WATERS 2016

Toulouse, France
July 5™, 2016

http://waters2016.inria.fr

Keynote, Rob Davis

On the Evaluation of Schedulability Tests for Real-Time Scheduling Algorithms
This talk discusses criteria and methods that can be used to evaluate the performance of
schedulability tests for real-time scheduling algorithms. We briefly review theoretical methods
such as utilisation bounds, dominance relations, and speed-up factors, as well as empirical
methods such as simulation and case studies. The talk then focusses on empirical evaluation
and the generation of parameters for synthetic task sets. We discuss the need for a systematic
approach, issues of bias, confounding variables and statistical confidence. A simple evaluation
framework is outlined, covering how to generate task utilisation values, periods and other
parameters, as well as how task set parameters can be grounded in data from benchmarks. A
simple systematic approach to covering the parameter space is proposed, and different ways of
presenting results considered. Finally, the talk ends with an open discussion of the benefits of
having a de-facto standard approach, and how we might improve the quality of empirical
evaluation in the real-time community.

Regular Contributions

Code Generation of Time Critical Synchronous Programs on the Kalray MPPA Many-Core
architecture Amaury Graillat

MECHAniSer — A Timing Analysis and Synthesis Tool for Multi-Rate Effect Chains with Job-Level
Dependencies Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam and Thomas Nolte

A Simulation Framework to Analyze the Scheduling of AVR tasks with respect to Engine
Performance Paolo Pazzaglia, Alessandro Biondi, Giorgio Buttazzo and Marco Di Natale

Model Interpretation for an AUTOSAR compliant Engine Control Function Sakthivel Manikandan
Sundharam, Sebastian Altmeyer and Nicolas Navet

Evaluation of Mixed-Criticality Scheduling Algorithms using a Fair Taskset Generator Saravanan
Ramanathan and Arvind Easwaran

Dynamic criticality management with ARTEMIS Olivier Cros, Geoffrey Ehrmann and Laurent George

NTGEN: a Network-on-Chip Traffic Generator toolkit for latency analysis Ermis Papastefanakis,
Laurent George, Xiaoting Li and Ken Defossez

Verification Challenge

Calculating Latencies in an Engine Management System Using Response Time Analysis with
MAST Juan M Rivas, J. Javier Gutiérrez, Julio Medina and Michael Gonzalez Harbour

A Novel Analytical Technique for Timing Analysis of FMTV 2016 Verification Challenge
Benchmark Junchul Choi, Donghyun Kang and Soonhoi Ha

FMTYV 2016: Where is the Actual Challenge? Alessio Balsini, Alessandra Melani, Pasquale
Buonocunto and Marco Di Natale

Computational Analysis of Complex Real-Time Systems — FMTV 2016 Verification Challenge Ingo
Stierand, Philipp Reinkemeier, Sebastian Gerwinn and Thomas Peikenkamp

Schedulability and Timing Analysis of Mixed Preemptive-Cooperative Tasks on a Partitioned Multi-
Core System Ignacio Sanudo, Paolo Burgio and Marko Bertogna

Regular
Contributions

Abstract: Code Generation of Time Critical Synchronous Programs on the
Kalray MPPA Many-Core architecture

Embedded software as found in aircraft, nuclear power plants and cars, is said to be
critical since bugs can have hazardous consequence to human lives. A bug can be be-
havioral or temporal for instance a result too late is a bad result. Hence, we talk about
time-critical software. The Worst-Case Response Time is the bound of this result com-
putation. Critical codes are often generated from formal languages such as the Dataflow
Synchronous Languages (SCADE, Lustre, Esterel, etc). Today the critical systems are still
running on old single-core processors since theses processors are quite simple and make
the computation of the WCRT easy. But, the growing demand for computational power
in avionics and automotive makes the single-core processors limited. Multi-core processors
offer enough computational power but are often too complex to allow computation of the
WCRT. Hence, many-core processors are promising because they offer high computational
power thanks to numerous but very simple cores.

Our purpose is to parallelize and implement a Dataflow Synchronous program written
in SCADE on a many-core processor. Nodes are statically scheduled on the cores to en-
hance temporal predictability. As the communications are in shared-memory, the solution
makes the interferences as predicable as possible to allow the computation of the WCRT.

We use a prototype of the SCADE compiler that allows developer to specify the nodes
of the program that must be executed in parallel. With this information, the compiler
generates new blocks that communicate through data channels. A channel is composed of
a data structure containing the data transferred between the blocks and special macros to
write and read in this structure.

The execution platform is composed of 16 cores and a shared-memory divided into 16
banks such that access on a bank has no interference on the timing of access of another
bank. According to the mapping information given by the developer, a node is executed on
a core and its code stored in the corresponding memory bank. A sequencer allows several
nodes to be executed sequentially one a core. Channels are implemented in a Remote
Write manner, i.e., the result of a node in written in the memory banks of the destination
nodes. To make the interference prediction easier for each node, two releases are defined:
a release for execution, and a release to write the result.

We have implemented a code generator for the Kalray MPPA Bostan many-core SoC
that takes the output of the SCADE compiler and the mapping and timing information
provided by the developer, to generate C code using the Kalray low level libraries.

We applied our study to ROSACE, an open source case-study of a flight controller. It
is composed of an altitude controller and an environment simulator. We parallelized the
altitude controller on one cluster using 5 cores. The environment simulation was located
on a second cluster communicating through the network-on-chip.

MECHAniSer - A Timing Analysis and Synthesis
Tool for Multi-Rate Effect Chains with
Job-Level Dependencies

Matthias Becker*, Dakshina Dasarif, Saad Mubeen*, Moris Behnam*, Thomas Nolte*
*MRTC / Milardalen University, Sweden {matthias.becker, saad.mubeen, moris.behnam, thomas.nolte } @mdh.se
t Research and Technology Centre, Robert Bosch, India dakshina.dasari@in.bosch.com

Abstract—Many industrial embedded systems have timing con-
straints on the data propagation through a chain of independent
tasks. These tasks can execute at different periods which leads to
under and oversampling of data. In such situations, understand-
ing and validating the temporal correctness of end-to-end delays
is not trivial. Many industrial areas further face distributed
development where different functionalities are integrated on the
same platform after the development process. The large effect
of scheduling decisions on the end-to-end delays can lead to
expensive redesigns of software parts due to the lack of analysis at
early design stages. Job-level dependencies is one solution for this
challenge and means of scheduling such systems are available. In
this paper we present MECHAniSer, a tool targeting the early
analysis of end-to-end delays in multi-rate cause effect chains
with specified job-level dependencies. The tool further provides
the possibility to synthesize job-level dependencies for a set of
cause-effect chains in a way such that all end-to-end requirements
are met. The usability and applicability of the tool to industrial
problems is demonstrated via a case study.

I. INTRODUCTION

Many application domains for embedded systems are sub-
ject to timing constraints in order to fulfill their requirements.
Such real-time systems are well studied and several tools
are available to analyze these properties. However, for many
systems it is not only important that the individual tasks
execute within their specified deadlines, but also that data
propagates through a chain of tasks within a specified end-to-
end delay constraint. In the automotive industry such chains
are called cause-effect chains [1], [2]. The tasks in such a
chain can have different activation periods which makes the
calculation of such end-to-end delays a challenging task since
over and undersampling effects need to be considered.

Currently it is left to the discretion of the system designer to
guarantee that all end-to-end delay constraints are met in the
system. While this is viable in small applications, the growing
complexity of industrial applications renders this approach
increasingly difficult. Automotive applications for example
contain several multi-rate cause-effect chains [3]. Additionally,
one task can be part of several chains which increases the
problem complexity further.

This highlights the need for tool support during the system
design, giving the designer viable input during early stages
of the development where only limited or even no concrete
knowledge of the schedule is present. This need is further
increased since applications of several suppliers may be in-
tegrated on the same Electronic Control Unit (ECU) during

the system integration which is usually done by the Origi-
nal Equipment Manufacturer (OEM). Changes in the system
design can be very expensive at this stage. Having means
to obtain end-to-end delay bounds for the data propagation
through a chain of tasks before the system integration can
thus provide valuable information and reduce the risk of costly
design changes in the later development phases.

One way to reduce the possible data propagation among
tasks of different rate is the use of job-level dependencies [4].
A job-level dependency introduces a constraint in the data
propagation between two tasks and is specified on job-level.
Several works address the scheduling problem of systems with
specified job-level dependencies. These works cover fixed-
priority and dynamic priority scheduled systems [5], [6], as
well as time triggered schedules [7], [8]. The problem of ana-
lyzing such systems and to synthesize job-level dependencies
is addressed in [9].

A. Contributions

Several available tools support the end-to-end delay analysis
of cause-effect chains, which are primarily based on the princi-
ples proposed in [10]. They however assume that knowledge of
the task schedule is available when the system is analyzed. In
contrast, the proposed tool MECHAniSer can be helpful in the
early design phases where the exact task schedule is unknown.
Its key features include analysis to i) compute bounds on the
end-to-end delays ii) synthesize job-level dependencies when
specified timing constraints are violated iii) compute end-
to-end analysis in the systems where job-level dependencies
are specified. To facilitate a faster system design, the tool
implements a heuristic to place job-level dependencies in a
system consisting of several, possibly interconnected, cause-
effect chains. This is done in a way such that the maximum
data age delay of each cause-effect chain is met.

B. Paper Layout

The rest of the paper is organized as follows, in Sec-
tion II the system architecture and background information
is provided. In Section III the calculations to obtain the data
age delay are described before the tool itself is discussed
in Section IV. The tool is evaluated based on a case study
in Section V, followed by a discussion of related tools in
Section VI and the conclusions and future work in Section VIIL.

Hyperperiod ‘

A

T

Task arrival

-

Task execution
\.. Data propagation

.~ Overwritten data

2
Maximum Data Age

Fig. 1: Data propagation between tasks of a cause-effect chain in a real-time
system with maximum data age specified.

II. SYSTEM ARCHITECTURE AND BACKGROUND
A. System Model

The system is comprised of a set of periodic tasks I'. Each
task 7; € T' can be described by the tuple {C;,T;}, where
C; is the task’s Worst Case Execution Time (WCET), and
T; is the task’s period. All tasks have implicit deadlines, i.e.
the deadline of 7; is equal to 7;. For all tasks executing on a
processor, the hyperperiod can be defined as the least common
multiple of all periods, HP = LCM(VT;,i € I'). Hence, a
task 7; executes a number of jobs during one H P, where its
§ job is denoted by T; ;.

B. Communication Model

In this work inter task communication is realized via
shared registers, a model commonly used in the industrial
domain [10], [11]. With this, a sending task writes an output
value to a shared register, which is then read by the receiving
task without the need for any signaling between the commu-
nicating tasks. Also, the receiving task always consumes the
newest value present in the shared register.

In order to facilitate determinism, a read-execute-write
semantic is followed in which a task reads all its input values
into local copies before the execution starts. It then executes
by acting on these local copies and writes the output values
after the execution back to the shared registers, making them
available to other tasks. In short, reading and writing of input
and output values is done at deterministic points in time, i.e.
at the beginning and end of the tasks execution respectively.
This is a common communication mechanism found in several
industrial standards (i.e. in AUTOSAR this model is defined
as implicit communication [12], the standard IEC 61131-3
for automation systems defines similar communication mech-
anisms [13]).

C. End-to-End Timing Requirements

A cause-effect chain is typically specified by an end-to-
end timing requirement, as defined for automotive systems
in [1], [2]. In this work the dafa age, the most important
timing requirement in control systems, is examined. A detailed
discussion of corresponding end-to-end delays is provided
in [10]. For data age, the maximum time from sampling an
initial input value at the beginning of the cause-effect chain,
until the last time this value has influence on the produced
output of the cause-effect chain is of interest. Fig. 1 depicts
an example with three tasks, 71, 7o, and 73. All tasks are part
of a cause-effect chain in this order. Note that 7; and 73 are

Ci Ci Ci
RI;k 5 i RI;i k1 * RI; k2
I
e e e e e -0
I LN S [£ 71 S
t

Fig. 2: Read and data intervals of consecutive jobs of 7; if no scheduling
information is available.

activated with a period of T' = 2, while 75 is activated with
a period of T' = 4. This leads to over- and under-sampling
between the different tasks. While the output value of the first
instance of 7y is consumed by the first instance of 75, the data
produced by the second instance of 77 is overwritten before
To has the chance to consume it. Similarly, data produced by
the first instance of 75 is consumed by the first instance of
73. Since no new data is produced before the second instance
of 73 is scheduled the same data is consumed by 73 again.
In the example, this constitutes the maximum data age, from
sampling of the first instance of 7; until the last appearance
of the data at the output of the second instance of 73.

D. Job-Level Dependency

A job-level dependency is similar to the rate transition
operator of PRELUDE [4]. Defined between two tasks, a job-
level dependency specifies which job of a task needs to finish
its execution before a certain job of the successor task can
start.

A job level dependency is described as 7; M 7j, meaning
that the k" job of 7; needs to proceed the [*" job of ;. This
also implies that the dependency between the two jobs applies
for the duration of the hyperperiod of the two jobs only, e.g.
LCM (73, 7j).

III. CALCULATING LATENCIES

In this section, we recapitulate the calculation of data
propagation paths for systems without prior knowledge of the
schedule. For a more in depth explanation a reader is referred
to [9]. Several properties of tasks under register communi-
cation are observed to determine reachability between jobs.
Based on this the different data propagation paths of the cause-
effect chain can be calculated.

A. Reachability between Jobs

The concepts of read interval and data interval are central
to decide if data can be propagated between two distinct jobs.
For a job 7;;, the read interval is defined as the interval
starting from the earliest time 7;; can potentially read its
input data (R,,in(7;,;)) until the last possible time 7;; can
do so without violating its timing constraints (R, (7:,5))-
Similarly, the data interval is defined as the interval from
the earliest time the output data of 7;; can be available
(Dmin(Ti,j)) up to the latest time a predecessor job of the
same task overwrites the data (D, (7 ;)). Hence, the read
interval RI; ; is the interval [Ry,in(7;;), Rmaz(7i;)], and the
data interval is [Dynin(7i ;) Dimaz(7i,5)). These concepts are
depicted in Fig. 2 for jobs of a task 7;. For a system without
any knowledge of the scheduling decisions, one has to assume
that a job can be scheduled anywhere, as long as it starts not

[J MECHAniSer 1.0
Menu Application Help

Cause-Effect Chain Tasks

Job-Level Dependencie:

Cause Effect Chain

Name WCET Period Size D Name WCET Period Size C-Count D-Count ID Stimulus Job Response Job HP
Change Chain MAF2S [Ims |sms |624B |12 ActPed S [1ms_|sms |1208 [1 o 1 Throtle C [1 [Throwle A [1 |10 [) Add Task
AirMFlo... [Ims___|20ms 8358 |13 ActPed_V [1ms_|20ms (3488 |1 1 2 PedalFeel |1 [Throttle C [1 |20
lgnTime.../1ms __[10ms (2238 [14 | © |PedalFeel|Lms |20ms (9368 |1 2 3 ActPed V |1 |Pedalfeel [1 |20 Name: ActP
(e ONMAF_Chain [0 Time...1ms Sms 5728 |15 Throttle... 1ms_|10ms _[3598 2 3 a ignTime C |1 lignTime A2 |10 ame ctPed
Hyperperiod 20 ms Throtle...[1ms_|10ms 3918 |2 1 s AMFlow2 1 [ignTime C [1 |20
yperp Throttle_S[1ms_|sms__[8348 |1 1 6 MAFZS |1 |AMFlow2 |1 |20 Period: 3 s
- 25 ms « |MAFLS [1ms [sms 8528 [0 o 7 Throttle S [1__[Throttle C |1 |10
9 AirMFio... [1ms_|10ms 2468 [0 o 8 weeT: 1 ms
BaseFu. 1ms |10ms 5188 |0 0 9
Add Age Constraint TransFu._|1ms |20ms 488 0 0 10 S 150] byte
Catcutate Del o |Totalfuel [1ms |1oms (3498 [0 0 11 e
alculate Delays MAF2S [Lms [sms (6248 |1 1 12
AirMFio... [1ms_[20ms (8358 |1 2 13 Add Task
Job-Level Dependency | e Tm e el B "
Add Dependency Remove from Chain Delete Task
Generate Dependencies Task: 12 Task: 13 Task: 14 Task: 15
Source AF2_5 ArhFowz onTime_C onTime_A Sink .
Data Propagation Graph = G = e (a) Window to add a task.
Interval Trace Max. Data Age = 25ms
D) Add Job-Level Dependency
ID_0: Chain: 1 Number of Runnables: 5 Constraints:1 Predecessor: ActPed
ID_1: Chain: 3 Number of Runnables: 4 Constraints:1
ID_2: Chain: 2 Number of Runnables: 3 Constraints:1
I [1D_3: Chain: 4 Number of Runnables: 2 Constraints:0 Successor: ActPed_V
There is one initial job.
Latency paths forchain gniionEngineSpeed.Chain :)
Min: 2 Max 1T 141eT 1510 Predecessor Job: | 3 o
Min: 5 Max: 5 1T 141->T_15.2
-_- Min: 10 Max: 14 | T_14,1->T_15,3 Successor Job: 1 1T}
Min: 15 Max: 19 1T 14,1->T_15.4
OK
The System Contains 4 paths for the chain IgnitionEngineSpeed_Chain!
Min: 2
Max: 19 Remove Dependency

