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Message from the Program Chairs

Real-Time schedulability analysis techniques, scheduling algorithms, and syn-
chronisation protocols, have greatly evolved and continue to evolve in our research
community along the last 40 years. New hardware platforms and the increasing
demand from different application domains, are posing more and more challenges
on the predictability and reliability of applications in terms of their timing be-
haviour. While theory grows and goes rising in complexity, the gap between
industrial practice and state-of-the-art research techniques keeps also enlarging,
leading to a panoply of strategies, formalisms, abstraction techniques, standards,
and business models to deal with the very basic problem: how to assure timing
predictability of software, and be able to build dependable systems, applications,
or products upon it.

As it happens with all computer science and IT related research areas, the
adoption of theoretical research results into industrial practice follows an evo-
lutionary pattern, in which each formalism, paradigm or language fights for its
place. As for many other knowledge domains, the effective means for compar-
ing, evaluating and choosing among the available techniques relies on the scien-
tific method; this requires experimentation and practice. Hence, software tools,
methodologies, comprehensive use cases data sets, and benchmarks are the effec-
tive arms to find a place in this battle against complexity.

Besides, different authors use different algorithms for generating random task
sets, different application traces when simulating dynamic real-time systems, dif-
ferent simulation engines when simulating scheduling algorithms. Instead, re-
search in the field of real-time and embedded systems would greatly benefit from
the availability of well-engineered, possibly open tools, simulation frameworks
and data sets which may constitute a common metrics for evaluating simulation
or experimental results in the area. It would be really beneficial to have a pos-
sibly wide set of reusable data sets or behavioural models coming from realistic
industrial use-cases over which to evaluate the performance of novel algorithms.
Availability of such items would increase the possibility to compare novel tech-
niques in dealing with problems already tackled by others from the multifaceted
viewpoints of effectiveness, overhead, performance, applicability, etc.

The initial goal of this workshop was to bring visibility and recognise the
work of those scientists who write software that is useful for our community; to
make these tools more widely known in it; and to create a group of researchers
interested in contributing with new software and tools.

In this fourth edition, we have enlarged the spectrum of software tools, OS
services and networking resources to domains and information technologies in
which soft real-time requirements are dominant. As in former editions, we also
ask authors to provide their software (or links to their web page where the soft-
ware is made available). All this information is available through the workshop
web page1. Also, our mailing list in Google Group is active to distribute infor-
mation on the workshop themes2.

1http://www.ctr.unican.es/waters2013/
2https://groups.google.com/forum/?fromgroups#!forum/ecrts-waters



WATERS 2013 iii

We would like to thank the Euromicro organisation for having allowed us to
organise this event, and particularly Laurent George, Gerhard Fohler and Stefan
M. Petters for their prompt and ready support. We would like to thank the Real-
Time Systems Laboratory of Scuola Superiore Sant’Anna and the Computers
and Real-Time Group of the University of Cantabria for their support in hosting
the WATERS website. Also, we would like to thank all the authors for having
submitted their work to the workshop for selection, the Program Committee
members for their effort in reviewing the papers, the presenters for ensuring
interesting sessions, and the attendees for participating into this event.

We are sure that interesting ideas and discussions will come out of the pre-
sentations, demos and the questions that will alternate along the day. We hope
you to find this day interesting and enjoyable and your overall experience with
WATERS to bring you back for more our next edition.

The WATERS 2013 Chairs

Tommaso Cucinotta3 and Julio Medina4

3Tommaso Cucinotta is with Bell Laboratories, Alcatel-Lucent, Dublin, Ireland
e-mail: tommaso.cucinotta@alcatel-lucent.com

4Julio Medina is with Departamento de Electrónica y Computadores Universidad de
Cantabria, Santander, Spain
e-mail: julio.medina@unican.es
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Papyrus: an eclipse-based open source initiative for exploiting the full 
modeling power of UML and DSML's 

 
 

Camille LETAVERNIER and Florian NOYRIT 
CEA LIST/DILS/ Laboratory of model driven engineering for embedded systems 

(LISE) 
 
 
 

The principle of separating concerns is widely used in engineering to address 
complexity. In Model-Driven Engineering (MDE), this principle notably led to the 
development of Domain Specific Modeling Languages (DSML). Those languages 
provide constructs that are directly aligned with the concepts of the domain in question. 
A specific domain, in the broad sense, can be an application domain (e.g. auto-motive) 
or a specific concern (e.g. requirement modeling). This coincides nicely with the vision 
specified in the ISO/IEC/IEEE 42010 standard which suggests that each stakeholder 
needs dedicated viewpoints to address his or her concerns. It is the responsibility of 
language designers and methodologists to provide the DSMLs that support these 
viewpoints. And, it is the responsibility of tool designers to provide appropriate user 
interfaces to corresponding language authoring tools. 
 

This is precisely what Papyrus project provides: a modeling environment that let 
language designers define their DSML for a specific viewpoint and let tool designers 
configure the modeling environment to support the desired viewpoint. However, 
Papyrus provides those features under the following motto: “Don’t reinvent the wheel, 
adopt UML instead but tailor it to your needs”. To do that, Papyrus provides a UML 
profile editor to let language designer define the DSML. But, more important, Papyrus 
provides means to tool designers to customize the modeling environment in order to 
tailor the UI to corresponding viewpoint. Papyrus is therefore a generic modeling 
environment that can be customized to support UML-based DSML. 
 

This talk presents the key concepts and features that are available today in 
Papyrus to define and implement UML-based DSMLs. It will especially show how 
UML-based DSML can be much more than just an extension of the UML metamodel. 
We will also introduce features that are coming soon together with those we plan to 
develop in the long term.  
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A Simulation Environment based on OMNeT++
for Automotive CAN–Ethernet Networks

Jun Matsumura, Yutaka Matsubara, Hiroaki Takada
Graduate School of Information Science

Nagoya University, Aichi, Japan

Masaya Oi, Masumi Toyoshima, Akihito Iwai
DENSO CORPORATION

Aichi, Japan

Abstract—Due to the rapid increase in the functionality
requirements of automotive control networks, mixed CAN (Con-
troller Area Network) and Ethernet networks have recently
gained considerable attention. This paper presents a simulation
environment for CAN–Ethernet networks based on the open-
source network simulator OMNeT++, part of the INET frame-
work. We develop simulation models of CAN and a CAN–
Ethernet Gateway (GW). To validate the CAN model, we mea-
sure the end-to-end latency of CAN messages and compare its
performance with an existing CAN network simulator. We apply
the proposed simulation environment to an automotive CAN–
Ethernet system, and confirm that it is an effective aid in the
design and evaluation of such networks.

I. INTRODUCTION

Controller Area Network (CAN), originally developed by
Bosch in 1985, has long been used as the standard protocol
for automotive control networks. In recent years, because the
functionality demands of such systems have grown rapidly, it
has become increasingly difficult to meet network requirements
using only the CAN and Local Interconnect Network (LIN)
protocols. Moreover, some new functions using Ethernet have
been considered, such as Diagnostics on Internet Protocol
(DoIP) and reprogramming the firmware of Electronic Control
Units (ECUs). Ethernet offers the twin advantages of high
communication speed and a flexible network topology. How-
ever, its lack of a real-time property means that it has not,
to date, been used in a control network. To overcome these
problems, there has been some research into mixed CAN–
Ethernet networks [4], and some CAN–Ethernet gateway (GW)
products have been released [6], [7].

In order to integrate CAN–Ethernet networks early in the
development process, we need to explore an appropriate design
that can meet certain stated requirements, because existing
CANs cannot be reused. The requirements include the end-to-
end latency of messages, the number of GWs, and the amount
of buffering to be implemented in each GW. The evaluation
of CAN–Ethernet networks can be conducted by analytical or
simulation methods. The worst-case response time has been
considered as an analytical method in CAN networks [3],
[12] and Ethernet networks [8], [9]. In addition, the Symta/S
analytical tool supports CAN–Ethernet networks [13].

Once we obtain an analytical method for a targeted net-
work, it can be evaluated quickly. However, the communication
protocol and network topology involved in developing such
analytical methods for complex message sets is not straight-
forward. Therefore, simulation methods are more effective for
designing and evaluating the early states of a network.

To date, many network simulators have been developed,
such as CANoe [11], Venet [14], OPNET [2], TrueTime [1],
and OMNeT++ [5]. Provided by Vector Inc., CANoe is a well-
known development tool for the design of automotive control
networks, and supports many network protocols, such as
CAN, LIN, MOST, FlexRay, and Ethernet. OPNET (OPNET
Technologies Inc.) is a bit-level network simulator; such tools
give more accurate simulations than message-level simulators.
However, their simulation speed is generally slow. In addition,
as OPNET is a commercial tool, we cannot easily add a
simulation model of a new network protocol. Therefore, to
evaluate the early states of a network, message-level simulators
are more suitable than bit-level simulators. Venet, developed
by InterDesign Technologies Inc., is a message-level simu-
lator for CANs, but does not support the Ethernet protocol.
TrueTime, distributed by Lund University and based on MAT-
LAB/Simulink, is a message-level simulator that does support
Ethernet, as well as MAC and CSMA/CD. However, IP and
TCP/UDP are not supported. The open-source discrete time
event simulator OMNeT++ is well-documented for both users
and model developers. This means that we can easily develop
a new simulation model. Although OMNeT++ supports many
multimedia communication protocols, no automotive network
protocols are currently supported.

In this paper, we propose a simulation environment for
CAN–Ethernet networks based on OMNeT++ and the INET
framework [10]. We develop a CAN simulation model and a
CAN–Ethernet GW model. To validate the developed CAN
model, we compare the end-to-end latency of CAN messages
using the proposed simulator with results from the Venet tool.
Furthermore, we perform a case study for an automotive CAN–
Ethernet network and confirm the applicability of the proposed
simulator.

This paper is organized as follows: Section 2 presents an
overview of the proposed simulation environment, and Section
3 describes in detail the simulation models for CAN and CAN–
Ethernet GW. Section 4 gives the results of our evaluation of
the developed CAN model and a case study. Finally, Section
5 concludes the paper.

II. SIMULATION ENVIRONMENT

A. Overview

Fig. 1 shows an overview of the proposed simulation
environment, with input files on the left, the simulator in
thecenter, and the output files on the right. In the following
sections, we describe the necessary input files, an overview of

WATERS 2013 1



!"#$%&'($)*+,(-".(/012341

2341

5651

6781

936,:;;1

6,$<".=(:">"+"'?1

@"&-%'#.)$%"&(-".(A%B#+)$%"&1

A%B#+)$%"&(

.,A#+$A1

24C1
D).)B,$,.A("-(B,AA)',(A,$1

EA,.1

@"&F,.A%"&(*?($G,(!#*?(AH.%>$1

I%A#)+%J)$%"&1

Fig. 1. Overview of the proposed simulation environment

<NodeInfo>
<Node ID="ECU73">

<SendMessage SendTime="0" Offset="50"
ID="7cf" DLC="8" SendInterval="10"/>

<SendMessage SendTime="100" Offset="10"
ID="8df" DLC="8" SendInterval="0"/>

...
</Node>

</NodeInfo>

Fig. 2. Example of a definition file for a message set

the simulation environment, and how to obtain and analyze the
simulation results.

B. Input Files

Users create three input files for the simulator, a NED
file (.ned), an INI file (.ini), and a spreadsheet file (.xls).
The network topology is described in the NED file. The INI
file includes initial parameters and the configuration for the
simulations, and the spreadsheet file includes the message sets
of each node. The spreadsheet file is described in its original
format for this environment. We created a script program
using the Ruby language to generate two XML files from the
spreadsheet file.

An example of an XML file that defines message sets
sent by each node is shown in Fig. 2. A <Node> ele-
ment represents a node in the network and includes multiple
<SendMessage> elements. In this example, the node with
ID ECU73 sends two messages. A <SendMessage> element
defines the message sent by the node in terms of five attributes,
ID, Offset, DLC, SendTime, and SendInterval. ID
is simply an identifier for the message. Offset denotes the
relative time between the simulation start time and the first
time at which the message was sent. DLC represents the data
length of the message, and SendTime denotes the absolute
sending time of the message. SendInterval represents the
sending period of the message. In this example, as the message
with ID 0x7cf is cyclic, SendInterval is set to a sending
period of 10. For cyclic messages, SendTime must be 0. The
message with ID 0x8df is an event-driven message and is sent
at 100.

The other XML file defines routing maps for each GW.
An example of a routing map is shown in Fig. 3. A
<MessageInfo> element represents a routing configuration
for each message. The <RoutingInfo> has two attributes,

<RoutingMap ID="1">
<MessageInfo ID="686">

<RoutingInfo Name="Ethernet" Send="0"/>
<RoutingInfo Name="CAN1" Send="0"/>
<RoutingInfo Name="CAN2" Send="1"/>
<RoutingInfo Name="CAN3" Send="1"/>
<RoutingInfo Name="CAN4" Send="0"/>
<RoutingInfo Name="CGW" Send="0"/>

</MessageInfo>
...

</RoutingMap>

Fig. 3. Example of a definition file for a routing map
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Fig. 4. Protocol structure

Name and Send. Name represents the name of a bus, and
Send determines whether the message should be transferred
in binary for each bus connected to the GW. The example
shows that, when the GW receives message 0x686, it is only
transferred to the CAN2 bus and the CAN3 bus.

C. Structure of the Simulator

The protocol structure of the proposed simulator is shown
in Fig. 4. The simulator is based on OMNeT++ version 4.2.2
and INET framework version 1.99.4, as well as three simula-
tion models, namely a CAN model, a GW model, and one of
two application models. The CAN model consists of a CAN
bus model and a CAN controller model to simulate the CAN
protocol, and the GW model relays messages received from
one bus to other buses. A CAN–CAN GW model includes only
a CAN message router, whereas a CAN–Ethernet GW model
includes a CAN–UDP Protocol Converter, which converts
CAN messages to UDP packets, and vice versa, as well as
routing CAN messages. The CAN–Ethernet GW is based on
existing models of Ethernet bus, MAC, CSMA/CD, IP, and
UDP included in the INET framework. We develop a CAN
application model that sends and receives CAN messages, and
a UDP application model that sends and receives UDP packets.

D. Simulation Parameters

In the proposed simulation environment, the following
parameters can be obtained from the simulation results.

• End-to-end latency of each message

WATERS 2013 2
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• Necessary buffer size of each GW

• Average utilization of each bus

To obtain these parameters, we implement some code using
the signal mechanism provided in OMNeT++. For the end-to-
end latency, signals are generated when the departure node
generates a message and when the destination node receives
the message. When the number of messages in the GW queue
changes, another signal is generated. To obtain the average
utilization parameter, the time used for each bus is calculated
once per second.

III. SIMULATION MODELS

A. CAN Model

As shown in Fig. 5, the CAN model consists of a CAN
controller model, a CAN bus model, and a CAN application
model.

The CAN controller model stores CAN messages sent from
a CAN application in a queue, and sends them one-by-one to
the CAN bus. Fig. 6 shows the state transition diagram of the
CAN controller model. There are two states, transmission and
idle. In the idle state, when the CAN controller model receives
a CAN message from a CAN application, it requests the CAN
bus to send the message. The CAN controller model then
transits from idle to transmission (1). When the CAN controller
model receives a CAN message while in the transmission state,
the CAN message is stored in the message queue (2). When the
CAN controller model is in the transmission state and receives
an arbitration completion message from the CAN bus, and if
the message queue is empty, the CAN controller model transits
to the idle state (3). If the message queue is not empty, the
CAN controller model requests the CAN bus to send the next
message and remains in the transmission state (4).

