
Jim Anderson 1WATERS, July 2015

Having Fun Experimenting with
Hardware Management and Mixed

Criticality on Multicore

Jim Anderson

University of North Carolina at Chapel Hill

Jim Anderson 2WATERS, July 2015

Outline

• Driving problem.
• Prior work: The MC2 (mixed-criticality on

multicore) framework.
• New work: MC2 with shared hardware

management.
• Future work.
• Running a large schedulability study.

Jim Anderson 3WATERS, July 2015

Driving Problem
Originally Joint Work with Northrop Grumman Corp.

• Goal of this project:
» To practically resolve the

“one out of m” multicore
problem, especially w.r.t.
avionics:
– When using an m-core platform in a safety-critical domain,

analysis pessimism can be so great, the capacity of the
“additional” m 1 cores is entirely negated.

» We are attempting to combine two approaches:
– Using mixed-criticality analysis that enables less critical

components to be provisioned less pessimistically.
– Managing hardware resources, as appropriate.

Image source: http://www.as.northropgrumman.com/products/nucasx47b/assets/lgm_UCAS_3_0911.jpg

This has led to the common practice of simply disabling all
but one core in avionics systems if highly critical system
components exist.

The FAA position paper “CAST 32” discusses problems
associated with multicore platforms in this domain.

Jim Anderson 4WATERS, July 2015

What is Mixed-Criticality Analysis?
(Vestal [RTSS ‘07])

• Each task is assigned a criticality level.
• Each task has provisioned execution time

(PET) specified at each criticality level.
» PETs at higher levels are (typically) larger.

• Example: Assuming criticality levels A
(highest), B, C, etc., task i might have PETs
Ci

A = 20, Ci
B = 12, Ci

C = 5, …
• Rationale: Will use more pessimistic analysis

at high levels, more optimistic at low levels.

Jim Anderson 5WATERS, July 2015

What is Mixed-Criticality Analysis?
(Vestal [RTSS ‘07])

• Each task is assigned a criticality level.
• Each task has provisioned execution time

(PET) specified at each criticality level.
» PETs at higher levels are (typically) larger.

• The task system is correct at Level X iff all
Level-X tasks meet their timing requirements
assuming all tasks have Level-X PETs.

Some “weirdness” here: Not just one system
anymore, but several: the Level-A system,
Level-B,…

Jim Anderson 6WATERS, July 2015

Outline

• Driving problem.
• Prior work: The MC2 (mixed-criticality on

multicore) framework.
• New work: MC2 with shared hardware

management.
• Future work.
• Running a large schedulability study.

Jim Anderson 7WATERS, July 2015

Starting Assumptions

• Modest core count (e.g., 2-8).
» Quad-core in avionics would be a tremendous

innovation.

Jim Anderson 8WATERS, July 2015

Starting Assumptions

• Modest core count (e.g., 2-8).
• Modest number of criticality levels (e.g., 2-5).

» 2 may be too constraining
» isn’t practically interesting.
» These levels may not necessarily match

DO-178B/C.

Jim Anderson 9WATERS, July 2015

Starting Assumptions

• Modest core count (e.g., 2-8).
• Modest number of criticality levels (e.g., 2-5).

Main motivation: To develop a framework
that allows interesting design tradeoffs
to be investigated that is reasonably
plausible from an avionics point of view.

A Non-Goal: Developing a framework
that could really be used in avionics today.

Jim Anderson 10WATERS, July 2015

Basic MC2 Design

• We assume four criticality levels, A-D.
» Originally, we assumed five, like in DO-178B/C.
» Levels A & B are hard real-time (HRT).
» Level C is soft real-time (SRT) and requires

bounded deadline tardiness.
» Level D is non-RT.
» All tasks are periodic/sporadic.

Jim Anderson 11WATERS, July 2015

MC2 Architecture
Implemented as a LITMUSRT Plugin

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Jim Anderson 12WATERS, July 2015

MC2 Architecture
Implemented as a LITMUSRT Plugin

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Level A: Partitioned scheduling.
Time-triggered Cyclic Executive
scheduler on each processor.

