs. For us it is clear that the use of

scheduling analysis have major repercussions on the implementing technology as well

as on the process standards and associated development approach. This altogether

raises a clear demand for better tools support, not limited to the extraction of WCET

and the scheduling analysis but also extending to the specification of the real-time

attributes and properties of the system.

Standards

The new European generation of space standards, the ECSS standards, allows more

flexible development approaches to be used (e.g. spiral models and rapid prototyping)

[ECSS-E40B-July2000 and ECSS-E40B-Feb2002]. However, they also require that

the used computational model of the system be identified. This explicitly includes the

component types (e.g. active-periodic, active-sporadic, protected, passive, actors and

process), the assumed scheduling type and model (e.g. fixed priority or dynamic

priority) and the accompanying analytical model under which the model is executed

(e.g. Rate-Monotonic Scheduling or Deadline-Monotonic Scheduling).

This evolution shows that the previously informally used CPU utilization is now

being replaced by much more stringent requirements on the chosen architecture and

the rationale behind this choice.

Projects may decide to waive requirements in the standards if this implies too much

effort. Thus the enabling technology is very important to lower the entrance to

applying scheduling analysis.

Enabling technology

Specification and Design level

In order to be able to really harvest the benefits of the scheduling technology early in

the development process, ESA saw the need to accommodate the computational

model already at design level. The result of this effort is the HOOD derived HRT-

HOOD method [HRT-HOOD]. Currently, TNI (France) and Intecs Sistemi (Italy)

have commercial tools supporting this specification and design method.

Implementation technology

ESA have supported the Ada Ravenscar definition from a user perspective.

Furthermore we have funded the development of the GNAT/ORK kernel and

compilation system and the port of Aonix Raven to the space processor ERC32. Also

CNS have an Ada Ravenscar system for the ERC32. Ravenscar compilation systems

are now used for Beagle2 and GOCE.

WCET extraction
In some projects the extraction of the WCET profile have been done by hand.

However, for scheduling analysis to be used widely and systematically in the space

domain, we believe that tools supporting this process are needed. Various ways of

acquiring the WCET have been tried, including:

• Instrumentation: Logic analyser (Tektronik) and embedded instrument code

(Aonix and VxWorks/Tornado) plus user developed instrument code

• Source level analysis with the support of the compiler: a prototype based on

the Adaworld compiler have been developed by Aonix

• Static Analysis on image code: Bound-T from SSF (Finland) have been

developed for both the DSP 21020 and the ERC32

Scheduling analysis

Tools to help apply different scheduling analysis techniques have been developed and

are now available from Spacebell (Belgium). These tools assist in margin analysis and

enables persons less fluent in the logic behind the analysis to interpret and evaluate

the results.

Test cases

A standardization of core onboard services has taken place in the form of the Packet

Utilization Standard [ESA-PSS-05]. OBOSS [OBOSS] is a reference implementation

of selected services, which have been used as a guinea pig for scheduling analysis and

the Ada Ravenscar profile. Furthermore, the development approach using scheduling

analysis and thereby moving the verification of real-time properties from the typical

integration testing phase to the specification and design phase have been applied with

great success on the European Robotic Arm (ERA) which is a safety critical module

to be used on the International Space Station.

Future of Space Systems

The new draft ECSS standards for onboard space engineering require that scheduling

analysis must be performed. Several proposals for new onboard systems are base-

lining Ada Ravenscar as the implementation technology and the awareness of

scheduling analysis is increasing. Together with standards that require a strong

development baseline and a consolidation of the tools assisting in the scheduling

analysis in all relevant phases of the development process, the entry barrier for the

application of this development approach will be continuously lowered.

ESA continues to fund and promote the development of the enabling technology and

the support for the development approach referenced in this paper. The near future

evolution is the new space processor LEON, which like the current ERC32 has a

Sparc instruction set. The transition to LEON, which has cache, raises new challenges

that will require 'expert support' in addressing.

The movement and activities described in this paper has been triggered by problems

encountered in space projects using the current development approach. These

activities focus on a single computation platform with embedded software. As space

onboard systems are moving from synchronous to asynchronous behavior, the need to

extend the scheduling analysis to system level is surfacing. ESA is participating in

organizations supporting the AADL (Avionic Architecture Description Language)

standard. The aim of this work is to define a common language for the design and

verification of complex avionic systems. We expect from such a standardization effort

the emergence of an open framework that can incorporate various design languages

and verification tools able to trap performance and behavioral issues in early design

phases.

Conclusion

We have in this extended abstract explained the context and the support of the WCET

and scheduling analysis in ESA and the problems that we have encountered which let

to this. In the full paper we will include experiences of the different areas outlined

above and expand on the future as ESA sees it. This will include specific activities

started or foreseen to be started in the area of distributed scheduling analysis.

References:

[ESA-PSS-05] ESA PSS-05-0 Issue 2, February 1991: ESA Software Engineering

Standards

[ESA-PSS-07-101] ESA PSS-07-101 issue 1, May 1994: Packet Utilisation Standard

[ECSS-E40B-July2000] ECSS-E-40B Draft 1, 28 July 2000: Space Engineering.

Software

[ECSS-E40B-Feb2002] ECSS-E40B Draft 1, 15 February 2002: Space Engineering.

Software

[HRT-HOOD] Burns, A. and Wellings, A.: HRT-HOOD: A Structured Design

Method for Hard Real-Time Ada Systems, Elsevier, 1995.

[OBOSS] OBOSS home page: http://spd-web.terma.com/Projects/OBOSS/Home_Page

[ESA STR-260] Vardanega, V.: Development of On-Board Embedded Real-Time

Systems, ESA STR-260 October 1999

Cache analysis vs static cache locking for schedulability analysis
in multitasking real-time systems

Isabelle Puaut
IRISA, Campus de Beaulieu, 35042 Rennes Cédex, FRANCE

e-mail: puaut@irisa.fr

Abstract

Cache memories have been extensively used to bridge
the gap between high speed processors and relatively slow
main memories. However, they are source of predictabil-
ity problems and need special attention to be used in hard
real-time systems. A lot of progress has been achieved in
the last 10 years to model caches, in order to determine
safe and precise bounds on (i) tasks WCETs in the presence
of caches ; (ii) cache-related preemption delays. An alter-
native approach to cope with caches in real-time systems is
to statically lock their contents so as to make memory ac-
cess times and cache-related preemption times entirely pre-
dictable. This paper attempts to evaluate qualitatively and
quantitatively the pros and cons of both classes of methods.

1 Caches and real-time systems

Extensive studies have been performed on schedulabil-
ity analysis to guarantee timing constraints in hard real-time
systems. Schedulability analysis methods assume that task
worst-case execution times (WCETs) are known. While
many schedulability analysis methods consider that the cost
of task preemption is zero to simplify the analysis, some
methods account for task preemption costs (e.g. manipula-
tion of task queues, cache-related preemption delays).

Caches are small and fast buffer memories used to speed
up the memory accesses. They contain memory blocks that
are likely to be accessed by the CPU in the near future. Al-
though the caches are a very effective means of speeding up
the memory accesses in the average case, they are a source
of predictability problems, due to intra-task and inter-task
interferences. Intra-task interferences occur when a task
overrides its own blocks in the cache due to conflicts, while
inter-task interferences arise in multitasking systems due to
preemptions. The inter-task interferences imply a so-called
cache-related preemption delay to reload the cache after a
task is preempted.

Caches raise predictability issues in hard real-time sys-

tems because they are designed to speed up the system av-
erage case performance rather than the system worst case
performance which is of prime importance in hard real-time
systems. As a consequence, the designers of hard real-time
systems may choose not to use cache memories at all, or
may choose to use on-chip static RAM - scratchpad memo-
ries – instead of caches [2]. The simple approach consisting
in assuming that every access to memory results in a cache
miss, causes the tasks WCETs to be largely overestimated,
which may cause the schedulability analysis to fail while
the system may actually be feasible. The main issue is then
to estimate tasks WCETs and cache-related preemption de-
lays in a safe but not overly pessimistic manner.

Two classes of approaches, described hereafter, can be
used to deal with caches in real-time systems.

Cache analysis methods. A first class of approaches to
deal with caches in hard real-time systems is to use them
without any restriction, and resort to static analysis tech-
niques to predict their worst-case impact on the system
schedulability.

At the intra-task level, static WCET analysis techniques
have been extended to predict the impact of cacheing on the
WCETs of the tasks. They achieve a classification of the
memory accesses regarding the instruction or data caches
(e.g. hit when it can be proved that the access always results
in a cache hit, miss otherwise). Techniques to predict the
worst-case task behavior regarding the instruction cache can
use data-flow analysis on each task control flow graph [12],
abstract interpretation [1], integer linear programming tech-
niques [10], or symbolic execution [11].

At the inter-task level, work has been undertaken to ob-
tain safe and precise estimates of the cache-related preemp-
tion delay [9]. In this work, at every possible preemption
point, the blocks that will be used by each task after that
point are determined by static analysis, thus avoiding con-
sidering that the whole memory accessed by the task has to
be reloaded in the cache after a preemption.

1

Cache partitioning and cache locking. A second class
of approaches to deal with caches in real-time systems is to
use them in a restricted or customized manner, so as to adapt
them to the needs of real-time systems and schedulability
analysis.

Cache partitioning techniques [8, 5, 14] assign reserved
portions of the cache (partitions) to certain tasks in order to
guarantee that their most recently used code or data will re-
main in the cache while the processor executes other tasks.
The dynamic behavior of the cache is kept within parti-
tions. These techniques eliminate the inter-task interfer-
ences, but need extra-support to tackle intra-task interfer-
ence (e.g. static cache analysis) and reduce the amount of
cache memory available for each task.

Another way to deal with caches in real-time systems
is to use cache locking techniques, which load the cache
contents with some values and lock it in order to ensure
that the contents will remain unchanged [6]. This ability
to lock cache contents is available on several commercial
processors. The cache contents can be loaded and locked
at system start for the whole system lifetime (static cache
locking), or changed during the system execution, like for
instance when a task is preempted by another one (dynamic
cache locking). The key property of static cache locking is
that the time required to access the memory is predictable.