We implement three types of message queue in the CAN
controller model. These are a FIFO queue, a partial priority-
based queue, and a full priority-based queue. Because each
queue type has advantages and disadvantages, the optimal type
will depend on the network topology, characteristics of the
application, cost of hardware, and software driver complexity.
Users can specify the type of queue for each CAN controller
model in the INI file. With a FIFO queue, CAN messages
are sorted in first-in first-out order, regardless of the priority
of the messages. The partial priority-based queue sorts CAN
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Fig. 6. State transition diagram of the CAN controller model

!"#$%&'&()&$*$+,-$.&//*0&$

123.$45&$+,-$'3642377&289

!:#$,2;(42*4(36$(/$1(6(/5&<8$!=$5*/$&7*>/&<$

/(6'&$45&$+,-$;?/$.3<&7$42*6/(4&<$43$45&$

45&$*2;(42*4(36$/4*4&8#9

@<7&9

,2;(42*4(369

!A#$B2*6/.(//(36$31$*$.&//*0&$(/$'3.>7&4&<8$

-3$42*6/.(//(36$2&C?&/4$(/$/432&<89

B2*6/.(//(369

!"#$%&'&()&$*$+,-$.&//*0&$

123.$45&$+,-$'3642377&289

!"#$%&'&()&$*$+,-$.&//*0&$

123.$45&$+,-$'3642377&289

!D#$B2*6/.(//(36$31$*$.&//*0&$

(/$'3.>7&4&<8$,4$7&*/4$36&$

42*6/.(//(36$2&C?&/4$(/$/432&<89

Fig. 7. State transition diagram of the CAN bus model

messages in order of priority, except for those whose send
request has already been issued to the CAN bus. With a full
priority-based queue, all CAN messages in the queue are sorted
in order of priority. As a filtering function, when the controller
model receives messages from a CAN bus, only those whose
ID is specified in the INI file are relayed to applications in the
upper protocol layer.

The CAN bus model handles message transmission and
arbitration of conflicting send requests among the CAN nodes
connected to a CAN bus. In a real CAN, message arbitration
is handled by both CAN controllers and a CAN bus. In our
simulation, message arbitration is achieved using only a CAN
bus model. Fig. 7 shows the state transition diagram of the
CAN bus model. There are three states, idle, arbitration, and
transmission. When the CAN bus model receives a request
to send a CAN message, it stores the sending request (1).
If the CAN bus model is in the idle state, it transits to
the arbitration state. When the CAN bus model receives an
arbitration completion message from itself, the message with
the highest priority is selected from those requesting to be sent
at that time. Furthermore, an arbitration completion message
is sent to the CAN controller requesting the message with the
highest priority to be sent. The CAN bus model transits to
the transmission state (2). When the CAN bus model receives
a transmission completion message from itself, the message
with the highest priority is transmitted to all CAN controllers
connected to the CAN bus, except for the node that sent the
message. If at least one of the send requests is stored, the CAN
bus model transits to the arbitration state (3). If there are no
requests, the CAN bus model transits to the idle state (4).

When using a discrete event simulator such as OMNeT++,
requests to send messages from each CAN controller model
to a CAN bus model are sequentially processed, although
these requests may be issued at the same time. Therefore,

WATERS 2013 3
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Fig. 8. Structure of CAN–Ethernet GW model

these requests do not conflict. In this case, the first message
processed in the CAN bus model can be immediately sent.
In our method, send requests made during the period ∆ are
stored in the CAN bus model to simulate the arbitration
mechanism of the CAN protocol. Send requests issued within
∆ are considered to give conflicts, and are handled according
to the above-mentioned priority-based arbitration mechanism.
The default value of ∆ is 0.002 ms, corresponding to the
transmission time of 1 bit of data in a 500 Kbps CAN bus.

B. Application Models

The CAN application model simulates the control applica-
tion at an ECU, sending and receiving CAN messages. When
the simulator is initialized, each node loads a message set to
be sent from an XML file. In real automotive control systems,
ECUs are not synchronized because of individual differences in
their crystal oscillators. To model this situation, we introduce
drift values for the deviation of the message periods of each
ECU. Therefore, the sending period for a periodic message is
calculated by multiplying the period specified in the XML file
by a drift value specified in the INI file.

The UDP application model simulates a multimedia ap-
plication at an ECU. The model generates UDP packets sent
to CANs, and the data field of a UDP packet is an array
of CAN messages. The ID and data of each CAN message
are generated using random values. The DLC of each CAN
message is 8 bytes.

C. CAN–Ethernet GW Model

As shown in Fig. 8, a CAN–Ethernet GW model has two
functions, message routing among CAN buses and message
conversion from CAN messages to UDP packets (and vice
versa). Other types of GW model, such as CAN–TCP, CAN–
FlexRay, and CAN–LIN, require only a protocol converter.

The CAN message router model manages the routing table
generated at the initialization of the simulator, according to the
XML file explained in Section II-B. CAN messages specified
in the routing table are only transferred to buses if the value
corresponding to the message is 1. If a CAN message needs
to be transferred to an Ethernet bus, the message must be sent
to the CAN–UDP protocol converter model.

!

!

!

!

!

"#$%&'()*+,-'(%.+'/%&01%/*,,23*,%4'%2%567%829:*4!

";$%&'()*+,-'(%.+'/%2%567%829:*4%4'%&01%/*,,23*,!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

<*,,23*%=>*>*!

8*+-'?-92@@A!

829:-(3!

&01%(*4B'+:! C4D*+(*4%(*4B'+:!

0%567%829:*4!

&01EC4D*+(*4%8+'4'9'@%9'()*+4*+!

!

!

!

!

!

&01%<*,,23*!

%F'>4*+!

!

!

!

!

!

F'>4-(3!

G2H@*!

&01EC4D*+(*4%8+'4'9'@%9'()*+4*+!

!

!

!

!

!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

!"#$"%! $#&#!

&01%/*,,23*,!

&01%(*4B'+:! C4D*+(*4%(*4B'+:!

0%567%829:*4!

&01EC4D*+(*4%8+'4'9'@%9'()*+4*+!

!

!

!

!

!

&01%<*,,23*!

%F'>4*+!

!

!

!

!

!

F'>4-(3!

G2H@*!

&01EC4D*+(*4%8+'4'9'@%9'()*+4*+!

,8@-44-(3!

-(4'%&01%

/*,,23*,!

Fig. 9. Behavior of CAN–Ethernet Protocol Converter

TABLE I. CONFIGURATION FOR VALIDATION OF CAN MODEL

CAN Network Speed 500 Kbps
# of CAN nodes 14
# of CAN buses 1
# of CAN messages 65
Queue Type of CAN controller Full priority-based queue

The CAN–UDP protocol converter model converts CAN
messages to UDP packets and vice versa. Fig. 9 illustrates
the behavior of the protocol converter model. In converting
them to UDP packets, the CAN messages received for a given
period are stored in a model buffer. Such stored messages
are periodically arranged into one UDP packet and sent to
an Ethernet bus (1). Users can specify the packing period
(default value is 1 ms) in the INI file. Several algorithms for the
conversion of CAN messages to UDP packets were proposed
in [4]—which gives the best performance will depend on the
specific application. In the conversion back from UDP packets,
the CAN messages packed in a UDP packet are split off. Each
CAN message is then sent to a CAN message router model
(2). Although the internal GW delays (processing time to copy
arriving messages into a buffer, check where they are to be
routed, packing target messages, calling software drivers) are
not considered at this time, a static delay time could easily be
configured.

IV. EVALUATION

A. Validation of CAN Model

To validate the CAN model, we compared the average
end-to-end latency of each CAN message using the proposed
simulator and Venet. The common parameters used in the
evaluation are given in Table I. All CAN messages are periodic.
We performed one simulation with drift and one without. The
simulation time was 60 s.

The simulation by OMNeT++ took only 13 s, which was
11.6 % faster than the simulation by Venet. With no drift, the
simulation results from the proposed model correspond almost
exactly to those obtained using Venet. The errors of between
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Fig. 11. Network configuration for evaluation

30–40 ns are due to rounding errors in the sending time of
CAN messages. Therefore, we consider the CAN model to
be valid in the case of no drift. Fig. 10 shows the results of
the simulation with drift. The average end-to-end latency error
between OMNeT++ and Venet is of the order of a few ms.
However, this is greater than the error in the case of no drift.
In particular, the error for message ID 1595 is approximately
0.2 ms. We can confirm that the rounding error in the sending
time of CAN messages also caused this error. The number of
disruptions caused by messages with higher priority differed
between the two simulators. We consider the above results to
again validate the CAN model.

B. Case Study for a CAN–Ethernet Network

We performed a case study of a CAN–Ethernet network to
confirm the applicability of the proposed simulator. Table II
shows the configuration of the network in this evaluation, and
the network topology is shown in Fig. 11. The network consists
of four CAN buses and an Ethernet bus. These are connected
to CAN–Ethernet GW nodes. The parameters measured in
this evaluation are the maximum end-to-end latency of each
message, the maximum latency rate, the buffer usage in each
CAN controller, and the utilization of each CAN bus. The
maximum latency rate is defined as the ratio of the maximum
end-to-end latency to the sending period of the message, and
is only calculated for periodic messages. If the maximum
latency rate is greater than 1, the message may not arrive at the
destination node prior to the next sending time of the message.

In addition to the algorithms proposed in [4], we propose
a heuristic deadline-aware algorithm. For this evaluation, we
assumed that the deadline of each message corresponded to
its sending period. We assumed two different maximum delay
times in each CAN network, 5 ms (i.e., a constant value) and

TABLE II. CONFIGURATION OF CAN–ETHERNET NETWORK FOR
CASE STUDY

CAN Network Speed 500 kbps
Ethernet Network Speed 100 Mbps
# of CAN nodes 90
# of Ethernet buses 1
# of CAN–Ethernet GWs 2
# of CAN buses 4
# of CAN messages 216 (periodic)

194 (aperiodic)
Drift of Each Node ± 1%
Queue Type of CAN controller Full priority-based queue

TABLE III. PARAMETERS FOR CONVERSION ALGORITHMS

Buffer Conversion Maximum Ratio of Assumed
size period shortened urgent delay time in

[ms] time [ms] messages [%] CAN network
Basic 1 - - - -
Buffer 40 20 - - -
Time 40 20 20 - -
Urgency 40 20 20 20 -

deadline
(5 ms) 20 5 - - 5ms

deadline
(50% of
periods)

20 5 - -
50% of
periods

50% of the period of each CAN message. In the deadline-
aware algorithm, when a CAN message reaches a GW, it
and the messages stored in the GW buffer are packed into
the Ethernet packet if the remaining time to the deadline
of the message is less than 5 ms or 50% of the period of
the message. In this experiment, the value of the assumed
delay time was heuristically determined, because there is no
analysis method for the worst-case end-to-end delay in CAN–
Ethernet networks. Therefore, we found the appropriate value
by changing the parameter in 10% increments, from 10% to
90%. The simulation time was 7200 s, which corresponds to
one driving cycle.

The maximum delay ratios of each algorithm are shown
in Fig. 12. In the case of the deadline-aware algorithm (50%
of periods), all messages met their timing constraints. From
Fig. 12, we can see that the maximum delay ratio of some
messages is greater than 1 in the basic, buffer, and time
algorithms. This means that the deadline was missed in these
simulations. For messages with high priorities (i.e., from 1 to
300), the conversion period was insufficient to meet the timing
constraints. For messages with lower priorities, the sending
period was shorter than for messages with similar priorities.
Therefore, the influence of these messages was large.

Table IV presents the average utilization of CAN buses
and the number of conversions from CAN to Ethernet. In
the table, empty refers to the number of conversions to an
Ethernet packet without any CAN messages, and not empty
refers to the number of conversions to an Ethernet packet
with CAN messages. The average utilization of each bus is
similar for all algorithms, whereas the difference in average
Ethernet utilization is small. The fewest conversions from CAN
messages to Ethernet packets for the buffer-type algorithm
occur at GW1. In the deadline-aware algorithm (50% of
periods), the number of conversions from CAN to Ethernet
was also fewer than for the basic and urgency algorithms.
Therefore, the deadline-type algorithm (50% of periods) gave
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TABLE IV. AVERAGE WORKLOAD OF EACH BUS AND THE NUMBER OF CONVERSIONS TO ETHERNET PACKETS

Average workload [%] # of conversions from CAN to Ethernet
GW1 GW2

CAN1 CAN2 CAN3 CAN4 Ethernet empty not empty empty not empty
Basic 32.78 69.61 45.31 50.81 2.14 1 1753806 1 11453219
Buffer 32.78 69.61 45.31 50.81 0.34 1 359999 1 363375
Time 32.78 69.61 45.31 50.81 0.35 1 366819 1 426005
Urgency 32.78 69.61 45.31 50.81 2.01 1 1667816 1 10637389
Deadline(5 ms) 32.78 69.61 45.31 50.81 0.45 1 718992 1 824190
Deadline(50% of periods) 32.78 69.61 45.31 50.81 0.48 1 718992 1 978810

the best performance in this case study.

V. CONCLUSION

We presented a simulation environment for CAN–Ethernet
networks based on OMNeT++ and the INET framework,
and discussed details of a CAN simulation model and a
CAN–Ethernet GW model. To validate the developed CAN
model, we measured the end-to-end latency of CAN messages
using both the proposed simulator and Venet. Furthermore,
we performed a case study for a CAN–Ethernet network,
and confirmed the applicability of the proposed simulator. We
showed that the proposed simulation environment is useful
for the design and evaluation of CAN–Ethernet GWs and the
topology of CAN–Ethernet networks. In future work, we will
improve the conversion algorithm for UDP packets to CAN
messages, and develop a flow control algorithm for use in a
CAN–Ethernet GW. Finally we are planning to distribute the
developed CAN model for OMNeT++ from our website.

ACKNOWLEDGMENT

Part of this work was supported by KAKENHI (24700027)
and the Monbukagakusho scholarship.

REFERENCES
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CloudNetSim - Simulation of Real-Time Cloud Computing Applications

Tommaso Cucinotta, Aram Santogidis
Bell Laboratories, Alcatel-Lucent, Dublin

In this paper, we describe CloudNetSim, a project aim-
ing to realise a simulation platform supporting our ongoing
and planned research activities in the area of resource man-
agement and scheduling for distributed QoS-sensitive and
soft real-time applications. It is based on OMNeT++, in-
tegrating in the platform a set of modules for the simula-
tion of CPU scheduling, including hierarchical scheduling
at both levels of the hypervisor and guest Operating System,
as needed when simulating cloud infrastructures. Thanks
to the modularity of OMNeT++, CloudNetSim may eas-
ily leverage many existing simulation models already avail-
able for networking, including standard network compo-
nents and protocols, such as TCP/IP. After a brief overview
of related simulation tools found in the literature, and the
discussion of their limitations, we provide a detailed de-
scription of the internals of our simulator. Then, we show
results gathered from a few representative scenarios demon-
strating how its behaviour matches with the one of simple
real applications.

1 Introduction

Cloud Computing is gaining momentum as one of the
key innovations disrupting the world of computing, consti-
tuting a page turn from the old ages of Personal Computing
to a new era of massively distributed cloud applications and
services accessed from a plethora of devices with increased
mobility support. Cloud Computing is also generating a
continuous pressure towards the research community, for
introducing innovations and novel mechanisms promising
to support better the nowadays and future computing sce-
narios. As connectivity evolves towards higher bandwidth
and lower latency, more and more soft real-time (RT) and
interactive on-line applications are becoming increasingly
used and popular [17]. These include many on-line inter-
active cloud applications, such as office suites (e.g., Google
Docs) or e-Learning platforms [7], virtual desktop, and on-
line massively parallel games.

When working at the lowest layers of the cloud infras-
tructure, and specifically at the hypervisor, Operating Sys-
tem (OS), and CPU scheduling levels, it is often difficult
if not impossible to gain access to realistic test-beds over

which to carry out research activities in the field. Often,
it is very handy and convenient to have available tools that
may assist researchers in simulating cloud deployments and
end-to-end distributed applications, with a sufficient level of
abstraction depending on the research purposes and scope.

However, simulation of distributed soft real-time appli-
cations over general-purpose computing platforms and net-
works is troublesome due to the lack of proper tools. Vari-
ous simulators exist in the areas of networked systems and
real-time systems, and recently a few simulation tools have
become available in the area of Cloud Computing. In gen-
eral, the existing tools were lacking the fundamental abil-
ity to integrate the various cross-domain simulation aspects
that affect the end-to-end performance (see Section 2).