Jim Anderson 13WATERS, July 2015

MC2 Architecture
Implemented as a LITMUSRT Plugin

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Level B: Partitioned scheduling.
Either Earliest-Deadline-First or
Rate-Monotonic scheduler on

each processor.

Jim Anderson 14WATERS, July 2015

MC2 Architecture
Implemented as a LITMUSRT Plugin

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Level C: Global scheduling using either
Earliest-Deadline-First or some other

“EDF-like” scheduler.

Jim Anderson 15WATERS, July 2015

MC2 Architecture
Implemented as a LITMUSRT Plugin

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Level D: Global background scheduling.

Jim Anderson 16WATERS, July 2015

MC2 Architecture
Implemented as a LITMUSRT Plugin

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Jim Anderson 17WATERS, July 2015

Rationale

• Experimental research at UNC has shown
» partitioned schedulers are best for HRT and
» global schedulers are best for SRT.

• This design enables many interesting
tradeoffs to be explored in a setting with
several criticality levels (not just two):
» Table-driven vs. priority scheduling.
» Partitioned vs. global scheduling.
» HRT vs. SRT.

Jim Anderson 18WATERS, July 2015

Outline

• Driving problem.
• Prior work: The MC2 (mixed-criticality on

multicore) framework.
• New work: MC2 with shared hardware

management.
• Future work.
• Running a large schedulability study.

Jim Anderson 19WATERS, July 2015

Managing Shared Hardware in MC2

• This year, we added support to MC2 for
managing shared caches and DRAM
memory banks.
» Goal: Enable higher criticality tasks to be

isolated from lower criticality ones w.r.t. these
resources.

» Why?
– This lessens hardware interference and
– enables smaller and tighter task execution-cost

estimates.

Jim Anderson 20WATERS, July 2015

Hardware Platform

• Freescale i.MX 6Quad
800 MHz ARM®Cortex™-A9
processor.

• Caches:
» 32 KB L1 I-cache per core.
» 32 KB L1 D-cache per core.
» 1 MB shared L2 cache.

– Cache line size =32 B, 2048 Sets, 16 Ways.
• 1 GB DDR3 SDRAM up to 533 MHz memory.

» 8 Banks, each 128 MB.

CPU 0 …L1-I
32KB

L1-D
32KB

CPU 3
L1-I

32KB
L1-D
32KB

L2
1MB

DRAM
Bank 0
128 MB

DRAM
Bank 7
128 MB

…

Jim Anderson 21WATERS, July 2015

Way
0

Way
1

Way
2 … Way

15

Color
0

Color
1

Color
2

Color
15

…

Address Bits [31:0]

Cache Bits
[15:12] [0010]

Cache Partitioning (of the Shared L2)
Option 1: Set Partitioning, i.e., Page Coloring

Jim Anderson 22WATERS, July 2015

Way
0

Way
1

Way
2 … Way

15

Color
0

Color
1

Color
2

Color
15

…

L2 Cache Lockdown Register

[1111 1111 1111 1011]
Lockdown bits [15:0]

CPU 0 Lockdown Register

CPU 0CPU 0CPU 0CPU 0

Cache Partitioning
Option 2: Way Partitioning

Jim Anderson 23WATERS, July 2015

Way
0

Way
1

Way
2 … Way

15

Color
0

Color
1

Color
2

Color
15

…

Can Combine these Approaches

Jim Anderson 24WATERS, July 2015

DRAM Banks

Bank

DRAM

R
ow

 D
ecoder

Column Decoder

Row Buffer

Data Bus

Address

Jim Anderson 25WATERS, July 2015

Currently Implemented Allocation Strategy

CPU 3
Level A & B

4 Colors

8 Ways 8 Ways

DRAM
Bank 0

OS

DRAM
Bank 1

OS

DRAM
Bank 2
Level C

DRAM
Bank 3
Level C

DRAM
Bank 4
CPU 0
A & B

DRAM
Bank 5
CPU 1
A & B

DRAM
Bank 6
CPU 2
A & B

DRAM
Bank 7
CPU 3
A & B

LLC (L2)
CPU 2

Level A & B

CPU 1
Level A & B

CPU 0
Level A & B

Level C
and OS

4 Colors

4 Colors

4 Colors

Jim Anderson 26WATERS, July 2015

Importance of Controlling L2 Interference

Measured memory
access latency of a
synthetic task on a
loaded system,
with (BLUE) and
without (RED) L2
isolation, as a
function of
working set size.