Schedulability analysis for systems with caches. Some
schedulability analysis methods (Rate Monotonic Analysis
– RMA, Response Time Analysis – RTA) have been ex-
tended to cope with cache-related preemption delays in [3]
and [4] respectively. They add the parameter ��� , the cache-
related preemption delay, to the formulas in charge of veri-
fying the system feasibility (e.g. ������	��

�������������������� "!$#&%
in RMA for ' tasks of period (*) and WCET +�)).

2 Cache analysis vs static cache locking

In the following, we give some elements that allow to
choose between using statically locked caches or using the
dynamic features of the caches, which imposes to use cache
analysis techniques to bound accurately tasks WCETs and
cache-related preemption delays. A static cache locking
strategy with a frozen cache contents for all tasks is con-
sidered hereafter.

2.1 Qualitative comparison

Static cache locking is attractive from several point of
views. First of all, it improves the system performance com-
pared to a system that does not use caches, with respect to
both average and worst-case system performance.

In addition, with static cache locking, the time required
to perform a memory access is predictable (it is either a hit

or a miss depending on whether the value is locked in the
cache or not). While WCET analysis is still required, it alle-
viates the need for using complex cache analysis techniques
for computing WCETs and cache-related preemption de-
lays, and results in more simple WCET analysis tools. In
particular, it eliminates the issue of integrating cache anal-
ysis techniques with the analysis techniques for the other
architectural features (pipelines, branch prediction, etc).

Static cache locking can also be used when no cache
analysis method can apply, due for instance to non-
deterministic or poorly documented cache replacement
strategies (e.g. pseudo-random replacement policies).

Another important benefit of static cache locking is that
the technique addresses both intra-task and inter-task inter-
ferences, which is unique among the cache management
techniques presented above. Concerning inter-task inter-
ferences, since in static cache locking schemes the cache
blocks are statically partitioned among tasks, the cache-
related preemption delay is null, or is constant and equal to
the time required to reload the processor prefetch buffer if
the processor is equipped with such a architectural feature.
This low cache-related preemption delay is particularly im-
portant for large caches (see section 2.2).

However, statically locking the contents of instruction
caches reduces the amount of cache memory available for
each task. In addition, it raises the issue of selecting the
cache contents. As we are interested in hard real-time sys-
tems, the main objective of the cache selection algorithm
is to improve the worst-case system behavior according to
some of the metrics used by schedulability analysis meth-
ods, such as CPU utilization or interferences between tasks.
The main issue is then to avoid performing an exhaustive
search of all possible cache contents, which would require
an untractable computation cost. For instance, if every
cache block can contain , program lines, checking the fea-
sibility of the system with all possible cache contents would
require ,.- feasibility tests, with / the number of cache
blocks. This complexity led [6] to select a genetic algorithm
for the selection of the cache contents and [13] to base the
selection of cache contents on actual traces of the system
execution.

Another potential benefit of static cache locking, al-
though not proved yet by any study, is that it can easily
apply to data caches, unified caches of multi-level caches.

2.2 Quantitative comparison

Since the primary focus in hard real-time systems is to
prove that all deadlines are met, the key performance met-
ric to be considered when comparing cache management
schemes is the worst-case performance of the system. In
this section, we compare the worst-case performance of a
small task set made of periodic tasks (table 1 shows the task

2

Task name Description Code size
(Bytes)

WCET-
miss

Period

qurt Computation of roots of quadradic equations 1824 21474 59697
minver Matrix inversion 4320 36701 70098
jfdctint JPEG integer implementation of the forward DCT 3440 29324 127559
fft1 FFT (Fast fourier transform) Cooly-Turkey algorithm 3620 115152 601093

Table 1. Task set characteristics
� � � � � � �Asso

Size
512B 1KB 2KB 4KB 8KB 16KB

1 Locking +0.779 +0.665 +0.576 +0.517 +0.517 +0.517
Analysis +0.547 +0.413 +0.382 +0.388 +0.388 +0.388

2 Locking +0.775 +0.658 +0.518 +0.459 +0.420 +0.420
Analysis +0.638 +0.439 +0.382 +0.388 +0.388 +0.388

4 Locking +0.779 +0.623 +0.485 +0.418 +0.375 +0.368
Analysis +0.788 +0.609 +0.414 +0.389 +0.388 +0.388

8 Locking +0.775 +0.622 +0.491 +0.415 +0.368 +0.368
Analysis -1.039 +0.771 +0.578 +0.421 +0.389 +0.388

16 Locking +0.777 +0.602 +0.485 +0.414 +0.368 +0.368
Analysis -1.011 -1.035 +0.744 +0.585 +0.421 +0.389

32 Locking +0.777 +0.602 +0.484 +0.412 +0.368 +0.368
Analysis -1.076 -1.007 -1.004 +0.750 +0.585 +0.421

Table 2. Compared worst-case performance of static cache locking and cache analysis

set characteristics1) using a state of the art cache analysis
technique with its worst-case performance obtained using
static cache locking.

The static cache locking algorithm implemented [13] se-
lects the contents of the statically locked cache according
to the knowledge of the tasks memory accesses, obtained
using simulation. It locks the mostly used program lines of
the tasks in the cache, in order to minimize the worst-case
CPU utilization (

��������
	���
������� , with ��� , ��� and ��� denoting
respectively the WCET, period and cache-related preemp-
tion delay of task �)

We compare the worst-case performance of this task set
with the one obtained through the use of a state of the art
cache analysis technique based on F. Mueller’s work on
static cache simulation (see [12, 7] for details). The Hep-
tane tree-based WCET analysis tool [7] has been used to
compute WCETs. No attempt is made here to bound the
cache-related preemption delay ��� precisely (it is assumed
that all program lines of a given task have to be reloaded
after a preemption, with a maximum of N reloads where N
is the number of cache lines).

The worst-case system performance of the task set is
given in Table 2. Each cell indicates whether the task set
is feasible or not according to CRTA [4] (Response Time
Analysis enhanced with the knowledge of cache-related

1In the table, delayes are expressed in number of processor cycles for a
MIPS processor with a simplified timing model. WCET-miss denotes the
WCET of the task assuming that all instructions cause a cache miss.

preemption delays � � , that are null for static cache locking
and considered maximum for cache analysis). A ’+’ sign
means that the task set if feasible, whereas a ’-’ sign means
that it is not. The CPU utilization of the task set is also given
in each cell. These two pieces of information are given for
different cache sizes (Bytes), degrees of associativity, and
this with and without static cache locking.

"Analysis"
"Locking"

1

2

4

8

16

32

Associativity

512B
1KB

2KB
4KB

8KB
16K

Cache size (Bytes)

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

CPU utilization (CRMA)

Figure 1. Worst-case CPU utilization

Figure 1 depicts the CPU utilization obtained on the task
set from the contents of table 2. It compares the CPU uti-
lization obtained when using cache locking and static cache

3

analysis. It can be noted that for a given degree of asso-
ciativity, the performance of both static cache locking and
static cache analysis increases with the cache size, because
of the decrease of the number of conflicts for cache blocks.
However, the performance increase of static cache locking
is higher than the one of static cache analysis when the
cache size increases. This is because the cache-related pre-
emption delay increases linearly with the cache size for the
static cache analysis method, whereas it stays constant for
the static cache locking method.

For a given cache size, the performance of static cache
locking scales better than the one of static cache analysis
with an increasing degree of associativity � . Indeed, static
cache locking takes benefit of the increasing degree of as-
sociativity to eliminate both intra-task and inter-task inter-
ference, which explains that the CPU utilization increases
with � . In contrast, the static cache analysis method we
have used does not scale well with � .

3 Open issues

The key benefits of static cache locking is to make the
time required to perform memory accesses predictable, and
to be a unified technique to take into account both intra-
task and inter-task conflicts for cache blocks. This class of
techniques alleviates the need for using complex static anal-
ysis techniques for computing WCETs and cache-related
preemption delays. In addition, it can be applied in situa-
tions where static cache analysis cannot be used at all (e.g.
when the instruction cache has a non deterministic or non
documented cache replacement policy). While algorithms
already exist for selecting the contents of statically locked
caches [6, 13], we think that further work is required:

� to study their performance on larger real (non syn-
thetic) benchmarks, in particular in task sets whose
size is much larger than the cache size. For large pro-
grams, a possible direction is to explore more dynamic
cache locking strategies (for instance, to select differ-
ent contents of the locked cache changed at statically-
defined points in order to cope with the tasks dynamic
behavior while staying predictable)

� to study the impact of statically locked caches on the
system average case performance

� to study the applicability of static cache locking tech-
niques to data/unified/multi-level caches

� to address implementation issues on actual embedded
processors

� to compare the use of statically locked caches with the
use of on-chip static RAMs (benefits wrt predictability,
issues to be addressed)

References

[1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache
behavior prediction by abstract interpretation. In SAS’96,
Static Analysis Symposium, volume 1145 of Lecture Notes in
Computer Science, pages 51–66. Springer, September 1996.

[2] O. Avissar, R. Barua, and D. Stewart. Heterogeneous mem-
ory management for embedded systems. In Proc. of the Inter-
national Conference on Compilers, Architectures and Syn-
thesis for Embedded Systems, Atlanta, GA, USA, Nov. 2001.

[3] S. Basumallick and K. Nilsen. Cache issues in real-time sys-
tems. In ACM SIGPLAN Workshop on Languages, Compil-
ers, and Tools for Embedded Systems, June 1994.

[4] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulabil-
ity analysis of preemptive real-time systems. In Proceedings
of the 1996 Real-Time technology and Applications Sympo-
sium, pages 204–212. IEEE Computer Society Press, June
1996.