In this paper, we introduce CloudNetSim, a project aim-
ing to provide a simulation platform to assist the exper-
imentation with resource management and scheduling in
cloud computing. At a glance, its main features comprise:
packet-level simulation of end-to-end network communica-
tions between clients and servers distributed throughout a
cloud infrastructure; simulation of computing resources in-
cluding but not limited to CPU scheduling both at the hyper-
visor and at the guest OS levels; support for virtual machine
(VM) deployment strategies; modularity and extensibility,
with the possibility to introduce additional scheduling poli-
cies, VM deployment strategies and application models as
needed. We aim to keep an abstraction level that allows for
simulation of thousands of nodes and applications, gather-
ing the necessary QoS metrics, within an affordable time.

Even though CloudNetSim targets simulation of cloud
applications, the presented work may also be used for sim-
ulating networked soft real-time and embedded systems.

2 Related Work

In this section, the simulation tools mostly related to the
presented work are briefly introduced. They fall roughly
in the categories of real-time systems simulators, network
protocols simulators and cloud computing simulators.

In the area of RT and embedded systems, many simu-
lation tools deal with simulation of CPU scheduling, in-
cluding RTSim [18], MAST [10], MAST2 [9], SimTrOS [19]
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and others [1], just to mention a few. However, either they
are exclusively focused on hard RT and embedded systems
and they do not support general-purpose schedulers and re-
lated technologies, or they neglect entirely the networking
aspects. Some tools integrate simulation of CPU schedul-
ing and technologies/protocols for CAN busses or Wire-
less Sensor Networks [6], however these tools are hardly
reusable in the context of general purpose technologies.

In the area of networking and distributed systems, many
tools provide an accurate simulation of networking tech-
nologies and packet-level simulation of networking proto-
cols [21, 11, 20]. For example, NS21 is probably one of
the most widely known open-source simulators used in re-
search about network protocols, whose development started
in 1996. It supports packet-level simulation of many Inter-
net protocols and technologies, including TCP/IP and wire-
less networks. However, the simulator derives from a quite
old code base, where functionality has been evolving over
years, split around C/C++ and Object Tcl code. This re-
sulted in the lack of modularity and clean interfaces for ex-
tending its functionality. It is not a case that, from 2004, a
new NS32 project was born with the intention of a com-
plete redesign of the internals of the simulator, and ulti-
mately dropping compatibility with NS2. Unfortunately,
this resulted in a set of features not (yet) as complete as
in NS2. A completely alternative project is the open-source
OMNeT++3, free for academic use, and commercially li-
censed as OMNEST4. OMNeT++/OMNEST is a simulation
platform with a completely modular design where generic
modules can be connected in arbitrarily complex topolo-
gies and communicate with each other, all integrated with
an Eclipse-based development environment including a vi-
sual topology editor. One of the main uses of OMNeT++ is
in connection with the INET Framework5, an open-source
communication networks simulation package including a
set of modules for simulation of Internet technologies and
protocols, including TCP/IP, IPv6, Ethernet, PPP, 802.11,
MPLS, and others.

However, all of these network simulators simply do not
include any CPU scheduling infrastructure. In a cloud en-
vironment, where multiple VMs may be multiplexed on the
same physical host, processor and core, it is important to
simulate CPU scheduling, to get a comprehensive picture
of the end-to-end response-time and performance. Espe-
cially when dealing with low-latency cloud applications de-
ployed in future scenarios with fine-grained cloud data cen-
tres, tools are needed to support a comprehensive and inte-
grated simulation of multiple resources, such as CPU, net-

1More information at: http://www.isi.edu/nsnam/ns/.
2More information is available at: http://www.nsnam.org/.
3More information is available at: http://omnetpp.org/.
4More information is available at: http://www.omnest.com.
5More information at: http://inet.omnetpp.org/index.php.

work and storage, that allow for modelling distributed ap-
plications, particularly those with QoS requirements, devel-
oped in the context of general-purpose technologies.

Recently, a few simulation tools have become avail-
able [2, 14, 4, 12] targeting the specific simulation needs
arising in the area of Cloud Computing. CloudSim [2] is
a Java-based simulation platform modelling various aspects
of cloud computing infrastructures such as high-level sim-
ulation of data centres with virtualized hosts, energy con-
sumption models and federated clouds. Versions prior to 2.0
have a very simple networking model at the flow level, with
statically configured latency and bandwidth values among
locations, while from version 2.0 a better network simula-
tion functionality was added.

CloudSim is derived from GridSim [3], thus its architec-
ture is still strongly tied to the modelling and simulation of
GRID scenarios, with a focus on load balancing within the
data centre, rather than gathering performance metrics over
end-to-end deployments of general-purpose cloud comput-
ing applications, as in our proposed CloudNetSim.

iCanCloud [14, 4] is a simulator platform for cloud com-
puting based on OMNeT++, with the capability to configure
various resource management policies for the hypervisor,
virtual machine models aiming to simulate the behaviour of
real world CPUs, data centre topologies that mimic the ar-
chitecture of state of the art cloud computing infrastructures
(e.g. Amazon EC26) and data storage emulation. Still, this
tool is lacking the essential capability to simulate the variety
of heterogeneous networks involved in the end-to-end cloud
service supply chain. However, being based on OMNeT++
as our framework, iCanCloud has interesting modules that
we might re-use, such as the storage models inherited from
SIMCAN [16, 15], a simulator of local and remote storage
systems, including NFS and parallel file systems.

GreenCloud [12] is an NS2-based C++ simulator aiming
to model the energy consumption of data center IT equip-
ment (e.g. computers, network switches and communica-
tion links), to help the design of energy efficient architec-
tures. However, GreenCloud needs merely a rough estimate
of the expected computing workload on the nodes, for its
power consumption estimates.

Overall, some of the mentioned simulators targeting
cloud computing focus specifically on aspects of the in-
frastructure related to computing within the data centre, ne-
glecting the important aspects of communications over the
Internet or the access network. Others try to enrich an accu-
rate simulation of the network by adding rough computing
models which cannot capture a similar level of detail, when
addressing QoS and responsiveness. However, considera-
tion of the whole end-to-end chain is very important for the
overall QoS delivered to remote customers/users.

As a consequence, we could not find in existing tools

6More information is available at: aws.amazon.com/ec2/.
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Figure 1. High-level software architecture

features properly matching with the particular needs of re-
search on the topics of resource management and schedul-
ing for interactive, real-time and low-latency cloud and dis-
tributed applications.

3 Proposed Approach

One of the primary goals of the overall ongoing Cloud-
NetSim project is to integrate within a single simulation
platform the major factors contributing to end-to-end la-
tency of low-latency cloud applications, namely network-
ing, computing and disk access, including overheads due to
virtualization (both machine and network virtualization).

We opted to implement the computing part of the simu-
lation on top of OMNEST (see Figure 1), due to its relative
maturity, modular design and extensibility. We realized a
set of OMNEST modules in order to model computing and
CPU scheduling within physical hosts and VMs, as happen-
ing within a cloud computing data centre; these inter-mix
with the already available network communication mod-
ules, resulting in a more comprehensive emulation of the
major contributions to end-to-end response-times. At this
preliminary stage, disk access has been greatly simplified,
but we plan to consider it more thoughtfully later.

Simulating large infrastructures with such a fine-grained
level of detail for computing and networking resources may
present performance and scalability challenges. However, it
has been shown [13] that parallelisation techniques can be
effectively applied to OMNeT++ simulations in a seamless
fashion, without requiring changes in the code. These will
certainly be useful for our planned future investigations.

Overall Design. The core component for modelling com-
puting elements is CloudNode. It is built on top of the Node-
Base compound module of INET which models a network
host, and provides interface and network layer functionality.
CloudNode additionally incorporates a number of modules
that emulate the computing part of the module (see Fig-
ure 2), i.e., the CPU Scheduler, modules for applications
and for data storage emulation. Moreover, the CloudNode

Figure 2. OMNEST representation of a simple
topology.

modules can be interconnected with each other in a hierar-
chical fashion, effectively modelling VMs running within a
physical host. Figure 2 illustrates the topology of a client
connected through a router to a host running 3 VMs.

In OMNEST terminology, CloudNode is a compound
module that extends NodeBase (see Figure 3 for an
overview of its inner design). It is an aggregation of sim-
ple modules that allow for modelling various aspects of the
software stack typical of virtualized infrastructures. As de-
picted in Figure 3, CloudNode includes simulation of net-
work capabilities as inherited from NodeBase, data stor-
age and CPU scheduling. The networking capabilities have
been customised by adding SchedPPP, a module extending
the INET PPP interface which is controllable from the CPU
scheduler. This is necessary in order to “suspend” the net-
work connectivity of a VM, when it is preempted from ex-
ecution by the CPU scheduler. A similar SchedEth module
has been realised for Ethernet.

The Scheduler within a CloudNode is able to schedule an
arbitrary number of Schedulable entities over a configurable
number of available CPUs. Also, these can be connected to
a data storage model in order to model suspension on I/O.
Interestingly, a CloudNode is schedulable on its own. This
allows VMs to be modelled as CloudNode instances con-
nected to the Scheduler of the outer CloudNode represent-
ing the host they are deployed within.

Scheduler Design. Schedulable entities represent soft-
ware running in the system, including both applications or
components at the hypervisor level, and those within guest
VMs. The Schedulable interface permits the Scheduler to
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Figure 3. CloudNode design.

Figure 4. Schedulable entities FSM.

manage their execution state. All these entities extend the
BaseSchedulable class that implements the well-known Fi-
nite State Machine (FSM) in Figure 4. The logical com-
munications between the Scheduler and its managed en-
tities, necessary to realise the mentioned FSM behaviour,
is conducted through the scheduleIn/scheduleOut ports of
the Schedulable interface, by exchanging custom defined
OMNEST messages. Specifically, the Scheduler notifies
ready-to-run entities whenever a CPU is assigned or re-
voked to them, according to the scheduling algorithm in use
within the Scheduler. The entities, on their own, notify the
Scheduler whenever they need to suspend for data I/O, net-
working, or timer operations.

The CPU is modelled in the scheduler with a few config-
urable parameters controlling its power-saving capabilities,
including the frequency at which it is running, and whether
it is in a deep-idle state. Therefore, messages from the
Scheduler to the entities also include the frequency change

information, needed to allow applications to modulate their
execution time behaviours accordingly. This allows for sim-
ulation of multi-processor and multi-core hosts with CPU
power-saving capabilities. However, an exact strategy to
switch among the available CPU frequencies (i.e., mimick-
ing the behaviour of the cpufreq governors in Linux) is
still work in progress. Also, we only modelled a single idle-
state of the CPU with a configurable wake-up latency, as at
the moment there is no interest in modelling the multitude
of idle states in modern CPUs.

We realised 3 scheduling algorithms: Fixed Prior-
ity (FP), Round-Robin, Linux Completely Fair Scheduler
(CFS). These can be hierarchically composed with each
other. This is shown through the example in Figure 5.(a),
where a typical Linux set-up is shown with 6 applica-
tions running under various scheduling policies, as detailed
in Figure 5.(b). With the proposed architecture, multi-
ple real-time tasks at the same priority under the POSIX
SCHED RR policy are represented as connected to an in-
stance of the Round-Robin Scheduler, which in turn is con-
nected to the FP Scheduler at the needed priority level.
Also, SCHED OTHER tasks are connected to a CFS Sched-
uler connected to the FP Scheduler at priority 0.

Configuration of the Scheduler(s) topology is simpli-
fied by specifying for each application the desired schedul-
ing parameters (including the nice level, in case of
SCHED OTHER entities), and the CloudNode instantiates
the required Scheduler modules and interconnections as
needed. Note that the overall Scheduler design allows for
an easy introduction of new algorithms.

Application Model. Applications are modelled in Cloud-
NetSim as Schedulable entities, executing sequentially a list
of instructions. Following the steps of RTSim [18], the
purpose of the simulation is not functional simulation, but
rather performance evaluation. Therefore, allowed instruc-
tions are for now: computing for a fixed amount of time
(scaled linearly with the CPU frequency); wait for the trans-
fer of a fixed number of blocks to/from the storage medium;
change dynamically the scheduling parameters of the appli-
cation. Also, a few instructions are being realised allowing
for modelling (the impact on performance of) communica-
tions among various parts of a distributed cloud application.

A convenience scripting syntax has been defined, so that
simple application models may easily be provided through
text-based input files to the simulation.

4 Calibration and Simulation Experiments

In this section we report results from a few experiments
we ran in order to show how the parameters of the simulated
models may be calibrated so that its outcome matches with
the behaviour measured from a real simple scenario.
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(a)
App Priority Policy

0 3 SCHED FIFO
1 10 SCHED RR
2 10 SCHED RR
3 0 SCHED OTHER
4 0 SCHED OTHER
5 0 SCHED OTHER

(b)

Figure 5. Hierarchical scheduling of pro-
cesses based on policy

Real world Simulation
Host (idle) 0.384 +/- 0.040 ms 0.388 ms
Host (hog) 0.322 +/- 0.034 ms 0.333 ms
VM1 (idle) 0.482 +/- 0.034 ms 0.462 ms
VM1 (hog) 0.377 ms +/- 0.036 ms 0.399 ms

Table 1. Ping times statistics for the real-world
(left) and simulated (right) scenarios.

Ping Test. We consider a simple topology with a physical
host running two VMs connected through a network router
to a client that pings the physical host and the VMs (see
Figure 2). After calibration of the simulation model pa-
rameters, its results are compared with numbers obtained
by the corresponding real-world example. In the latter,
we used an Intel i5-2520M @ 2.50GHz laptop client ping-
ing a Linux machine equipped with an Intel Xeon E5-
2687W CPU whose frequency was fixed at 3.1 GHz, and in
which all cores except one have been put offline, and hyper-
threading has been disabled, to create the simple scenario
reproduced in simulation. Also, a guest KVM Linux OS
has been run on the server machine. The host and the VM
have been continuously pinged for one minute every half
second, when the host was idle, and when it was loaded.
The obtained ping times average and standard deviation are
shown in Table 1, in both real-world and simulated cases.

The overall ping latency towards the host is the result
of summing up delay contributions due to network delay to
reach the server, CPU wake-up from idle,networking stack

execution for replying to the ping, then back to the client.
When pinging the VM, further contributions are due to the
context switch to schedule the VM and guest OS network-
ing stack execution for replying to the ping.

CFS Test. We ran another ping experiment using the CFS
as the hypervisor scheduler. We verified that, despite a 2nd
VM hogging the CPU, the pinged idle VM was responding
immediately to the ping, preempting the other one. This be-
haviour is in sync with the CFS algorithm since the pinged
VM, waking up from a blocked state, runs immediately,
since its virtual run-time is much lower than the one of the
CPU-bound VM continuously executing.

Then, to verify the behaviour of the CFS in presence of
different nice values, we considered another simple scenario
with three applications running CPU bound tasks on a host
and we compared the obtained simulated versus real figures.

We use a load.sh shell script realising a simple for
loop for the number of iterations provided as argument.
When running on an Intel i5-2520M CPU at fixed 2.50 GHz
frequency, load.sh takes 1 second to complete with an
argument of 177000. In single-core mode, we run three
tasks with the default nice value (0), however the third one
is reniced to (10) at half execution. This is obtained as:

time ./load.sh 177000 &
time ./load.sh 177000 &
time ./load.sh 88500
time nice ./load.sh 88500

The obtained results show that the first two processes
completed in less than 2.6 seconds, whilst the reniced pro-
cess completed after 1.56 + 1.49 = 3.05 seconds:

0.47u 0.02s 1.56r ./load.sh 88500
0.93u 0.03s 2.55r ./load.sh 177000
0.95u 0.03s 2.58r ./load.sh 177000
0.51u 0.00s 1.49r nice ./load.sh 88500

The same experiment has been arranged in the simulated
model, using the renice instruction explained in the previ-
ous section for changing dynamically the third process nice
level at half of its execution. This resulted in the following
output, gathered from the OMNeT++ logs:

T=3.004008 TestCloudNode.srv.tcpApp[0]
T=2.560008 TestCloudNode.srv.tcpApp[1]
T=2.554008 TestCloudNode.srv.tcpApp[2]

These results validate the correct behaviour of the CFS
Scheduler model, in the mentioned scenario.