Fig. 3: Main view of the tool.

before its release and finishes not after its deadline. In [9], the
notations to define the intervals are as follows:

Rpin (Tm) (J 1) T;
Rmaz(Tij) = Rmin (Tw+1) Ci
Dyin(7ij) = Rpmin(7ij) +
Dmam(Tz,) = Rmam(,j+1) + C

1) Deciding Reachability between Jobs: In order for a job
Tk, to consume data of a job 7; ; the data interval of 7 ;
must intersect with the read interval of 75 ;. The function
Follows(7; j, Tk,1) is defined to return true if this is the case:

true,
false,

if RI, ;N\ DI, ; # 0

Follows(7; j, k1) = otherwise

2) Adjusting the Data Interval for Long Chains: In order to
capture the characteristics of data propagation in a cause-effect
chain of length > 2, the data interval needs to be modified.
Assume the first job of 7;, as shown in Fig. 2 is followed by a
job of a task 7. 7 is released with same period as 7;, but its
execution time is shorter than the one of 7. Follows(7; 1, T,1)
returns true and indicates that 7; ; can potentially consume the
data of 74 1. However, in order to decide reachability between
the 741 and a third task in the chain the data interval of 7y, ;
must be modified. This is the case because 7 1 can consume
the data of 7; ; earliest at time Dy, (7; ;). Consequently, this
data can earliest be available as output data of 7 ; at time
Dyin(7ij) + Cr. D}, (Tr1, Ti,;) defines the starting time of
the data interval of 73 ; if the data produced by ; ; shall be
considered as well:
= maX(Dmin<7’7;’j) + Ck,

D:win(Tkv“Tivj) Dmin(Tk,l))

Note that the data interval only needs to be adjusted if
Dyin (k1) is smaller than D, (75 ;) + Ck. These modifi-
cations are local for the specific data path, hence, if another

(b) Window to add a dependency.

Fig. 4: Windows to add new elements.

combination of jobs is involved the original data interval must
be used.

B. Calculating Data Paths

To calculate all possible data propagation paths in a system,
a recursive function is used. This function constructs all
possible data propagation paths from a job of the first node in
a cause-effect chain up to the job of a last node of the chain.
Consequently this needs to be done for all jobs of the first
task of a chain, inside the hyperperiod of the chain.

As aresult a set of data propagation paths is provided, where
each path comprises an ordered list of involved jobs.

C. Constructing Data Propagation Paths and Max. Data Age

For a given data path, the maximum end-to-end latency and
the data age, is computed. Given Tgq,¢ iS a job of the first
task of the cause-effect chain, and 7., is a job of the last
task of a cause-effect chain:

(Rmaz (Tend) +C7'end) *Rmin (Tstart)

In order to compute the maximum data age for any possible
path in the system, AgeMax() must be computed for all data
paths. The maximum of these values is the maximum data age
of the cause-effect chain.

AgeMaX(Tstart) Tend) =

IV. TooL LAYOUT AND USAGE

This section briefly outlines the different forms of data input
to the tool. Further the tool layout and its usage are discussed
and a closer look is provided into the different visualization
options.

A. Input Formats

The tool specifies its own XML format to save a current
project. Additionally it is possible to import projects designed
with AMALTHEA V1.0[14]. AMALTHEA is an open tool
platform for the design of multi-core systems in the automotive
domain. The implementations for the support of additional

[Data Propagation Tree - Chain 1 (DemoChain)

) Data Propagation Tree - Chain 1 (DemoChain)

Age Constraint: 12

Age Constraint: 12

(a) The graph view in MECHAniSer. Edges between nodes depict possible data propagation while dashed edges show paths leading to larger
data age then specified with the age constraint. The same chain with generated job-level dependencies is shown in the right window.

[] Interval Trace - Chain 1 (DemoChain)

RLL R12 R13 RL4 RIS

RIS R1T RLS RLS RLIO

oL : . o
! T oo ! ! T bia

b5 . T : . o1s

k3.1 R32 R33 R4 R3s w3, R R3S R39, .10,
it b3 i s

3.7 1.9

ol

Rilly L, Ly, gL o iy g 1 Ri19, GRA
D11 s 1D.is D319

D310 D32 o Toats D18 e

(b) The trace-view of MECHAniSer depicts the read- and data-interval of each involved job and visualizes the
minimum and maximum data age of initial jobs as well as their possible data propagation range (in yellow).

Fig. 5: The two different visualization options for a cause-effect chain.

tools (i.e., AMALTHEA V1.1, Rubus ICE [15]) are currently
ongoing and will be made available in the future.

B. Layout and Usage

The tool is built around a main panel which is shown in
Fig 3. The panel depicts the chain under analyis and also
provides clickable interfaces to additional features of the tool.

1) The Main Panel and its Parts: The main window
displays information about all tasks of the system, in the
“Tasks”-table, as well as on all specified job-level depen-
dencies in the “Job-Level Dependency”-table. The selected
chain is graphically visualized, as shown in Fig. 3, while the
”Cause-Effect Chain”-table describes the different parameters
of the chain. This chain can further be analyzed and modified.
The left column also provides means to manage job-level
dependencies. The additional views can also be opened here
via the button ”Data Propagation Graph” and “Trace View”.
Output for the user is provided in the text-box at the bottom
part of the window.

A user can add or delete a task over the “Application”-
menu (see Fig. 4a) with the "Add Task” and ”Delete Task”
buttons. Note that the tool also displays the number of chains
and the number of job-level dependencies that a task is part
of. In order to keep the system consistent, a task must first be
removed from all cause-effect chains and from all job-level
dependencies before it can be removed from the system.

The chain which needs to be analyzed is selected via
the button "Change Chain”. This action pops up a window
wherein a user can select the desired cause-effect chain. Once
approved, the tool updates the related views. A new task can be
added to the chain by selecting the respective task in the task
table and then clicking the left-arrow button which appends

the task to the chain. The correct position of a task is set by
selecting the task in the chain table and then clicking the up-
and down-button which alter the tasks position. A task can be
removed from the chain by selecting the task followed by the
button “Remove from Chain”.

Finally a maximum data age constraint can be specified on
the chain by clicking on the button “Add Age Constraint”.
This pops up a window where the age constraint can be
specified. Note that this new input overwrites any previously
specified constraint. A constraint can be removed by specify-
ing a maximum data age of 0.

2) Calculating Minimum and Maximum Data Age: The
minimum and maximum data age of the currently selected
cause-effect chain under consideration of all specified job-
level dependencies can be computed by clicking on the button
”Calculate Delays”. This action computes delays by applying
the analysis presented in [9]. All data propagation paths
are calculated, implying all possible paths that the data can
propagate, when read from any of the initial jobs of the chain.

An initial job is defined as any job that the first task of
the cause-effect chain releases during the first hyperperiod of
the chain. Since the number of possible paths depends on the
number of involved tasks as well as on the involved periods, a
large number of data propagation paths might be generated. A
user has hence the possibility to uncheck the option ”Calculate
All Paths” which will only calculate the data propagation path
for the minimum and maximum job at each chain level. Hence
this reduces the complexity of the calculation and simplifies
the post processing by the system designer.

3) Adding and Synthesizing Job-Level Dependencies: The
second strength of the tool is to handle job-level dependencies.

The left column of the main window provides means to add
a job-level dependency manually as well as to synthesize job-
level dependencies for all cause-effect chains in the system.
The button “Add Dependency” opens a new window (see
Fig. 4b) which allows to select the two involved tasks and
the dependent instances. Note that first the two tasks need to
be selected before the menu for the involved jobs becomes
active. This is the case since, depending on the selected tasks,
the available job instances change.

The button “Generate Dependencies” triggers a heuris-
tic [9] which adds job-level dependencies to the system in
a way that all specified age-constraints are met. Already spec-
ified dependencies are not affected. The main intuition behind
the heuristic is that a placement of a job-level dependency
can prune a branch of the data propagation tree. Hence the
heuristic adds dependencies in a way such that all branches
which lead to larger end-to-end delays than specified are
removed.

4) The Graph View: The graph view, as shown in Fig. 5a,
depicts the data propagation tree of the currently selected
chain. Each data path originating from the different initial
nodes is colored differently for a more effective visual pre-
sentation. The different jobs of the involved tasks are drawn
in a way that the data always propagates from top to bottom,
i.e. the beginning of the chain is at the top and the last task of
the chain is at the bottom. Branches which lead to end-to-end
delays larger than the specified constraint are shown in dashed
lines. These branches need to be removed in order to meet the
specified constraints. Note that this representation depicts no
time information, the execution of the jobs depends on the
exact path a data propagates and hence cannot be shown in
this overview. However, jobs are grouped such that jobs of the
same hyperperiod are arranged together and separated by the
vertical dashed lines. A user can obtain further information of
the different nodes by clicking on them which then displays
an information box.

5) The Trace View: The trace view is shown in Fig. 5b. This
view visualizes the read- and data-interval of all jobs of one
chain (see Fig. 2 for a description). Initially the first initial job
is selected and the propagation of the calculated data paths is
visualized via yellow overlay. Additionally the minimum and
maximum data age of these data paths are shown. A user can
change this view to any other initial job by clicking on the
respective read interval.

C. Implementation and Distribution

To be platform independent, the tool is developed in Java.
The main development is performed under OSX which might
cause a diverging visual appearance on other platforms. The
tool is freely available online'. A user documentation and
examples are provided under the same link.

V. CASE STUDY

The applicability of the presented tool is demonstrated on
a case study of an Engine Management System (EMS). This
case study is adapted from the results presented in [11]. The
EMS consists of several subsystems which control the air

Uhttp://www.mechaniser.com

| Cause-Effect Chain {;, Age Constraint = 25ms

'
I
i B 1 . 1
MAF ; > MAF_S [» AirMFlow 3 gnTlme_C. :) TG1
! 3
- I - e o ! Te8
Es () " |
\ Ignition System | 4
Cl

Cause-Effect Chain {,, Age Constraint = 20ms

Fig. 6: Tasks and specified cause-effect chains of the IS and ITS.

and gas mixture which is injected into the cylinders. The Air
Intake System (AIS) controls the amount of air via the throttle
position, while the Fueling System (FS) controls the amount
of gas which is injected per stroke. The Ignition System (IS)
controls the exact time of the ignition, both FS and IS feed into
the Injection Time and Ignition Time Actuation System (ITS).
For a smooth and energy efficient operation of the vehicle,
several age constraints must be met. The complete EMS of this
case study comprises 16 different tasks which three different
periods (5 ms, 10 ms, and 20 ms)

Due to space limitations, we discuss only part of the
complete EMS. The case study includes two cause-effect
chains, (1, and (o, which are specified from the Mass Air
Flow (MAF) input to the output for Ignition Time of cylinder
1 to 8 (TG1-8). The cause-effect chain (5 is specified from
the Engine Speed (ES) input up to TG1-8. Both chains span
from the IS to the output of the ITS. 4 tasks with 3 different
periods are involved (see Fig. 6) and WCETSs of all tasks are
set to 1 ms. We refer to [9] for a case study of the AIS.

A. Analysis of Latencies using MECHAniSer

Both specified cause-effect chains contain a number of
runnables which are triggered at different periods. For the
chain (; all four tasks are involved. The calculation of all data
propagation paths results in 70 different paths, a minimum data
age of 4ms, and a maximum data age of 55 ms. The maximum
possible data age exceeds the specified age constraint of 25 ms
and the chain is not directly schedulable by the system. In
the next step we will show how the tool generates job-level
dependencies to remove the data propagation paths which
exceed the constraint.

The second chain (, consists only of two tasks. Hence, the
number of data propagation paths is smaller. Four paths are
identified, with a minimum data age of 2ms and a maximum
data age of 20 ms. Here the specified age constraint of 20 ms
is met without the need to specify job-level dependencies.

The required computation time for the analysis of the two
chains is 5ms and 2ms for (; and (5 respectively.

B. Synthesizing Job-Level Dependencies

The initial analysis of the two cause-effect chains revealed
that, while (, meets its age constraint, (; does not. Hence
job-level dependencies need to be generated in order to meet
the constraint.

The tool generated three different job level dependencies in
order to meet the constraint of the cause-effect chain. One job-
level dependency was generated between each consecutive pair
of tasks. This successfully reduces the maximum data age to
25ms, allowing the cause-effect chain to meet its constraint.

The presence of the job-level dependencies further reduces
the number of data propagation paths to 13. The required
computation time is 19ms. Since (5 is subset of (;, the
specified job-level dependency between the last two tasks of
the cause-effect chain can have influence on (5, hence (o
needs to be revalidated as well. The job-level dependency
specified for the two tasks is defined between the first job
of task IgnTime_C to the second job of task IgnTime_A, the
parameters are not influenced and the latency stays at 20 ms
with 4 different data propagation paths.

VI. RELATED TOOLS

Many industrial standards specify constraints for the propa-
gation of data through a chain of tasks [1], [2]. A detailed
discussion of end-to-end delays is provided in [10]. The
authors formally specify age- and reaction delays in multi-
rate systems which communicate via register-communication
and further develop a method to calculate end-to-end delays
in such systems.

Several commercially available tools support the analysis
of end-to-end delays in cause-effect chains. Examples are
SymTA/S TraceAnalyzer for ECUs [16], Rubus ICE [15], and
Timing Architects Inspector [17].

To the best of our knowledge the analysis presented in [10]
is implemented in these tools [18], [19]. EELAP [20] is an
open source end-to-end analyzer for the ProCom [21] real-time
component model. The tool is built on the analysis of [10].
All these tools however require an existing schedule in order
to analyze the system. Hence, the calculation of end-to-end
delays in early design phases is not supported.

Several works address systems where job-level dependen-
cies are specified [5], [6], [7], [8]. The application model
in these works is specified by the prelude language [4]
which specifies the rate-transition operation. On task level
this operation is equivalent to a job-level dependency. The
prelude compiler is available [22] and can generate synchro-
nized multi-task C-code which then can be executed by the
supported target OS. To the best of our knowledge, no tool
exists that can automatically generate job-level dependencies
in order to meet the end-to-end timing constraints.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented MECHAniSer, the first tool for
the analysis and synthesis of multi-rate cause-effect chains
with specified job-level dependencies. The tool allows to ana-
lyze systems at early design phases, where detailed scheduling
knowledge is not available. Further, the tool synthesizes job-
level dependencies for a set of cause-effect chains in a way
that all their end-to-end timing constraints are met. This allows
such systems to be scheduled on any platform which supports
these concepts [5], [6], [7], [8].

The tool provides its own XML format to store the project
configurations but it also provides the possibility to import
projects from existing tools and hence eases the design pro-
cess. Multiple graphical views are provided to support the
system designer and to ease the understanding of the data
propagation in multi-rate cause-effect chains. Several exten-
sions to the tool are possible. One limitation of the current

implementation is the time granularity. Future versions of the
tool will allow to specify time values in smaller granularity
than ms. Besides data age, many industrial applications specify
reaction constraints. Analysis for this type of constraint is
currently not supported but will be part of future work.

ACKNOWLEDGMENT

The work presented in this paper is supported by the Swedish
Knowledge Foundation (KKS) through the projects PREMISE and
DPAC; and the Swedish Foundation for Strategic Research (SSF)
through the projects PRESS.

REFERENCES

[1] AUTOSAR - Spec. of Timing Extensions, AUTOSAR Std. 4.2.2, 2014.

[2] EAST-ADL - Domain Model Specification, EAST-ADL Association Std.
V2.1.12, 2014.

[3] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, 2015.

[4] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A real-time architecture
design language for multi-rate embedded control systems,” in ACM
Symposium on Applied Computing, 2010, pp. 527-534.