[5] J. V. Busquets-Mataix and A. Wellings. Hybrid instruction
cache partitioning for preemptive real-time systems. In Proc.
of the 9th Euromicro Workshop of Real-Time Systems, pages
56–63, Toledo, Spain, June 1997.

[6] M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Static
use of locking caches in multitask premptive real-time sys-
tems. In IEEE/IEE Real-Time Embedded Systems Workshop
(Satellite of the IEEE Real-Time Systems Symposium), Lon-
don, UK, Dec. 2001.

[7] A. Colin and I. Puaut. A modular and retargetable framework
for tree-based wcet analysis. In Proc. of the 13th Euromicro
Conference on Real-Time Systems, pages 37–44, Delft, The
Netherlands, June 2001.

[8] D. B. Kirk. Smart (strategic memory allocation for real-time)
cache design. In Proceedings of the 10th IEEE Real-Time
Systems Symposium (RTSS89), pages 229–237, Santa Mon-
ica, California, USA, Dec. 1989.

[9] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE Transactions on Computers, 47(6), June 1998.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond direct mapped instruction cache. In
Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS96), pages 254–263. IEEE, IEEE Computer Society
Press, Dec. 1996.

[11] T. Lundqvist and P. Stenstrom. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time Systems, 17(2-3):183–207, Nov. 1999.

[12] F. Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18(2):217–247, May 2000.

[13] I. Puaut. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. Submitted to publi-
cation - available on demand, May 2002.

[14] J. E. Sasinowski and J. K. Strosnider. A dynamic program-
ming algorithm for cache/memory partitioning for real-time
systems. IEEE Transactions on Computers, 42(8):997–1001,
Aug. 1993.

4

A Framework to Model Branch Prediction for WCET Analysis

Tulika Mitra

Department of Computer Science

School of Computing

National University of Singapore

Singapore 117543

tulika@comp.nus.edu.sg

Abhik Roychoudhury

Department of Computer Science

School of Computing

National University of Singapore

Singapore 117543

abhik@comp.nus.edu.sg

In this paper, we present a framework to model
branch prediction for Worst Case Execution Time
(WCET) analysis. Our micro-architectural modeling
is completely generic, and parameterizable w.r.t. the
currently used branch prediction schemes. It auto-
matically derives linear constraints on the total mis-
prediction count from the control flow graph of the
program. These constraints can be solved by any
integer linear programming (ILP) solver to estimate
the WCET.

Current generation processors perform control flow
speculation through branch prediction, which pre-
dicts the outcome of branch instructions. If the pre-
diction is correct, then execution proceeds without
any interruption. For incorrect prediction, the spec-
ulatively executed instructions are undone, incurring
a branch misprediction penalty between 3-19 clock
cycles. If branch prediction is not modeled, all the
branches in the program must be conservatively as-
sumed to be mispredicted for finding the WCET.
This pessimism results in as much as 60 − 70% over-
estimation for some of the benchmarks in this paper,
even assuming a 3 clock cycle branch misprediction
penalty.

A classification of branch prediction schemes ap-
pears in Figure 1. Branch prediction can be static or
dynamic. Static schemes associate a fixed prediction
to each branch instruction via compile time analy-
sis. Almost all modern processors, however, predict
the branch outcome dynamically based on past exe-
cution history. Dynamic schemes are more accurate

Branch pred. schemes

Static Dynamic

Local Global

GAg gshare gselect

Figure 1: Classification of Branch Prediction
Schemes. At each level, the more widely used cat-
egory is underlined.

than static schemes, and in this work we study only
dynamic branch prediction. The first dynamic tech-
nique proposed is called local branch prediction [4],
where each branch is predicted based on its last few
outcomes. This scheme uses a 2n-entry branch predic-
tion table to store the past branch outcomes, which
is indexed by the n lower order bits of the branch ad-
dress. In the simplest case, each prediction table en-
try is 1-bit and stores the last outcome of the branch
mapped to that entry. When a branch is encountered,
the corresponding table entry is looked up and used
as the prediction. When a branch is resolved, the cor-
responding table entry is updated with the outcome.
A more accurate version of local scheme uses k-bit
counter per table entry.

1

Most modern processors however use global branch
prediction schemes [4] (also called correlation based
schemes), which are more accurate. Examples of pro-
cessors using global branch prediction include Intel
Pentium Pro, AMD, Alpha as well as embedded pro-
cessors IBM PowerPC 440GP and SB-1 MIPS 64. In
these schemes, the prediction of the outcome of a
branch I not only depends on I’s recent outcomes,
but also on the outcome of the other recently exe-
cuted branches. Global schemes can exploit the fact
that behavior of neighboring branches in a program
are often correlated. Global schemes uses a single
shift register, called branch history register (BHR) to
record the outcomes of n most recent branches. As
in local schemes, there is a global branch prediction
table in which the predictions are stored. The various
global schemes differ from each other (and from local
schemes) in the way the prediction table is looked up
when a branch is encountered.

Little work has been done to study the effects of
branch prediction on WCET. Effects of static branch
prediction have been investigated in [1, 3]. However,
most current day processors (Intel Pentium, AMD,
Alpha, SUN SPARC) implement dynamic branch
prediction schemes, which are more difficult to model.
To the best of our knowledge, [2] is the only other
work on timing estimation under dynamic branch
prediction. However, their technique only models the
effects of local prediction schemes.

The starting point of our analysis is the control flow
graph (CFG) of the program. Let vi denote the num-
ber of times block i is executed, and let ei,j denote the
number of times control flows through the edge i → j.
As inflow equals outflow, vi =

∑
j→i ej,i =

∑
i→j ei,j .

We provide bounds on the maximum number of it-
erations for loops and maximum depth of recursive
invocations for recursive procedures. These bounds
can be user provided, or can be computed off-line for
certain programs.

Let costi be the execution time of basic block i

assuming perfect branch prediction. Given the pro-
gram, costi is a fixed constant for each i. Then, the
total execution time of the program is

∑
i(costi ∗vi +

penalty ∗ mi) where penalty is a constant denoting
the penalty for a single branch misprediction; mi is
the number of times the branch in block i is mispre-

dicted. By maximizing this objective function we can
get WCET.

Modeling Prediction Schemes To determine
the prediction of a block i, we first compute the index
into the prediction table. We define vπ

i and mπ
i : the

execution count and the misprediction count of block
i when branch in i is executed with index = π. By
definition:

mπ
i ≤ vπ

i mi =
∑

π mπ
i vi =

∑
π vπ

i

The prediction schemes differ from each other pri-
marily in how they index into the prediction table.
To predict a branch I, the index computed can be a
function of: (a) the past execution trace (history) and
(b) address of the branch instruction I. In the GAg
scheme, the index computed depends solely on the
history and not on the branch instruction address.
Other global prediction schemes (gshare, gselect) use
both history and branch address, while local schemes
use only the branch address.

Our modeling is independent of the definition of
the prediction table index π. Hence it can apply to
any branch prediction scheme that uses a single pre-
diction table. To model the effect of different branch
prediction schemes, we only alter the meaning of π,
and show how π is updated with the control flow.

In the case of GAg, this index is the outcome of
last k branches before block i is executed. These k

outcomes are recorded in the Branch History Register
(BHR). To model the change in history due to control
flow, we use the left shift operator ; thus left(π, 0)
shifts pattern π to the left by one position and puts
0 as the rightmost bit. We define:

Definition 1 Let i → j be an edge in the control flow
graph and let π be the BHR content at basic block i.
The change in history pattern on executing i → j is
given by Γ(π, i → j) = π if i → j is an unconditional
jump. If i → j is a taken (non-taken) branch then
Γ(π, i → j) is left(π, 0) (left(π, 1)).

In the popular gshare [4] scheme, the BHR is XOR-
ed with last n bits of the branch address to look
up the prediction table. Usually, gshare results in

2

Pgm. gshare GAg local

Mispred Mispred Mispred

Obs. Est. Obs. Est. Obs. Est.

check 3 3 3 3 198 198
matsum 204 204 204 204 200 200
matmul 223 223 223 223 200 200
fdct 7 7 7 7 4 4
fft 3678 6165 3398 5175 4129 5154
isort 9687 9952 587 598 399 399
bsearch 9 9 9 10 6 7
eqntott 203 205 202 206 203 204

Table 1: Observed and estimated misprediction count with gshare, GAg, and local schemes.

a more uniform distribution of table indices com-
pared to GAg. We define the index π as π =
historym ⊕ addressn(I) where m,n are constants,
n ≥ m, ⊕ is XOR, addressn(I) denotes the lower
order n bits of I’s address, and historym denotes the
most recent m branch outcomes (which are XOR-ed
with higher-order m bits of addressn(I)). And,

Γgshare(π, i → j) = Γ(historym, i → j)⊕addressn(I)

In local schemes, the index π for branch instruction
I is the least significant n bits of I’s address, denoted
addressn(I) (n is a constant). Here π is indepen-
dent of the past execution history of other branches.
The update of π due to control flow is given by
Γlocal(π, i → j) = addressn(J), where addressn(J)
denotes the least significant n bits of the last instruc-
tion J in basic block j.

Bounding Mispredictions Given the definition
of π and Γ, we derive inflow and outflow constraints
on the flow of π through the control flow graph to de-
rive upper bounds on vπ

i . To bound mπ
i , we note the

following. Suppose there is a misprediction of the
branch in block i with history π. This means that
certain blocks (maybe i itself) were executed with
history π, the outcome of these branches appear in
the πth row of the prediction table, and the outcome
of these branches must have created a prediction dif-
ferent from the current outcome of block i. To model
mispredictions, we therefore capture repeated occur-
rence of a history π during program execution with

differing outcomes; we provide constraints to bound
such occurrences. Details of our modeling appear in
[5] and are ommitted here for space considerations.