5 Conclusions and Future Work

In this paper we presented CloudNetSim, a simulation
platform suitable for capturing the behaviour of end-to-end
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time-sensitive and particularly low-latency distributed ap-
plications. The platform exploits the native OMNEST and
INET capabilities for network simulation, integrating simu-
lation of computing and storage access in virtualized envi-
ronments. We plan to use this platform for our ongoing and
planned research in the area of resource management and
scheduling for soft real-time cloud computing applications.
The presented simulation models are very important to sim-
ulate the impact on performance of sharing physical com-
puting resources within the infrastructure, as often done by
cloud providers trying to achieve high consolidation levels.
However, CloudNetSim may also be useful for simulation
of soft real-time distributed embedded systems.

The presented work may be extended along various lines
of action: the CPU scheduling models may be refined by
adding further scheduling policies, e.g., one mimicking the
Xen scheduler [5, 8]; the storage access model is very sim-
ple, but re-usable modules from other projects such as SIM-
CAN might be integrated; the performance achievable with
the integrated multi-resource simulation on large scale sys-
tems has to be checked, an area where parallelisation tech-
niques such as [13] might be useful.
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Castañé, J. Carretero, and I. M. Llorente. iCanCloud: A
flexible and scalable cloud infrastructure simulator. J. Grid
Comput., 10(1):185–209, Mar. 2012.

[15] A. Nunez et al. Design of a flexible and scalable hyper-
visor module for simulating cloud computing environments.
In Performance Evaluation of Computer Telecommunication
Systems, International Symp. on, pages 265–270, 2011.

[16] A. Nunez, J. Fernandez, J. Garcia, and J. Carretero. New
techniques for simulating high performance MPI applica-
tions on large storage networks. In Cluster Computing, 2008
IEEE International Conference on, pages 444–452, 2008.

[17] E. Oliveros, A. Mazzetti, W. Huther, and A. Menychtas. Ir-
mos deliverable d2.1.3 - final version of requirements analy-
sis report. Technical report, IRMOS Consortium, Nov 2010.

[18] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini,
and P. Ancilotti. An object-oriented tool for simulating
distributed real-time control systems. Softw. Pract. Exper.,
32(9):907–932, July 2002.

[19] J. Schneider, M. Bohn, and C. Eltges. SimTrOS: A Het-
erogenous Abstraction Level Simulator for Multicore Syn-
chronization in Real-Time Systems. In Proc. of the 2nd In-
ternational Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, pages 39–44, Porto,
Portugal, July 2011.

[20] A. Varga and R. Hornig. An overview of the omnet++ sim-
ulation environment. In Proceedings of the 1st international
conference on Simulation tools and techniques for communi-
cations, networks and systems & workshops, Simutools ’08,
pages 60:1–60:10, Brussels, Belgium, 2008. ICST.

[21] E. Weingartner, H. vom Lehn, and K. Wehrle. A perfor-
mance comparison of recent network simulators. In Pro-
ceedings of the IEEE International Conference on Commu-
nications 2009 (ICC 2009), Dresden, Germany, 2009. IEEE.

WATERS 2013 12



A Simulation Tool for Optimal Phasing of Nodes 

Distributed over Industrial Real-Time Networks 
 

Sang-Hun Lee                Hyun-Wook Jin 

Dept. of Computer Science and Engineering 

Konkuk University 

Seoul, Korea 

{mir1004, jinh}@konkuk.ac.kr 

Kanghee Kim 

School of Electronic Engineering 

Soongsil University 

Seoul, Korea 

khkim@ssu.ac.kr

 

 
Abstract—Emerging industrial real-time networks, such as 

EtherCAT and PROFINET, provide highly accurate clock 

synchronization. Thus, this feature opens a new chance to adjust 

phasing across distributed nodes aiming for better 

synchronization of dependent tasks. However, obtaining an 

optimal node phasing across distributed nodes has not been given 

enough attention while the worst-case task phasing on each node 

assuming no global clock has been studied in many ways. In this 

paper, we suggest a simulation tool that searches for an optimal 

phasing on distributed nodes with respect to less end-to-end 

delays and less actuation jitters. The proposed tool holistically 

simulates task scheduling on each node, transmission of network 

messages, DMA, and I/O event handling. It tries to reduce the 

time to find an optimal node phasing by skipping uninteresting 

phase combinations. Through a case study, we show that the 

simulator can efficiently suggest an optimal node phasing across 

distributed nodes and provide distribution of possible end-to-end 

delays and actuation jitters for given task sets.  

Keywords—node phasing; industrial network; end-to-end delay; 

actuation jitter; clock synchronization 

I. INTRODUCTION 

Emerging industrial real-time networks, such as EtherCAT 
[1] and PROFINET [2], provide highly accurate clock 
synchronization between distributed nodes. For instance, the 
distributed clock of EtherCAT can provide accurate clock 
synchronization with errors less than few tens of nanoseconds 
[3][4]. PROFINET uses Precision Transparent Clock Protocol 
(PTCP) for clock synchronization. Such accurate clock 
synchronization opens a new chance to adjust phasing across 
distributed nodes aiming for better synchronization of 
dependent tasks (e.g., multi-axis motion controls).  

However, obtaining an optimal phasing across distributed 
nodes has not been given enough attention while the worst-case 
task phasing on each node has been studied in many ways 
[5][6]. This is mainly because there has been limited support 
for clock synchronization on legacy industrial networks and 
thus researchers have focused on analysis of the worst-case 
end-to-end delays between tasks assuming no global clock. In 
order to find the worst-case end-to-end delays, existing studies 
suggest an analytical model based on a worst-case task phasing 

on every node, but they introduce too much pessimism into the 
analysis [7][8]. However, once we make an assumption of a 
precise global clock for all the nodes, we can investigate into 
the problem of finding a phase combination in order to reduce 
the end-to-end delays and the actuation jitters. The problem 
can be dealt with by a simulation approach or an analytical 
approach. 

In this paper, we propose a simulation framework that 
searches for an optimal node phasing on distributed nodes with 
respect to the end-to-end delays and the actuation jitters. The 
proposed framework considers behavior of several components 
composing the target system in a holistic manner to analyze the 
impact of node phasing on the metrics. The target system is 
assumed to interconnect one master and multiple slave nodes 
with a real-time network such as EtherCAT. In our framework, 
we model each node as a set of periodic tasks scheduled by a 
fixed-priority scheduling algorithm. In addition, we consider 
interactions between the nodes and the network, which include 
network event handling in either polling or interrupt mode, 
message queuing on network device, and direct memory access 
(DMA). In the simulation, we also take into account the 
communication delays in the real-time network, which are 
affected by the packet forwarding scheme at each node and the 
network topology. 

One novelty of the proposed framework is that we try to 
reduce the time to find an optimal node phasing by skipping 
uninteresting phase combinations. Usually, an exhaustive 
search needs to consider a huge number of phase combinations, 
which is not tractable. We search for a limited set of the node 
phase combinations based on the observation that only a few 
specific states produce an unpredictable trend of end-to-end 
delays and actuation jitters. That is, our framework runs 
simulation only for phase combinations that generate such 
interesting states, while the target metric for other predictable 
states are calculated by using simple mathematical equations. 
Through a case study, we show that the proposed simulation 
framework can efficiently suggest an optimal node phasing 
across distributed nodes and provide distributions of the end-
to-end delays and the actuation jitters for given task sets. 

The rest of the paper is organized as follows. Section II 
describes the system model we assume. In Section III, we 
suggest our simulation framework for optimal node phasing. 
Section IV shows a case of finding an optimal node phasing for 

This work was supported by the National Research Foundation of Korea 
(NRF) grant funded by the Korea government (#2012R1A2A2A02015266 

and # 2011-0020905). 
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a given task set, and Section V summarizes the related work. 
Finally, in Section VI, we conclude the paper. 

II. SYSTEM MODEL 

 We consider a distributed real-time system that 
interconnects one master node and N slave nodes with a real-
time fieldbus such as EtherCAT, which is common in many 
industrial applications. For example, a motion control system 
has such a system configuration where the master node 
generates position commands to describe the motion trajectory 
and the slave nodes are motor drives to respond to the 
commands. In the following, we explain the node model and 
the network model. 

A. Node Model 

We consider a set of periodic tasks for both the master and 
the slave nodes. All the slave nodes are assumed to have the 
same set of tasks for the sake of brevity, which is not necessary 
for our simulation framework. The master node may have a 
different set of tasks than that of the slave nodes. The tasks are 
denoted by             for node m, where n can be different 

for the master (m = 0) and the slaves (     ). We denote 

each task by           
        

              , where     
     and 

    
    are its minimum and maximum execution time, 

respectively, and      is its period. Each task gives a rise of an 

infinite sequence of jobs.      
 

 denotes the     job of     . The 

release time of     
 

is denoted by     
 

, and the release time of 

the first job, i.e.,     
 , is called the phase of      and denoted by 

     (      <     ) In our simulation framework, we 

assume the critical instant (i.e.,        2 m   ⋯    n m  
 ) in each node with a single-processor. In the paper, we focus 
on finding an optimal combination of the node phases, which 
are represented by      2       in Fig. 1. The node phase 
   can be varied between 0 and   

 . (  
  is the least common 

multiple of the periods of all tasks in node m.) We assume that 
the deadline of each job is the same with the end of its period. 

For the scheduling algorithm, we assume a fixed-priority 
scheduling algorithm such as Rate Monotonic [9]. Since each 
task is assigned a static priority, the execution of a lower 
priority task can be preempted by a higher priority task. Thus, 

the response time of     
 

 reflects the delay due to such 

preemption and is denoted by      
 

. 

In our task model, to address a realistic scenario commonly 
found in many industrial networks, we assume that only one 
task can access the network device for each node. The rationale 
behind this is that many industrial network protocols do not 
support multiplexing and de-multiplexing between tasks 
[10][11]. Moreover, as the name implies, only the master node 
is assumed to initiate a message transmission. Each slave node 
may only piggyback some data with the sender task on the 
message passing through the node on the fly, but cannot initiate 
a message transmission. Once the sender task at the master 
creates a message and passes it to the network device, the 
message experiences a queuing delay in the device, denoted by 
   in Fig. 1, and then is transmitted through the network. 

Likewise, when the message arrives at a slave node, it requires 

a message handling time, denoted by   , before it becomes 
available to the receiver task. 

 

Fig. 1. System model 

B. Network Model 

We assume a real-time fieldbus, such as EtherCAT, for 
real-time communications between the nodes. EtherCAT 
guarantees deterministic communication delays between any 
two nodes by the following two design choices. The first one is 
that it interconnects any two adjacent nodes with a dedicated 
link in a daisy-chain manner. That is, there are no interfering 
nodes between nodes m and m+1, and thus no packet collisions 
on the link. The second one is that each slave node m conducts 
wormhole switching to relay the packets between nodes m-1 
and to m+1, not store-and-forward switching. This switching 
scheme implemented at the hardware level eliminates the 
chances that internal software operations of each slave 
contribute to the end-to-end communication delay. As a result, 
EtherCAT guarantees deterministic communication delays 
from the master to any slave m, which is analyzed by Pritz et al. 
[12] as follows: 

             𝑠 +   −   ×   +  𝑟 𝑠 ,                (1) 

where          is the communication delay from the 
master’s memory to slave m’s memory.    𝑠  is the total 
transmission time of a message of size s on the master network 
device.    is the total forwarding time of a message on the 

slave side, which is a constant of 1 𝜇𝑠 , irrespective of the 
message size.  𝑟 𝑠  is the total reception time of a message of 
size s on the slave network controller. 

 In our simulation framework, we adopt the above delay 
model expressed by Eq. 1. Therefore, the end-to-end delay 
from the release time of an initiator task at the master to the 
completion time of an actuator task at slave m can be described 
as follows: 

  2            𝑟 +         +          ,             (2) 
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where       𝑟  is the delay between the release time of the 
initiator task at the master and the completion time of the 
sender task plus the queuing time   , and           is the 

delay between the arrival time of a message at slave m and the 
completion time of the actuator task. It is important to 
understand that, in Equation 2, only           may be affected 
by the node phase     thus by changing the value of   , we 
may be able to minimize the end-to-end delays and the 
actuation jitters.  

In our simulation framework, the target metrics we want to 
analyze are the end-to-end delays, the actuation jitters, and the 
minimum possible queue size q at the network interface that 
does not cause any packet to be dropped for the entire 
simulation time, that is,             . In the next section, 
we will describe the proposed simulation framework that gives 
the target metrics by finding an optimal combination of the 
node phases      2      . 

III. THE PROPOSED FRAMEWORK 

In this section, we describe the proposed simulation 
framework that finds an optimal phasing for distributed nodes. 
The framework is based on discrete-event simulation to 
simulate task scheduling, message transmission/forwarding, 
DMA, and I/O event handling.  

A. Overall Design 

The simulator is based on the system model described in 
Section II. Fig. 2 shows the overall design of the proposed 
simulator. It consists of four components: input file parser, 
simulation kernel, node objects, and log manager. 
Configuration parameters, such as number of nodes, task sets, 
network bandwidth, message size, and event handling mode, 
etc., are defined in the configuration file in XML format. The 
file parser reads this configuration file at the initialization 
phase and passes them as environment variables to the 
simulation kernel. Then the kernel actually performs 
simulation loops changing node phasing. The node objects 
store the run-time snapshot of each node. The log manager 
stores every event generated during simulation to output files 
so that user can replay the simulation manually.  

B. Node Objects 

As mentioned above, the node objects hold a snapshot of 
run-time image of each node, such as state information of run 
queue, message queue, and network controller.  

The run queue stores task control blocks, each of which has 

    
   ,     

   ,     , mission, and the amount of time that the 

corresponding task executed, called etime in this paper. The 
mission is classified into four categories in the current 
implementation: send, receive, actuation, and other. This 
information decides the behavior of the task. More details of 
this information are described in the next subsection. The 

etime variable represents time units consumed by the task in 
the current period.  

The message queue stores network messages, which are yet 
to be sent to the network or yet to be consumed by a receive 
task. The queue traces its length    at time t and reports the 
maximum queue length at the end of simulation.  

The network controller decides the message transmission 
speed based on the bandwidth information. It maintains the 
remaining bytes of a message being sent. 

 

Fig. 2. Overall design of simulator 

C. Simulaton Kernel 

The simulation kernel comprises clock emulator, CPU 
emulator, and network emulator. The clock emulator simulates 
synchronized global clock (e.g., distributed clock of EtherCAT) 
and increases its counter for every simulation loop. 

The CPU emulator runs task(s) on each node for every time 
unit. The scheduler selects a task to run, and the task executer 
emulates the behavior of the selected task based on its mission 
information as mentioned in the previous subsection. If the 
mission is send, the task executer posts a send request to the 
network device at the end of execution time of the job. On the 
other hand, in the receive case, the task executer consumes a 
message from the message queue at the starting point of the job. 
When the mission is actuation, the task executer reports that an 
actuation has taken place at the completion time of the task. 

The task executer simply increases the etime value for tasks 
of other mission. Our current implementation only supports 
RM scheduling algorithm but our design is general enough to 
add other scheduling algorithms. 

The network emulator simulates operations of the network 
device (e.g., message transmission, DMA, and raising an 
interrupt). Event handling can be done in either polling or 
interrupt mode. If the network device is configured as a 
polling-based device, the event is handled when a receive task 
is released. Thus, in this case, the network emulator silently 
inserts a received message into the receive queue without any 
notification. When the network device is configured as an 
interrupt-based device, the network emulator sends an interrupt 
signal to the CPU emulator so that the interrupt handler is 
invoked as soon as a message arrives preempting a running 
task.  

To get results for a given phase case, the kernel runs 
simulation loops emulating operations described above on each 
node for every time unit.  