[5] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in 16th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, 2010, pp. 301-310.

[6] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, ‘“Multi-
task implementation of multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307-338, 2011.

[7]1 W. Puffitsch, E. Noulard, and C. Pagetti, “Off-line mapping of multi-
rate dependent task sets to many-core platforms,” Real-Time Systems,
vol. 51, no. 5, pp. 526-565, 2015.

, “Mapping a multi-rate synchronous language to a many-core
processor,” in 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013, pp. 293-302.

[91 M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-

sizing job-level dependencies for automotive multi-rate effect chains,”

in Proceedings of the 22th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), [Online]

http://www.es.mdh.se/publications/4368-, 2016.

N. Feiertag, K. Richter, J. Norlander, and J. Jonsson, “A compositional

framework for end-to-end path delay calculation of automotive systems

under different path semantics,” in Int. Workshop on Compositional

Theory and Technology for Real-Time Embedded Systems, 2008.

[11] P. Frey, “Ulmer Informatik Berichte Nr 2010-03 - Case Study: Engine

Control Application,” University Ulm, Tech. Rep., 2010.

[12] AUTOSAR - Specification of RTE, AUTOSAR Std. 4.2.2, 2014.

[13] IEC 61131-3, International Electrotechnical Commission Std., 2003.

[14] AMALTHEA, “An Open Platform Project for Embedded Multicore

Systems,” [Online] http://www.amalthea-project.org/index.php/contact,

last visited 16.05.2016.

Arcticus Systems, “Rubus ICE,” [Online]

systems.com/products/, last visited 16.05.2016.

Symtavision GmbH, “SymTA/S and TraceAnalyzer for ECUs,” [On-

line] https://www.symtavision.com/products/ecu-timing/, last visited

16.05.2016.

Timing Architects, “Timing Architects Inspector,” [Online]

https://www.timing-architects.com/ta-tool-suite/inspector/, last visited

16.05.2016.

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,

“System level performance analysis - the symta/s approach,” IEE Pro-

ceedings - Computers and Digital Techniques, vol. 152, no. 2, pp. 148—

166, 2005.

S. Mubeen, J. Miki-Turja, and M. Sjodin, “Support for end-to-end

response-time and delay analysis in the industrial tool suite: Issues,

experiences and a case study,” Computer Science and Information

Systems, vol. 10, no. 1, 2013.

J. Kuncar, R. Inam, and M. Sjodin, “End-to-end latency analyzer for

ProCom - EELAP,” Tech. Rep. ISSN 1404-3041 ISRN MDH-MRTC-

272/2013-1-SE, 2013.

R. Inam and M. Sjdédin, “Implementing and evaluating communication-

strategies in the procom component technology,” SIGBED Rev., vol. 9,

no. 4, pp. 41-44, 2012.

Prelude, “programming critical real-time systems,” [Online]

http://www.lifl.fr/%7Eforget/prelude.html, last visited 16.05.2016.

[8]

[10]

[15] https://www.arcticus-

[16]

(17]

(18]

[19]

[20]

[21]

[22]

Accepted as abstract at Waters 2016

A Simulation Framework to Analyze the Scheduling
of AVR tasks with respect to Engine Performance

Paolo Pazzaglia, Alessandro Biondi, Marco Di Natale and Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy
Email: {name.surname} @sssup.it

Abstract—We present a simulation framework, based on
Simulink and an extension of the T-Res scheduling simulator
tool to help provide a better characterization of the very popular
problem of scheduling and analysis of Adaptive Variable Rate
Tasks (AVR) in engine control. The purpose of the tool is to go
beyond the simplistic model that assumes hard deadlines for all
tasks and to study the impact of scheduling decisions with respect
to the functional implementations of the control algorithms and
the true performance of the engine.

I. INTRODUCTION

The study of the schedulability conditions for engine control
tasks (or adaptive variable rate - AVR) is gaining popularity in
the real-time research community because of the novel nature
of the problem and the special activation conditions that apply
to some of the system tasks. These tasks are not periodic
or sporadic, but are activated by the rotation of the engine
crankshaft (a parameter of the physical controlled system). In
addition, to compensate for the increased CPU load at high
rotation speeds (and more frequent activation times), the code
implementation of these tasks is defined in such a way that
at given speed boundaries, the implementation is simplified
and the execution time is reduced. A typical engine control
application consists of time-driven periodic tasks with fixed
periods, typically between a few milliseconds and 100 ms
(see [1], page 152), and angular tasks triggered at specific
crankshaft angles. The activation rate of such angular tasks
hence varies with the engine speed (variable-rate tasks). For
example, for engines where the speed varies from 500 to 6500
revolutions per minute (RPM), the interarrival times of the
angular tasks range from about 10 to 120 ms (assuming a
single activation per cycle).

With respect to the set of activation instants, the dependency
from a physical phenomenon characterizes this problem as
truly belonging to the class of problems in cyber-physical
systems (CPS). However, in many papers the dependency of
the timing and scheduling problem from the physics of the
controlled system is restricted to the set of activation events
and every other concern is hidden under the typical assumption
of hard deadlines.

In reality, this problem (as many others) is representative of
a class of control systems in which deadlines can be missed
without catastrophic consequences, and the problem should ac-
tually be defined as a design optimization, where the objective
is to select the controls implementations and the scheduling
policy in such a way that a set of engine performance functions

are optimized (including power, emissions, noise, pollution).
These performance functions depend in complex ways from
timing parameters, such as jitter and latency. Informally, the
objective of the scheduler is not to miss too many deadlines
or produce actuation signals that are too much delayed.

Formally, the problem is quite complex and extremely
unlikely to be solved in a simple, closed analytical form or
even with a general procedure for expressing the dependency
of th performance from scheduling. This is the reason for
the investigation of alternative approaches that are based on
the simulation of the three system components in a joint
environment:

o A model of the engine and the combustion process in it
(the physical system or plant)

o A model of the engine controls

o A model of the task configuration and the scheduling

II. OUR SIMULATION FRAMEWORK FOR THE ANALYSIS OF
THE PERFORMANCE IMPACT OF SCHEDULING

Our cosimulation framework follows the principles of CPS
system analysis. It is based on the popular Simulink toolset
and leverages the T-Res cosimulation environment for the
simulation of the task scheduling [2].

For the development of the engine model we leveraged
information from several sources, including engine models for
the steady state and event-based models as described in [1] and
other empirical models found online.

The engine controls are currently extremely simple and only
contain a simple analytical formula that computes the angle of
injection and the injection time that is defined by a calibration
table.

Finally, the T-Res simulation framework described in [2] is
used for modeling the scheduling delays.

III. EXTENDING T-RES FOR MODELING AVR TASKS

T-Res consists of a set of custom Simulink blocks repre-
senting tasks and kernels and allows to interface the Simulink
simulation engine, acting as master, with a scheduling sim-
ulator in a co-simulation environment (see Figure 1). The
scheduling simulator (we use RTSim [3], but the backend
simulation engine can be changed) computes the scheduling
delays and latches the outputs of the corresponding tasks until
their simulated completion time. This allows to simulate delays
in the production of output values and the corresponding
impact on the control function.

T-Res provides a custom block for representing the kernel
and its scheduler. The block is configured with the selection
of the scheduling policy and the behavior in case of deadline
(period) overrun. The kernel block provides a set of activation
signals as output. These activation signals go to instances of
the the second type of custom blocks, representing tasks. Each
task receives an activation signal from the kernel (indicating
when the task begins or resumes execution), and is character-
ized by an execution time estimate (a configuration parameter),
and a signal going back to the kenel and providing the amount
of time that is still required by the task at each point in time.
The task block produces as output a set of activation and latch
signals for all the functional subsystems that are executed by
the task.

With respect to the activation, sporadic tasks are charac-
terized by an activation event going as input to the kernel
block, or a periodic activation specification, provided as a
configuration parameter to the kernel (for details, refer to [2]).
The execution time description is provided to the kernel for
each task using a simple language.

Custom blocks
TRes library

network
e —
LI

‘ Simulink S—function API ‘ ‘abstracl scheduling sim API ‘ ‘ abstract network sim API ‘

Standard blocks

Plant

.

Controller

adaption
layer

extension extension

NS-3

adaption

adaption layer
P 4 layer

Simulink Simulation engine

RTSIim

other

MetaSim | ™ OMNeT++

Co-simulation framework |

Figure 1. The TRes cosimulation architecture.

For the purpose of this project we entended the task model
block and the timing information associated with it to allow
for the modeling of the AVR behavior, as shown in Figure
2. The task block in T-Res includes a signal for the explicit
activation in case of event-triggered tasks. This signal is used
to define the activation of the task in correspondence to given
angular positions of the engine crankshaft. In addition, the
block has been extended to include another imput that refers
to a mode index. This input can be used for multiple purposes
and defines a different execution time behavior for a finite and
enumerated set of conditions.

[A2]
function() trigger
Mode number
mode next_instr_dur
Task_2_AVR

Figure 2. A custom block for modeling an AVR task.

Accepted as abstract at Waters 2016

In the case of AVR tasks, the mode index is provided from
a simple block that looks at the engine rotation speeds and,
based on the speed range, defines the execution time that the
task requires.

The task will have different execution times for different
speed modes according to a specification of execution times as
a function of the mode (speed) index provided as a workspace
variable.

IV. SIMULINK MODELS OF THE ENGINE AND THE
CONTROL TASKS

Figure 3 shows the model of the engine and the control
functionality in Simulink. The blocks in the upper part of
the figure represent the engine subsystems that are currently
considered and includes the turbocharger, the compressor
manifold, the intercooler, the intake and exhaust manifolds
and the model of the engine cylinders. The subsystem on
the bottom part of the figure wraps our model of the engine
controller, with its outputs: the injection angle and duration
and the VGT.

Figure 4 shows the subsystems realizing the controller
functions and the task model of the controller. The model
consists of a kernel (top left side), and four tasks on the
bottom left side. One of the four tasks is an AVR, two are
periodic and one represents background computations. The
chains of subsystems on the right side represent the control
functions implemented by the tasks. The second from the top
contains the six subsystems that are executed by the AVR task
(matching the six output signals from the AVR task block).

V. OBIJECTIVE AND STATUS

A detailed modeling of the control function is necessary
to better understand the impact of deadline misses or long
latencies. Depending on the implementation of the control
function, a deadline miss may result in a late actuation, or
a missed actuation or even an actuation with old data. In our
controls implementation, the AVR task computes the phase
and duration of the injection and passes them to the task that
simulates the injection actuators. Hence, a missed deadline
results in actuating the injectors with the values computed in
the previous cycle with a likely error in phase and duration
with respect to the ideal values.

The objective of our framework is multifold:

o To understand the effect of the scheduling on the engine
performance and to use the environment for analyzing
the impact of scheduling policies and parameters, such
as evaluating fixed priority vs EDF or different possible
priority assignments and task configurations.

o To analyze the timing parameters that truly of interest for
evaluating the performance of the engine and possibly
attept a characterization that isolates the attributes of
interest. This includes, among others, the evaluation of
schemes like m-k deadline misses, or overload manage-
ment (maximum lateness).

o To better characterize the design problem consisting in
the optimal selection of the transition speeds for AVR
tasks.

Currently, within the assumptions of our model, the sim-
ulation is able to show how the scheduling delays result in
errors in the angle/duration of the injection actuation. Figure
5 shows preliminary results. In the figure graph, the vertical
axis shows the phase error in the actuation of the injection for
a sample manoeuvre consisting of a sudden acceleration and
a corresponding increase in the engine rotation speed from
low to high values. Two graphs are plotted in the figure. The
graph in red (lighter) color shows the angle error when the
execution time of the AVR task is kept constant, regardless of
the engine speed. At high rotations, the task misses deadlines
and the injection angle error grows to almost 50 degrees. When
the execution time of the AVR task is reduced at high rates,
the scheduling delays are much lower and, correspondingly,
the angle error of the injection is much lower, as shown by
the blue line in the graph. The angular error in the injection is
related to a variation (loss) in the power performance of the
engine.

Our objective is to relate the errors in phase and duration
of the injection to a possible loss of power, providing ways
to analyze the impact of scheduling with respect to the first
performance function of interest. However, even within the
limited scope of power performance analysis, the evaluation of
the scheduling impact (and the AVR characteristics of tasks),
requires that the model includes multiple representations of the
control functionality, one for each possible execution mode of
the AVR tasks. When these are available, the model will pro-
vide an early capability of expressing the performance impact
of control implementations at different levels of complexity
(for variable execution times or WCETs). Clearly, this is only
the initial objective, given that a realistic model should also
include the characterization of pollution, noise and efficiency.

—

Figure 5. Angular error in the injection caused by scheduling delays of the
AVR task: error with fixed execution times (red) and with adaptive excution
(in blue).

VI. RELATED WORK

The presentation of the task model in which engine control
tasks are implemented with a variable computational require-
ments for increasing speeds is in [4],

These tasks are also referred to adaptive variable-rate
(AVR). Analyzing the schedulability of tasks sets consisting

Accepted as abstract at Waters 2016

of both periodic and AVR tasks is a difficult problem that has
been addressed by several authors under various simplifying
assumptions, under both fixed priority scheduling [5]-[7] and
Earliest Deadline First (EDF) [8]-[10]. Other authors proposed
methods for computing the exact interference [11] and the
exact response time [7] of AVR tasks under fixed priority
scheduling. It has been shown [10] that, given the large
range of possibile interarrival times of an AVR task, fixed
priority scheduling is not the best choice for engine control
systems since, while EDF exhibits a nearly optimal scheduling
performance. Based on this fact, Apuzzo et al. [12] provided
an operating system support for AVR tasks under the Erika
Enterprise kernel [13].

All the papers considered above, however, focused on
analyzing the schedulability of task sets consisting of periodic
and AVR tasks, without any concern on engine performance.
A performance-driven design approach has been addressed
in [14] for finding the transition speeds that trigger the mode
changes of an AVR task.

A very large number of projects target the evaluation of
scheduling policies and the analysis of task implementations.
A necessarily incomplete list includes Yartiss [15], ARTISST
[16], Cheddar [17], and Stress [18].

Finally, TrueTime [19] is a freeware! Matlab/Simulink-
based simulation tool that has been developed at Lund Univer-
sity since 1999. It provides models of multi-tasking real-time
kernels and networks that can be used in simulation models
for networked embedded control systems. TrueTime is used by
many research groups worldwide to study the (simulated) im-
pact of lateness and deadline misses on controls. In TrueTime,
the model of task code is represented by code functions that are
written in either Matlab or C++ code. Several research works
investigate the consequences of computation (scheduling) and
communication delays on controls. An overview on the subject
can be found in [20].

REFERENCES

[1] L. Guzzella and C. H. Onder, Introduction to Modeling and Control of
Internal Combustion Engine Systems. Springer-Verlag, 2010.

[2] F. Cremona, M. Morelli, and M. D. Natale, “Tres: A modular repre-
sentation of schedulers, tasks, and messages to control simulations in
simulink,” in Proc. of the 31st ACM Symposium on Applied Computing
(SAC 2016), Pisa, Italy, April 4-8, 2016.

[3] L. Palopoli, G. Lipari, L. Abeni, M. D. Natale, P. Ancilotti, and
F. Conticelli, “A tool for simulation and fast prototyping of embedded
control systems,” in LCTES/OM, S. Hong and S. Pande, Eds. ACM,
2001, pp. 73-81.

[4] D. Buttle, “Real-time in the prime-time,” in Keynote speech at the 24th
Euromicro Conference on Real-Time Systems, Pisa, Italy, July 12, 2012.

[5] J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A new
task model with continually varying periods for cyber-physical systems,”
in Proc. of the Third IEEE/ACM Int. Conference on Cyber-Physical
Systems (ICCPS 2012), Beijing, China, April 2012, pp. 28-38.

[6] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling,” in Proc. 20th IEEE Real-Time and Embedded Technology
and Applications Symposium, Berlin, Germany, April 2014.

Uhttp://www3.control.lth.se/truetime/LICENSE. txt

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Biondi, M. D. Natale, and G. Buttazzo, “Response-time analysis
for real-time tasks in engine control applications,” in Proceedings of the
6th International Conference on Cyber-Physical Systems (ICCPS 2015),
Seattle, Washington, USA, April 14-16, 2015.

G. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model,
analysis, and design issues,” in Proc. of the Int. Conference on Design,
Automation and Test in Europe (DATE 2014), Dresden, Germany, March
24-28, 2014.