Experimental Results We selected eight different
benchmarks for our experiments. We assumed zero
cache misses and a perfect processor pipeline with
no stalls except for penalty due to misprediction of
conditional branches. These assumptions, although
simplistic, allow us to separate out and measure the
accuracy of our estimation technique. We assumed
that the branch misprediction penalty is 3 clock cy-
cles (as in the Intel Pentium processor). We used the
SimpleScalar architectural simulation platform in the
experiments. By changing SimpleScalar parameters,
we could change the branch prediction scheme for the
experiments.

To evaluate the accuracy of our branch prediction
modeling, we present the experiments for three dif-
ferent branch prediction schemes: gshare, GAg and
local. Since finding the worst case input of a bench-
mark (which produces the actual WCET) is a hu-
man guided and tedious process, we only measured
the actual WCET assuming a 4-entry prediction ta-
ble. The results appear in Table 1. In this table, we
have shown only the observed and estimated mispre-
diction counts to enable clear understanding of the
accuracy of our technique (which models the effect
of branch prediction). Even though not shown here
due to space shortage, the estimation accuracy was
independent of the prediction table size. Our esti-

3

mation technique obtains a very tight bound on the
WCET and misprediction count in all benchmarks
except fft. The reason is that the number of it-
erations of the innermost loop of fft depends on
the loop iterator variable value of the outer loops.
This problem can be solved by providing expressions
on the loop iteration counts instead of constants, as
shown in [2].

Using CPLEX, a commercial ILP solver dis-
tributed by ILOG, on a Pentium IV 1.3 GHz pro-
cessor with 1 GByte of main memory, our timing es-
timation technique requires less than 0.11 second for
all the benchmarks with prediction table size varying
4–1024 entries.

One major concern with any ILP formulation of
WCET is the scalability of the resulting solution. To
check the scalability of our solution, we formulated
the WCET problem for the popular gshare scheme
with branch prediction table size varying from 4–1024
entries. Recall that in gshare, the branch instruction
address is XOR-ed with the global branch history
bits. In practice, gshare scheme uses smaller num-
ber of history bits than address bits, and XORs the
history bits with the higher order address bits [4, 6].
The choice of the number of history bits in a pro-
cessor depends on the expected workload. In our
experiments, we used a maximum of 4 history bits
as it produces the best overall branch prediction per-
formance across all our benchmarks. As Figure 2
shows, the number of variables generated for the ILP
problem initially increases and then decreases. With
increasing number of history bits, number of possible
patterns per branch increases. But with fixed history
size and increasing prediction table size, the number
of cases where two or more branches have the same
pattern starts to decrease. This significantly reduces
the number of ILP variables.

References

[1] K. Chen, S. Malik, and D.I. August. Retargatable
static software timing analysis. In IEEE/ACM
Intl. Symp. on System Synthesis (ISSS), 2001.

4 16 64 256 1K
Number of prediction table entries

0

100

200

300

400

500

600

N
um

be
r

of
 v

ar
ia

bl
es

 in
 I

L
P

fo
rm

ul
at

io
n

FFT
eqntott
sort
matmul
bsearch
matsum
fdct
check

Figure 2: Change in ILP problem size with increase
in number of entries in the branch prediction table
for gshare scheme

[2] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Journal of Real time Systems, May 2000.

[3] S-S. Lim, J.H. Han, J. Kim, and S.L. Min.
A worst case timing analysis technique for in-
order superscalar processors. Technical report,
Seoul National University, 1998. Earlier version
published in IEEE Real Time Systems Sympo-
sium(RTSS) 1998.

[4] S. McFarling. Combining branch predictors.
Technical report, DEC Western Research Labo-
ratory, 1993.

[5] T. Mitra and A. Roychoudhury. Effects of branch
prediction on worst case execution time of pro-
grams. Technical Report 11-01, School of Com-
puting, National University of Singapore, 2001.

[6] S. Sechrest, C-C. Lee, and T. Mudge. Correla-
tion and aliasing in dynamic branch predictors.
In ACM International Symposium on Computer
Architecture (ISCA), 1996.

4

 Difficulties in Computing the WCET
for Processors with Speculative Execution

Christine Rochange and Pascal Sainrat

Institut de Recherche en Informatique de Toulouse, France

{rochange, sainrat}@irit.fr

Abstract
In real-time applications, the Worst-Case Execution

Time often needs to be estimated to check that deadlines

will be respected. With the trend of using up-to-date

processors, WCET computation techniques continuously

have to evolve in order to take into account the most
recent hardware features. In this paper, we show that

ignoring speculative execution can lead to
underestimated execution times, and we explain why

modelling it is not straightforward. We feel that pure

static analysis might not allow safe WCET computation,

due to the fact that speculative execution prevents the
decoupling between the high-level (path) analysis and the

low-level (timing) analysis.

1. Introduction

For a large class of applications, embedded software
has to satisfy hard real-time constraints. This requires to

be able to tightly estimate the worst-case execution time
(WCET) of programs.

WCET analysis has received much attention these ten

last years. Dynamic methods involve measurements on

real hardware or on cycle-level simulators. All the
possible execution paths have to be explored in order to

obtain the longest execution time. This poses two
problems: (i) the number of possible paths is generally

high and then the measurement time is prohibitive;

(ii) for each path, the corresponding input data set has to

be defined, which is usually difficult. In response to the

drawbacks of dynamic methods, several static approaches

have been proposed. They consist in three steps. First, the

high-level analysis considers the program code in order to
identify the possible execution paths, where a path is a

list of basic blocks. Second, the low-level analysis
estimates the execution time of each basic block. It is

carried out in two phases: the global low-level analysis

takes into account hardware components the behaviour of

which depends on the global history of execution (e.g.
cache memories); the local phase models components

that only depends on the recent history (e.g. pipeline).
Third, the execution times of paths are computed and the

WCET is the longest one.

However, embedded systems tend to use modern

processors featuring advanced architectural mechanisms
that might be hard to model. Among these mechanisms,

branch prediction, sometimes coupled with speculative

execution, is implemented in most of the recent
processors.

Estimating the WCET for processors with speculative

execution does not present any special difficulty when it

is based on dynamic measures: either the real target
hardware is available (with speculative execution

activated), or a cycle-level simulator is used, and
speculative execution is not harder to model than other

advanced features. However, current dynamic

measurement methods often require to explore a too large

number of execution paths and, for this reason, static
analysis is generally preferred.

In this paper, we will show that estimating the WCET
when a processor implements speculative execution is not

straightforward. We suggest that usual static analysis

techniques might not allow safe WCET computation,

highlighting situations where they would lead to
underestimation of the execution time.

Section 2 gives an overview of branch prediction and
speculative execution techniques, and presents the work

of Colin and Puaut [1] that takes branch prediction (but

not speculative execution) into account within static
WCET analysis. Section 3 shows why it is important to

carefully model speculative execution to obtain a safe

WCET. Section 4 discusses the difficulties of doing it

within pure static WCET analysis, and section 5
concludes the paper.

2. Branch prediction and speculative

execution

2.1 Overview

Modern processors are designed around longer and

longer pipelines. Whenever a branch instruction is

encountered in the instruction flow, the correct execution
path is not known until the branch is executed. To avoid

interrupting the instruction fetching, one of the two
possible paths is speculatively selected by a branch

predictor and instruction processing continues along this

path. When the branch is resolved and if the speculative

path is not the correct one, recovery actions are taken
(e.g. the pipeline is flushed) and instruction processing

restarts from the branch along the right path. Processing
along a speculative path means fetching instructions from

the memory hierarchy, decoding and dispatching them to
the reserv ation stations where they wait for their

operands. For a processor that implements out-of-order
execution, instructions belonging to the speculative path

might also be executed before earlier instructions, and in

particular before unresolved branches. This is what is

called speculative execution. In that case, recovery from
branch misprediction is a bit more complicated and

generally requires mechanisms to restore the correct
architectural state. Note that recovery is only required for

components that must have a safe behaviour: the effects

of a branch prediction error on other components, like

cache memories or the branch predictor itself do not

endanger correct functional results, they only might lower

the system performance.

Many algorithms exist to predict the issue of branch
instructions. The most recent ones include three kinds of

structures:
- the PHT (Pattern History Table) is used to predict the

direction of conditional branches: each of its entries

reflects a recent history (often as a 2-bit saturating

counter). The PHT is usually not tagged and it can be
indexed by the instruction address (PC) alone or

combined with a global or a local history recorded in
one or several BHR (Branch History Register) . Thus,

several branches share the same counter and, on the

contrary, the behaviour of a branch depends on several

counters according to the history.
- the BTB (Branch Target Buffer) is used to predict the

target address (except for subroutine returns)
- the RAS (Return Address Stack) is used to predict

subroutine returns.

2.2 Computing the WCET for processors with
branch prediction

As far as we know, branch prediction has been

considered within WCET analysis only for in-order

processors: this work has been presented by Colin and

Puaut [1]. They consider the Intel Pentium, which

features a simple branch predictor based on a single table

referred to as BTB. The proposed method includes

several stages.
First, the control-flow graph is analysed to build an

abstract state of the BTB for each basic block: it
indicates which instructions might be contained in each

entry of the BTB before and after the execution of the

basic block. The input abstract state of a basic block is

computed from the output abstract states of the possible
preceding basic blocks. Then, the abstract states are used

to classify the branch instructions and to determine, for
each of them, if it will be correctly predicted or not.

When ever this cannot be statically decided, the
instruction is assumed to be mispredicted, which is

supposed to be the worst case.
The WCET is then computed in two steps. First, a

perfect branch predictor is assumed, and the WCET is

estimated from the syntax tree and a set of formulas that

express the maximum execution time of algorithmic
structures. Then the timing effects of prediction errors are

evaluated for a real branch predictor: a penalty delay is
associated to each possibly mispredicted branch

instruction. A second set of formulas is used to

recursively build delay sets for each algorithmic structure

of the syntax tree. The sum of these delays is then added

to the WCET previously computed with perfect branch

prediction.

3. Possible effects of speculative execution

When a processor implements speculative execution,

processing along the wrong path may have two kinds of

effects on the system. In this section, we describe these

effects and show why ignoring them can lead to
underestimate the WCET.