D. Optimizing Search Time 

If the simulator exhaustively repeats the steps described in 
the previous subsection for all possible combinations of phases, 
the search time for an optimal node phasing would be very 
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significant. This search time increases linearly or even 
exponentially as number of nodes or possible phasing range 
becomes larger. These also affect the volume of disk I/O 
performed by the log manager, which is one of dominant 
overheads of the simulator. 

 

Fig. 3. Possible correlation states 

 

Fig. 4. End-to-end delay variation by changing phase 

In order to tackle this issue, we try to reduce the number of 
phases we investigate while we still gather information for all 
possible phases. It is important to understand the correlation 
between phase and end-to-end delay to find interesting phase 
points. We can easily notice that the phase of a slave node does 
not affect other slaves’ end-to-end delay by the system model 
described in Section II. This means that we do not need to 
consider all combinations of node phases for simulation but 
can concentrate on phases for each node independently. Due to 
this characteristic, we can reduce the number of simulation 
loops. 

During simulations, we also observed that in most cases the 
end-to-end delay increased as phase became larger. Moreover, 
we found that at some points the end-to-end delay started 
showing a constant value for a while or reduced suddenly to a 
very small value as phase became larger. By analyzing these 
results further, we noticed that a phase resulted in one of states 
shown in Fig. 3, and the trend of end-to-end delay was changed 
when a state is changed from one to another by a new phase. 
Thus, by simulating only for phase points that changes the state, 
we can significantly reduce the number of simulation loops.  

Fig. 4 shows an example of end-to-end delay variation as 
the discrepancy between phases of the master and a slave 
increases. Numbers in the figure present state transitions. As 
we can see in the figure, the end-to-end delay increases in most 
cases, while the slope of the line is changed (when the state 

changes from S1 to S4 and from S2 to S1) or the line is 
disconnected (when the state changes from S4 to S3). 

IV. SIMULATION EXAMPLE 

In this section, we run a case to show that the proposed 
simulation framework can efficiently suggest an optimal 
phasing across distributed nodes and provide distributions of 
the end-to-end delays and the actuation jitters for given task 
sets. 

A. Configuration 

Table I shows the task set we run on slave nodes. We refer 
the task set defined in Kim et al. [13] for a motor drive. Each 
slave node schedules these tasks using the RM algorithm. 
Table II shows the configuration parameters. We borrow 
network parameter values, such as queue size, bandwidth, and 
forwarding delay, from EtherCAT.   

TABLE I.  TASK SET OF SLAVE NODE 

Task Name 
Period 

(us) 
Execution 
Time (us) 

Description 

MotorAct 250 25~35 
Controls a motor, and is 
assigned the highest 
priority 

RtMsg 250 10~15 

Receives real-time 
messages from the 
network, and shares it 
with the MotorAct task 

NrtMsg 250 7~10 

Handles non-real-time 
messages, and is assigned 
a lower priority than the 
RtMsg task 

HealthMon 500 6~9 

Performs health 
monitoring, and is 
assigned the lowest 
priority 

TABLE II.  CONFIGURATION PARAMETERS  

Parameters Value 

Number of slave nodes 50 

Network queue size 3 

Network bandwidth 100Mbps 

Event handling mode Interrupt 

Event handling overhead 5us 

Simulation time unit 1us 

Network forwarding delay (  ) 1us 

Packet size 50byte 

DMA overhead for a 50byte packet 1us 

B. Optimal Phase Combination 

We ran simulator with tasks defined in Table I and got the 
node phase combinations to achieve the best end-to-end delay 
and actuation jitter as shown in Fig. 5 and Fig. 6, respectively. 
To see the impact of task sets on the optimal node phasing, we 
had three more cases in addition to the default task set case (i.e., 
case 1). In case 2, we assigned the highest priority to RtMsg 
and second to MotorAct. In case 3, we increased the execution 
time of RtMsg to 21~30us. In case 4, we increase the execution 
time of MotorAct to 49~70us. Tables III and IV show the end-
to-end delays and the actuation jitters for node phase 
combinations presented in Fig. 5 and Fig. 6, respectively. Since 
we consider maximum and minimum execution time of tasks, 

S1. A message arrives on idle time, and the event handler 
does not affect execution of any tasks. 

S2. A message arrives on idle time, but the event handler 
delays execution of a task. 

S3. A message arrives at a task’s release time, and the 
event handler preempts the task. 

S4. A message arrives while a task runs, and thus the event 
handler preempts the task. 
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end-to-end delay and actuation jitter are also represented as 
pairs of maximum and minimum values. 

As shown in Fig. 5 and Fig. 6, we can observe that 
providing minimum end-to-end delay does not guarantee 
minimum actuation jitters. Since actuation jitter only considers 
the response time of the MotorAct task on all slave nodes, the 
minimum actuation jitter is achieved when the message from 
the master node is arrived before the actuation task is released 
while slaves have the (almost) same phase. However, this 
increases the end-to-end delay.  

C. Search Time 

As described in Subsection III.D, we tried to reduce the 
time to find an optimal node phasing by skipping uninteresting 
phase points. Fig. 7 shows simulation results only for 
interesting points, where the correlation state is changed, on 
35

th
 slave node. In this case study, two packets are received in 

  
 ; thus, each phase point reports two end-to-end delay values, 

though these are very close. Fig. 8 shows that we can obtain 
rest of values by connecting the points in Fig. 7. In this way, 
we can reduce the number of simulation loops significantly and 
save the search time.  

 

 

Fig. 5. Node phase combination for minimum worst-case end-to-end delay 

 

Fig. 6. Node phase combination for minimum worst-case actuation jitter 

 

TABLE III.  ACTUATION JITTERS WITH MINIMUM END-TO-END DELAY 

Case Packet Min (us) Max (us) 

1 
1st Packet 29 59 

2nd Packet 29 59 

2 
1st Packet 34 64 

2nd Packet 34 64 

3 
1st Packet 34 64 

2nd Packet 34 64 

4 
1st Packet 0 46 

2nd Packet 0 46 

TABLE IV.  ACTUATION JITTERS WITH MINIMUM ACTUATION JITTER 

Case Packet Min (us) Max (us) 

1 
1st Packet 5 15 

2nd Packet 5 15 

2 
1st Packet 0 15 

2nd Packet 0 15 

3 
1st Packet 0 10 

2nd Packet 0 10 

4 
1st Packet 5 26 

2nd Packet 5 26 

 

 

Fig. 7. End-to-end delay of interesting points on 35th slave node  

 

Fig. 8. End-to-end delay for 35th slave node 

V. RELATED WORK 

There have been several researches on simulators for 
industrial real-time network. Steinbach et. al. [14] have 
presented a simulation model for TTEthernet-based in-vehicle 
backbone network. They have also modified OMNet++ and the 
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INET framework to implement a simulator. Garner et. al. [15] 
have provided an overview of IEEE 802.1AS and presented 
simulation of AVB. They have used 8 nodes to measure the 
time synchronization error between a master and slave nodes. 
Harbour et. al. [16] have suggested a model for switched real-
time Ethernet. Zeng et. al. [5] have presented a stochastic 
analysis framework for end-to-end latency in CAN-based 
distributed real-time systems. However, previous researches 
did not consider phasing on distributed nodes. 

There are also several simulation tools for hard real-time 
scheduling algorithms [17][18]. We can utilize such simulators 
for the scheduler of the CPU emulator described in Subsection 
III.C to support more scheduling algorithms. To make use of 
these, the tools have to provide open APIs and support network 
task models. 

It is important to reduce simulation time to find an optimal 
solution. For example, García-Valls et. al. [19][20] proposed to 
selectively check for dynamic systems in real-time 
reconfiguration. They have used the deadline of real-time 
requirement to reduce the time for find optimal solution. In this 
paper, we try to reduce the simulation time by skipping 
uninteresting/predictable phasing points. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a simulation framework that 
searched for an optimal phasing on distributed nodes with 
respect to the end-to-end delays and the actuation jitters, thanks 
to precise global synchronization of emerging real-time 
industrial networks, such as EtherCAT. The proposed 
framework considered behavior of several components 
composing the target system in a holistic manner to analyze the 
impact of node phasing on the metrics. One novelty of the 
proposed framework is that we try to reduce the time to find an 
optimal node phasing by investigating only interesting phase 
points where the correlation state is changed. We carried out a 
case study to show that the proposed simulation framework can 
efficiently suggest an optimal node phasing across distributed 
nodes in terms of end-to-end delays and the actuation jitters. 

As future work, we intend to consider task phasing within a 
node so that we can achieve the minimum end-to-end delay or 
minimum actuation jitter. We also plan to apply this simulation 
results to a real system. Especially, we plan to target a 
partitioned system by extending the simulator. To do this, the 
simulator has to allow several tasks can access (i.e., share) the 
network device on the master node. 
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Abstract—The existing tools for the response-time analysis
of Controller Area Network (CAN) support only periodic and
sporadic messages. They do not analyze mixed messages which
are implemented by several higher-level protocols based on CAN
that are used in the automotive industry. We present a new
response-time analyzer for CAN that supports periodic and
sporadic as well as mixed messages. Moreover, it supports the
analysis of the system where periodic and mixed messages are
scheduled with offsets. It will support the analysis of all types
of messages while taking into account several queueing policies
and buffer limitations in the CAN controllers.

I. INTRODUCTION

The Controller Area Network (CAN) [1] is one of the
largely used real-time network protocols in the automotive
domain. In 2003, it was standardized by the International
Organization for Standardization in ISO 11898-1. It is a
multi-master, event-triggered, serial communication protocol
supporting bus speeds of up to 1 mega bits per second.
Over 850 million CAN enabled controllers were sold in 2011
according to the CAN in Automation (CiA) [2] estimate. Over
2 billion controllers have been sold to date and most of them
have been used in the automotive industry. The CAN protocol
also finds its applications in other domains, e.g., industrial con-
trol, medical equipments, maritime electronics, and production
machinery. There are several higher-level protocols for CAN
that are developed for many industrial applications such as
CAN Application Layer (CAL), CANopen, J1939, Hägglunds
Controller Area Network (HCAN), and CAN for Military Land
Systems domain (MilCAN).

Often, CAN is used in hard real-time systems. The system
providers are required to ensure that the systems meet their
deadlines. In order to provide evidence that each action by
the system will be provided in a timely manner, a priori
analysis techniques, such as schedulability analysis, have
been developed by the research community. Response-Time
Analysis (RTA) [3] is a powerful, mature and well established
schedulability analysis technique. It is a method to calculate
upper bounds on the response times of tasks or messages in a
real-time system or a network respectively. RTA for CAN was
developed by Tindell et al. [4] and later revised by Davis et.
al [5]. This analysis and its extensions have been implemented
in several tools that are used in the automotive industry, e.g.,
Volcano Network Architect (VNA) [6] and Rubus-ICE [7], [8].
The analysis has also served as the basis for many research
projects and has been extended in a number of ways.

A. Paper contribution

There is a limitation with RTA for CAN [4], i.e., it only
supports periodic and sporadic messages. It does not support
the analysis of mixed messages which are simultaneously
time- and event-triggered and are implemented by several
higher-level protocols based on CAN that are used in the auto-
motive industry. To the best our knowledge, there is no freely-
available tool that implements the analysis of mixed messages
(a commercial tool Rubus-ICE implements basic analysis of
mixed messages in CAN). In this paper we present a new
response-time analyzer for CAN namely MPS-CAN Analyzer
(MPS stands for Mixed, Periodic and Sporadic). It supports
the analysis of periodic, sporadic and mixed messages. We use
the term “many-in-one” because we implement and continue
to implement several extensions of RTA for CAN taking into
account the following aspects:

• analysis of mixed messages;
• analysis of messages scheduled with or without offsets;
• analysis of messages having arbitrary jitter and deadlines;
• analysis of network with CAN controllers implementing

different queueing policies, e.g., priority-based, FIFO-
based, or both;

• analysis of network with limitations in CAN controllers,
e.g., the controllers implementing abortable or non-
abortable transmit buffers.

B. Paper layout

The remainder of the paper is organized as follows. In
Section II, we discuss mixed transmission patterns supported
by several higher-level protocols. Section III describes the
related work, related tools and implemented analysis. Section
IV presents the tool layout and its usability. Finally, Section
V concludes the paper.

II. MIXED TRANSMISSION PATTERNS SUPPORTED BY
HIGHER-LEVEL PROTOCOLS

Traditionally, it is assumed that the tasks queueing CAN
messages are invoked either by periodic or sporadic events.
If a message is queued for transmission at periodic intervals,
we use the term “Period” to refer to its periodicity. A sporadic
message is queued for transmission as soon as an event occurs
that changes the value of one or more signals contained in
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Fig. 1. Mixed transmission pattern in higher-level protocols for CAN

the message provided the Minimum Update Time (MUT 1)
between the queueing of two successive sporadic messages
has elapsed. However, there are some higher-level protocols
and commercial extensions of CAN in which the task that
queues the messages can be invoked periodically as well as
sporadically. If a message can be queued for transmission
periodically as well as sporadically, it is said to be mixed.
In other words, a mixed message is simultaneously time- and
event-triggered. We identified three types of implementations
of mixed messages used in the industry.

A. Method 1: Implementation in CANopen

The CANopen protocol [9] supports mixed transmission that
corresponds to the Asynchronous Transmission Mode coupled
with the Event Timer. The Event Timer is used to transmit an
asynchronous message cyclically. A mixed message can be
queued for transmission at the arrival of an event provided the
Inhibit Time has expired. The Inhibit Time is the minimum
time that must be allowed to elapse between the queueing
of two consecutive messages. A mixed message can also be
queued periodically at the expiry of the Event Timer. The
Event Timer is reset every time the message is queued. Once
a mixed message is queued, any additional queueing of it will
not take place during the Inhibit Time [9].

The transmission pattern of a mixed message in CANopen
is illustrated in Fig. 1(a). The down-pointing arrows symbolize
the queueing of messages while the upward lines (labeled with
alphabetic characters) represent arrival of the events. Message
1 is queued as soon as the event A arrives. Both the Event
Timer and Inhibit Time are reset. As soon as the Event Timer
expires, message 2 is queued due to periodicity and both
the Event Timer and Inhibit Time are reset again. When the
event B arrives, message 3 is immediately queued because the
Inhibit Time has already expired. Note that the Event Timer is
also reset at the same time when message 3 is queued as shown
in Fig. 1(a). Message 4 is queued because of the expiry of the
Event Timer. There exists a dependency relationship between
the Inhibit Time and the Event Timer, i.e., the Event Timer is
reset with every sporadic transmission.

1We overload the term “MUT ” to refer to the Inhibit Time in CANopen
protocol and Minimum Delay Time (MDT) in AUTOSAR communication.

B. Method 2: Implementation in AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) [10]
can be viewed as a higher-level protocol if it uses CAN for net-
work communication. Mixed transmission mode in AUTOSAR
is widely used in practice. In AUTOSAR, a mixed message can
be queued for transmission repeatedly with a period equal to
the mixed transmission mode time period. The mixed message
can also be queued at the arrival of an event provided the
Minimum Delay Time (MDT ) has been expired. However,
each transmission of a mixed message, regardless of being
periodic or sporadic, is limited by the MDT . This means
that both periodic and sporadic transmissions are delayed
until the MDT expires. The transmission pattern of a mixed
message implemented by AUTOSAR is illustrated in Fig. 1(b).
Message 1 is queued (the MDT is started) because of partly
periodic nature of a mixed message. When the event A arrives,
message 2 is queued immediately because the MDT has
already expired. The next periodic transmission is scheduled
2 time units after the transmission of message 2. However, the
next two periodic transmissions corresponding to messages 3
and 4 are delayed because the MDT is not expired. This is
indicated by the text “Delayed Periodic Transmissions” in Fig.
1(b). The periodic transmissions corresponding to messages 5
and 6 take place at the scheduled times because the MDT is
already expired in both cases.