A. Biondi and G. Buttazzo, “Engine control: Task modeling and anal-
ysis,” in Proc. of the International Conference on Design, Automation
and Test in Europe (DATE 2015), Grenoble, France, March 9-13, 2015,
pp- 525-530.

A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of
engine control tasks under EDF scheduling,” in Proc. of the 27th
Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund,
Sweden, July 8-10, 2015.

A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo,
“Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling,” in Proceedings of the 26th Euromicro Conference on Real-
Time Systems (ECRTS 2014), Madrid, Spain, July 8-11, 2014.

V. A. A. Biondi and G. Buttazzo, “OSEK-like kernel support for
engine control applications under EDF scheduling,” in Proceedings of
the 22nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2016), Vienna, Austria, April 11-14, 2016.

“Erika enterprise: an OSEK compliant real-time kernel.” [Online].
Available: http://erika.tuxfamily.org/drupal/

A. Biondi, M. D. Natale, and G. Buttazzo, “Performance-driven design
of engine control tasks,” in Proceedings of the 7th International Confer-
ence on Cyber-Physical Systems (ICCPS 2016), Vienna, Austria, April
11-14, 2016.

Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, M. Qamhieh
et al., “Yartiss: A tool to visualize, test, compare and evaluate real-
time scheduling algorithms,” in Proceedings of the 3rd International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems, 2012, pp. 21-26.

D. Decotigny and 1. Puaut, “Artisst: an extensible and modular simu-
lation tool for real-time systems,” in Object-Oriented Real-Time Dis-
tributed Computing, 2002.(ISORC 2002). Proceedings. Fifth IEEE In-
ternational Symposium on. 1EEE, 2002, pp. 365-372.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible
real time scheduling framework,” in ACM SIGAda Ada Letters, vol. 24,
no. 4. ACM, 2004, pp. 1-8.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“Stress: A simulator for hard real-time systems,” Software: Practice and
Experience, vol. 24, no. 6, pp. 543-564, 1994.

A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzén,
“How does control timing affect performance?” IEEE control systems
magazine, vol. 23, no. 3, pp. 16-30, 2003.

K. J. Astrom and B. Wittenmark, “Adaptive control,” in Prentice Hall,
2016.

Accepted as abstract at Waters 2016

Accepted as abstract at Waters 2016

From11

- e ot - =]

[VGT ref] vt op compr press p_compr I fow Ar ai flow GotaZ

e we em bm Goto
From2 3 p_im
" — Cgmpressor manifold ™™ Intake manifold . wxtem -~
- Intercooler i g
rom’ Tom N " RPM
From13 Turbocharger N [Froms Engine cylinders radis o REM enging
Goto3 @
e mass fow u;mum;..
Goto?
Engine Control I E,.wpﬂﬂ
Gotos From§ From12 - Gotol
o e G Exhaust manifold
lInjection angle ™ -
From9
VGT From14
arR AFR
Ges pedal
Gotod
fuel mass ped inpus pedinp
Figure 3. Engine control model in Simulink.
= Dy
trigger
TDC_trigger n i I i _’E
Kemnel m Out! = In1 Qut! ——{In1 Outt —P{In1 Outl

mode

Segl 1 Lateht 1 Seg2 1 Latch2 1 Scoped

)

trigger |
1.2 m (S2_2] (S3_2] IF3_2]
next_instr_dur|
w_e
Task_1 - vt Llowi|—wfmi TLowil—a{n ouwtl—lmi L ouwi el L oun it 1 outt —I Lin

>
[S
>

2 e o OuZ|—B{n2 ouz|—pin2 ouz—m{In2 outz |—»]{in2 ou2 n2 out
Segl 2 Latch1_2 Seg2_2 Latch2_2 Segd_a Latch2_a l_’.
uncton(] ol
fuel_vol

Mode number
nest_instr_dur

Task_2_AVR

n 1 (o (| | | o7 | 1 | n

Outt |—»{ In1 Outt F—»{In1 Out1 —In1 Out! f—»In1 Outt —»In1 Outl 4@

)

tiigger

Segl_3 Latch1_3 Seq2 3 Lalch2_3 Seg3 3 Lalch3_3 Scope3

e
Outl = In1 Outt

Segl 4 Latchi_4 Scope2

nest_instr_dur

Task_3

[
0 trigger

next_instr_dur

Task_4_idle

Figure 4. Task model in TRES.

Model Interpretation for an AUTOSAR compliant
Engine Control Function

Sakthivel Manikandan Sundharam
University of Luxembourg
FSTC/Lassy
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
sakthivel.sundharam @uni.lu

Abstract—Model-Based Development (MBD) is a common
practice in the automotive industry to develop complex software,
for instance, the control software for automotive engines, which
are deployed on modern multi-core hardware architectures.
Such an engine control system consists of different sub-systems,
ranging from air system to the exhaust system. Each of these sub-
systems, again, consists of software functions which are necessary
to read from the sensors and write to the actuators. In this setting
MBD provides indispensable means to model and implement
the desired functionality, and to validate the functional, the
non-functional, and in particular the real-time behavior against
the requirements. Current industrial practice in model-based
development completely relies on generative MBD, i.e., code
generation to bridge the gap between model and implementation.
An alternative approach, although not yet used in the automotive
domain is model interpretation, the direct interpretation of the
design models using interpretation engine running on top of the
hardware. In this paper, we present a case study to investigate
the applicability of model interpretation, in contrast to code
generation, for the development of engine control systems. To
this end, we model an engine cooling system, specifically the
calculation of the engine-coolant temperature, using interpreted
model based development, and discuss the benefits and low-lights
compared to the existing code-generation practice.

I. INTRODUCTION

Model-Based Development (MBD), also frequently referred
to as Model-Driven Engineering (MDE), denotes the use of
models as the main artifacts to drive the development of
systems. It has been profoundly reshaping and improving
the design of software-intensive embedded systems specifi-
cally. Traditionally, model-driven development (based on code
generation) is deployed in the automotive industry. Code
generation is used to generate code from a higher level model
and create a working application.

As mentioned in [4], Model-Based Development is being
used for series development by a majority of the automotive
companies. Especially in development phases i.e., system
design and coding, the model-based design is used extensively.
As mentioned in [7], this kind of MBD used by automotive
suppliers and car manufacturers is called generative MBD,
since code and other artifacts are automatically generated from
the model.

The other fundamental approach to achieve applications
from models is interpreted MBD. Interpreted MBD can be

Sebastian Altmeyer
University of Amsterdam
CSA Group
Science Park 904
1098XH Amsterdam
altmeyer@uva.nl

Nicolas Navet
University of Luxembourg
FSTC/Lassy
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
nicolas.navet@uni.lu

seen as a set of platform independent models that are directly
interpreted by an execution engine running on top of the
hardware, with or without an operating system.

The fact that models can be directly executable helps a great
deal as the development cycle time can be shortened; and
there is no distortion between the model and what is executed.
Though, to the best of our knowledge, the technique of model
interpretation remains unexplored in the automotive domain, it
can facilitate and speed up the development, deployment and
timing verification of applications with real-time constraints
running on potentially complex hardware platforms. Verifica-
tion also can be done more easily as defects will be caught
earlier in the process since there is no difference between the
model and the executable program. In this paper, we present
a case-study to evaluate how interpreted MBD can be applied
to an automotive software development scenario.

This paper is structured as follows. In Section II, we explain
the state of the industrial practice of automotive function
development. Section III describes an AUTOSAR-compliant
engine-coolant temperature calculation function used as case-
study. In Section IV, we discuss our modeling approach,
and Section V presents the case study. Finally, Section VI
summarizes the results and discusses the case study. Section
VII concludes the paper.

II. AuToMOTIVE FUNCTION DEVELOPMENT - STATE OF THE PRACTICE

We explain the state-of-the-art of the development of an
automotive function using an automotive engine management
software system, which are commonly developed using a
Model Based Development (MBD). The engine is controlled
by an Electronic Control Unit (ECU) that contains engine
functions for different sub-systems.

The requirements of the engine functions are specified in
one of the Application Life-cycle Management (ALM) suites
and traced until its realization as ECU. In ALM, different
tools are integrated to develop and maintain the software.
For example, IBM has an ALM suite called IBM Rational
Team Concert (RTC) where Rational DOORS is the require-
ments management tool that captures all the functional and
non-functional requirements. These requirements are analyzed
further to design the engine function. Popular Model Based

—— ECU Engine

Vehicle Testing

Desktop Testing

Requirement System Test &
Analysis Calibration
Moidel meets
requirements?

Domain expert |

Function Development

—,

System designer | Verification &

Validation

Software developer |

Software integrator | RN

= y
2 — Model L Model — |
g — Code Generated code Model — |
= L Actual HW Model | |
E Code on target

Fig. 1. Engine function development flow - Illustration of verification techniques, involved stakeholders and development phases.

Design (MBD) tools are MATLAB/Simulink (MLSL) from
Mathworks, ASCET-MD from ETAS, and SCADE Suite from
ANSYS. These industrial MBD tools further generate code for
engine functions using code generators. Each engine control
function is further (unit-) tested and integrated into the ECU.

Figure 1 shows the software function development flow
practiced in the automotive industry. The system model of
the engine captures the ideas and requirements. The model is
an executable specification and can be simulated and rapid-
prototyped to explore different design options. In the existing
approach, the modeling environment is primarily used to
describe the domain problem, in this case the engine function
to be developed against the functional requirements. Domain
experts and software designers are involved in this phase. The
controller model is tested in a simulation environment (which
includes the plant model, i.e. the engine) and this testing
is called Model-in-the-Loop (MiL) testing to ensure that the
model meets the requirements.

In the next step, the code is generated from the model
using a code generator. Then, the code is verified under an
engine model. This phase is referred to as Software-in-the-
Loop (SiL) testing. Software developers are involved to test
each engine function individually using unit testing. Next, the
function is integrated with other existing engine functions in
the integration phase by the Software integrators, typically a
tier-one supplier. The complete engine software is then ported
to the ECU hardware, which can be verified using a Hardware-
in-the-Loop (HiL) testing system, such as PI-LABCAR, which
realistically emulates vehicles 1/Os.

In the current practice [3], the execution environment on
the target is different from the execution within the modeling
environment in terms of 1/Os, scheduling and even in terms
of generated code. Indeed, the target-generated code will be
optimized towards the platform and thus be as efficient as
possible. On the negative side, the build tool-chain must be
available, and it takes a substantial amount of time to produce
an executable program from the designed model (build time

can require several 10s of minutes). Simulink and its block
sets (like Simscape, Stateflow etc.) are examples for modeling
environment and Embedded Coder is an example of the code
generator for production code generation on a specific target
processor. The generated code can be further customized to
meet the requirements (e.g., with respect to safety). In the au-
tomotive software development, there is a high probability for
mixed-mode development, where generated code is integrated
with manually-developed functions.

III. AUTOSAR-COMPLIANT ENGINE FUNCTION

The engine cooling system is an important part of the
vehicle. It is responsible for maintaining optimum operating
temperature. The coolant is circulated through the engine block
with the help of an electric water pump. The coolant will
reduce the temperature of the engine block and then will run
through the radiator equipped with a fan to remove waste heat.

Ter;peraturelﬁ Electrical-
ensor Raw Signal ElecRaw
th
Engine Coolant M
Low Pass
Filter (LPF) ElecBascFild

Engine Control
Unit (ECU)

Fig. 2. Physical layout of an AUTOSAR compliant engine-coolant system
function - Engine coolant temperature sensor connected to an ECU

Figure 2 shows the physical layout of the engine-coolant
temperature calculation which is considered as the use case to

present our modeling approach. The engine-coolant tempera-
ture sensor plays an indispensable role in the engine cooling
system. Precise information about the temperature is essential
due to various reasons: the data are used by the engine control
unit to adjust the fuel injection and ignition timing. Further,
the temperature value is used to control the cold starting of
the engine, to control the calculation of the fuel quantity,
and to control the fan speed of the electric cooling radiator.
This data is also used to provide readings of the coolant
temperature gauge to the dashboard to protect the engine from
over-heating.

The engine-coolant temperature sensor is connected to the
engine ECU through an analog to digital pin. The electrical
output is obtained from the sensor that monitors the tem-
perature of the engine-coolant. As per AUTOSAR design
pattern [2] catalogue for standard sensors, the overall system
consists of 3 modules as depicted in Figure 3. Sensor/Actuator
Components are special AUTOSAR software components
which encapsulate the dependencies of the application on
specific sensors or actuators. The AUTOSAR architecture
takes care of hiding the specifics of the micro-controller (this
is done in the micro-controller abstraction layer, MCAL, part
of the AUTOSAR infrastructure running on the ECU) and the
ECU electronics (handled by the ECU-Abstraction layer, also
part of the AUTOSAR Basic Software).

jm————— e —————— - Application Layer
| Application Software ASW |
----------------- ! (Consold)
Consold Estimd
I Virtual Device Driver Layer : DevSnsrvirt
Measd Raw
r==—=—======="=-"==== A
I Sensor Device Driver Layer DevDrvrSnsr
ElecBascFild ElecRaw

________________ -

Electrical Device Driver Layer 1 DrvrSnsrElec

Sensor

p

/

Fig. 3. AUTOSAR design pattern for a standard sensor

The architecture of the engine-coolant temperature calcula-
tion function involves 3 AUTOSAR software components:

Electrical Device Driver Layer (DrvrSnsrElec):
The electrical value from the temperature sensor is
read through the input pin and stored in the variable
ElecRaw. The raw electrical signal (ElecRaw) is
rugged against signal faults using the Low Pass
Filter (LPF) and the filtered raw electrical signal
(ElecBascFild) is obtained.

Sensor Device Driver Layer (DevDrvrSnsr):
At this stage, the raw electrical signal is converted
into its physical temperature value (Raw) using a
lookup-table, where the corresponding value is pro-
vided. The temperature value of the filtered electri-
cal signal (ElecBascFild) is also obtained from the
lookup-table and is provided to the next layer.

Virtual Device Driver Layer (DevSnsrVirt):
In this layer, the possible signal range check, elec-
trical errors, cable interruption and sensor faults that
may occur are identified. This is done in order that
incorrect values from the sensor are not taken into
account for the calculation in case of sensor malfunc-
tioning. Other errors such as a cable interruption,
short circuit to battery or sensor voltage saturation
can also be detected and appropriate flags will be
set:

e ElecBascFildbit - The electrical validity bit
shows that the sensor raw value is electrical
valid.

o ElecBascFildbitCommon - The common validity
bit shows that the engine-coolant temperature as
a whole is valid and can be transfered to the ap-
plication Layer. Based on the temperature values
calculated in this layer, the obtained temperature
value (Measd) is compared with the estimated
value (Estimd) from the application layer. This
comparison determines the validity of the calcu-
lated value. If valid, the final temperature value
(Consld) is sent to the application layer.

IV. FUNCTION DEVELOPMENT - PROPOSED APPROACH

To the best of our knowledge, model interpretation for
automotive function development has not been explored and
experimented in the past. In case of model interpretation,
a generic model-interpretation engine is implemented which
executes the model of the engine function. As shown in
Figure 4, the modeling environment includes the execution
environment. Hence, the executable artifacts (i.e., model and
execution engine) are available within this environment. The
model interpretation can be launched within the development
environment or on a target platform. In the latter case, the
interpretation can run on top of an OS or directly on the hard-
ware. There are two possible interpretation modes: simulation
and real-time. Simulation mode is suited for the use in the
design phase, where execution should be as fast as possible,
which implies that the activation frequencies of the processes

are not respected and they execute (conceptually) in zero time.
Typically, executing in simulation mode is several orders of
magnitude faster than in the real-time mode. Real-time mode
is for the execution of the program with the actual desired
temporal behavior of the application.

CPAL Editor

" Domain expert view
Ele Edwlory Display.
Architacturd Tasks

2 R""nm”mm"m"' Real-time / Simulation
martemina’ " s ;E>modesolexemlon(ughn(g“va,‘
mal Terminal .
E Spbenry 64 adcvalue=data-320;
data=0;

6
66 flag=0;
87

tf(uint32.asleraw) 1=0)

68 }

69

74

75

76 var float32: volts; var float32: ohms; vi
77 var float32: a = 0.002197222470870;

5
7 Jrocessdet physicallayer (in float2: eraw,out |
72 " state main
73
78 var float32: b = 0.000161097632222;
79 var float32: ¢ = 0.000000125008328'
var float32: tl; var float32: c2; var flc
var float32: tempc;
var time64: timel; var time64: time2;
Log variables
var float32: taylor £=0.0;
var float32: tem
E var uint32; i
7 var oat: tem 0;
Eal K o 88 Voltse(araw+3, 7) /1024, 0 a3
Modeling environment , 59 ohms=((1,0/voits)*2900.6)- foa6.0; /<3301
) % 4. time

timel = time il

91 10.println("NTC Thermistor resistance:%f'
92 /*log caleulation*/

while(true)

Gant-chart of tasks activations

Compiled code/Parse

errorswindow[| | ¢ taylor_s=taylor_s+temp;

Parse success
AST generated in file "/tmp/cpal editorl962628727656799295.ast"

Fig. 4. An integrated environment, here the CPAL-Editor, with the code of
the model, the Gantt chart of the processes activations and the possibility to
execute the models in simulation and real-time mode both locally or on a
target.