3.1 Dynamic instruction scheduling

Instructions of the wrong path occupy hardware

resources, like functional units. Now, some flushing
policies implemented for branch prediction error recovery

do not immediately free the functional units. Thus, an

instruction of the wrong path might continue its execution

in a multi-cycle functional unit after the flushing of the
pipeline (but its result will then be simply discarded). If

the functional unit is not pipelined, the execution of later
instructions belonging to the correct path might be

delayed. Then the misprediction penalty would be longer

than the strict recovery time.

Moreover, inserting wrong path instructions in the
pipeline can modify the scheduling of previous

instructions. For example, an instruction belonging to the
wrong path that has its operands ready can be scheduled

before a preceding instruction that is waiting for one of

its operands. This might completely modify the overall

scheduling, and then the execution time as mentioned

in [3].

If speculative execution is not taken into account, the

pipeline reservation tables produced by the local timing
analysis might not be correct and the computed WCET

could be underestimated.

3.2 Memory contents

Processing along the wrong path can also change the

content of memories. If instructions of the wrong path

miss in the instruction cache, they are fetched from the
upper level of the memory hierarchy. This can have a

detrimental effect on the program execution time if
instructions of the wrong path replace in the cache

instructions belonging to the correct path: when the

execution later restarts along the right path, those

replaced instructions will miss in the cache, thus
requiring longer fetch times. This detrimental effect is

often referred to as cache pollution. Note that fetching
instructions along the wrong path can also have a

beneficial effect, as reported in [4]: some instructions of

the wrong path can later be found on the correct path, and
then processing along the wrong path acts as a prefetch

mechanism.

The same effects can be observed on data accesses,

provided that instructions of the wrong path are executed
(not only fetched), which is only allowed in dynamically-

scheduled processors.
Processing along the wrong path may also have a

beneficial or detrimental impact on the memories of the

branch predictor (BTB, BHR, PHT and RAS) if they are

updated speculatively in the earlier stages of the
pipeline [2]. Only few parts are checkpointed for cost

reasons (e.g. checkpointing the BTB is probably not

affordable). If recovery is not implemented, the branch

predictor tables might be polluted by the execution of the
wrong path.

Now, let us assume that, ignoring speculative
execution, the global low-level analysis is able to

statically determine the real behaviour of all instruction

and data cache accesses (hit or miss) and of all branches

(well- or wrong- predicted). To understand why the
possible pollution of memories due to wrong path

execution should not be ignored, let us consider the

following example:

for (i=0 ; i<10 ; i++)
{
 s[i] = 0;
 for (j=0 ; j<10 ; j++)
 {
 s[i] = s[i] + t[i][j];
 }
 m[i] = s[i] / 10;
}

This program ma y be compiled as:

L0 i=0;
L1 if i==10 then branch to L7
L3 s[i]=0
 j = 0
L4 if j==10 then branch to L6
L5 s[i] = s[i] + t[i][j]
 j++
 branch to L4
L6 m[i] = s[i] / 10
 i++
 branch to L1
L7

If we consider a branch prediction algorithm based on
2-bit saturating counters, initialised to “weakly-taken”,

the branch instructions of basic blocks L1 and L4 are
mispredicted in the first iteration of loops i and j, and

correctly predicted in the other iterations, while those of

basic blocks L5 and L6 are always well predicted. As far

as data accesses are concerned, the first reference to s[i]
is determined to miss in the data cache while the other

ones should hit.
Now, what does really happen if the processor

implements speculative execution? At the first iteration

of loop i, since the branch of basic block L1 is

mispredicted, some instructions belonging to the wrong

path are processed. In particular, access to m[i] might be

executed. If m[i] happens to fall in the same cache line as

s[i] then, when the branch is resolved and the execution

restarts along the correct path, s[i] misses in the data

cache, contrarily to the conclusion of the global low-level
analysis. As a result, the actual execution time might be

longer than the estimated WCET, which is not

acceptable.

In the same manner, the possible pollution of other
memories (instruction cache, branch prediction

tables, …) can increase the execution time. Ignoring
speculative execution might again lead to an erroneous

classification of instructions (branches or memo ry

accesses) in the global low-level analysis step, which

may result in an underestimated WCET.

4. Towards a safe WCET estimation for
processors with speculative execution

We have shown why the execution of the wrong path

has to be carefully taken into account in order to obtain a
safe WCET. In this section, we discuss the difficulties of

modelling speculative execution as part of static WCET
analysis.

The possible effects of speculative execution on the

dynamic scheduling of instructions can probably be taken

into account without excessive complexity. For example,
the delaying of the execution of later instructions due to

the occupation of hardware resources by wrong path
instructions could be included in the WCET estimation

by systematically adding to the misprediction recovery

penalty the longest functional unit latency. An other

solution would consist in assuming in-order instead of
out-of-order execution, but it would lead to a very

pessimistic WCET estimation.
The effects of speculative execution on the content of

memories may be harder to take into account within a

purely static WCET analysis. We have seen that it can

invalidate the results of the global low-level analysis:

memory accesses (either to instructions or data) classified

as “cache hits” might actually miss due to the pollution of

the cache by the execution of the wrong path; branches
classified as “well predicted” might actually be

mispredicted due to the pollution of branch predictor
tables. This means that, in order to produce a safe

classification of instructions, the global low-level

analysis should take into account the instructions of the

wrong path. Now, we feel that considering wrong paths
within static analysis is not straightforward, since it

probably requires new algorithms for syntax tree or
control-flow graph traversal. Moreover, the number of

instructions or basic blocks to include in a wrong path

depends on the processor state (occupancy of hardware

resources) and can only be determined during the local
low-level analysis. Thus, it appears that a correct

modelling of speculative execution would require a very
close interaction between the high-level (flow) and low-

level (timing) analyses, which are usually carried out

independently.

While decoupling the analyses of different
components (caches, branch predictor, pipeline, …)

probably makes static WCET computation feasible, we

wonder if the requirement of more interaction between
these analyses to be able to take into account more and

more advanced hardware features can be satisfied. If not,
growing emphasis should be put on dynamic

measurement (on real systems or simulators) to obtain

accurate timing information while the static part of

WCET estimation would focus on selecting the execution
paths to explore with the goal of minimizing the

measurement requirements.

5. Conclusion

A lot of work has been done these last ten years to
allow static estimation of the WCET for processors with

advanced features like cache memories, pipelined

execution, branch prediction. The most recent

dynamically-scheduled processors implement speculative
execution: when a branch instruction is predicted, the

instructions belonging to the predicted path can be
executed before that the branch is resolved. In this paper,

we discussed the possible effects of executing the wrong

path whenever a branch is mispredicted.

We have shown that wrong path execution can modify
the scheduling of the correct path instructions and/or

change the content of memories (instruction and data
caches, branch predictor tables, …). Then we have

explained why ignoring these effects in WCET analysis

can lead to an underestimated WCET, which can be
dramatic for hard real-time systems.

We feel that usual static WCET computation

techniques cannot accurately take speculative execution

into account, since it would require a too complex
interaction between global and local low-level analysis.

6. References

[1] A. Colin, I. Puaut, “Worst-Case Execution Time Analysis

for a Processor with Branch Prediction”, Real-Time
Systems, 18(2):249-274, M ay 2000.

[2] S. Jourdan, T.-H. Hsing, J . Stark, Y. Patt, “The Effects of
Mispredicted-Path Execution on Branch Prediction

Structures”, Int. Conf. On Parallel Architectures and

Compilation Techniques, Octobre 1996.
[3] T. Lundqvist, P. Stenström, “Timing Anomalies in

Dynamically Scheduled Processors”, 20th IEEE Real-Time
Systems Symposium, December 1999.

 [4] J. Pierce, T. Mudge, “Wrong-Path Instruction Prefetching”,
IEEE Int. Symp. On Microarchitecture, December 1996.

Why You Can’t Analyze RTOSs without Considering Applications and Vice
Versa

Jörn Schneider

Dept. of Computer Science, Saarland University, Germany
E-mail: js@cs.uni-sb.de

Abstract

Traditionally WCET analysis tools are designed for the
analysis of application code. The execution time of RTOS
(Real-Time Operating System) services and the interaction
between RTOS and application are usually not considered.
When performing an RTOS aware schedulability analysis
the WCETs of RTOS services are needed. At first sight
the application of existing WCET analyzers on RTOS code
should be straightforward and should deliver the same ac-
curacy as for application code. The paper explains why this
is not the case, and why the presence of an RTOS diminishes
the accuracy of application code WCET-analysis.

In addition to explaining why RTOSs should not be
analyzed without considering application code and vice
versa, the underlying problems are identified as well as
enlightened by some examples and possible solutions are
sketched. Eventually a comprehensive approach for WCET-
and schedulability-analysis is proposed.

1 Introduction

Current WCET analyzers [6, 2] aim at analyzing appli-
cation code. The execution time of RTOS (Real-Time Op-
erating System) services and the interaction between RTOS
and application are usually not considered. The schedula-
bility analysis is expected to consider the overhead due to
the RTOS. However, the schedulability analysis needs at
least the WCET of relevant RTOS services. Colin and Puaut
made a first attempt to apply static program analysis to an
RTOS [1]. They compute the WCET of some RTEMS [3]
system calls and report several problems in applying their
WCET analysis. For instance the loop bound of the RTEMS
scheduler could not be derived because it depends on the
number of task arrivals during its execution (the scheduler
loops until no further arrivals are noticed). The average
WCET overestimation reported is 86%. The reported prob-
lems originate mainly from a methodical weakness of their

approach. As they regard the RTOS isolated from the appli-
cation.

This paper explains why RTOSs should not be analyzed
without considering application code and vice versa. The
underlying problems are identified as well as explained by
some examples and possible solutions are sketched.

