

Fault Resilience Analysis for Real-Time Systems

George Lima¹, Flávia Maristela², Verônica Lima³ gmlima@ufba.br, flaviamsn@ifba.edu.br, cadena@ufba.br

¹Department of Computer Science – Distributed Systems Lab (UFBA) ²Department Technology in Electro-electronics (IFBA) ³Department of Statistics (UFBA)

 1^{st} International Workshop on Analysis, Tools and Methodologies for Embedded and Real-time Systems

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

Presentation Overview

1 Introduction

- Real-Time Systems Overview
- Motivation
- 2 On the Fault Resilience Metric
 - Assumptions and Requirements
 - Fault Resilience Metric Definition
- **3** Simulation Environment
 - General Idea
 - Basic Components
 - Scenario Generator
 - Simulation Engine
- **4** Simulation Results and Statistical Analysis
- 5 Conclusion and Future Work

• = • • = •

On the Fault Resilience Metric Simulation Environment Simulation Results and Statistical Analysis Conclusion and Future Work	Real-Time Systems Overview Motivation
---	---

- Real-time systems are organized a set of n tasks $\Gamma = \{\tau_1, \dots, \tau_n\}$
- Each task τ_i has attributes such as:
 - Period
 - Deadline
 - Worst-Case Execution Cost
 - Recovery Execution Cost
- Real-time system tasks in have to meet both their logical and timing requirements.
- In order to guarantee that deadlines are met, all tasks have their execution ordered according to a scheduling policy.
 - Rate Monotonic (RM)
 - Earliest Deadline First (EDF)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Introduction

On the Fault Resilience Metric Simulation Environment Simulation Results and Statistical Analysis Conclusion and Future Work

Real-Time Systems Overview Motivation

イロト イポト イヨト イヨト

э

Example

$$\Gamma = \{\tau_1, \tau_2\}, \mathbf{T} = (2, 5), \mathbf{C} = (1, 1), \mathbf{D} = \mathbf{T}.$$
 Tasks are scheduled according to Rate Monotonic.

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

Real-Time Systems Overview Motivation

・ロト ・ 同ト ・ ヨト ・ ヨト -

- All application potentially fails ⇒ Real-time systems requirements must be met, even in the presence of faults.
- Fault tolerance is provided by executing recovery actions upon error detection.
- Recovery scheme is usually based on time redundancy.

Introduction On the Fault Resilience Metric Simulation Environment Simulation Results and Statistical Analysis Conclusion and Future Work	Real-Time Systems Overview Motivation
Conclusion and Future Work	

• Recovery based on re-execution of the faulty task.

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

• Recovery based on alternative tasks.

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

< 47 ►

< ∃ →

< ∃⇒

Real-Time Systems Overview Motivation

イロト イボト イヨト イヨト

э

- Usually, fault tolerance for real-time systems is:
 - strictly linked to system and fault models;
 - based on worst case conditions

Real-Time Systems Overview Motivation

・ 同 ト ・ ヨ ト ・ ヨ ト

- Usually, fault tolerance for real-time systems is:
 - strictly linked to system and fault models;
 - based on worst case conditions
- HOW TO COMPARE DIFFERENT REAL TIME SYSTEMS FROM RESILIENCE VIEWPOINT?

Real-Time Systems Overview Motivation

・ 同 ト ・ ヨ ト ・ ヨ ト

- Usually, fault tolerance for real-time systems is:
 - strictly linked to system and fault models;
 - based on worst case conditions
- HOW TO COMPARE DIFFERENT REAL TIME SYSTEMS FROM RESILIENCE VIEWPOINT?
- HOW TO MEASURE THE SYSTEM FAULT RESILIENCE?

31.5

- Worst-case based models may not reflect the real capacity of a system to tolerate faults
- **2** Models do not consider the system overall behavior

- Worst-case based models may not reflect the real capacity of a system to tolerate faults
- **2** Models do not consider the system overall behavior

 Intuitively, the expected number of errors increases with time if they are not co-related.