To ensure that simulation reflects the real-time behavior on
the target platform, timing annotations (e.g., execution time
latencies, jitters, etc) can be introduced in simulation mode.
Those timing annotations can be derived from measurements
on the target architecture, from WCET analysis and, possi-
bly, by schedulability analysis if other software components
can interfere with the function under development. Timing
accurate simulation thus provides benefits to identify faults
in design phase itself, earlier, thus than with the traditional
design process.

As the model itself can be executed, no additional artifacts
are needed, and, unlike in the traditional generative MBD, no
target specific code is generated. Instead, the specifics of the
platform are taken care by the interpretation engine. Further
steps of the application development, such as compilation of
source code to object code and the linking stage to produce
the executable program, are not required.

V. A CASE STUDY - ENGINE-COOLANT TEMPERATURE CALCULATION

The model of the engine-coolant system is developed in the
CPAL (Cyber Physical Action Language, see [1, 6]), which is
a new language to model, simulate, verify and program Cyber
Physical Systems. CPAL' is a language jointly developed
by our research group at the University of Luxembourg and
the company RTaW. Many industrial use-cases are demon-
strated [5] using CPAL in the past.

The model-based environment of CPAL consists of a single
integrated development environment, i.e., the CPAL-Editor.
The CPAL editor, combines the design, simulation, execution

IThe CPAL documentation, graphical editor and the execution engine for
Windows, Linux and Raspberry Pi platforms are freely available from http:
//www.designcps.com.

(both locally and on a target), visualization of the functional
architecture and execution chronogram in one integrated envi-
ronment. The model-interpretation engine is specific to the
target platform. This interpretation engine can be executed
on top of an operating system or without an operating sys-
tem, the latter being called Bare-Metal Model Interpretation
(BMMI). CPAL BMMI is available on the NXP Semiconduc-
tors Freedom-K64F, a low-cost development platform which
is form-factor compatible with the Arduino R3 pin layout.
The experiments in this study are performed on a Raspberry
Pi equipped with a multi-core ARM Cortex-A7 processor
operating at 900 MHz running Raspbian OS.

A typical engine-coolant temperature sensor can measure
in the range —40°C to +150°C. In our case study, we have
considered a Negative Temperature Coeflicient (NTC) type
sensor with an operating voltage as 3.3V. Figure 5 shows the
experimental setup which aims to mimic the engine cooling
system. The MCP3008 is an external ADC interface which
is connected to the sensor. Since the sensor operates with
the thermistor principle, a voltage divider circuit with 3.3V
reference is added. ADC data from MCP3008 is communi-
cated to the processor using the Serial Peripheral Interface
(SPI). The sensor software component is modeled according
to the AUTOSAR design catalog described in Section III. The
speed of the electric fan is controlled based on the measured
temperature.

Fig. 5. Experimental set-up - Sensor interfacing to hardware

Out of the two possible CPAL execution environments
(i.e., bare-metal or hosted by an OS), we use the interpre-
tation engine on top of an OS (Raspbian on Raspberry Pi)
which can also execute in real-time, although with a lesser
real-time predictability than the bare-metal implementation.
The engine-coolant temperature is calculated by the sensor
software component modeled in CPAL. Figure 6 shows the
sample run-time environment where simulation and real-time
execution are performed. Both interactive and non-interactive
executions are possible. The interactive mode of execution is
useful in program analysis and debugging. In interactive mode,
the user has different execution options, such as a step-by-

step execution, or uninterrupted
duration.

execution for a pre-defined

(24
(a0 vinta2: d,an floaraz; IEE)

Fig. 6. CPAL model and execution environment under real-time mode

Since it is an interpretation-based execution environment,
the user can list and change the values of global variables
at run-time, as well as execute additional code statements.
In non-interactive mode, the program is executed indefinitely
or for a specified duration without requiring additional user
inputs.

VI. REsurrs ANp Discussions

From the case-study experience, we present our proposed
development flow for function development. Figure 7 shows
the development flow of model interpreted approach to develop
an engine function.

Functional, Non
functional timing
requirements

\ ’
’

Model is code / No
St code generation

Fig. 7. Model interpreted engine function development flow - steps and
stakeholders involved

a) Model interpreted development steps: In the first step
all functional, non-functional including timing requirements of
the engine function are collected. These are further analyzed
by domain experts. The specifications are implemented in
CPAL (step 2 - system design in Figure 7). During the
development, as soon as the function model is updated the
functional architecture, and other views created out of the
model such as execution Gantt charts, are automatically up-
dated too (step 3) which is done in the background along with
the modifications. This allows the designer to immediately
visualize and understand the effects of the changes made,

without the need for building the executable and running it
in debug mode. The latest version of the model is always
available to execute, be it in simulation mode or real-time
mode, locally or on a target. Typically performed once the
simulation is satisfactory (step 4), the execution in real-time
mode (step 5) helps the designer to assess the performances
on the target, enabling rapid-prototyping. If simulation or
execution in real-time mode highlights faults, the model is
refined in an iterative process. From the development of
the engine-coolant temperature calculation function, we here
summarize the benefits and differences against the existing
generative MBD approach.

b) Adapting to requirement changes is faster: The
most important benefit of model interpretation is that
changes in the model do not require an explicit regenera-
tion/rebuild/retest/redeploy step. This shortens significantly the
turnaround time and, in some scenarios, the overall change
management process (how changes in the requirements are
implemented). Although it is not available in CPAL yet, it
would be possible for models to be updated at run-time, with-
out the need to stop the running application, hence improving
productivity. Also, since no artifacts are generated, the build
times can be also reduced. Depending on the specific use
case, an interpreter combined with model can even require
less memory than generated code.

¢) Finding failures in model is easier: Failures during the
testing phase, after all modules have been integrated, expose
problems that are clearly in the model, since the model itself is
executed. Unlike with code generation, there is no need to trace
back from the generated artifacts where the failure occurred in
the model, which is often hard. On the other hand, debugging
models at run time is possible. Since the model is available at
run-time, it is possible to debug function models by stepping
through them at run-time (e.g., we can add breakpoints at
the model level). When debugging at model level is possible,
domain experts can debug their own models (e.g., step-by-step)
and adapt the functional behavior of an application based on
this debugging. This can be very helpful when, for example,
complex control or data-flows are involved.

d) Portability and hardware independence: Portability is
another advantage of model interpretation. An interpreter in
principle creates a platform independent target to execute the
model. By rewriting only the hardware-specific components,
it is possible to develop an interpreter which runs on multiple
platforms, as it is the case for CPAL. In case of code
generation, we need to make sure we generate code that is
specific to the platform. In case of model interpretation, the
interpreter handles the platform-specific adaptation.

A notable advantage of the model interpretation is that it
hides the complexity of the hardware platform away from the
programmer making it easier to configure the run-time envi-
ronment and deploy the application. Indeed, easier deployment
is an important difference. When code generation is used, we
often see that we need to open the generated source code in
an Integrated Development Environment (IDE) to analyze the
program and build it from there to create the final application.

In case of BMMI, we just have to upload the model and reset
the target, or, when the interpreter is hosted by an OS, execute
it within the development environment or in command-line
(possibly on a target through a script). Hence, it is much easier
for domain experts to deploy and test an application, instead
of only modeling it.

e) Benefits of single integrated environment: The impor-
tant difference between interpreted approach and generative is
that domain experts and software developers can work together
around a single integrated environment and on a single model.
As shown in Figure 8, the integrated modeling environment
provides a graphical view of the architecture of the designed
function model. This model can be used by domain experts for
functional analysis and verification, and by software engineers
to do function development and testing from day one on.

o coolantgit.cpal (/home/pi/cpal/coolant) - CPAL Editor @raspberrypi

Fig. 8. Software architecture of the coolant temperature calculation

VII. CONCLUSIONS

Code generation is the standard practice in the industry for
MBD of embedded systems, and this holds true in particular
for engine function development. In this paper, we discuss a
model-interpretation development flow that is exemplified with
the development of an engine coolant temperature calculation
by an AUTOSAR compliant software architecture. By com-
parison with the usual development chains relying on code-
generation and based on the case-study, we discuss the benefits
of model interpretation which includes simplicity, productivity
and early-stage verification possibility, specifically in the time
dimension. For instance, CPAL, the model-based development
environment that we have chosen for our case study, already
provides the basic mechanisms to offer timing-realistic sim-
ulation early in the design process. Our ongoing work is on
a method to automate the derivation of the temporal quality-
of-service required by a software module and, leveraging on
model-interpretation, enforce it at run-time.

Although model-interpretation brings advantages, it is not
going to cover all use-cases. The main reason is that model
interpretation is intrinsically slower than compiled code. There
are ways to mitigate this drawback in production code such as

calling binary code from interpreted code (e.g., legacy code
or specialized functions) or, possibly, selectively generating
code for the computation-intensive portions of the model.
Interpretation and code generation are often seen as two

alternatives, not as a continuum. However, one may also
imagine relying on model-interpretation, and benefits from the

associated productivity gains, until the function/ECU meets all
functional requirements, and then switch to code-generation
for production code. This remains to be investigated in the
future works.

ACKNOWLEDGMENT

This research is supported by FNR (Fonds National de la
Recherche), the Luxembourg National Research Fund (AFR
Grant n°10053122).

REFERENCES

[1] S. Altmeyer, N. Navet, and L. Fejoz. Using CPAL to
model and validate the timing behaviour of embedded
systems. In 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems
(WATERS), Lund, Sweden, July 2015.

[2] AUTOSAR consortium. AUTOSAR design catalogue.
http://www.autosar.org/fileadmin/files/releases/4-2/
application-interfaces/general/auxiliary/ AUTOSAR
TR _AlDesignPatternsCatalogue.pdf.

[3] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda,
and D. Ratiu. Seamless model-based development: From
isolated tools to integrated model engineering environ-
ments. Proceedings of the IEEE, 98(4):526-545, 2010.

[4] M. Broy, S. Kirstan, H. Krcmar, B. Schitz, and J. Zim-
mermann. What is the benefit of a model-based design
of embedded software systems in the car industry? Soft-
ware Design and Development: Concepts, Methodologies,
Tools, and Applications: Concepts, Methodologies, Tools,
and Applications, page 310, 2013.

[5] L. Fejoz, N. Navet, S. M. Sundharam, and S. Altmeyer.
Applications of the CPAL language to model, simulate
and program cyber-physical systems. In Demo Session
of 22nd IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2016), 2016.

[6] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean
model-driven development through model-interpretation:
the CPAL design flow. In Embedded Real-Time Software
and Systems (ERTSS2016), January 2016.

[7] N. Tankovic, D. Vukotic, and M. Zagar. Rethinking
model driven development: analysis and opportunities. In
Information Technology Interfaces (ITI), Proceedings of
the ITI 2012 34th International Conference on, pages 505—
510. IEEE, 2012.

Evaluation of Mixed-Criticality Scheduling
Algorithms using a Fair Taskset Generator

Saravanan Ramanathan, Arvind Easwaran
Nanyang Technological University, Singapore
Email: saravana0l16@e.ntu.edu.sg, arvinde @ntu.edu.sg

Abstract—The problem of scheduling mixed-criticality (MC)
task systems is known to be NP-Hard, and as a consequence
the performance of MC scheduling algorithms is frequently
assessed using experimental evaluations based on randomly
generated tasksets. It is therefore important to have a thorough
understanding of all the parameters that impact the algorithms
and a taskset generation procedure that is fair with respect
to those parameters. Although there are a few popular taskset
generators, there is no evaluation of the fairness properties of
those generators. In fact, there is no existing study on identifying
all the parameters that are relevant in the evaluation of MC
scheduling algorithms. We address this shortcoming in this paper,
and present a set of essential fairness properties for MC taskset
generators. We also develop a new taskset generator and show
that it satisfies those fairness properties. Finally, we evaluate the
performance of multi-core MC scheduling algorithms using the
generator, and provide new insights on the performance of those
algorithms with respect to several taskset parameters.

I. INTRODUCTION

Mixed-Criticality (MC) scheduling has received a lot of
attention in the real-time literature ever since Vestal proposed
the MC task model [1]. This is mainly because of the practical
relevance of MC systems in safety-critical industries such as
avionics and automotive. There have been several studies, both
on single- as well as multi-cores, focusing on the design
of scheduling algorithms for the MC task model; see [2]
for review. One way to evaluate algorithm performance is
analytical, wherein metrics such as speed-up bound [3] are
derived. For MC systems it has been shown that the scheduling
problem is NP-Hard [4]. Consequently, the only known ana-
lytical performance results are in terms of speed-up bounds.

Another mechanism to evaluate algorithm performance is
experimental, wherein a taskset generator is used to generate
a variety of MC task systems, and the algorithms are evaluated
by testing their schedulability on these task systems. The
driving principle behind such experimental evaluation is that
as long as the set of generated task systems is “fair”, meaning
not biased in terms of the parameters used to define the task
system, the resulting comparisons provide a fair assessment
on the relative performance of the algorithms. Although,
unlike speed-up bounds, these evaluations do not provide any
analytical guarantees, they are being increasingly used in the
evaluation of MC algorithms [5], [6], [7], [8]. This trend is
because of two factors: 1) For many algorithms such as those
based on heuristics or non-trivial schedulability tests (e.g.,
those derived from demand bound functions), it is extremely
hard, if not impossible, to derive these speed-up bounds. 2)

For algorithms with known speed-up bounds such as EDF-
VD, either the bounds are not very tight as in constrained-
deadline task systems, or the bounds are not representative
of the performance of the algorithm in practice. For exam-
ple, although EDF-VD has an optimal speed-up bound of
4/3 for dual-criticality implicit-deadline task systems [9], its
performance is shown to be relatively poor in experimental
evaluations [5]. Thus, in the absence of tight analytical results
on the performance of MC algorithms, it is important to design
taskset generators that enable a fair experimental evaluation.

There have been few studies on taskset generators for MC
systems ([5], [6], [7], [8], [10], [11]). Although they present
different taskset generation algorithms, there is no work which
methodically considers all the parameters that impact the per-
formance of MC algorithms. As a consequence, there is neither
any clear understanding of what constitutes a fair MC taskset
generator, nor is there any discussion in these studies on the
fairness properties of the generators themselves. Note that,
when compared to non-MC systems, a much larger number of
parameters affect the performance of MC algorithms. This is
because tasks in MC systems have additional parameters such
as resource utilization values at different confidence levels, and
further these parameters are known to have a significant impact
on algorithm performance. In this paper, we address this chal-
lenging problem by first presenting the principles that govern
the fairness of a MC taskset generator. We then present a novel
taskset generation algorithm for MC systems and show that it
satisfies these principles. Similar to the UUnifast algorithm
for single-core non-MC systems [12] and MRandFixedSum
algorithm for multi-core non-MC systems [13], we believe that
the taskset generation algorithm presented here can be used to
experimentally evaluate MC algorithms in a fair manner. Thus,
the contributions of this paper can be summarized as follows:

o We present the fairness properties (Section III-A) for any
MC taskset generator based on all the parameters that
affect the performance of MC scheduling algorithms. We
identify some new parameters that influence schedulabil-
ity, which were not considered in the existing generators.

e We propose a MC taskset generator that generates
tasksets satisfying the above fairness properties (Sec-
tion III-B).

« We present extensive experimental evaluation for multi-
core MC scheduling algorithms with the proposed taskset
generator (Section IV).

II. SYSTEM MODEL

In this section we define our system model. We restrict our

model to a dual-criticality system (namely LO and HI).

Tasks: We consider a sporadic taskset 7, in which each MC

task 7; is characterized by a tuple (Ti,xi,d,Di), where

e T; € RT is the minimum release separation time,

e X; € {LO, HI} is the criticality level,

. C_'; € R7T is the vector of Worst-Case Execution Time
(WCET) values - one for each criticality level. CZ»L
and CH are the LO- and Hl-criticality WCET values
respectively; we assume CF < CH and,

e D, € RT is the relative deadline; for implicit deadlines
D; = T; and for constrained deadlines D; < Tj.