C. Method 3: Implementation in HCAN

A mixed message in the HCAN protocol [11] contains
signals out of which some are periodic and some are sporadic.
A mixed message is queued for transmission not only periodi-
cally, but also as soon as an event occurs that changes the value
of one or more event signals, provided the MUT between the
queueing of two successive sporadic instances of the mixed
message has elapsed. Hence, the transmission of a mixed
message due to arrival of events is constrained by the MUT .
The transmission pattern of a mixed message is illustrated
in Fig. 1(c). Message 1 is queued because of periodicity. As
soon as event A arrives, message 2 is queued. When event
B arrives it is not queued immediately because MUT is
not expired yet. As soon as the MUT expires, message 3 is
queued. Message 3 contains the signal changes that correspond
to event B. Similarly, a message is not immediately queued
when the event C arrives because the MUT is not expired.
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Message 4 is queued because of the periodicity. Although,
the MUT was not expired, the event signal corresponding
to event C was packed in message 4 and queued as part of
the periodic message. Hence, there is no need to queue an
additional sporadic message when the MUT expires. This
indicates that the periodic transmission of a mixed message
cannot be interfered by its sporadic transmission (a unique
property of the HCAN protocol). When the event D arrives, a
sporadic instance of the mixed message is immediately queued
as message 5 because the MUT has already expired. Message
6 is queued due to periodicity.

D. Discussion

In the first method, the Event Timer is reset every time a
mixed message is queued for transmission. The implementa-
tion of a mixed message in method 2 is similar to method
1 to some extent. The main difference is that the periodic
transmission can be delayed until the expiry of the MDT in
method 2. Whereas in method 1, the periodic transmission
is not delayed, in fact, the Event Timer is restarted with
every sporadic transmission. The MDT timer is started with
every periodic or sporadic transmission of a mixed message.
Hence, the worst-case periodicity of a mixed message in
methods 1 and 2 can never be higher than the Inhibit Timer
and MDT respectively. Therefore, the existing analyses hold
intact. However, the periodic transmission is independent of
the sporadic transmission in the third method. The periodic
timer is not reset with every sporadic transmission. A mixed
message can be queued for transmission even if the MUT is
not expired. The worst-case periodicity of a mixed message is
neither bounded by the period nor by the MUT . Therefore,
the existing analyses cannot be applied to mixed messages in
the third implementation method. Further, there is no free tool
that is able to analyze mixed messages that are implemented
using the third method. Our main goal is to develop a free
tool that analyzes periodic, sporadic and mixed messages in
CAN.

III. RELATED WORK AND IMPLEMENTED ANALYSIS

A. Related work

The schedulability analysis of CAN was developed by Tin-
dell et al. [4]. Davis et al. [5] refuted, revisited and revised the
analysis by Tindell et al. In [12], Davis et al. extended the anal-
ysis in [4], [5] which is applicable to the CAN network where
some nodes implement priority queues and some implement
FIFO queues. The message deadlines in [12] are assumed to
be smaller than or equal to the corresponding periods. In [13],
Davis et al. lifted this assumption by supporting the analysis
of CAN messages with arbitrary deadlines. Furthermore, they
extended their work to support RTA of CAN for FIFO and
work-conserving queues.

The analysis in [4], [5] assumes that the CAN controllers
have very large transmit buffers. However, most CAN con-
trollers have small number of transmit buffers [14], [13]. If
all buffers in the controller are occupied by lower priority
messages, a higher priority message released in the same

controller may suffer from priority inversion [4], [15], [16],
[17]. The analysis in [4], [5] was extended in [15] and [14]
to support the analysis of network that contain abortable and
non-abortable transmit buffers in the controllers respectively.
Most of the CAN enabled Electronic Control Units (ECUs)
are capable of aborting transmission requests [15].

All these analyses assume that the messages are queued for
transmission periodically or sporadically. Mubeen et al. [18]
extended the existing analysis [4], [5] to support mixed mes-
sages in CAN where nodes implement priority-based queues.
Mubeen et al. [19] further extended their analysis to support
mixed messages in the network where some nodes implement
priority queues while others implement FIFO queues. Often,
there are practical limitations in the transmit buffers of CAN
controllers, e.g., buffer size, and support for abort requests
[17]. RTA for mixed messages in CAN [18] was extended
to support the analysis of network that contain abortable and
non-abortable transmit buffers in the controllers in [20] and
[21] respectively.

But, none of the analysis discussed above supports messages
that are scheduled with offsets i.e., using externally imposed
delays between the times when the messages can be queued. In
order to avoid deadlines violations due to high transient loads,
current automotive embedded systems are often scheduled
with offsets [22]. The worst-case response-times of lower
priority messages in CAN can be reduced if the messages are
scheduled with offsets [23], [24]. A method for the assignment
of offsets to improve the overall bandwidth utilization is
proposed in [24]. The worst-case RTA for CAN messages with
offsets has been developed by several researchers [25], [26],
[23], [27], [22].

None of the above analyses with offsets supports mixed
messages that are scheduled with offsets. Offset-based analysis
[25] was extended in [28] to support worst-case response-
time calculations for mixed messages in CAN. However, this
analysis is restricted due to limitations regarding message jitter
and deadlines. The source of these limitations comes from
the base analysis [25]. In [29], Mubeen et al. removed these
limitations and extended the analysis for mixed messages [18]
with offsets [22].

B. Related tools

The Volcano Network Architect (VNA) [6] is a communi-
cation design tool that supports RTA for CAN. It implements
RTA of CAN developed by Tindell et al. [4].

Vector [30] is a tools provider for the development of
networked electronic systems. CANalyzer [31] supports the
simulation, analysis and data logging for the systems that use
CAN for network communication. CANoe [32] is a tool for
the simulation of functional and extra-functional (e.g., timing)
behavior of ECU networks. Network Designer CAN is another
tool by Vector that is used to design the architecture and
perform timing analysis of CAN.

SymTA/S [33] is a tool by Symtavision for model-based
timing analysis and optimization. Among other analyses, it
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Fig. 2. Graphical representation of Response Time Analysis (RTA) and its extensions implemented in MPS-CAN Analyzer

supports statistical, and worst- and best-case timing analysis
for CAN.

RTaW-Sim [34] is a tool for the simulation and performance
evaluation of the CAN network.

The Rubus-ICE is a commercial tool suite developed by
Arcticus Systems [7] in close collaboration with Mälardalen
University Sweden. Among other analyses, it supports RTA of
CAN [4], [5] and RTA of CAN for mixed messages[18].

To the best of our knowledge, there is no freely-available
tool that implements RTA of CAN for mixed messages. The
main purpose of MPS-CAN Analyzer is to support RTA of
periodic, sporadic and mixed messages in CAN.

C. Implemented analysis

The analysis that we implemented (and continue to imple-
ment) in MPS-CAN Analyzer consists of RTA for CAN and
its several extensions as shown in Fig. 2. Solid-line boxes
in Fig. 2 represent the analysis that is already implemented.
Whereas, the dashed-line boxes represent the analysis whose
implementation is ongoing. Fig. 2 also shows the relationship
among the analyses.

IV. TOOL LAYOUT AND USAGE

A. Tool layout, inputs and outputs

The Layout of MPS-CAN Analyzer is shown in Fig. 3.
There are two windows: (1) main window denoted by “MPS-
CAN Analyzer”, and (2) window denoted by “New Message”.
The “MPS-CAN Analyzer” window is the user interface for
the tool. The “New Message” window is used to create a new

message. It pops up when “New Message” button is clicked
on the main window. The “New Message” window and upper
portion of the main window including list boxes (“Message
List”, “Network Speed” and “Number of Nodes”) and buttons
(radio, check and push buttons) represent the input section
of the tool. Whereas, the lower portion of the main window
including “Output”, “Network Utilization”, and “Errors and
Warnings” list boxes comprise the output section of the tool.

In the main window, the base analysis must be selected. The
base analyses is categorized based on the queueing policy in
the CAN controllers, i.e., priority-based, FIFO-based, or both
priority- and FIFO-based. Currently, priority-based analysis
is implemented while the implementation of other two base
analyses is ongoing. Once the base analysis is selected, one
or more optional analysis may be selected that include (1)
the analysis of messages that are scheduled with offsets,
(2) the analysis supporting abortable transmit buffers, and
(3) the analysis supporting non-abortable transmit buffers in
the CAN controllers. Currently, the offset-aware analysis is
implemented while the implementation of other two optional
analyses is ongoing. The user can also specify network speed
in bits per second (bps) in the main window. There are buttons
provided to clear, save and load messages.

In the “New Message” window, message attributes are
provided as input. For a mixed message, both period and
minimum update time are specified. Whereas for a periodic
or sporadic message, only period or minimum update time
is specified respectively. The transmission type of a message
can be selected from periodic, sporadic, or mixed. There are
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Fig. 3. MPS-CAN Analyzer layout, inputs and outputs

two options for specifying transmission type of a message.
First option is based on specifying Data Length Code (DLC),
i.e., the number of data bytes present in the CAN message.
The second option allows to specify user-defined transmission
time. This option may be used for analyzing simplified test
cases that are more suitable to research-oriented work.

Any message set can be analyzed by clicking the “Analyze”
button. The “Errors and Warnings” list box displays the errors
and warnings. Some example errors are shown in Fig. 3. The
“Output” list box displays the calculated response times of
the messages. It also displays whether a message meets its
deadline or not (provided the deadline is specified by the
user). The percentage network utilization is also calculated
and displayed in the “Network Utilization” list box.

B. Implementation and distribution

The tool is implemented in C language. Each analysis
profile supported by the tool is implemented as a separate
C file. The tool has a scope for further extensions in the
future. The link to the development version of the tool can
be found at https://github.com/saadmubeen/MPS-CAN. The
implementation of some extensions of RTA is ongoing. Once,
the implementation is completed, the executables and source
code of the tool will be provided on the above link.

C. Example case study

We perform an example case study to show the usability
of the tool. The system in the example case study consists
of two nodes that are connected to the CAN network. There
are 10 messages in the system out of which four are mixed,
two are sporadic and the rest are periodic. All the attributes of
these messages are tabulated in the Table I. The attributes of a
message m are identified as follows. The priority, transmission
type, transmission time, period, minimum update time, offset,
jitter, deadline and worst-case response time are represented by

Pm, ξm, Cm, Tm, MUTm, Om, Jm, Dm and Rm respectively.
All timing parameters are in microseconds. The selected
speed for CAN is 250000 bps. The worst-case response times
calculated by MPS-CAN Analyzer are listed in the last column
of Table 1. The network utilization calculated by MPS-CAN
Analyzer for this message set is equal to 40.630005%.

V. CONCLUSION

We introduced a new tool MPS-CAN Analyzer to support
Response Time Analysis (RTA) of periodic, sporadic and
mixed messages in Controller Area Network (CAN). The ex-
isting RTA tools for CAN analyze only periodic and sporadic
messages. They do not support the analysis of mixed messages
that are implemented by several higher-level protocols for
CAN that are used in the automotive industry today.

We designated MPS-CAN Analyzer as many-in-one be-
cause it implements various extensions of the RTA for CAN
taking into account mixed messages, messages scheduled
with offsets, messages with arbitrary jitter and deadlines,
various queueing policies (e.g., priority- or FIFO-based), and
limitations in the transmit buffers in the CAN controllers
(e.g., abortable or non-abortable). Some extensions are already
implemented while the implementation of the rest of the
extensions is ongoing. We also showed the usability of this
tool by conducting the analysis of example message set.

With the implementation of these analyses, MPS-CAN
Analyzer will be able to analyze network communications
in heterogeneous systems (which may consist of different
types of ECU’s supplied by different Tier 1 suppliers). Once
the implementation of all extensions of RTA for CAN is
completed, we plan to conduct a detailed case study in
which we will consider a heterogeneous system with ECUs
implementing various queueing policies and having different
buffer limitations. For example, some ECUs use priority-based
queueing, some use FIFO-based queueing, and some support
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TABLE I
ATTRIBUTES AND RESPONSE TIMES OF PERIODIC, SPORADIC AND MIXED MESSAGES

IDm Node ID Pm ξm DLC Cm(µs) Tm(µs) MUTm(µs) Om(µs) Jm(µs) Dm(µs) Rm(µs)
1 1 1 Mixed 8 540 10000 12000 0 1500 10000 2580
2 2 2 Periodic 8 540 15000 - 0 2000 15000 4160
3 1 3 Sporadic 2 300 - 15000 0 1000 15000 3460
4 1 4 Mixed 6 460 10000 10000 0 1000 10000 3920
5 2 5 Mixed 8 540 20000 20000 0 3000 20000 6920
6 2 6 Periodic 2 300 15000 - 0 1500 15000 6260
7 1 7 Periodic 5 420 25000 - 0 3000 25000 8180
8 2 8 Sporadic 2 300 - 20000 0 3500 20000 8980
9 2 9 Mixed 8 540 20000 40000 0 4000 20000 9740

10 2 10 Periodic 1 260 20000 - 0 1800 20000 8080

transmission abort requests while others don’t. Since, this tool
will be freely available, we believe, it may prove helpful in the
research-oriented projects that require the analysis of CAN-
based systems.
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Abstract—Understanding distributed systems is a complex
task. There are many subsystems involved, such as network
equipment, disk and CPU, which effect behavior. In order to
analyze this kind of applications, different approaches have
been proposed: simulation, emulation and experimentation. Each
paradigm has evolved independently, providing their own set of
tools and methodologies.

This paper explores how these tools and methodologies can be
combined in practice. Given a simple question on a particular
system, we explore how different experimental frameworks can
be combined in practice. We use a representative framework for
each methodology: Simgrid for simulation, Distem for emulation
and Grid’5000 for experimentation. Our experiments are for-
mally described using the workflow logic provided by the XP
Flow tool.

Our long term goal is to foster a coherent methodological
framework for the study of distributed systems. The contributions
of this article to that end are the following: we identify a set
of pitfalls in each paradigm that experimenters may encounter
regarding models, platform descriptions and others. We propose
a set of general guidelines to avoid these pitfalls. We show
these guidelines may lead to accurate simulation results. Finally,
we provide some insight to framework developers in order to
improve the tools and thus facilitate this convergence.

I. INTRODUCTION

Distributed systems are pervasive in many areas of com-
puting, ranging from scientific applications to content dis-
tribution systems. Many of these systems, such as peer-to-
peer networks, comprise millions of nodes, distributed all
over the world. These are generally highly heterogeneous
systems, in which many different subsystems and technologies
interact simultaneously using common protocols. It has been
a running effort since decades to assess the properties of these
systems, such as reliability, resilience, performance or security.
Most often, researchers rely for that on experimentation: they
analyze the behavior by running the system under a particular
scenario and capturing output data that could be of interest.

Experimental work in distributed systems could be catego-
rized in three different paradigms [1], [2]:

• Simulation: a prototype of the application is executed
on top of a model of the environment. This approach
enables the researcher to analyze questions about the
system without having access to the actual environment
or the actual application. The reliability of the results
depend on the validity of the underlying models.

• Emulation: the actual application is executed on a sim-
ulated environment. The environment can be controlled
through classical virtualization techniques, or a controlled
artificial load can be injected onto real resources such as
network links and CPUs according to the given experi-
mental scenario.

• Experimentation: the actual application is executed on
a real environment. Although it might be desirable, it is
not always possible to do this, as it requires access to an
instrumented platform that matches the real environment.
This might be prohibitively expensive or not available.
Moreover, testing on different scenarios under these cir-
cumstances can turn into an incredibly complex task.

Each paradigm offers its own set of tools and methodolo-
gies. Most of these tools have evolved independently from
each other. It is then difficult to combine them for an aug-
mented analysis.

This paper constitutes a status report regarding the emer-
gence of a coherent experimental framework combining these
different approaches. We opted for a practical evaluation
where we conduct an experimental analysis leveraging these
methodologies, and report on the difficulties encountered. To
that extend, we analyze a file broadcasting application that is
widely used in a cluster setting. Our focus remains however
on the methodological aspect of this study, not on the results
of this study per se.

This paper is organized as follows: Section II first introduces
the related work while Section III describes the proposed
methodology. Section IV presents several experimental traps
arising in the different methodological paradigms and hints
on how to avoid these traps to get satisfying results. Sec-
tion V discusses several considerations that tool designers must
address to facilitate the methodologies convergence. Finally,
Section VI concludes this paper.