Assumptions and Requirements Fault Resilience Metric Definition

< ロ > < 同 > < 回 > < 回 > < 回 > <

Assumption

The fault resilience of a system is proportional to the number of errors it can deal with.

Assumption

The expected number of error occurrences increases with time.

Assumptions and Requirements Fault Resilience Metric Definition

4 3 b

• The resilience of a given task $\tau_i \in \Gamma$ depends on how its jobs behave when errors take place

Assumptions and Requirements Fault Resilience Metric Definition

・ロト ・ 同ト ・ ヨト ・ ヨト - -

э

Requirement

Fault resilience must be given for individual tasks of the analyzed system.

Requirement

The fault resilience of a task must account for the overall behavior of its jobs.

Assumptions and Requirements Fault Resilience Metric Definition

・ロト ・(型ト ・(ヨト ・(ヨト -

Definition

The fault resilience of a job is measured as the minimum number of errors that make it miss its deadline. The fault resilience distribution of a task is given by the fault resilience of its jobs.

General Idea Basic Components Scenario Generator Simulation Engine

• System is modeled based on two main components

ъ

General Idea Basic Components Scenario Generator Simulation Engine

• System is modeled based on two main components

- Main Goal \Rightarrow Derive a metric that can be able to:
 - Be independent of system model
 - Express system resilience;
 - Compare different fault-tolerant scheduling approach;

・ロト ・(型ト ・(ヨト ・(ヨト

General Idea Basic Components Scenario Generator Simulation Engine

• System is modeled based on two main components

- Main Goal \Rightarrow Derive a metric that can be able to:
 - Be independent of system model
 - Express system resilience;
 - Compare different fault-tolerant scheduling approach;
- Metric intuition: measure the *effort* that the error generator does to make a given task miss its deadline
- $\mathbf{E}_i = f_i$

イロト イポト イヨト イヨト

General Idea Basic Components Scenario Generator Simulation Engine

• Simulation Environment Framework

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

・ロト ・同ト ・ヨト ・ヨト

General Idea Basic Components Scenario Generator Simulation Engine

Example

Consider $\Gamma = \{\tau_1, \tau_2, \tau_3\}$ a set of periodic tasks so that $\mathbf{T} = (10, 15, 20).$

・ロト ・(型ト ・(ヨト ・(ヨト

э

General Idea Basic Components Scenario Generator Simulation Engine

Example

Consider $\Gamma = \{\tau_1, \tau_2, \tau_3\}$ a set of periodic tasks so that $\mathbf{T} = (10, 15, 20).$

イロト イボト イヨト イヨト

э

General Idea Basic Components Scenario Generator Simulation Engine

Example

Consider $\Gamma = \{\tau_1, \tau_2, \tau_3\}$ a set of periodic tasks so that $\mathbf{T} = (10, 15, 20).$

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

General Idea Basic Components Scenario Generator Simulation Engine

• Goal: Determine the simulation time window

Definition

Tuple $\mathbf{S} = (S_1, \ldots, S_n)$ is a simulation scenario of a periodic task set $\Gamma = \{\tau_1, \ldots, \tau_n\}$ if the following predicate holds:

scenario(
$$\Gamma, \mathbf{S}$$
) $\stackrel{\text{def}}{=} \exists w \in , \forall S_i : (S_i + w) \mod T_i = 0 \land \max(\mathbf{S}) - S_i < T_i$

・ロト ・ 同ト ・ ヨト ・ ヨト …

-

General Idea Basic Components Scenario Generator Simulation Engine

- Scenario generator implements two kinds of generation procedures
 - Sequential procedures: generate the whole set of simulation scenarios
 - Random generation procedures: generate a subset of simulation scenarios

・ロト ・ 同ト ・ ヨト ・ ヨト - -

General Idea Basic Components Scenario Generator Simulation Engine

• Goal: Determine the fault resilience for a given task τ_i regarding a specific scenario **S**

・ロト ・同ト ・ヨト ・ヨト

General Idea Basic Components Scenario Generator Simulation Engine

Example

Consider $\Gamma = \{\tau_1, \tau_2, \tau_3\}$ a set of periodic tasks so that $\mathbf{T} = (10, 15, 20)$. The simulation scenario $\mathbf{S} = (50, 45, 40)$ and we wish to analyze the job of τ_3 released at t = 40.