Taskset: We consider a dual-criticality sporadic taskset 7 with
n tasks, where a task 7; represents an infinite number of job re-
leases. LO- and HI-criticality utilization of a task 7; is defined
as uF = CL/T; and uff = CH /T; respectively. System-level
normalized utilizations are defined as UF = D orien, ul/m,
ULES . ub/mand U E5 ul /m, where m is
the number of cores.

MC Modes: The system is said to be in LO-criticality
mode or LO-mode if all the tasks 7; € 7 signal completion
before exceeding LO-WCET. The system is said to be in
HI-criticality mode or HI-mode if any Hl-task 7, € 7g
executes beyond its LO-WCET and signals completion before
exceeding its HI-WCET. Mode switch is defined as the change
in criticality level of the system from LO to HI. All LO-tasks
are immediately discarded by the system at mode switch. We
focus on the above MC model because this is the standard
model in many studies on MC scheduling.

III. FAIRNESS AND TASKSET GENERATOR

In this section we describe the fairness properties that are
essential for any MC taskset generator. We also describe our
new taskset generator MC-FairGen, and compare its fairness
properties against several existing generators.

A. Essential Fairness Properties

The performance of MC scheduling algorithms depend on
several taskset parameters. Among them, the most important
include task periods and deadlines, proportion of LO- and
HI-criticality tasks, maximum individual task utilization, and
system utilization parameters |U — (UL +UL)|, UL — UE|
and U} —U}|. The minimum required number of tasks in the
system is m + 1. The total utilization (Up = maz(UH, UL +
ULL)) must range across all possible values. Thus, the essential
fairness properties can be summarized as follows.

1) Period: Task periods must be chosen from a wide range
and should have an appropriate distribution that is not
biased. One way to achieve this is by choosing periods
using uniform or log-uniform distribution. It has been
shown that fixed-priority algorithms perform well when
periods are chosen using log-uniform distribution [13].

2) Deadline: Task deadlines, in the case of constrained-
deadline tasksets, must also be drawn from an appropriate

distribution that is not biased. For example, drawing
deadline values from a uniform distribution between C{
(or CiL) and 7T; is one way to achieve this.

Criticality: The percentage of Hl-criticality tasks in a
taskset must also have an appropriate unbiased distri-
bution (e.g., uniform across the scale from 0 to 100).
The performance of algorithms (such as criticality-aware
partitioning [7]) tend to vary when there are very few LO-
or Hl-criticality tasks in a taskset. Therefore it is essential
to consider the boundary cases for this parameter.

4) Maximum Task Utilization: Maximum individual task
utilization, max{max;(ul), maz;(uf)}, must be fairly
distributed across the range (0, 1].

System Utilization: The normalized utilizations of a MC
taskset include UH UL and UE. The three important
parameters related to these utilizations are total utilization
difference ((UH — (UL + UL)|), LO-mode utilization
difference (\U%L — UE|) and Hl-criticality utilization dif-
ference ([UH — UL|). Most of the algorithms tend to
perform relatively poorly as these parameters increase in
value. It is therefore essential that these three parameters
are fairly distributed across the range [0, 1].
Independence of Parameter Distributions: To gain further
insights into behaviour of MC algorithms, beyond what
could be obtained from the overall schedulability evalu-
ations, it is necessary to evaluate them against specific
parameters independent of remaining parameters. There-
fore, it is essential that for each parameter, the remaining
parameters are fairly distributed across possible values.

3

~

5

~

6

=

In the past, studies have used other parameters such as
‘criticality factor’ ([14], [5], [15], [6], [8], [11]) and ‘number
of tasks’ [14] in their generator. Criticality factor is defined
as the ratio of HI-mode to LO-mode utilization of a HI-
task. Varying the criticality factor indirectly impacts the HI-
criticality utilization difference (JUH — U%|). This variation
in utilization difference is captured by the system utilization
property. Further, by fixing the criticality factor, the maximum
task utilization max(ul?) is restricted as a function of u’. It
is therefore reasonable to choose system utilization parameters
rather than criticality factor. Whereas, varying the number of
tasks impacts the individual utilization of tasks. This parameter
is captured by the maximum task utilization property.

Extension to Multi-Criticality: These properties can also
be generalized to multi-criticality systems. The period and
deadline properties remain the same. Extending criticality
property to multi-criticality requires all possible values of
task criticality to be considered for each criticality level.
Extending the maximum task utilization property is quite
straightforward; it needs to consider task utilizations across all
the criticality levels. To extend the system utilization property
one needs to consider all combinations of system utilization
differences. For example, the property on fotal utilization
difference (JUH — (UL + UL)|) needs to be expanded to
consider the utilization difference between all pairs of adjacent
criticality levels.

Algorithm 1 MC-FairGen

IIlPllt: m,Umin,Umax
Output: Taskset 7

1: for UH €10.1,0.2,...,1.0] do

2 for UL €[0.05,0.15,...,U#] do

3 for UL €10.05,0.15,...,1 — UL] do

4; for Py €[0.1,0.2,...,0.9] do

5: Minimum required total HI-tasks, N2, = [(UH * m/umaz)]

6: Minimum required total LO-tasks, N2, = [(UE % m/umaz)]

7: Minimum required total tasks, Ny, = max(m + 1, [(NZ. /Py)], [(NE, /(1 - Py))])
8: Total tasks, N = uniform|[Nyn, 10 % m]

9: Total Hl-tasks, Ny = max((Py x N), NH,)

10: Total LO-tasks, N, = N — Ny

11: Vi € N, the period T; = uniform[5, 100]

12: HI-task Hl-utilizations {u’} = M RandFizedSum(UH +« m, Ni, wmin tmaz)
13: HI-task LO-utilizations {u’} = BoundedUniform(Uk,UH m, Ny, umin,{ull})
14: LO-task utilizations {uF} = M RandFizedSum(UL « m, Np, tmin,tmaz)

15: Vi € N, the execution requirement C = ul « T;

16: Vi € Ny, the execution requirement C{1 = uf x T,

17: Vi € Ny, the relative deadline D; = uniform[CE,T;]

18: Vi € Ny, the relative deadline D; = uniform[CH,T;]

19: end for
20: end for
21: end for
22: end for

B. MC-FairGen Taskset Generator

The taskset parameters considered in our generator are
described as follows:

e Minimum and maximum individual task utilization t,,,;,,
(= 0.0001) and Umaer (= 0.99). Upsy 1S required to
guarantee all possible values for the percentage of HI-
criticality tasks in a taskset. u,,q; 1S required to ensure a
reasonable execution time for many schedulability tests,
particularly those based on demand bound functions.

o m €{2,8} denotes the total number of cores.

MC-FairGen is described in Algorithm 1. The minimum
required total HI-tasks(NV,) and total LO-tasks(NZ,) in
the system is given by Steps 5 and 6 in Algorithm 1. The
ceiling of utilization bound ensures individual task utilization
to be < 1. The division by u,,,, allows task utilizations
to be bounded by u;,4,- The minimum required total tasks
in the system N,,;, is given by Step 7, which ensures the
percentage of Hl-criticality tasks Pg;. Further, it lower bounds
the number of tasks in the system by m -+ 1. The total number
of tasks in the system is then drawn uniformly at random from
[Nimin, 10 * m]. The upper bound(10 * m) on the number of
tasks in the system is to allow for all possible values of Pj.
HI-task HI-utilizations {u} and LO-task utilizations {ul}
are obtained using MRandFixedSum algorithm [13].

HI-task LO-utilizations {ul} are obtained using Bounde-
dUniform shown in Algorithm 2. BoundedUniform sorts the
{ul'} values in descending order, and for each u/ it assigns

ul subject to two conditions: (1) sum of the total allocated u”

and total minimum remaining u* do not exceed the utilization
bound(m * UL) and (2) each ul < ulf

Algorithm 2 BoundedUniform

IHPUt UH7 UH I m7 NHa unLinv{uiH}

Output: {ul}

: Sort {uf’} in decreasing order

urem = Uk «m

U}"f‘m =UH «m

N}“Ie'm. - NH _ 1

. for u; € {uf} do
U'r‘em _ U'r‘em _
uf =

U™, min((Upem™ —
N"'e/ln = N"'e/ln _ 1

° K2
10: end for

A O o

uniform(max(umm, urem -
(NE™ * Umin)), ui))

®

C. Fairness Properties of MC-FairGen

1) Period, Deadline and Criticality: MC-FairGen explicitly
considers these fairness properties in the taskset gener-
ation process. All the three parameters are drawn from
uniform distribution.

2) Maximum Task Utilization: Given system utilization val-
ues and number of tasks, MRandFixedSum draws task
utilization values uniformly from the given range [13].
Since we consider all possible combinations of system

3)

=< [Uf -U§|

o,
Utilization difference

Fig. 1: Utilization distribution of MC-FairGen

utilization values, the resulting tasksets have a folded nor-
mal distribution for max{maz;(ul), maz;(uf)} with
mean (v) 1.0 and standard deviation (o) 0.46. We propose
classifying the tasksets into two equal-sized classes based
on the value of maximum task utilization. That is, tasksets
with maximum task utilization no more than v(1 —
30/4) = 0.655 would be categorized into the “small”
class, and those with value greater than this bound would
be categorized into the “large” class. Figure 2a shows the
performance of MC algorithms for values of maximum
task utilization. We can observe that the variation in
performance is not uniform across the parameter values;
the performance drop is significant for larger values
when compared to smaller values. This is consistent with
the classification presented above; algorithm performance
is more or less stable when maximum task utilization
values are in the small class, and only decrease when
these values are in the large class. Hence, based on this
classification, we can claim that MC-FairGen satisfies the
fairness property for this parameter.

System Utilization: Figure 1 shows the distribution of
three system utilization differences for our generator. It
can be seen that all the distributions are either normal or
folded normal, as in the case of maximum task utilization.
Therefore, we again classify each of these parameters
into two classes, “small” and “large”, as above. The cut-
off values for this classification are as follows: 0.2 for
\{UF — (UL + UE)|, 0.2 for UL — UE| and 0.35 for
|UH —UE|. To verify that this classification is reasonable
in terms of ensuring fairness with respect to the existing
algorithms, we present the variation in schedulability as
a function of |[UH — (UL + UE)| in Figure 2b. As can
be observed, the variation in performance is significant
when the parameter value is less than 0.2, and minimal
when the parameter value is greater than 0.2. That is, the
variation is not uniform across this parameter. Although
we do not present figures for the other two parameters
due to lack of space, similar results have been observed.
Thus, based on this classification of the system utilization
parameters, we can claim that MC-FairGen satisfies the
corresponding fairness property.

Acceptance Ratio

0.2 05 o4 o5 07 G 0.5 1.0

06
Max. Task Utilization

(a) Maximum Individual Task Utilization

=2,U,=0.9
PAR-MPVD
PAR-FF
PAR-WF_FF
GLO-FLUID
PAR-EDF_VD
GLO-EDF_VD
GLO-FP

§8i3

0.2

R
o1 02 05 0.4 05 0.6 0.7 o.8
Wl W U

(b) Total Utilization Difference (|U# — (U5 + UE)))

Fig. 2: Varying taskset parameters

4) Independence of Parameter Distributions: To evaluate
the schedulability performance of an algorithm against a
particular parameter, it is necessary to negate the impact
of all the other parameters. Let us consider the parameter
\UH — (UL + UE)| whose metrics are shown in Table 1.
50.41% of the tasksets are in the small class and 49.59%
of the tasksets are in the large class with respect to this
parameter. In each of these two classes, the distribution
of tasksets for the remaining parameters are also well
distributed. Note that for task periods, deadlines and
criticality distribution, since we choose them indepen-
dently using uniform distribution, they would also be
fairly distributed in these two classes. Similar metrics
have been observed for the remaining parameters as well,
but we do not present them here for brevity. Thus, we can
conclude that MC-FairGen also satisfies the independence
of parameter distribution property.

Discussion on uniform distribution: In MC systems, it is
extremely challenging, if not impossible, to have a uniform
distribution across system utilization and maximum task uti-
lization parameters. This is due to the constraints between the
parameters.

The three system utilizations U, UL and UZ characterize a
MC system. Any valid MC system should satisfy the following
two conditions: 1) Ul > U} and 2) UL+ U} < 1. Satisfying
the above two conditions restricts the range of values for some
utilizations. Given an Ul value, UL is bounded by U, and
given an U} value, UZ is bounded by 1-U%. Say, we want
to have a uniform distribution for the |[UH — (UL + UE)|

parameter. Lets fix U} for a given (U — (UL + UE)| value.

TABLE I: Total System Utilization Difference U — (UL + UL)|

Parameter Classification | % of Tasksets Classification Classification
Small l Large | Small l Large | Small l Large

UL — UL U —UE| maz(maz(ull), maz(mazl))
UF — (UL +UL)) Small 50.41 4365 | 5635 | 5146 | 4854 | 51.15 48.85
Large 49.59 4536 | 54.64 | 43.10 | 56.90 | 48.5l1 51.49

Then we have two choices when picking (U5 + UL). Picking
UL or UE decides the other parameter. One thing to consider
here is that U} value is restricted by UZ . This in turn restricts
the U LL value, thereby affecting the distribution of the other
two parameters |U5 — UE| and |UH — UL|. Therefore, it is
reasonable to consider a normal distribution for the parame-
ters rather than a uniform distribution, particularly given the
performance variation of existing scheduling algorithms.

D. Comparison of Existing Generators

In this section we evaluate the existing MC taskset gen-
erators in terms of the fairness properties presented in Sec-
tion III-A. We classify the existing set of generators into two
major categories. The group of generators that consider the
same utilization bound for both LO- and HI-mode utilizations
(UL + UE and UH) fall under the first category. The group
of generators that consider independent utilization bounds for
LO- and HI-mode fall in the second category (denoted as class
D). We further classify the first category into three classes
(denoted as A,B and C) based on their taskset properties.

All the existing generators consider the period and deadline
property. Class A generators [8] do not consider the maximum
task utilization property. They have the property that all the
generated tasksets are confined to small system utilization
values. Like Class A, Class B generators ([14], [5], [6], [15],
[11]) also do not satisty the maximum task utilization property.
Unlike Class A however, the generated tasksets of these class
of generators are not confined to small system utilization
values. Class C generators ([10], [16]) consider all the fairness
properties except the system utilization properties through a set
of different experiments. However, these class of generators
have a high taskset discard ratio when the utilization bounds
are small. Class D [7] is a reasonable generator for MC
systems because it considers independent utilization bounds
for LO- and HI-mode utilization. It however considers a fixed
number of Hl-criticality tasks in the generation process, and
hence does not satisfy the criticality property. None of the
above generators satisfy the system utilization properties. Thus,
it is reasonable to conclude that none of the existing generators
adhere to all the fairness properties listed in Section III-A.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate the schedulability performance
of multi-core MC scheduling algorithms using MC-FairGen.
These include global fpEDF [16], partitioned EDF_VD [16],
global fixed-priority [15], global fluid [10], an extension
of GREEDY [5] with first-fit packing strategy [7], another

I
o

°
®

°
o

m=2
PAR-MPVD
PAR-FF
PAR-WF_FF
GLO-FLUID

Acceptance Ratio
o
IS

ora'n
RN

°
N

PAR-EDF_VD
o—o GLO-EDF_VD
~— GLO-FP

0.2 0.4 0.6 0.8 1.0
max U +UE Ul

@ m=2

I
o

°
®

°
o)

m=8

-8 PAR-MPVD
=s—e GLO-FLUID
PAR-FF
PAR-WF_FF
o—e PAR-EDF_VD
~—= GLO-EDF_VD
v—v GLO-FP

Acceptance Ratio
o
»
"}
o

o
N

\\-‘

0.2 0.4 06 0.8 1.0
max(Uf +Uf U

b)ym=28

Fig. 3: Overall Schedulability (implicit,uniform)

extension of GREEDY with both worst-fit and first-fit strat-
egy [7] and MPVD with heavy low-critical task aware alloca-
tion [8] represented as GLO-EDF_VD, PAR-EDF_VD, GLO-
FP, GLO-FLUID, PAR-FF, PAR-WF_FF and PAR-MPVD
respectively. All the results presented are for implicit dead-
line task systems with uniform distribution of task periods
and deadlines. Similar results were obtained for constrained
deadlines. We also evaluated for log-uniform distribution of
periods and deadlines, and found that there was not much
variation in the performance of the algorithms except for FP
scheduling. We therefore do not present them here for brevity.