II. RELATED WORK

Several works combine differing experimental methodolo-
gies in a coherent framework toward augmented analysis. The
Emulab-Planetlab portal [3] allows to use the interface of the
Emulab [4] emulator to access the Planetlab [5] experimental
platform, clearly bridging the gap between these instruments.
EMUSIM [6] is another interesting attempt in this regard. It
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integrates emulation and simulation environments in the do-
main of cloud computing applications, providing a framework
for increased understanding of this type of systems. Similarly,
Netbed [7] is a platform based on Emulab that mixes emu-
lation with simulation to build homogeneous networks using
heterogeneous resources.

To the best of our knowledge, there is however not much
previous work that compares these methodologies in practice.

The work in [8] analyzes “myths and beliefs” about Plan-
etlab as it stood in 2006. It concentrates on debunking as-
sumptions about the platform that were either never correct or
simply no longer true at that point. Moreover, it is clear with
regard to stating real limitations of the platform, so as to help
users decide if it is reasonable to use it for their objectives.
This approach is different to our work in the fact that its
conclusions are a set of best practices for users of a single
platform. It does not analyze how Planetlab plays with other
platforms and does not try to construct an unified methodology
for the analysis of distributed systems.

III. METHODOLOGY

A. Selected Tools

Although certainly interesting, including in this study every
existing experimental tool or framework would be a daunting
task. In this work, we preferred focusing on one representative
framework per methodological paradigm and focus on the
methodological aspects. Additional conclusions would have
been reached with other tools, but we believe that this does
not reduce the impact of our conclusions.

Concerning simulation, we used SimGrid [9]. This is an
ever growing simulation framework, with more than 10 years
of development and over 100 papers based on its results. It
features sound and scalable models of distributed systems.
Direct experiments were run on Grid’5000 [10]. As of May
2013, this platform consists of 11 sites all over France and
Luxembourg, with several clusters on each site, connected by
high speed links. This scientific instrument is dedicated to the
live study of distributed systems. To this end, it allows full
deployment of custom operating system on the reserved nodes
and the reservation of isolated network portions. We chose
the Distem [11] emulator. It is easily deployed on Grid’5000
nodes, and enables the experimenter to simulate network
topologies. Nodes are deployed as Linux containers, meaning
that many virtual nodes could be instantiated in a single
physical node, with a small resource overhead. The platform is
simulated by slowing down physical links artificially (network
or memory bus).

B. Driving Question

The driver of any experimental analysis is usually an
interesting question that researchers are trying to answer. As
a consequence, the methodology is often an afterthought, and
the contribution quality comes from the results found.

This paper is rather different in that regard. As we focus on
the methodology itself, we base our analysis on a simple ques-
tion. It was not chosen to be innovative but instead to be simple

enough to not distract the study while being complex enough
to mandate non-trivial experiments. This driving question is to
evaluate the relative advantages of different chain propagation
algorithms for file broadcasting in a cluster setting.

One such algorithm is already implemented in the Kastafior
tool of the Kadeploy suite [12]. It is used in production on
Grid’5000 to deploy user OS images to each node.

It works as follows: an efficient communication chain is
built to connect all participating nodes to their network neigh-
bor when possible and to reduce the transfer interactions on
the chain. This chain can be built semi-automatically since the
network topology is well documented on this instrument. The
file is then split in fixed size chunks, that are sent sequentially
from the broadcaster to the first node of the chain. As soon as
the first chunk is received by the first node, it is forwarded to
the next one in the chain, concurrently to the reception of the
second chunk. This algorithm is intended to minimize the time
to send the whole file to all participating nodes by overlapping
as much communication as possible while avoiding network
interactions. In taking advantage of the network topology, this
algorithm can be used to deploy files very efficiently, without
using multicast or other advanced tools which introduce a huge
administration overhead.

Kastafior was never analyzed thoroughly, but it performs
well in practice for the users of the Grid’5000 infrastructure.

IV. OBSERVED TRAPS

In this section, we show some of the problems that an
experimenter might run into when analyzing a distributed
system. We encountered these issues while analyzing our own
implementation of the Kastafior algorithm in the context of
broadcasting files in a single Grid’5000 site. This implemen-
tation, called chainsend, has been written entirely in C.

The metric of interest in our study is the bandwidth per
node, i.e. the average of all bandwidths. It is measured in
every node as the amount of time to receive the complete file
divided by the file size. This value is then averaged over all
nodes to get a single value. This metric has been produced
by measuring time in every node. In direct experimentation in
Grid’5000 and in Distem we use the local clock of each node.
In the case of Simgrid, we use the simulated time provided
by the framework. We show this metric as a function of the
number of nodes, to indicate the progression. The data points
have also been interpolated using splines to ease visualization.

Our experiments leverage up to 100 nodes of the Nancy site
of Grid’5000 (clusters griffon and graphene), up to 10 virtual
nodes in Distem, and 92 nodes in Simgrid (griffon platform
file). The file size used is 1 GiB.

A. Difficulties getting the platform right

The platform in which the experiment runs tells us about
network size and characteristics, how nodes are connected to
each other and all the information that is required to reproduce
a similar setup. However, for non-trivial experiment sizes, it
could become increasingly difficult to ensure that it represents
exactly what the user wanted.
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In the case of Simgrid, it is important to understand the
platform syntax correctly. The description is given in the
form of an XML file, but it is tedious to write explicitly. In
order to simplify it, some syntax shortcuts have been put in
place (e.g. the cluster tag) which alleviate platform writing
significantly, but could introduce errors if the user does not
understand what they and their attributes mean exactly.

Finally, as said before, another important issue is accuracy:
it is possible that the description is correct in terms of
what the user wanted to say, but wrong with respect to the
reference platform. This problem is significant as it could
induce false conclusions from the experiments. For example,
in a bandwidth-limited experiment, if the platform description
is wrong with respect to this metric, it is obviously not possible
to reproduce a result in simulation even though the underlying
model may be correct otherwise. Latency parameters also ef-
fect metrics in unexpected ways (e.g. delaying communication
and thus reducing overall bandwidth usage) and it may not be
easy to identify this problem in the platform description.

Distem also shows similar problems: it is not possible to
map Simgrid platform files to Distem platform descriptions
yet. This is a known issue, and even though it is able to
load simple v2 Simgrid platform files correctly, most advanced
features are not working yet. Moreover, there is also the non-
trivial problem of mapping a virtual platform on a set of
physical nodes. For example, using up several physical nodes
imposes limitations on inter-node bandwidth and communica-
tion time that have to be taken into account when designing
experiments. Lastly, Distem has some limitations on what
kind of routing it can emulate, thus rendering impossible, for
instance, to experiment with redundantly connected nodes.

B. Missing hardware models in simulation

Both simulation and emulation abstract away some details
which can be found in the real platform. These abstractions
could lead to wrong or inaccurate results if they are not
correctly accounted for. It is important to understand them
to design good experiments.

Simgrid’s MSG API, for instance, forces some restrictions
on what kind of software can be accurately simulated. It should
be noted that, as a result of this, applications written using this
API cannot be implemented as if they were actual network
applications.

Simgrid simulates only a network and a CPU, the latter
only given that appropriate CPU parameters were input to the
model. This implies that, for example, it doesn’t simulate disk
activity, therefore a disk-bound application would not produce
the expected results in simulation.

In Figure 1, we show a comparison of the bandwidth per
node in Grid’5000 by measuring the transfer time at two
different points: as soon as the file has been transferred (before
the fsync system call is issued), and after the data has been
successfully written to disk (after fsync). As we can see,
chainsend is a disk-bound application, and as such we cannot
make a fair comparison against the Simgrid implementation
unless we take the disk out of the picture. Even if we
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Figure 1. Bandwidth per node in Grid’5000 before fsync and after fsync.
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Figure 2. Bandwidth per node in Grid’5000 after discarding writes to disk.

measure time after fsync, there is still disk activity going
on that could affect the results. In order to mitigate this, all
the following runs in Grid’5000 write the file to the special
device /dev/null. This device discards data without writing
anything to disk. We show the results of doing so in Figure 2.
As we can see, the results are much more stable now. The
reason behind this is that there is no interference of the I/O
cache, as writes are properly discarded. This scenario is more
realistic compared to what is actually simulated by Simgrid.

C. Bad assumptions behind network models

Simgrid provides a network model for the simulation. This
model makes some assumptions that have to be taken into
account to make good use of the platform. They could be
categorized as follows:

• Transport protocol: MSG assumes that all its communi-
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cations are handled using TCP, ruling out every other
transport protocol.

• Connection flow: the mailbox abstraction in MSG as-
sumes that every task takes up its own connection,
meaning that for each send, it simulates the time it takes
to open a socket, do the three-way handshake, send data,
receive its respective ACKs, and finally close it. This also
implies that it can’t simulate a continuous stream of data,
unless it is sent as a single task.

• Connection flow arguments: there are two parameters
in the default network model (LV08 [13]) that can
be adjusted to change the behavior explained above,
bandwidth_factor and latency_factor. The
first one effects what percentage of the total bandwidth
can actually be consumed by the connection, while the
latter is a latency penalty factor, that effects how much
time it takes to go from “slow start” to a “steady state”.
If this factor is closer to 1.0, the “slow start” effect is less
noticeable. This factor could be used to simulate a stream
of continuous data more accurately, but it is necessary to
adjust it beforehand (i.e. it is not dynamically adjustable).

To highlight the effects of the connection flow parameters in
Simgrid, we show bandwidth per node in Grid’5000 compared
against Simgrid in Figure 3, using the default network model
and connection flow arguments. As we can see, performance
in Simgrid is roughly half of that in the real platform. This can
be explained by what we have said before: in MSG, Simgrid
simulates a complete connection for each send/receive. This
means that for each file fragment being sent, there is a three-
way handshake, data being sent on the network, and finally the
connection is closed. At the same time, the congestion control
algorithm in TCP takes place. This results in slow start taking
place for every chunk of the file being sent. This is unrealistic
compared to the real application, as the whole transfer happens
during a single TCP connection.

If we change the default network model to CM02, which is
a much simpler model that doesn’t simulate accurately all the
TCP congestion control algorithms, we obtain the results that
are shown in Figure 4.

As we can see, the results for Simgrid are very similar to
those of Grid’5000 now. This simpler model lets us fake the
fact that Simgrid doesn’t correctly account for single streams
of data over multiple messages. In this case, it works as if
there was no slow start at all, meaning that the stream is
continuously in “steady state”. This is very similar, although
slightly overfitting, to the actual situation.

Moreover, there is an adjustable parameter,
SG_TCP_CTE_GAMMA, which modifies how Simgrid
takes into account the TCP congestion window when
it updates the simulated time. This parameter can also
be found in real TCP implementations (in Linux, it
is possible to modify it on runtime by writing to
the files /proc/sys/net/ipv4/tcp_rmem and
/proc/sys/net/ipv4/tcp_wmem). These, among
many other parameters, change behavior in actual TCP
implementations and it is clear that not all of them behave
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Figure 3. Bandwidth per node in Grid’5000 vs. Simgrid (default network
model and arguments).
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Figure 4. Bandwidth per node in Grid’5000 vs. Simgrid (CM02 network
model).

the same way in practice. As a consequence of this, it is very
difficult to decide on which implementation to follow as the
“right one”, as there are so many of them on the Internet.

D. Physical node mapping interference

Distem, on the other hand, has a different set of issues
arising from its abstractions. In a Distem network, the network
is presented as an overlay, the underlying network and the
physical nodes are hidden from the application. This derives
in several constraints that have to be carefully analyzed.

One of them is the node mapping: if the overlay is emulated
completely on top of a single node, memory bandwidth and
system software act as a bandwidth barrier which can’t be
overcome. If the mapping is 1 physical node ↔ 1 virtual node,
the barrier exists in the network equipment that connects the
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Figure 5. Bandwidth per node in Grid’5000 vs. Distem (ten virtual nodes
in one physical node).

nodes to each other. A simple example in this case would be
that it is not possible to connect virtual nodes on a Gigabit
virtual network, if the underlying physical nodes are connected
at 100 Mbps. In the same sense, it is also not possible to
connect 100 virtual nodes on a single physical node at 1 Gbps,
if memory bandwidth at that node is only 10 Gbps, and expect
consistent results. In order to visualize this problem, we can
see in Figure 5 the bandwidth per node going down as the
number of virtual nodes increases, when the mapping is done
over one single physical node. The expected bandwidth should
be much higher, but it is limited by the way kernel buffers
are managed. Test runs using improved netns and veth kernel
subsystems yield a higher maximum bandwidth.

Finally, bandwidth is not the only limiting factor, also em-
ulated latencies should be higher than those of the underlying
network. As an example of this, it is not possible to emulate
a link with a latency of 1 µs over one with a real latency of 1
ms. Also, if both latencies are the same order of magnitude,
it is very likely that there is interference from the outside
network.

V. DISCUSSION

This section discusses the traps identified in the previous
section and propose some recommendations and improvements
both for the experimenters and for the tool designers.

A. Platform convergence

Our first conclusion on the platform issues is that the
tools should enable users to converge to the platforms used
by the different approaches. In our scenario, we have three
sets of platforms: Simgrid platform files, Distem platform
descriptions and real network testbeds. In order to compare
results among all the tools, it is necessary that the platforms
represent the same scenarios, otherwise the comparison would
be unfair.

The tools could help the user achieve this by checking
whether they match or not. For example, in the Emulab
[4] testbed, which offers a subset of the features found in
Distem as used on top of Grid’5000 (namely network topology
emulation by means of slowing down fast links), there is
a tool called linktest [14], that measures link latency and
bandwidth after the platform has been instantiated, in order to
identify differences with respect to the platform description.
This tool is useful not only to corroborate that the experimental
framework is able to reproduce the input scenario, but also to
ensure that the user didn’t make a mistake when they designed
the platform model. For example, one such link measurement
tool could be run in the real platform, in the platform as
emulated by Distem, and finally a simulation of the same tool
on top of Simgrid, and then all the results could be compared
for statistically significant differences.

Similarly, being able to use the same platform descriptions
in both Simgrid and Distem would be very useful to avoid
error-prone work duplication. There is still the problem of
handling virtual node mappings in Distem, which is a feature
that doesn’t make sense in the context of Simgrid, but being
able to convert from Simgrid platforms to Distem, while
keeping the ability to load Simgrid platforms would be a good
start. As said before, there is already work in this direction,
but it still needs some refinement.

B. Identify application traits

To get the most out of the tools, it is also necessary to
understand what kind of application is being analyzed. Al-
though it might seem like a chicken-and-egg problem to have
to analyze a system in order to build a better analysis for it, the
user has to understand very clearly what kind of application
they are working on, as to properly identify traits that would
not be conveyed by the experimental framework. This means,
among other things, understanding what kind of traffic the
application generates, what transport protocol is used in the
real implementation, what is the application protocol like, what
kind of network is targeted by the application, what kind of
resources could act as bottlenecks.

Most of these questions require a good understanding of
the application that is being analyzed and in some cases it is
enough to analyze the source code to answer them. In case it is
not that easy to infer, building experiments with the framework
limitations in mind is a good start.

C. Converge experimental evaluation

Tools for experiment management are great improvements
in terms of being able to automate experiment setup, execution
and data gathering and analysis. We have used XP Flow to
build all of our experiments. This tool provides an interface
to work with Grid’5000 and handle all the steps of the
experiment directly. The experiments themselves are structured
using workflow logic, such as that used in business to describe
processes.

Building experiments by hand has many problems: it is
error-prone, it doesn’t scale, it becomes increasingly difficult
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to manage all the data as the experiment size and number grow.
Working with several experimental tools expands this problem
manyfold, as there is a new dimension that has to be taken
into account to match similar experiments using different tools.
One big problem in dealing with different tools is that they
all have their own way to do things. This is worsened by the
fact that there are also many tools for experiment automation.
Using several tools might require writing boilerplate code and
wrappers to match the way each tool works.

In order to converge to a single framework to build exper-
iments, this code should be clearly modularized to abstract
away the differences in a way that they can be written
generically.