• $\mathbf{S}' = (40, 30, 40)$ and simulation time interval is [30; 60)

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

・ロト ・(型ト ・(ヨト ・(ヨト -

ъ

General Idea **Basic Components** Simulation Engine

Example

Consider $\Gamma = \{\tau_1, \tau_2, \tau_3\}$ a set of periodic tasks so that T = (10, 15, 20). The simulation scenario S = (50, 45, 40) and we wish to analyze the job of τ_3 released at t = 40.

• $\mathbf{S}' = (40, 30, 40)$ and simulation time interval is [30; 60)

Fault Resilience Analysis for Real-Time System George Lima, Flávia Maristela, Verônica Lima

-

Example

Let $\Gamma = \{\tau_1, \ldots, \tau_4\}$ be a task set independent periodic tasks scheduled by Rate Monotonic. Task attributes are $\mathbf{C} = (30, 35, 25, 30), \mathbf{T} = (100, 175, 200, 300) \text{ and } \mathbf{D} = \mathbf{T}.$

• We focus on task τ_4 .

$$f_4$$
 2 3 4

- Distribution of f_4 gives more information about the system fault resilience.
- We can compute the mean effort $\bar{\mathbf{E}}_4 = 3$.

イロト イポト イヨト イヨト 二日

• Is it possible to compare two different scheduling approaches from fault resilience viewpoint?

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Is it possible to compare two different scheduling approaches from fault resilience viewpoint?
- 10 task sets, with 10 tasks each, were generated
- $C_i = \bar{C}_i = 3$ and **T** was randomly generated
- Both RM and EDF scheduling were considered.
- A sample of simulation scenarios was randomly generated.
- We computed the mean effort $\mathbf{\bar{E}}_i$ for each task τ_i , $i = 1, 2, \dots 10$.
- In order to determine sample size, we assumed a sample error $|\bar{\mathbf{E}}_i^* \bar{\mathbf{E}}_i| = 5 \times 10^{-3}$

イロト イポト イヨト イヨト 二日

Figure: Fault resilience distribution

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

- 40 task sets composed of 30 tasks each were randomly generated.
- Periods and execution times were randomly select in the intervals [10; 800] and [3; 30], respectively.
- The calculated hyperperiod was of the order 10^{15} .
- Sample error equal to 5×10^{-3}
- $\alpha = 5\%$

GOAL: estimate the fault resilience for each system task.

イロト イポト イヨト イヨト 二日

Table: Fault resilience estimation

	RM		EDF	
$\% \ \mathrm{CPU}$	\bar{f}_i	CI	$ar{f}_i$	CI
55-65	6.35	[6.237, 6.552]	6.05	[6.010, 6.136]
65 - 75	3.01	[2.996, 3.050]	3.25	[3.192, 3.294]
75 - 85	2.33	[2.300, 2.358]	2.87	[2.801, 2.907]
85-95	1.95	[1.890, 1.960]	2.13	[2.023, 2.223]

George Lima, Flávia Maristela, Verônica Lima Fault Resilience Analysis for Real-Time System

イロト イボト イヨト イヨト

э.

- Some aspects must be further investigated:
 - Considering task sets where not all tasks are periodic;
 - Taking spacial redundancy;
 - Other strategies to estimate the backlog.
- Extend the model to derive probabilistic schedulability bounds for real-time systems.

・ 同 ト ・ ヨ ト ・ ヨ ト