In Figure 3 we present the overall schedulability of the
algorithms. We plot the acceptance ratios of the algorithms
i.e., fraction of schedulable tasksets, versus total utilization
Up varying over m € {2,8}. Each data point corresponds
to at least 5000 tasksets. For m = 2, the partitioned demand
bound function (DBF) based tests perform better than the other
algorithms as shown in Figure 3a. The results obtained are
consistent with the results from previous studies except for
the partitioned algorithms [10].

When normalized utilization nears 1.0, the performance
of PAR-FF and PAR-WF_FF algorithms drop significantly
compared to PAR-MPVD. The reason is that the partitioning

093 771 PAR-MPVD
|4 B PAR-FF

=3 PAR-WF_FF '
GLO-FLUID 08077
PAR-EDF_VD
GLO-EDF_VD
GLO-FP

215 074

Acceptance Ratio
°

°

Large

Ul - +UE) Bins

(a) Total Utilization |U# — (U5 + UE)|

0.90) PAR-MPVD

772 PAR-MPVD
I PARFF

w5 PAR-WF_FF
£ GLO-FLUID

5 PAR-FF

GLO-FLUID
PAR-EDF_VD
GLO-EDF_VD

£ GLO-EDF_VD

Oj GLO-FP

Acceptance Ratio

0.09

arge mall Large

il ~uf | Bins

(b) LO-mode Utilization |Uj —UE| (m = 2) (c) HI-Crit. Utilization |Uf — U%| (m = 2)

Fig. 4: System Utilization Difference Distribution (implicit,uniform)

heuristics of these algorithms fail to successfully allocate
the tasks. In case of PAR-FF, the tasks are allocated using
first-fit strategy independent of its criticality. The problem
with the first-fit is that the task utilizations are not balanced
among the cores. In case of PAR-WF_FF, the HlI-criticality
tasks are allocated first using worst-fit approach and then the
LO-criticality tasks are allocated using first-fit approach. The
problem with this approach is that when there are heavy low-
critical tasks in the system, it fails to get allocated to the core.
Whereas, in case of PAR-MPVD, due to heavy LO-critical
task aware partitioning and WF_FF bin packing approach, it
performs well.

The performance of PAR-MPVD shown here is contradict-
ing to the one presented in [11]. PAR-MPVD is known to
perform better when there are heavy LO-critical tasks. As the
generator in [11] generates tasksets only in low utilization
ranges, it negatively affects the performance of PAR-MPVD.

To provide further insights on how algorithms perform with
respect to specific parameters, we also present the performance
results varying individual parameters. For brevity, we only
present the schedulability results based on varying system
utilization parameters i.e., |UH — (UL +UEL)|, |UL —UE| and
|UF — UL| in Figure 4. All the algorithms perform well in
the first class, where the three parameter values are small, and
perform poorly when the values become large. GLO-FLUID
algorithm performs well when [UH — (UL + UE)| is large as
it mainly optimizes HI-mode execution, and performs poorly
when |UL — UE| or UL — UE| becomes large. All DBF
based tests have more impact on |UL — UL| and |[UH — UL|
parameters when compared to |UH — (UL + UL)|.

V. SUMMARY

Taskset generators are an important tool in the evaluation of
MC scheduling algorithms, mainly due to the hardness of these
algorithms and the lack of quantifiable metrics such as speed-
up bounds. In this paper we identified the factors that affect
the schedulability of MC scheduling algorithms and presented
the fairness properties that govern any MC taskset generator.
We also proposed a new generator called MC-FairGen capable
of generating tasksets that satisfy the fairness properties. We
evaluated the performance of multi-core MC algorithms using
the proposed generator. These evaluations have provided some

new insights on how individual taskset parameters affect the
existing algorithms, and could be used to develop improved
algorithms in the future.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium (RTSS), 28th IEEE International, Dec 2007.

[2] A. Burns and R. I. Davis. (2013) Mixed Criticality Systems - A Review.
http://www-users.cs.york.ac.uk/burns/review.pdf.

[3] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance [scheduling problems],” in Foundations of Computer Science, 1995.
Proceedings., 36th Annual Symposium on, Oct 1995.

[4] S. Baruah, V. Bonifaci, G. D’ Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
Computers, IEEE Transactions on, vol. 61, no. 8, Aug 2012.

[5] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Real-Time Systems (ECRTS), 24th Euromi-
cro Conference on, July 2012.

[6] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in Real-Time Systems Symposium (RTSS), 34th
IEEE International, Dec 2013.

[71 P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens, ‘“Multi-
criteria evaluation of partitioned edf-vd for mixed-criticality systems
upon identical processors,” in Workshop on Mixed Criticality Systems
(WMC), December 2013.

[8] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality
scheduling on multiprocessor platforms,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), March 2014.

[9] S. Baruah, V. Bonifaci, G. D’ Angelo, H. Li, A. Marchetti-Spaccamela,

S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling

of mixed-criticality implicit-deadline sporadic task systems,” in Real-

Time Systems (ECRTS), 24th Euromicro Conference on, July 2012.

J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, 1. Shin, and I. Lee,

“MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Mul-

tiprocessors,” in Real-Time Systems Symposium (RTSS), 35th IEEE

International, Dec 2014.

J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multi-

processors using task grouping,” in Real-Time Systems (ECRTS), 27th

Euromicro Conference on, July 2015.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-

bility tests,” Real-Time Systems, vol. 30, no. 1-2, may 2005.

P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis

of multiprocessor tasksets,” in Ist International Workshop on Analysis

Tools and Methodologies for Embedded and Real-time Systems (WA-

TERS), July 2010.

S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed

criticality systems,” in Real-Time Systems Symposium (RTSS), 32nd

IEEE International, Nov 2011.

R. Pathan, “Schedulability analysis of mixed-criticality systems on

multiprocessors,” in Real-Time Systems (ECRTS), 24th Euromicro Con-

ference on, July 2012.

S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality

scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, 2014.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Dynamic criticality management with ARTEMIS

Olivier CROS
LIGM / Université Paris-Est
Bat Copernic - 5, bd Descartes
77454 Champs sur Marne, France
olivier.cros0 @ gmail.com

Abstract—In this work, we propose to detail the mixed-
criticality integration inside our network simulator ARTEMIS.
The objective here is to propose a solution to manage and simulate
concrete criticality level changes inside network infrastructures,
in order to focus on a network topology reconfiguration w.r.t to
critical and non-critical messages evolutions. Through a transmis-
sion time computation model based on a probabilistic approach,
we propose a solution to generate flowsets integrating mixed-
criticality, in order to simulate the scheduling of these flowsets
through different topologies.

I. INTRODUCTION
A. About real-time simulation

In strongly constrained industrial domains like spacecraft,
public transports or aircraft, reliability and performances are
two fundamental objectives which imply defining strict time-
liness constraints to prevent system failures. It seems obvious
for everyone to imagine the huge human disaster represented
by an aircraft network crash at landing, not to mention the
financial impact of such events.

As a matter of fact, new protocols and architectures in
real-time networks must be certified before being deployed
on industrial structures. These protocols have to be analyzed,
verified and tested to be proved reliable and safe to be
implemented. But operating the tests directly on real physi-
cal systems can appear to be very costly. As a conclusion,
these real tests should done when most of the protocol has
already been validated. That is why, in order to prepare and
run performances and reliability tests replacing some of the
physical tests, we need to define simulation tools.

For the real-time network simulation, we propose a dedi-
cated network simulator. This simulator is called Another Real-
Time Engine for Message-Issued Simulation (ARTEMIS).

B. Related work

ARTEMIS has already been presented in [1], [2] as an
open-source user-oriented real-time network simulation tool.
Its architecture was similar to real-time multicores and multi-
processors schedulers architectures like Cheddar [3] (a mod-
ular framework for schedulability analysis), SchedMCore [4]
(toolbox for multicore simulation), and SimSo [5] (an open-
source tool designed for multiprocessor context).

There also exists different network simulators, which are
more oriented to industrial context. We can mention NS [6] for
global network simulation or OmNET++ [7] for dimensioning

Geoffrey EHRMANN
LACSC
37 quai de Grenelle
75015 Paris, France
geoffrey.ehrmann @ gmail.com

Laurent GEORGE
LIGM / Université Paris-Est, ESIEE
2 Boulevard Blaise Pascal
93162 Noisy-le-Grand, France
Igeorge @ieee.org

and performances purposes. Concerning Real-Time (RT) net-
works architectures, there also exists different simulators to ob-
serve and manage specific network architectures : CANoe [§]
for Controller Area Network (CAN) or the work presented
in [9] for Avionics Full DupleX switched ethernet (AFDX).

ARTEMIS is a RT network simulation tool, providing
schedulability analysis for network topologies. Based on a
generic component-oriented model (see [1]), the purpose of
ARTEMIS is to propose the integration of mixed criticality
constraints inside network topologies. This integration was
partially detailed in [2] but the mixed criticality management
model presented was rather incomplete. In this work, we
propose to detail a more dynamic and configurable mixed
criticality model integration inside ARTEMIS, and we detail
the technical solutions we have done to represent and manage
mixed criticality inside a simulation environment.

C. Contributions

The architecture of ARTEMIS (described in [10]), is orga-
nized around a set of external modules (grapher, generators)
based on a scheduling simulation core. Based on the work
presented in [10], we integrated in ARTEMIS core two main
models for mixed criticality management. First, we designed
centralized and decentralized criticality management to store
and share the criticality level among all the nodes of a topol-
ogy. Then, in order for the core to act independently and to
simulate criticality change events scenarios (not just depending
on user actions), we designed a new message generation model
inside the core. That is what we detail below in III and IV.

The integration of these new protocols implied to change
a part of the generation and scheduling model of ARTEMIS,
dedicated to the criticality management inside each node. The
modular architecture of ARTEMIS allowed us to design a
dedicated part for criticality management, without requiring
to modify the input or output data formalization. We also re-
inforced the design and conception fundamentals by improving
the Graphical User Interface (GUI) for a better user experience.
We added new functionalities for web-oriented and distributed
context, to make ARTEMIS a sharable tool designed to be
installed on public web servers. We detail this in II.

We propose to test different potential schedulability anal-
ysis results and to evaluate the impact of mixed criticality
integration inside different network topologies. This is showed
through different simulations, detailed in V. We now describe
the different improvements inside ARTEMIS global architec-
ture.

II. WEB-ORIENTED ARCHITECTURE
A. Global architecture

ARTEMIS’ Graphical User Interface (GUI) is the link
between users and simulator’s kernel. It has to interpret mes-
sages between users and kernel in order to make possible
the communication between these two entities. To build a
simulation, users must configure a network through the GUI,
then the interface sends data to the kernel as XML files. The
kernel runs the simulation and returns XML files containing
simulation results. Once XML files are parsed, GUI displays
results as XML logs or graphs.

Configure
network XML |
Ll Ll
Users GUI Kernel
< <
results XML

=

To configure a simulation, users have first to create a
topology by using the topology generator or create it manually.
Then users have to define all the components of this network,
namely the nodes and the links. A node is defined by a name,
a scheduling policy, an automatic generated network address
and a transmission rate.

Fig. 1. ARTEMIS architecture

Once the topology is created, users can create messages
which will define the network behaviour. Users can create a
new message manually by configuring the message path, the
Worst-Case Transmission Time (WCTT), the period and the
offset. The messages creation is more detailed in [2].

Each parameter related to a simulation is saved in a
MySQL database. When users click on "Run", GUI generates
the XML files after getting data from the database. There are
4 XML files to run a simulation:

e "network.xml" that contains the network topology. It
contains a list of nodes with all their attributes (ID and
name), and the other nodes to which they are linked
to.

e "config.xml" contains the whole configuration of the
network, namely the simulation time, the latency and
the mixed-criticality management model.

e "graphconfig.xml" contains the name of the graph and
the parameters related to graph management.

e "messages.xml" contains the messages to be sent. It
lists all the messages and their attributes that we
defined previously.

These files are sent to the kernel, which will perform the
simulation before returning XML files with graph results, GUI
displays these results as a scheduling graph.

B. Web distribution

ARTEMIS is a web-oriented tool. This choice has been
made in order to make it easy to install and to use. Using
web interface makes it independent from any operating system,
which allows us to spread the tool to a large public. The main
purpose of the GUI is to be as intuitive as possible. As a matter
of fact, ARTEMIS is designed for everyone, which includes
non-developers or students who need to be guided, so interface
has been designed to be ergonomic, fluid and clear for users;
web programming allows a fluid and clear utilization of the
tool. Thanks to AJAX architecture, the system answers quickly
to users commands, which make the navigation comfortable,
and the CSS language enables us to make a clean and sleek
visual.

C. Exporting results

In order to improve user experience of the tool, ARTEMIS
now integrates a simulation manager. It adds to ARTEMIS
a bunch of new functions to manage simulations. Each user
can now create its own simulations, export or import them to
different platforms in order to increase the reusability of the
different simulation configurations built.

The export function produces a ZIP archive containing the
input XML files required to build the simulation. Every archive
exported by ARTEMIS can also be imported. Importing a
simulation triggers the creation of a new simulation and the
automatic configuration of it, by using data from the selected
ZIP archive. All informations are saved in the database. Then
the simulation is ready to be run.

These functions are essential for ARTEMIS. It makes
the tool portable and user-oriented by allowing sharing and
communication between users and simulation contexts. These
new functions allows a user to create dedicated topologies of
variable sizes and to propose different messages sets config-
urations in order to operate benchmarking and performances
comparisons on different contexts.

The simulation identification in ARTEMIS is based on
session identification and unique identifier association for each
simulation configuration : each simulation is unique, and be-
longs to a specific user. It allows us to improve the portability
of ARTEMIS architecture, specially in contexts designed for
multi-user utilization, which were the fundamental goal of the
web architecture of ARTEMIS.

III. FLOWSET GENERATOR

In order to be able to simulate concrete network scheduling
scenarios through ARTEMIS, we define a flowset generator
connected to the kernel. Currently, RT simulators propose
tasksets generators based on the UUnifast algorithm [11] to
build the different tasksets needed for scheduling analyses.

In our work, we adapted current taskset generation algo-
rithms to network context. The purpose of ARTEMIS is to
propose scheduling scenarios integrating mixed-criticality in
real-time networks. We adapted the current models to generate
flowsets mixing messages of different criticality levels. That is
the point we propose to detail in the following section.

A. UUnifast for network context

Basically, UUnifast [11] is a taskset generation algorithm.
Its purpose is to generate a set of n periodic or sporadic tasks,
associated to a global load [. Each task of the generated set
is characterized by two properties : a Worst-Case Execution
Time (WCET), and a period (or minimum inter-arrival time,
in the case of a sporadic task). For each task 7;, we note C;
its WCET and Tj; its period. We define the maximum duration
T'nae of the period, based on the duration of the simulation.
The generation process is based on 4 different steps :

e First, we generate a random value r;, based on a
uniform law I/, with the following expression :

Ty = u(log(Tmzn)v log(Tmax + Tg))

We assume that all the generated values of r; are in
the interval [log(Tmin), l0g(Ty +Tmaz)]. More details
on the computation of r; were given in [11].

e Then, we compute the period 7; of the task 7.
This value of T; is indexed on r;, according to the
expression :

e’
Ti = \‘Tg J * Tg
This bounds the generated period with the value T,

This expression is based on the time granularity of the
system, noted as Tj,.

e Next, based on a uniform law U/ of support 0 and 1,
we generate a random utilization w; for the task. This
utilization represents the individual load of the task. It
is computed by the cumulative activation of jobs from
the task during the time interval [0; T}qz]-

e Finally, we compute the WCET C; of the task, by
computing C; = u; * Tj;.

At the end of the generation of each task, we compare
the value of the targetted load ! and the value of cumulative

utilizations v = > (u;). If we have v = [, the taskset is
k=1
characterized as correct. In the other case, we discard the

taskset and generate a new one.

The problem represented by this method concerns the
discarding process. As a matter of fact, this discarding process
tends to increase the number of generation loops to run
and, as a result, to increase the generation time needed by
the algorithm. Inside ARTEMIS, we propose to modify this
process in order to reduce the number of discarded tasksets.

Discarding a taskset comes from the point that the cumu-
lated utilization u tends to exceed or lower the value of [. The
computation of each value of u; is based on a uniform law
U(0,1). As a matter of fact, the generation process tends to
generate flowsets with cumulated utilizations which are out of
bounds, implying to discard the generated flowset.