2 Analyzing RTOSs

2.1 What are the problems?

The WCET of RTOS services is highly dependent on
the application using them. Table 1 gives a systematic list
of such dependences. Examples of such dependences can

Determining factors of the Examples
WCET of RTOS services
Non-constant call para- Any service with call
meters in application parameter dependent
code control flow
Static, application Any service with loop
dependent configura- bounds depending on no.
tion parameters of RTOS objects

(e. g. tasks, resources)
Cache state Replacement of RTOS

owned cache sets by
application code

Calling history of Scheduler execution after
RTOS services disabling preemption
Calling context Call to system service

from task, interrupt or
operating system level

Table 1. Sources of WCET variations of RTOS
services.

for instance be found in the RTEMS code, and in the code
of osCAN (an OSEK [4] implementation by Vector Infor-
matik).

1

2.2 How can these problems be addressed?

Non-constant calling parameters When system calls are
analyzed as part of the application, any knowledge about
parameter values (e. g. obtained by a value analysis [2]) can
be used to derive sharper bounds on the WCET.

Static configuration parameters The configuration pa-
rameters (e. g. number of tasks and memory mapping of
tasks) are fixed for a particular application. Therefore,
they can be considered either manually or automatically by
WCET analysis as well as schedulability analysis.

Cache state If the cache is not partitioned in a special
way, application code or data might displace cache sets
occupied by the RTOS. No isolated WCET analysis of
the RTOS can therefore benefit from positive cache effects
caused by previous runs of RTOS services. It might even be
impossible to consider the positive intrinsic cache effects of
RTOS services. RTOSs are usually designed to minimize
the number and duration of non-interruptible code sections.
It is impossible for an isolated analysis to predict the nega-
tive impact of application interrupts outside these few code
sections, unless all positive cache effects are ignored. In the
case of a combined analysis it is possible to bound the ef-
fect of application caused cache replacements as it has been
shown in [5] for the application analysis.

This is not only a question of the schedulability analysis.
Depending on the application it can be beneficial, and for
certain modern CPU types even necessary, to consider the
preemption related cache effects within the WCET analysis
(cf. [5]).

Calling history of RTOS services It not only affects the
WCET of RTOS services, but often has an immediate im-
pact on the task response time as well (e. g. an RTOS service
called to disable preemption eliminates the subsequent in-
terference by other tasks). A good schedulability analysis
should consider these effects. Therefore, the history infor-
mation should be statically predicted anyway and can also
be used by WCET analysis.

Calling context When using a combined analysis, the
calling context can easily be regarded. The WCET analy-
sis can for instance consider infeasible paths for the specific
calling context.

3 Analyzing applications

This section discusses problems arising in presence of
multitasking RTOSs. The two subsection treat the problems
in the same order. First the problem domain of data values

is considered. Issues that arise due to isolated analysis of
application and RTOS code come second. Not all of these
issues can be addressed by a mere integration of application
and RTOS WCET-analysis. The last parts of either subsec-
tion and Section 4 cope with this enigma.

3.1 What are the problems?

The data values used in application code can play a large
role in computing the WCET.1 Examples are: loop bounds,
addresses of memory references and infeasible paths. For
the WCET-analysis to profit from this fact a static prediction
of value ranges is necessary. The value analysis described
in [2] provides this functionality for instance. However,
tools of this kind are—like any available WCET tools—
designed for sequential programs. The following issues
arise in presence of a multitasking RTOS:

Shared application memory Accesses by other tasks may
change the value of data in such areas.

RTOS data structures Any RTOS data structure not
unique to the analyzed task might be changed by RTOS
services called in other tasks. Even data structures
unique to a task might be manipulated by other (user
or RTOS) programs.

Memory mapped I/O The values read from those areas
are mainly determined by the environment and ac-
cesses are non-cachable.

The WCET analysis of application code should consider
the WCET of the system calls used. A seemingly attrac-
tive approach is to initially ignore the system calls within
the application WCET analysis and thereafter add system
call WCETs obtained by an isolated analysis of the RTOS.
However, there are good reasons not to do so (see Table 2).

There is a significant difference between problem de-
scriptions 1 through 3 and the classes of problems alluded
to by description 4 of Table 2. The former difficulties oc-
cur also together with the isolated WCET-analysis of library
functions, the latter not.

3.2 How can these problems be addressed?

Because of shared application memory and RTOS data
structures, a value analysis has either to ignore such data,
or has to be enhanced to a multi-task-analysis. The latter is
not trivial. Memory mapped I/O areas have to be excluded
from the value analysis since they are volatile.

1This holds for RTOS code also. Nevertheless the subject is discussed
in this section because that is where WCET-analysis comes from and be-
cause applications are usually more data-driven than RTOSs.

2

No. Problem description
1 RTOS WCETs are systematically overestimated

(shown in Section 2)
2 Information about correlation of worst-case paths

and number+context of RTOS calls is destroyed
⇒ only a pessimistic approach can still deliver
conservative WCETs

3 Cache and pipeline effects caused by RTOS calls
cannot be considered in application WCET

4 It is impossible to consider positive effects of
concepts existing only in presence of multi-
tasking RTOSs, for instance RTOS calls
dynamically raising the application priority
(e. g. by disabling preemption or interrupts,
or by occupying resources)

Table 2. Problems of analyzing applications
isolated from the RTOS.

Section 2 shows that the WCET of RTOS services de-
pends on the call situation. This call situation subsumes the
factors given in Table 1. Some aspects of the call situation
are not unique to applications running on RTOSs. These
aspects can be identified already, when stand-alone applica-
tions with calls to library routines are considered (one could
replace the word RTOS with library in the problem descrip-
tions number 1 through 3 of Table 2 and the statements
would still be true to some extent). Aspects like these can be
addressed by embedding the analysis of library/system calls
within the application WCET analysis. The embedding can
be implicitly or explicitly. Embedding implicitly means that
the calls are treated like an ordinary function call. The input
data structure (e. g. the control flow graph) of the WCET an-
alyzer contains all needed information to analyze such calls.
If the WCET analyzer uses machine code as input (e. g. the
one described in [2]), this can even be done without provid-
ing the user with the library/RTOS source code. Embedding
explicitly means that two independent WCET analyzers (or
two instances of the same analyzer) are used, one for the ap-
plication and one for the RTOS. The RTOS WCET analyzer
can be a black box that takes the code of the RTOS service
as well as collected information about calling parameters,
static configuration parameters, cache state and calling con-
text as input (see Subsection 2.2).

However, introducing an RTOS in the considered sce-
nario adds completely new qualities to the problem of
WCET analysis (represented by item no. 4 of Table 2).
These are issues that cannot be addressed by a mere inte-
gration of application and RTOS WCET analysis. Rather a
high-level view is needed to consider them in WCET and
schedulability analysis.

Several such high-level concepts can be identified that

co-determine the temporal behavior of the tasks of an
RTOS-based system. These concepts are for instance the ef-
fective priority of tasks, the RTOS mode (e. g. initialization
or normal operation mode), application modes, task states,
and the system level (task, interrupt or RTOS level). Those
high-level concepts have a certain meaning when viewing
the system as a whole rather than as a bunch of indepen-
dent programs at a microarchitectural level. At run-time
the properties of these concepts have a defined state at each
point in time. We define the meta-state of a task to be the
set of these states.

In a static approach, at best partial knowledge of the
meta-state of a task can be obtained. To address the
RTOS specific problem domain, partial knowledge can
be collected which allows to compute the worst-case re-
sponse time of tasks more accurately. This includes ex-
ploiting meta-state information to compute sharper bounds
on WCETs of tasks as well as sharper bounds on
microarchitecture-related preemption costs.

4 Proposal for a comprehensive WCET- and
schedulability-analysis approach

The authors present work on a comprehensive WCET-
and schedulability-analysis approach exploits meta-state in-
formation to compute sharper bounds on WCETs of jobs
(tasks and interrupt service routines) and interesting code
sections and on microarchitecture-related preemption costs.
The framework exploits the following aspects of the meta-
state of a job: effective priority of a job (determined by:
locked interrupts, preemption lock, occupied resources),
RTOS mode and current system level. The meta-state in-
formation is exploited as follows:

1. Extrinsic cache effects are considered by the cache
analysis (which is a part of the WCET analysis) in
dependence of the effective priority at each program
point of the analyzed job.

2. Pipeline-related preemption costs are individually
computed for each job, again in dependence of the ef-
fective priority, and are considered during the schedu-
lability analysis.

3. The WCET of jobs and code sections is computed for
the proper RTOS mode (initialization mode or normal
operation mode) and for each RTOS mode a separate
schedulability analysis is undertaken.

4. The current system level is considered when the
WCET of system calls is computed.

Similar to the cache- and pipeline-sensitive schedulabil-
ity analysis described in [5] the cache-related preemption

3

costs are incorporated in the WCET while the pipeline-
related preemption costs are explicitly considered during
the schedulability analysis.

The above sketched framework uses the WCET analysis
tool described in [2]. The WCET analyzer is loosely cou-
pled with the surrounding tools. It is guided with the help
of the obtained meta-state information in order to compute
sharper bounds on the WCET and the microarchitecture-
related preemption costs. A detailed explanation of this
method is beyond the scope of this paper.

5 Conclusion

The paper showed that analyzing WCETs of RTOS-
based real-time systems—whether of RTOS services or of
application code—requires other than the established ap-
proaches. The underlying problems were explained by ex-
amples and classified. Additionally it was sketched how the
individual problems can be addressed. Finally a compre-
hensive approach for WCET- and schedulability-analysis
was proposed. The proposed approach shows how it is pos-
sible to overcome most of the obstacles obstructing the path
toward comparative results of WCET-analysis for RTOS-
based systems.

Acknowledgements

Many members of the compiler design group at the
Universität des Saarlandes, especially the members of the
USES (Universität des Saarlandes Embedded Systems)
group, deserve acknowledgement. Reinhard Wilhelm,
Daniel Kästner, and Stephan Diehl carefully read draft ver-
sions of this work and provided many valuable hints and
suggestions.