VI. CONCLUSIONS

We have evaluated three different platforms for distributed
system analysis, one for each of the paradigms in experimental
evaluation, concentrating on the methodological aspects. Our
driving question has been the performance of chain propaga-
tion algorithms in a cluster setting. We have discussed traps
that users of these platforms might run into and provided
some insight on how to avoid them. In particular, we have
identified problems in the accuracy of platform descriptions,
missing hardware models, incorrect assumptions in network
models provided by these frameworks and communication
interference due to assumptions with regard to node mapping
in overlays. By pointing out these problems, we have been
able to create experiments to correctly assess the performance
of our chainsend application in simulation. There is ongoing
work to show the full picture, including also results in emula-
tion. Our assessment in this case is that, due to the nature of
this particular workload, emulation is not able to provide an
accurate view while getting the full benefits of the platform.

Finally, an interesting topic to carry our work forward is
platform validation. We plan to provide a platform validation
tool similar to linktest for each paradigm, and also work
towards the convergence of platform descriptions, in order to
make it easier for the experimenter to use different tools.

It is our belief that each of the methodologies provide an
unique point of view that has to be complemented in order to
acquire a better understanding of the system. It is important
to understand the tools and their limitations in order to use
them appropriately. Our suggestions move towards making
it more straightforward to manage experiments and compare
results, trying to reduce repetitive, error-prone steps as much
as possible.
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Abstract—Simulation is the imitation of a system or a process
in order to manage the complexity of simulated system or to
optimize its performance. This paper presents a agent-based
strategy of modeling and simulation. We introduce some modeling
methodologies in order to determine the most adequate technique
to deal with embedded control systems. We also introduce
the Tropos and Agentology methodologies by describing used
concepts and how they are integrated with the current stages
of Tropos and Multi-agent System methodology. The above is
illustrated using an embedded real-time control system as a case
study.

I. INTRODUCTION

There are many reasons to make use of formal methods
in embedded real-time systems, particularly in railway sig-
nalling systems. These includes safety-criticality and complex
real-time constraints. The EN50128 guidelines issued by the
European Committee for Electrotechnical Standardization is a
series of safety requirements for railway control. It contains
recommendations based on the criticality, complexity and
temporal behavior of the system. It does provide neither an
exact procedure nor a unique methodology for the development
of embedded critical systems.

Safety is the property which asserts that nothing bad
happens in contrast to liveness which asserts that eventually
a good thing happens. In our works we focus especially on
safety properties and we try to prove that error or fault states
are not reachable for every possible execution.

The aim of our models is to formalize and to anticipate
these dangerous states which could be categorized as to
deadlocked states or erroneous behaviour. It is a sort of future
system validation. Starting with the analysis of Functional Re-
quirement Specifications (FRS) which is a set of finite complex
or simple sentences describing the behavior of the system,
we could capture knowledge divided into two categories.
The first one is the domain specific knowledge describing
domain properties or assumptions. The second category is
the commonsense knowledge which regroups the goals of
stakeholders and the system actors.

The paper is organized into sections. After a short in-
troduction, section 2 describes a state of the art of agent-
based modeling methodologies. Section 3 is devoted to present
the modeling and simulation strategy based on agentology
methodology. The next section presents the case study and
the application of our approachs.

II. STATE OF THE ART

An agent-based modeling noted ABM [1] is an approach
issued from the artificial intelligence which represents a sep-
arate technology. ABM is the opposite of the principle of
discrete event or continuous simulation approaches which are
destinated to simulate systems by simulating its tasks and
events using state variables dependencies. Unlike them, ABM
simulates systems by defining caracteristics and behaviors of
system entities without specifying internal rules. The need
of an agent-oriented methodologies is justified by the system
complexity as well as the weakness of existing methodologies
to support many emergent system characteristics such as dy-
namicity, cooperation aspects, distribution of software entities
and temporal constraints.

Agent-oriented methodology is used to reduce the gap
between existing software frameworks dedicated to the imple-
mentation of multi-agent systems (MAS) and, more precisely,
agent-based simulation and methodologies and guidelines.

The current work is devoted to this approach. We are
dealing with systems where we know the caracteristics of every
elementary subsystem or component and we are interested
specifically in the whole behavior of the system. Agents which
are used to simulate these different components communicate
and react with each other and with their environment in order
to achieve their goals.

We established a comparison study between diverse MAS
methodologies in order to choose the most appropriate one.
The approach has to cover the development life-cycle of
software from analysis to implementation. It is recommended
that the chosen methodology heavily based on requirements
engineering and influenced by the gaol approach which is our
initial conceptual modeling and simulation prerequisite.

In general, modeling methodologies are influenced by
approaches such as object oriented approach (Rational Unified
Process for example), aspect-oriented approach or GORE [5]
for Goal Oriented Requirement Engineering like Keep All
Objectives Satisfied KAOS [10] or Intentional STrategy Actor
Relationships (i*)[3].Table I shows how methodologies for
MAS development are influenced by software development
approaches and identified dependencies exist between these
methodologies and adapted methods. The table is divided into
three parts: MAS methodology, requirements engineering and
object-oriented approach. For each methodology we indicate
the approach or the method-driven MAS methodology in
question.
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TABLE I. INFLUENCE OF SOFTWARE DEVELOPMENT APPROACHES ON
MULTI-AGENT SYSTEMS METHODOLOGIES

MAS Methodology Requirements Engineering Object Oriented
ADELFE [4] Rational Unified Process

GAIA [1] Agent-Oriented Methodology
INGENIAS [11] Rational Unified Process

PASII [12] Pattern for Agent
SODA [13] AgentOriented Methodology
Tropos [2] i* [3]

Fig. 1. Phases of the development process covered by different Multi-agent
Systems development methodologies

In this work, we need to model and simulate MAS.
Figure 1 shows different MAS development methodologies and
software development processes they . For example Tropos,
ADELFE, INGENIAS [11] or PASSI are used to analyse, to
specify, to design and to implement MAS. Tropos methodology
[2] responds to our needs in terms of development phases
and approaches. It is an agent-oriented methodology for the
analysis and design of software from early requirements to late
requirements analysis right through to the building of a system
model. It is established using goal-based concepts issued
from i* and goal-oriented requirements language dedicated to
non-functional requirements, Tropos uses other AUML [14]
diagrams to deal with MAS aspects. The framework iSTAR
or i* defines system agents as entities where relationships are
based not only on shared data or informations but also on its
common goals, beliefs or abilities.

Entities of Tropos include actors, goals (the strategic inter-
ests of agents), capabilities (the ability of an agent to decide
the action to execute given its perceptions of its environment
and external events), plans (a description of how an agent
is able to reach a goal), dependencies (relationships between
agents), beliefs (agent’s knowledge related to its environment),
resources, and finally contributions (a metric to evaluate the
relationship between goals, plans or resources specifying if it
is beneficial to achieve these goals or not).

Figure 2 shows the Tropos metamodel of the agent concept
which inherits from the actor concept. An agent plays the roles
and occupies a position. An actor is an agent or a role. An
actor has goals and plans. It is dependent on other actors
with which it may share resources and goals. The latter is

Fig. 2. Tropos metamodel of actor concept

Fig. 3. Tropos metamodel of goal concept

the generalisation of soft and hard goals. The first category
is intentions of non-functional requirements in general. The
second one is the aim behind the functional requirements.

Figure 3 illustrates the Tropos metamodel of goal concept.
An actor has many points of view of its contribution to achieve
its goal. This latter may be decomposed by other refined sub-
goals in another level of abstraction. A ”And” or an ”Or”
relationships may regroup many sub-goals in order to fulfil
the global or the root goal. It has a means or satisfaction.

The methodology of Tropos may be summerized in 5
phases :

• Early Requirement phase : Identification and modeling
of stakeholders as social actors. Dependencies of these
based on common goals, plans and shared resources
are identified.

• Late Requirement phase : Identification of system
actors and software agents and the dependencies be-
tween them.

• Architectural Design : Definition of subsystem archi-
tectures and their connections through data and control
flows.

• Detailed Design : Specification of the characteristics
and capabilities of each agent.

• Implementation : Implementation of the system de-
tailed design.

III. MODELING AND SIMULATION STRATEGY

Inspired from the Watterfall model [8] but also by best
practices contained in several other methodologies ,the agen-
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Fig. 4. Process Agentology

tology [6] is a methodology for agent-based modeling. The
methodology is independant of any specific technology, pro-
gramming language or excecution environments. The basic
idea of this kind of simulation is Composed of 4 phases
and 9 steps, as shown in figure 4. The first phase is the
requirement definition wchich consists on formulation and
evaluation of requirements or tasks. The second phase is the
conceptual modeling. It is composed by two steps; modeling
and consistency checking of models.The third phase id the
platform-specific modeling which concerns the selection of
a development platform in addition to definition of transfor-
mation guide and the last step is platform-specific modeling.
Finally, simulation modeling which is the fourth pahse. It
is dedicated to development, debugging, testing and model
evalution. This methodology attempts to offer guidelines to
assist the modeling of the system using of one of the most
difficult approaches which is agent-paradigm. We will use the
ontology as a platform-independent methodology to provide
an agent-based model as a means to simulate this model in
subsequent steps.

The goal of this work is the simulation of the behavior of
subsystems and their interactions under hazardous conditions
and to detect possible defects and software faults. We simulate
the interaction of subsystems and components considered to be
system actors within a real-time execution-like environment.
Each one of our actors has specific characteristics such as
capabilities, responsibilities, goals, plans and resources which
could be shared with other actors. A real-time embedded
system is characterized by being driven by real world events.
This issue could be simulated by MAS.

First of all, we specify the study case in general and
we provide functional requirement specifications (FRS) in the
subsequent step. We are dealing with embedded real-time
control systems which have some specificities which must be
respected.

Conceptual modeling is ”the activity of formally describing
some aspects of the physical and social world around us for the

purposes of understanding and communication” [Wiki]. The
aim of this phase of the simulation project is to transform
requirements into system models that are platform-independent
and which contain different diagrams of different views. The
choice or these conceptual diagrams should be meticulous
in order to depict various aspects of the system and cover
different views.

First we propose to define an object model to the very high
level of granularity which is the abstraction of the real system.
In the second step, we create an agent diagram to determine
system actors in the defined scope. We propose to be general in
this phase and give a global model without detailed design. The
next step focuses on the creation of a global model for each
agent and the determination of dependencies between them. In
the fourth step, a detailed agent model is provided.

IV. CASE STUDY: ERTMS/ ETCS SYSTEM

The FRS of European Rail traffic Management System/
European Train Control System (ERTMS/ ETCS) [9] is the
chosen embedded control system to be studied. The aim of this
project is to unify the transeuropean railway network with the
same and unique train control system. ERTMS is decomposed
by on-board equipment which is the embedded system and
Trackside equipment which is the static system (Wayside). The
architecture of the whole system is illustrated by figure 5.

Fig. 5. ERTMS Architecture

We will focus on the Start of Mission (SoM) procedure
since it is the first procedure to apply to start the train
equipped by ERTMS. We note that in the embedded system is
composed of ETCS on-board equipment beside other systems.
The procedure ”Start of mission” is totally described in [9].
This procedure is used if the train is awake, if shunting
movements are finished, if a mission is ended or if a slave
machine becomes a leading engine. In fact, this procedure is
used when the on-board system is in Stand-By mode. The
procedure describes the status of system data required and
details the table of requirements for the procedure.After the
table, a complex flowchart describes the interactions between
the different components of the system and gives a graphical
vision of the procedure. We can notice that on-board system
interacts with Radio network and RBC and the flowchart show
how they interact between them.
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A. System Evaluation for Simulation

The first step of the SoM simulation is to formulate the task
which is provided by the subset of the procedure. We analyse
the simulation description and we evaluate specifications in
order to determine if the present case study is simulable or not
by an agent-based model. The aim of this phase is to prove
the efficiency of the making use of agent approach and its
suitability and convenience in the study case. Therefore, we
need to know some general specifications of agents such as
making decision ability, the system dynamicity, granularity of
the treated system, ect... In the case of SoM procedure , (i)
there is one actor that makes decision decision- driver who can
make many kinds of decisions. (ii) The system dynamicity
is represented by faults avoidance in real-time execution.
(iii) The system behavior is treated on a macro level which
coincide with the principle of agent-based modeling, contrary
to flowchart, activity diagrams or state transition diagrams
which are typically viewed in macro-level. (iv) In micro level,
each actor has its specificities and we note that there are
different used agent architectures. (v) The environment of
the MAS is characterised by the presence of spatial factors
which may influence the simulation. All these previous metrics
mean that an agent-based model is suitable for modeling an
embedded real-time control system in general and our sturdy
case in particular.

B. Conceptual Model

The concepts of hard and soft goals are used to model
functional requirements and quality attributes respectively.
Tropos, since it adopts i*, uses these concepts in addition to
actors who could be an agent, role or position. Goals can be
classified into types or categories. We talk about software and
other behavioral goals.

A software goal announces an alternative that should be
chosen by the system to reach another goal. A behavioral goal
describes the expected behavior of a system. There are two
subtypes of behavioral goals: ”Achieve/ Cease” and ”Maintain/
Avoid.” The first class includes goals describing a behavior that
must be satisfied or not under conditions in a limited time in
the future. The second class is the set of goals describing a
behavior that should be satisfactory under conditions over time
or behavior should never be present in the system under any
condition respectively. We propose the following definition.

Definition 1. Lets S be a set of states, Si an initial state, Sf

a set of states in the future and t0 is the current instant such
that the following hold for Si ⊆ S and Sf ⊆ S:
F (Sf )→ ∃t(t>t0 ∧ P (Sf ))
G(Sf )→ t(t>t0 → P (Sf ))
Achieve[Sf ]: if [Si] then F (Sf )
Cease[Sf ]: if [Si] then qF (Sf )
Maintain[Sf ]: if [Si] then G(Sf )
Avoid[Sf ]: if [Si] then qG(Sf )

C. Goal-based reflex agent Architecture

A goal-based agent is an agent having knowledge about
its goals and what actions to choose to achieve it. A reflex
agent is an agent who maintains an internal state and based in
”condition-action” rules it updates its state.

An hybrid architecture is a way to switch between the
intuitive reaction and thought deliberation respecting the cir-
cumstances and environment events. Moreover, it is the latter
that determines the expected behavior of the agent and these
characteristics. An agent is considered as an autonomous entity
or a decision-maker.

On an abstract view, an hybrid agent is composed of
several layers each of which depends on a specific architecture
of an agent. Each class of agents has its advantages and
disadvantages. We can choose the most suitable functions
in architectures using various agents although we face the
problems of mutual interference.

The hybrid architectures are in hierarchical layers allowing
the boundary delimitation between the different features of
each level. The layers of the highest level are reserved for
reflection, decision. This is the area of reasoning. The lowest
layers are those devoted to communication and perception of
the environment. Between these two levels, areas of interac-
tion, knowledge or planning may exist and it depends mainly
on the architecture.

Each hybrid agent must have at least two layers of different
architectures. The general behavior of the agent will depend
concepts of architecture but also the alignment of these archi-
tectures. The architecture of our agents as illustrated by figure
6 is hybrid and each actor of our system has the following
properties:

• A set of states

• A set of goals

• A knowledge base (KB)

• Capabilities

• Actions

Fig. 6. General Goal-based Reflex Agent Architecture

V. CONCLUSION

In this work we present a modeling and simulation strategy
for embedded control systems based on Tropos and Agentogy.
Our approach differs from existing control system simulation
approaches in the following way. Current approaches rely
mostly on general-purpose simulation modeling paradigms
based on continuous, discrete or hybrid simulation techniques.
This trend is explained by the high degree of interaction
between mechanical and electrical components in embedded
control systems. Among others, our contribution is the use
of agent-based simulations because these models are often
appropriate and interesting to study the behavior of the entire
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system where its characteristics are known. This paper is a first
attempt to make ERTMS /ETCS modeling and simulation more
specifically goals oriented. Future work is needed to validate
these models in practice and to propose a detailed model and
architectures for subsequent steps of simulations.
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