L1 Cache Size L2 Cache Size

Up to 2X reduction when working set
mostly fits within the L2 but not the L1.

Jim Anderson 27WATERS, July 2015

Importance of Controlling DRAM
Bank Interference

Normalized worst-case
execution time of a
synthetic task with
a 256KB working set
size, as a function of
allocated L2 area.

Normalized WCET =
(WCET w/o bank isolation)
(WCET w/ bank isolation)

~20% reduction from bank
isolation here.

No benefit from bank
isolation when allocated
L2 area is “large.”

Jim Anderson 28WATERS, July 2015

Importance of Controlling OS Interference

Measured worst-case
execution times of a
synthetic task that
repeatedly invokes a
dummy system call,
with (BLUE) and
without (RED) OS
isolation.

Jim Anderson 29WATERS, July 2015

Back to the “One-Out-of-m” Problem

Task System

Average Total Utilization

no HW mgt.
no MC anal.

HW mgt.
no MC anal.

no HW mgt.
MC anal.

HW mgt.
MC anal.

LLC-Heavy 8.688 5.466 4.768 3.592

LLC-Light 4.395 4.229 3.721 3.661

To illustrate the importance of applying both MC analysis
and HW management, we constructed two quad-core
task systems, LLC-Heavy and LLC-Light.

We obtained these total utilization measurements:

Tasks have “large” working
set sizes, which stresses
the L2 cache.

Tasks have “small” working
set sizes, so the L2 cache is
stressed less.

Only these result in a
schedulable system.

Jim Anderson 30WATERS, July 2015

Major Principles

• Solving the “one out of m” problem requires:
» Provisioning less pessimistically where

appropriate.
» Enabling hardware isolation, but only where

needed and where possible.
– Lower criticality tasks might actually benefit from

sharing.
– It’s OK if some hardware resources are not managed,

as long as interferences due to such resources are
accounted for in analysis.

Jim Anderson 31WATERS, July 2015

Outline

• Driving problem.
• Prior work: The MC2 (mixed-criticality on

multicore) framework.
• New work: MC2 with shared hardware

management.
• Future work.
• Running a large schedulability study.

Jim Anderson 32WATERS, July 2015

Future Work

• Our future plans include:
» Devising (near) optimal algorithms for allocating L2

areas and DRAM banks.
» Extending page coloring to fully deal with

dynamically allocated pages and shared pages.
» Enabling dynamic task-system adaptations and

synchronization.
» Conducting a major schedulability study to fully

understand relevant resource-allocation tradeoffs.

Jim Anderson 33WATERS, July 2015

Our Methodology for Schedulability Exps.
Developed Jointly with Björn Brandenburg

Implement schedulers.

Distill overhead expressions.

Run schedulability experiments.

Record overheads.

Use monotonic
piecewise linear interpolation

to compute overhead
expressions as a function of N

(the task count).
Involves tracing the
behavior of 1000s of

synthetic tasks in
LITMUSRT on test

platform. Usually takes
8-12 hours. Yields many
gigabytes of trace data.

Implement as
LITMUSRT plugins.Generate several million random

task sets and check schedulability
with overheads considered. Done
on a 500+ node research cluster.

Can take a day or more.

We use worst-case (average-case)
overheads for HRT (SRT).

Jim Anderson 34WATERS, July 2015

The End Result is Lots and Lots of
Schedulability Graphs that Look Like This

Jim Anderson 35WATERS, July 2015

Running Larger Scale Experiments

• The process just described pertains to
evaluating ordinary multiprocessor schedulers.