I would like to thank the anonymous reviewers for their
helpful comments.

References

[1] A. Colin and I. Puaut. Worst-Case Execution Time Analy-
sis of the RTEMS Real-Time Operating System. In Proceed-
ings of the 13th Euromicro Conference on Real-Time Systems,
pages 191–198, Delft, The Netherlands, June 2001.

[2] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and Precise WCET Determination for a Real-Life Pro-
cessor. In Embedded Software Workshop, Lake Tahoe, USA,
Oct. 2001.

[3] On-Line Applications Research Corporation, Huntsville, AL,
USA. RTEMS Applications C User’s Guide. Edition 4.0, Oct
1998. http://www.oarcorp.com/RTEMS/rtems.

html.

[4] OSEK/VDX – Open systems and the corresponding interfaces
for automotive electronics. OSEK/VDX Operating System.
Version 2.2, Sept. 2001. http://www.osek-vdx.org.

[5] J. Schneider. Cache and Pipeline Sensitive Fixed Priority
Scheduling for Preemptive Real-Time Systems. In Proceed-
ings of the 21st IEEE Real-Time Systems Symposium 2000,
pages 195–204, Nov. 2000.

[6] J. Schneider and C. Ferdinand. Pipeline Behavior Predic-
tion for Superscalar Processors by Abstract Interpretation. In
Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems, volume 34 of
ACM SIGPLAN Notices, pages 35–44, May 1999.

4

Is Worst-Case Execution-Time Analysis a Non-Problem? —
Towards New Software and Hardware Architectures

�

Peter Puschner
Institut für Technische Informatik, Technische Universität Wien

A1040 Wien, Austria
Email: peter@vmars.tuwien.ac.at

Abstract

Despite the scientific advances in the worst-case execution-time (WCET) analysis, there is hardly any
industrial impact of the research solutions presented so far. This seems to be due to the high complexity
of implementing and using the proposed WCET approaches.

This paper discusses what makes WCET analysis complex and proposes to use adequate hardware and
software architectures to improve the predictability of program timing, thus simplifying WCET analysis.

1 Introduction

Research in worst-case execution-time (WCET) analysis has been around for one and a half decades.
During this period a number of different approaches to WCET analysis, including solutions for mod-
elling hardware features and characterizing possible execution paths of real-time tasks have been found
[5]. Still, the results of WCET-analysis research have hardly any impact on the industrial practice of
timing analysis. This seems to be due to the high complexity of the implementation and use of WCET
analysis tools. In addition, WCET research always seems to lag one step behind the advances in micro-
processor technology – whenever WCET research manages to deal with the features of one hardware
generation the next generation of processor and hardware architectures, equipped with novel speedup
features, are already there.

This paper proposes to use new, adequate hardware and software architectures to improve the temporal
predictability of programs, and thus reduce the complexity of WCET analysis. Hardware architectures
for future real-time systems must allow to determine instruction execution times locally by inspecting
single instructions and only a small number of instructions preceding them. Software architects have
to investigate into programming techniques that reduce the number of input-data dependent branching
decisions in the software, thus reducing the number of different execution paths of a program. The
further sections presents our considerations in more detail and proposes possible solutions.

�

This work has been supported by the IST research project “High-Confidence Architecture for Distributed Control Ap-
plications (NEXT TTA)” under contract IST-2001-32111.

2 The Complexity Dilemma of WCET Analysis

There is no doubt that WCET analysis as it is currently used is a complex problem. It has been shown
that, in general, the number of paths to be analyzed for an exact WCET analysis of a piece of code grows
exponentially with the number of consecutive branches in the control flow of the analyzed code. This
statement assumes that the code (a) is coded in traditional style (i.e., not applying programming tech-
niques that focus on ease of WCET prediction) and (b) is to be executed on a modern high-performance
processor architecture that includes caches and pipelines. Except for very simple programs this high
complexity makes the full path enumeration needed for an exact WCET analysis intractable [3].

Current approaches to WCET analysis deal with this complexity in two ways:

� Calculate a high-quality WCET bound by accepting long computation times for the analysis.

� Trade the feasibility or speed of analysis for quality, by using simplified but pessimistic models of
the possible software behaviours and the hardware timing.

The dilemma of WCET analysis is that neither of these approaches is acceptable in a commercial setting.
On the other hand, using current hardware and software architectures does not allow for a better solution
– the complexity of the problem simply is there. This raises the question if the current approaches
to WCET-analysis are the correct answer to the problem of task timing analysis, or if current WCET
research is focussing on the wrong problem.

2.1 Sources of Complexity

Puschner and Burns [5] identified two central factors that determine the WCET of a program in a
given application context, (a) the possible sequences of program actions in a given application, and (b)
the time needed for each action in each of these possible sequences. Clearly, both factors do not only
determine the WCET of the code, but also the complexity of WCET analysis. Possible sequences of
actions (instructions) depend of the algorithm that has been chosen to implement a solution to a problem
and the code manipulations the compiler performs during compilation. The time needed for each action
(instruction) depends on the features and configuration of the machine (hardware) on which the actions
are executed. A number of principles applied in typical modern hardware and code design can be made
responsible for WCET complexity. In the following we focus on two such principles, one for hardware
and one for software.

Hardware Speedup by Speculation: This is the principle found in hierarchical memory architectures,
e.g., cache. Instructions or data are loaded into (and kept in) small buffers (caches) with short access
times — these access times are typically much shorter than the access times of the larger store that
holds larger portions of instructions and data — with the intention to speed up future memory accesses.
The decisions about which items are to be loaded, kept, and replaced in cache are usually guided by
heuristics, i.e., speculation about which items might be accessed in the near future.

The use of speculative decision mechanisms leads to variable memory access times. The duration of
each particular memory access, in turn, depends on the state in which the preceding operations have left
the cache. Both effects (the fact that memory access times vary and the dependency of actual memory
access times on the execution history) taken together contribute to the complexity of WCET analysis.

Software Optimization for Frequent Scenarios: Real-time programmers use algorithms and program-
ming techniques that have proven to be effective for non real-time applications. In non real-time appli-
cations, speed optimization for the most probable (i.e., frequent) scenarios is the primary goal. Temporal
predictability is not an issue. In order to favour frequent cases, non real-time algorithms choose the ac-
tions to be performed based on input data. Input-data dependent control decisions, however, cause
programs to execute on different execution paths with different execution times. As a consequence the
number of different cases to be considered by the WCET analysis is potentially high.

3 Possible Ways Out of the WCET Dilemma

This section illustrates the potential of alternative hardware and software architectures to simplify
WCET analysis significantly. It provides an alternative to each of the two mentioned design principles.

3.1 Hardware Speedup: Control Instead of Speculation

In contrast to non real-time applications, (hard) real-time applications primarily require temporal
predictability. Appropriate hardware designs therefore support WCET analysis via predictability. This
can be achieved by using memory hierarchies that exercise absolute control on the contents of fast buffers
instead of relying on speculation. Rather than hoping that future memory accesses result in a cache hit,
adequate prefetching strategies make the contents and thus access times of high-speed memory easy to
predict. A memory architecture that achieves predictability by prefetching has been proposed a number
of years ago [2]. Unfortunately, alternative memory architectures have not been further explored.

3.2 Software: Getting Rid of Input-data Dependencies

The second problem we mentioned is that traditional algorithm design and optimization yields code
that behaves differently for different input data. To circumvent this problem and allow for a simple anal-
ysis, program behaviour must be less dependent on input-data values. By reducing input-data dependen-
cies the number of paths to be considered during WCET analysis gets smaller and, as a consequence,
the complexity decreases.

Following this concept we developed the single-path paradigm [6]. The single-path paradigm yields
programs that are fully temporally predictable. The central idea of the paradigm is to generate programs
whose behaviour is completely independent of input data and which thus always execute on the one and
only possible execution path.

Single-path programming builds upon a code transformation that removes data-dependent branching
statements from the code. This code transformation is capable of transforming every WCET-analyzable
piece of code into code with a single path. The transformation uses two different strategies to convert
statements with if-then-else and loop semantics, respectively. If-then-else and other sequential branching
statements with an input-data dependent branching condition are transformed into strictly sequential
code by using if-conversion, [1]. Loops with input-data dependent termination are converted into loops
with a constant — the maximum — iteration count. The termination condition of such loops is built into
the head of a new if statement that is generated in the body of the loop being transformed. As a last step,
if-conversion is applied to the newly generated if statement, see [4].

The fact that programs only have a single execution path makes WCET analysis trivial: First, path
analysis is superfluous: observing the execution path of any code execution with any input data yields

the singleton execution path. Second, the analysis does not need complex and accurate hardware timing
models for static WCET analysis. Since programs following this paradigm only have a single path,
this singleton path is necessarily the worst-case path. Thus, obtaining the WCET by measurements is
possible (either by measurements on the target or on a cycle-accurate hardware simulator) and there is
no need to build any specific tools for static analysis. The latter also provides a solution to dealing with
new hardware features in the analysis (see above). As the WCET analysis of single-path programs does
not require hardware modelling, software developers do not have to wait until tool vendors incorporate
the new features into their models in order to perform WCET analysis for their new platforms.

4 Conclusion

“Is WCET analysis a non-problem?” is the question posed in the title. To answer this question we
investigated whether highly sophisticated WCET analysis techniques are the correct way to deal with
the complexity of task timing analysis. We discussed hardware and code design practices that cause
complexity and proposed an alternative memory architecture and the single-path programming paradigm
as possible ways out.

The answer to the original question seems to be “Yes and No”: As long as real-time code is coded for
speed rather than temporal predictabiliy and hardware manufacturers continue to use memory hierarchies
that rely on speculation then the answer is ”no” — and we will certainly have to deal with such systems
for at least one more decade. On the other hand, if people get aware of the importance of temporal
predictability and build systems correspondingly, then WCET analysis indeed becomes trivial. So the
new question is if it will be possible to convince people to change their way of thinking and put temporal
predictability first.