• In recent work by Glenn Elliott involving GPUs,
the sheer scale of this process started
becoming an issue.
» Large scale means experiments take a long time to

complete…
o 250,000 CPU hours for Glenn’s dissertation!

» … and huge amounts of data must be understood.
o Glenn used special query-processing tools to address this. Also,

weighted schedulability graphs are useful here.

Jim Anderson 36WATERS, July 2015

Controlling Scale
• When randomly generating task systems, we

have two options:
» If a parameter can be reasonably constrained

based upon domain knowledge or measurements,
then it make sense to constrain it.
– For example, task periods are commonly in the range of

10s of ms to 100s of ms.
– OS overheads (obtained via measurement) often have

small ranges.
» Otherwise, a large range that encompasses all

reasonable values should really be assumed.
– But this causes the scale to blow up!

Jim Anderson 37WATERS, July 2015

Questions

• In generating random task systems, what
should we assume about:
» The distribution of tasks across criticality levels?
» The assignment of task to processors?
» The allocation of hardware resources to tasks?
» Per-criticality-level execution times?
» Per-criticality-level overhead values?

• And down the road…
» Critical sections and precedence constraints?
» Dynamic task behaviors?

Jim Anderson 38WATERS, July 2015

Questions (Cont’d)

• With respect to the measurement process:
» Should we use synthetic tasks?

– Advantage: Their properties can be systemically
controlled.

– Disadvantage: May not reflect “practical workloads.”
» Benchmark tasks?

– Advantage: May exhibit more “real world behaviors.”
– Disadvantage: Their properties may be hard to discern.
– Disadvantage: Just because a program is labelled

as a “benchmark” in one domain doesn’t mean it
has any relevance in another.

» If so, which benchmarks should we use?

Jim Anderson 39WATERS, July 2015

Help!

• I look forward to hearing your thoughts
on these and related questions as the
workshop progresses today…

Jim Anderson 40WATERS, July 2015

MC2 Papers
(Available at http://www.cs.unc.edu/~anderson/papers.html)

• J. Anderson, S. Baruah, and B. Brandenburg, “Multicore Operating-System
Support for Mixed Criticality,” Proc. of the Workshop on Mixed Criticality: Roadmap
to Evolving UAV Certification, 2009.

» A “precursor” paper that discusses some of the design decisions underlying MC2.

• M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos, “Mixed
Criticality Real-Time Scheduling for Multicore Systems,” Proc. of the 7th IEEE
International Conf. on Embedded Software and Systems, 2010.

» Focus is on schedulability, i.e., how to check timing constraints at each level and “shift” slack.

• J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, “RTOS Support
for Multicore Mixed-Criticality Systems,” Proc. of the 18th RTAS, 2012.

» Focus is on RTOS design, i.e., how to reduce the impact of RTOS-related overheads on high-
criticality tasks due to low-criticality tasks.

• B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making Shared Caches More
Predictable on Multicore Platforms,” Proc. of the 25th ECRTS, 2013.

» Adds shared cache management to a two-level variant of MC2. The approach in today’s talk is
different.

• J. Erickson, N. Kim, and J. Anderson, “Recovering from Overload in Multicore
Mixed-Criticality Systems,” Proc. of the 29th IPDPS, 2015.

» Adds virtual-time-based scheduling to Level C.

Jim Anderson 41WATERS, July 2015

MC2 Papers
(Available at http://www.cs.unc.edu/~anderson/papers.html)

• N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D. Smith, “Attacking
the One-Out-Of-m Multicore Problem by Combining Hardware Management with
Mixed-Criticality Provisioning,” manuscript.

» Is the basis for today’s presentation.

• M. Chisholm, B. Ward, N. Kim, and J. Anderson, “Cache Sharing and Isolation
Tradeoffs in Multicore Mixed-Criticality Systems,” manuscript.

» Presents linear-programming-based techniques for optimizing LLC area allocations.

Jim Anderson 42WATERS, July 2015

Thanks!

• Questions?