Acknowledgments

The author would like to thank Raimund Kirner for his valuable comments on an earlier version of
the paper.

References

[1] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of Control Dependence to Data Dependence.
In Proc. 10th ACM Symposium on Principles of Programming Languages, pages 177–189, Jan. 1983.

[2] M. Lee, S. Min, C. Park, Y. Bae, H. Shin, and C. Kim. A Dual-mode Instruction Prefetch Scheme for Improved
Worst Case and Average Case Program Execution Times. In Proc. 14th Real-Time Systems Symposium, pages
98–105, 1993.

[3] T. Lundqvist and P. Stenström. Timing Anomalies in Dynamically Scheduled Microprocessors. In Proc. 20th
IEEE Real-Time Systems Symposium, pages 12–21, Dec. 1999.

[4] P. Puschner. Transforming Execution-Time Boundable Code into Temporally Precdictable Code. In Proc.
IFIP World Computer Congress, Stream on Distributed and Parallel Embedded Systems, Aug. 2002.

[5] P. Puschner and A. Burns. Guest Editorial: A Review of Worst-Case Execution-Time Analysis. Real-Time
Systems, 18(2/3):115–127, May 2000.

[6] P. Puschner and A. Burns. Writing Temporally Predictable Code. In Proc. 7th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 85–91, Jan. 2002.

How much Worst Case is Needed in WCET Estimation?
�

Stefan M. Petters
Department of Computer Science

University of York
United Kingdom

Stefan.Petters@cs.york.ac.uk

Abstract

Probabilistic methods provide probability density func-
tions for the execution time or the assumed worst case
execution time instead of a single WCET value. While
the resulting probability tends to fall towards zero quickly,
the actual zero value, i.e. the 100 % guarantee, is reached
only with unreasonable overestimation of the real WCET.
In order to cope with this, this paper proposes to use sim-
ilar techniques to hardware dependability analysis, where
a 100 % guarantee is physically impossible and a certain,
usually very small amount of risk is acceptable.

1 Motivation

Modern high performance processors include many fea-
tures which usually make cycle true simulation infeasible.
As a result this either imposes impractical limitations on
the code or operating system to allow for WCET estima-
tion, or the methods used to capture these effects have to
introduce simplifications that lead to results which may be
up to an order of magnitude beyond the physical possible
WCET.

One possibility to get around this problem is the de-
ployment of statistical methods. Throughout this paper

�
The work presented in this paper is supported by the European

Union as part of the research programme “Next TTA”

the validity of these methods is assumed. Additionally it
has to be assumed that the methods provide a description
of the program behaviour which correctly covers the exe-
cution time for all modi of operation. A major problem of
such approaches is that they result in approximations of
the (worst case) execution time, whose probabilities are
non-zero, but very small for a long way beyond the phys-
ical WCET. The question now is, whether one has to go
for the zero-probability of an error, which tends to be as
pessimistic as static WCET analysis, or if a probabilistic
guarantee suffices. While the first case has no real advan-
tage compared to static WCET analysis, the second has
the open issue as to which probabilistic guarantee to ac-
cept as good.

2 Probabilistic WCET Analysis

Research in probabilistic WCET analysis can be divided
in two categories:

� Appraches using observed test cases to reason about
the probability of an execution time not observed
during the tests.

� Approaches analysing small parts of the program
in order to reason about the probability of different
combinations of the results of the smaller units.

As there are currently no publications in the second
area, we will focus on an example of the first research
area. Stewart Edgar uses a black box approach in [1]. The
description of the method here can only be very coarse
and the reader should have a look at the original papers
on this topic (e.g. [1, 2]).

The program is run several times, with random input
data and the end-to-end execution time of the program
runs are measured. As it is obvious, the measurements
will not likely include the physical WCET of the pro-
gram on that processor in the general case, extreme value
statistics are deployed to reason about the execution time
longer than any experienced during measurement. Ex-
treme value statistics are concerned with modelling the
right and/or left hand tail of a probability distribution, as
opposed to the modelling of the average case with con-
ventional statistics. This induces that outliers in the mea-
surement data, which are usually disregarded with con-
ventional statistics, have considerable impact on the mod-
elling parameters of extreme value probability density
functions.

Extreme value statistics are well known in the area of
financial risk assessment and civil engineering. In the lat-
ter case the assessment of maximum wind speeds or flood
levels is computed utilising these technique in order to
dimension the statics of buildings. There are three type
of extreme value probability density functions, described
with a theorem which corresponds to the central limit the-
orem of the normal distributions. As a necessary precon-
dition to apply this technique, the underlying random vari-
ables have to be independent and identically distributed.

For the approach the most simple solution of a Gumble
distribution has been chosen. This model only uses de-
viation and mean of the random variable, in our case the
observed execution time. The following equation show
the Gumble probability density function and the cumula-
tive Gumble probability density function:

��������� 	�

��������	
������������! #"$&%'%)(* (1)

0

0.0005

0.001

0.0015

0.002

0.0025

1627500 1628000 1628500 1629000 1629500 1630000 1630500

"kernel density"
g(x)

Figure 1: Sample Measurement Data and Extreme Value
Approximation.

+-,�.�/10 243�576
892�:<;�=�>?A@ (2)

The cumulative variant expresses the probability of an ex-
ecution time below the value B .

An example execution time measured and the corre-
sponding Gumble distribution is given in figure 1. The
measured times are given in a kernel density transformed
representation. The transformation is used to display dis-
crete data as a continuous curve and thus allowing the
comparison by inspection with the extreme value approx-
imation.

A major drawback of using the Gumble distribution
to approximation is the non-zero probability for execu-
tion times, except for CED . While the probability of the
execution time exceeding FHG
I beyond the mean is onlyF�J G�K�L-MON , the “risk” is still there. As experiments show,
this probability reaches quickly P
J G
LQMORTS and less with an
overestimation of some 10% (cf. [3]).

2

F
ai

lu
re

 r
at

e

Time

Burn in Wear outUseful Life

λ

Figure 2: Typical Variation of Fault Ratio of Hardware
Components over Time [4].

3 Hardware Considerations

This section will give a short introduction in the mecha-
nisms to risk assessment of hardware components. Fig-
ure 2 shows the typical distribution of hardware faults in
electronic equipment over time.

During the period of burn in the probability of hard-
ware failure is higher, due to faults in the productions of
the components. A good example for such a behaviour are
errors due to the statistic deviation in the doting of semi-
conductors. To avoid the high probability of failures in
the burn in period, the components are in general case run
for a time before deployment in a dependable system to
weed out bad components. This process is in most cases
speeded up by undertaking this testing phase under more
extreme circumstances than the system has to endure in
real operation (e.g. heat, cold, mechanical stress). Thus a
production error that might show up only after months or
years down the line is uncovered after a few hours or days
of operation.

After the burn in time, the hardware components reach
a more or less constant failure rate of � . Usually this use-
ful lifetime is quite long. In the end the wear out sets
in, where, for example, saturation effects1 in the semicon-

1One problem in the semiconductor industry is that the doting of

ductor set in. The failure rate � after burn in as well as
the average life time of a given hardware component is
usually known. The reliability ������� of a component not
to fail is given in equation 3.

� �	����
 ��
���� (3)

For the computation of system failure usually the mean

time to failure (i.e. �) is taken to compute the overall sys-
tems failure rate. Since the usual failure rate is less then
one failure in the lifetime (��� � � �) of a product, the failure
rate can be transformed into a failure probability (� � � � �) for
the lifetime of the system. This failure probability can be
computed using equation 4.

� � � � �

����� � !
" ��������#�� (4)

A similar reasoning may also be applied to software
components. The major difference between software and
hardware components is the discrete nature of failures of
the software components as opposed to the continuous na-
ture of failures of the hardware components. Assuming
the program has no algorithmic errors, exceeding a com-
putation time alloted to the program can be considered
a software failure in real-time systems. A basic require-
ment for this is the assumption that the probability for an
overrun of the alloted time for an individual run � �%$'&	�)(*(is
known and constant for all runs. Additionally the max-
imum amount of task releases for any given time is es-
sential for the computation. This is usually defined as a
minimal inter arrival time �,+*-.(/

The probability of a failure over the lifetime of the
product is computed using equation 5.

� � � � �
 0213�40516� ��$.&)�	(%(�87 � � !9�: ;=< >
(5)

Defining an acceptable failure probability during the
lifetime, which would be in the order of magnitude of

semiconductors may be done by diffusion and these donated atoms tend
to start drifting inside the semiconductor.

3

the failure probability of an hardware failure, it is easy
to compute an acceptable �����������	� transforming equation 5
into:

�
���������	��
 �����
��� ��� ���� � � � ! " # (6)

4 Conclusion

While the number of publications in the area of prob-
abilistic WCET estimation is quite limited up to now,
the number of people working on this issue is becoming
larger. Interpreting an overrun of an assumed value for
the WCET of a program as a software fault, similar prob-
abilistic techniques as for hardware component failures
may be used. This is particular useful whenever proba-
bilistic methods are utilised to reason about the WCET, as
these methods tend to provide probability density func-
tions to describe the WCET instead of a single value. The
validity and applicability of this method is subject to dis-
cussion.

References

[1] A. Burns and S. Edgar, “Statistical analysis of WCET
for scheduling,” in Proc. of the IEEE Real–Time Sys-

tems Symposium (RTSS’01), (London, United King-
dom), Dec. 4–6 2001.

[2] A. Burns and S. Edgar, “Predicting computation time
for advanced processor architectures,” in Proceedings
of the 12th Euromicro Conference on Real-Time Sys-

tems, (Stockholm, Sweden), June 19–21 2000.

[3] S. M. Petters, Worst Case Execution Time Estimation
for Advanced Processor Architectures. PhD thesis,
Institute of Real–Time Computer Systems, Technis-
che Universität München, Munich, Germany, 2002.

[4] N. Storey, Safety-Critical Computer Systems.
Addison–Wesley Publishing Company, 1996.

4