The solution we propose was to bound the uniform law U/
in order for the global generated utilization u to be centered
around the value of /.

As we target a global load value of [for a flowset of size
n, we generate utilizations which have an average load equal

to % Thus, the law U is characterized by a specific variance v
which can be modified to adjust the results of the generating
algorithm. The higher the value of v, the more heterogeneous
the generated flowset in terms of utilizations, but the more we
tend to increase the number of discarded tasksets. We can vary
the value of v depending on the accuracy and heterogeneity
we target in the generated taskset. For basic simulations, v is
set between 0.05 and 0.06 in ARTEMIS core.

B. Load computation

In multicore and multiprocessor RT scheduling analyzers,
the generation of a taskset is based on a targeted global uti-
lization represented by the taskset. Depending on the network
architecture, a generated taskset utilization can exceed 1 but
the utilization on each node is less than 1 .

In network context, this global utilization has been replaced
by the global load [. One naive approach would be to establish
a strict parallel between the global utilization of a taskset and
the global load [. In fact, as there is not message transmission
or paths computation in processor context, the individual
utilization % of a task 7; represents its direct impact on the
system in terms of utilization. On the opposite, the individual
load % of a flow v; in a network is not its direct impact :
as each message from the flow will be transmitted once in
each switch of its path, the real impact of one flow in terms

of traffic depends on its path.

C. Mixed-criticality integration

The presented flowset generator generates flows of different
criticality levels. It implies defining two different constraints:
first, we have to clearly define a protocol to decide which
message belongs to which criticality level. Then, for each
message, we have to precise the WCTT of the message for
each criticality level it belongs to. We detail these two steps
below.

In order to decide which message belongs to which crit-
icality level, we first based our work on the assumption
made in [12] for the WCTT of a message sent in different
criticality modes. If we suppose k different criticality levels
N1y ooy VE—1, V> W assume for n flows that :

Vie [1;n],Vq,r € [Lk],g <r = C]" <O (1)

This hypothesis corresponds to the case where increasing
the criticality level of a flow leads to send more information.
If the maximum criticality level of a flow v; is 74, all the
WCTT of v; will be lower or equal to C;. Given this
hypothesis on the different criticality levels of a network,
we defined a criticality rate C) ., in the network. For each
flow generation, we compute a probability p,.:. included in
[0; 1]. Once computed, for each criticality level -y,, we check if
Prate < (Crate)?™ L. I that is the case, we generate a dedicated
value for C]. If not, we set C;* = —1. This hierarchical
structure is convenient to mixed-criticality models as it was
presented in [13].

IV. MIXED-CRITICALITY MODELS
A. Transmission time computation models

Integrating mixed-criticality in ARTEMIS means that the
different virtualized topologies created through the tool must
be able to manage criticality levels and criticality level
switches. This implies to be able to trigger specific events oc-
curing in a criticality level switch. According to previous works
on mixed-criticality in networks [10], we assume that two
different events can trigger a criticality switch in ARTEMIS :

e FEither the user statically designed a criticality switch
at a specific time. In that case, the user specifies the
level to switch to and the time at which it occurs. It
is called the static model.

e FEither a message exceeds its WCTT at a specific
level according to a configurable law. If we suppose
a flow v; composed of two WCTT CFO CHI for
two Low (LO) and High (HI) criticality levels, this
event corresponds to a time where a message from v;
exceeded the WCTT CZ.LO. In that case, necessarily,
it implies that v; has to be considered as occuring a
criticality switch to HI

The first model was introduced in ARTEMIS and has
already been discussed in [2] . In order for ARTEMIS core to
be able to manage the second case (low-critical level WCTT
exceeding), it means that the messages generator model has
to be able to generate messages exceeding their low-critical
WCTT. We propose to detail here the modifications we add to
integrate inside ARTEMIS message generator in order to take
into account this new generation model.

Inside ARTEMIS core, we defined several v1, ..., Vk—1, V&
criticality levels (minimum 1). Each flow v; is designed with
a specific WCTT C}” for each criticality level j. In the case
where the flow does not belong to any criticality level except
the lowest one ~; (non-critical level), we note Vj > 1,C;7 =
—1. As a matter of fact, each flow v; is defined with a set of
WCTT noted as C}*,...,C7*=', CT*.

In order to generate potential criticality switch triggering
events, generating a message from a flow v; implies to gen-
erate not only a specific message transmission time between
the message Best Transmission Time (BTT) and C’;“, but
a message transmission time which is included between the
message BTT and its highest WCTT (attached to the highest
criticality level the flow v; belongs to). In order to integrate
this mixed criticality model, we integrated inside ARTEMIS
different probabilistic models to generate messages of different
transmission times, each transmission time associated to a
specific criticality level.

We have to keep in mind that basically, ARTEMIS has been
designed for worst case analysis. Hence, for each generated
transmission time of a message, we round it to the closest
highest corresponding WCTT w.r.t. a criticality level. This
model allows us to keep a worst-case evaluation of delays in
the end-to-end transmission delay computation of the different
flows in the network.

1) Linear model: The linear model proposes to generate a
transmission time which value is based on a linear probability
law. The generated time is computed from two bounds : the

flow BTT (noted as B;) and the message highest WCTT, be-
longing to a criticality level 7, (notes as C;Y 7). The probability
of generating a specific transmission time t is estimated as
follows :

0 if t<B;

T, . Y
e i Bt

0 if t>C)"

P(t) =

2) Strict model: The strict model is based on the assump-
tion that a message transmission time is necessarily equal to
one of its WCTT. As a matter of fact, the strict model consists
in picking one transmission time among all potential values in

1 J—=1 i
c;,...cl ,C5.,

If we suppose that the flow v; belongs to v1,...,7;-1,7;
criticality levels, we can express its probability model as :

t) =
P 0 if not

{; if t =C%ue[l;]]

3) Gaussian-based models: In this model, we define a
uniform law U which is used as a base to compute each
transmission time of each message. This uniform law is defined
by two parameters : its center ¢ and its deviation d. We note the
expression as U(c, d). In order to define different transmission
time computation models, we can adjust both values of ¢ and
d. Their role is described as follows :

e The lower the value ¢, the higher the probability for
the transmission time of a message from flow v; to
be equal or close to its BTT. On the contrary, the
higher the value of ¢, the higher the probability to
have a generated transmission time close to the highest
WCTT of v;.

e The deviation is used to define the probability of a
generated transmission time to be far from c. The
higher the deviation, the more heterogeneous the suc-
cessive generated transmission times.

A complete basic uniform law can generate WCTT which
are beyond the bounds B; and C’;” . To avoid this, we inte-
grate bounds inside the generator, implying to regenerate a
transmission time if the previous one was not between the
bounds. This allows us to propose reliable generation models
which will not generate out of bounds transmission times or
non coherent flowsets.

B. Mixed-criticality switches management

In order to be compliant with Mixed-Criticality (MC) man-
agement models proposed in [10], we integrated protocols to
manage MC inside switched Ethernet networks. Based on our
previous work [10], we integrated first the centralized approach
that relies on a global clock synchronization. The purpose of
this centralized protocol is to guarantee, through a reliable
multicast (implemented in ARTEMIS core), the consistancy
of the criticality level of the network in all the nodes at any
time. We integrated the centralized MC management protocol

in ARTEMIS taking into account the network clock accuracy
provided by a clock synchronization protocol.

The centralized protocol implies to switch the criticality
level to high levels in nodes even if they do not transmit
high-critical flows. This induces a loss of non-critical traffic
transmissions. In order to answer to this problem, we also
integrated an alternative protocol inside ARTEMIS, based on a
distributed and independant MC management protocol among
nodes, called the decentralized protocol. This approach does
not require a global clock synchronizatio protocol.

In ARTEMIS, we integrated the potential to manage these
two modes. The first mode (centralized) was the fundamental
one and has already been discussed in [2]. The decentralized
MC management imposed to split the criticality management
from the global core time management.

We integrated inside ARTEMIS CoreScheduler a new
module responsible for criticality management : the Criticali-
tyManager. This module allows us to manage a criticality level
table (for centralized protocol) and an independant criticality
level value for each node (for decentralized protocol). The
CoreScheduler is, among all, responsible for critical switches
events and criticality table integration. These concepts were
detailed in [2].

The CriticalityManager’s role is to store all the different
criticality switches and WCTT overuns in the network, in
order to associate them with corresponding criticality level
switches, either locally in a node (decentralized approach) or
in the global topology (centralized approach). Its architecture
is detailed in figure

| Nodes \
| Links —— Scheduler
| Messages /
XML
WCTT computation CriticalityManager

Fig. 2. CriticalityManager architecture in ARTEMIS core

At any time, each node controls if the CriticalityManager
triggered a specific criticality switch for this node at a given
time. As a matter of fact, the CriticalityManager is a criticality
switch engine allowing the criticality level of each node to stay
consistant and reliable at any moment of the simulation.

V. SIMULATION RESULTS

In order to illustrate the dynamic detection of mixed
criticality switches, we defined a simple topology composed
of 4 switches and a set of end-systems,. We defined also a
set of flows. In the different simulation environments detailed
below, we defined a topology and a set of flows as described
in figure 3.

The different flows parameters are detailed in the table
below. We ran the simulations for a dual (LO, HI) criticality

V1,02
ES;) 0——— V1,V2,V3

V: S
ES, o—{ 'L S V1,V2,V3,V4
ES3 O v ? Sa

V.
ES, 0—5 g V5,V6,U7
3

Ve,U7
ESs

Fig. 3. Simulation environment (topology and flows)

level network. We ran a first set of simulations to compare the
different linear, strict and gaussian models detailed in III.

v | T | Lo | CHI
vy | 80 5 8
V2 50 4 -
vs | 80 | 4 8
vy | 60 3 -
vs | 70 | 4 7
ve | 80| 5

vr | 50 3 -

First, we ran a simulation in dynamic centralized mode
(see figure 4). Given this model, we can observe that a WCTT
overun in LO mode was detected for flow vz is ES; at
t = 82us. It means that, at this time, the criticality level
switches from LO to HI. As a matter of fact, the system
detected that the message from ESs exceeded its LO-WCTT
and sent a criticality switch event to the CriticalityManager.
Figure 4 also shows that the transmission time generator is
able to generate different transmission times (corresponding
to different WCTT) for the same flow.

................

=

:
-« HEETE N
= HTH [| [
= AN n
s .
:

=

Fig. 4. Simulation in ARTEMIS with dynamic centralized mode

This first simulation is an implementation and proof of
concept of MC switches management inside ARTEMIS core.
This simulation shows the reliability of the centralized model
and that, when a criticality switches happens, the consistancy
of the criticality level in all nodes is maintained by the
CriticalityManager.

In order to illustrate the decentralized MC management
mode, we ran another simulation with the same parameters, but
with decentralized protocol. We obtained the results showed
in figure 5. We observe in this figure that each node in the
path of v; detects its LO-WCTT overun. These detections
occurs at different times on the different S7, So, S4 switches,
respectively at £ = 1us, ¢ = 9us and ¢ = 17us, indexed on the
simulation parameters.

« [[EETE L]
= HTH n h
= NIl H
st I [|
ES1
Fig. 5. Simulation in ARTEMIS with dynamic decentralized mode

Hi-critical rate : 0.1
—————— Hi-critical rate : 0.2
—- Hicritical rate : 0.3
EEsE s Hi-critical rate : 0.4

a0 |-

Number of LO-critical transmitted flows (%)

20 [F=

20 40 60 80 100
Flowset size (flows)

Fig. 6. LO-critical messages transmitted during HI mode

The delay to wait before switching back to LO mode
is automatically set to the longest period of all flows in
the topology. If no message in HI mode is received by a
node during taht period, a node switch back to LO mode.
We observe that the node S; switches back to LO-mode at
t = 96us (80us after the end of transmission of the last HI-
critical message).

As it was predicted, the decentralized network allows nodes
which are not currently transmitting HI traffic to stay in LO
mode. This allows us to transmit a higher amount of LO-
critical traffic. In order to illustrate the number of LO critical
messages which can be transmitted during both centralized
and decentralized approaches, we ran a set of simulations
computing the number of correctly transmitted LO messages
depending on the amount of HI messages in the network.

We generated 40 different random flowsets, for a number
of flowset ranging from 20 to 115. This allows to cover a
various set of possible network traffic modelizations. In order
to illustrate the impact of Hl-critical flows, we generated these
simulations for different LO to HI ratios (equal to the number
of LO flows devided by the number of HI flows) ranging from
0.1 to 0.4. The results shown in figure 6 shows that, during HI-
critical phases, we can assure the transmission of LO-critical
messages from 20 % to 70 %, which represents a clear gain
in terms of Quality Of Service (QoS).

As a conclusion, we can observe that the criticality level
switches impacts the network behavior in terms of QoS, but
both presented protocols assure the reliability of HI-critical

messages transmission

VI. CONCLUSION AND PERSPECTIVES

In this paper, we showed the new mixed criticality manage-
ment models integrated inside the last version of ARTEMIS.
Integrating different criticality protocols allows us to integrate
non-critical traffic management in the mixed-criticality simu-
lations. The integration of centralized and distributed mixed
criticality switch models allows us to propose a wide range
of simulation contexts. This integration makes ARTEMIS
specifically designed for reliability and performances tests
and practices in the domain of real-time networks simulation.
ARTEMIS comes with a taskset generation tool supporting
mixed criticality in the context of switched Ethernet Networks.

As a further work, we will propose an on-line downloading
platform for ARTEMIS.

REFERENCES

[1] L.G.X. L. Olivier Cros, Frédéric Fauberteau, “Simulating real-time and
embedded networks scheduling scenarios with artemis,” in WATERS’ 14,
2014.

[2] L. G. Olivier Cros, “Mixed-criticality management of networked real-
time systems with artemis simulator,” in WATERS’15, 2015.

[3] L. N. L. M. E Singhoff, J. Legrand, “Cheddar: a flexible real time
scheduling framework,” in The Special Interest Group on Ada (ACM’s
SIGAda) 2004, 2004.

[4] M. C. Mesonero, “Environnement de développement d’applications
multipériodiques sur plateforme multicceur. la boite a outil schedmcore,”
2012.

[S] M. Chéramy, P-E. Hladik, and A.-M. Déplanche, “Simso: A simula-
tion tool to evaluate real-time multiprocessor scheduling algorithms,”
in Proc. of the 5th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems, ser. WATERS,
2014.

[6] D. Mahrenholz and S. Ivanov, “Real-time network emulation with ns-
2. in Eighth IEEE International Symposium on Distributed Simulation
and Real-Time Applications, 2004. DS-RT 2004., 2004.

[71 A. Varga, OMNeT++ user guide, 2014.

[8] “Automotive can network response time analysis with variable jitter,” in
Mechatronics 2004 : 9th Mechatronics Forum International Conference,
2004, pp. 785-794.

[9] T. M. Rodrigo Coelho, Mark Szczepanski and G. Fohler, “A web based
monitoring tool for afdx networks,” in WATERS 15, 2015.

[10] X. L. Olivier Cros, Laurent George, “A protocol for mixed-criticality
management in switched ethernet networks,” in Workshop on Mixed-
Criticality in Real Time Systems Symposium, WMC-RTSS’16, 2016.

[11] R.I. D. Paul Emberson, Roger Stafford, “Techniques for the synthesis of
multiprocessor tasksets,” in Workshop on Analyzing Tools and method-
ologies for Embedded and Real-Time Systems(WATERS’10), 2010.

[12] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance.” in Real Time Systems
Symposium(RTSS’07), 2007, pp. 239-243.

[13] A.Burns and R. Davis, Mixed criticality systems: A review. Department
of Computer Science, University of York, 2013, vol. Tech. Rep.

NTGEN: a Network-on-Chip Traffic Generator
toolkit for latency analysis

Ermis Papastefanakis™¥, Laurent George?, Xiaoting Li*, Ken Defossez!
*ECE Paris, 75015 Paris, France
TThales Communications and Security, 92622 Gennevilliers, France
fUniversité Paris-Est, LIGM / ESIEE, Champs sur Marne, France
Email: ermis.papastefanakis @thalesgroup.com, laurent.george @univ-mlv.fr, xiaoting.li@ece.fr, ken.defossez @thalesgroup.com

Abstract—Characterizing Networks-on-Chip (NoCs)-based
Systems-on-Chip (SoCs) involves running many tests in software
simulated as well as in hardware emulated environments. Tests
help characterizing a platform and give metrics that can concern
many different aspects. Each metric provides useful information
for qualitative or quantitative conclusions. In this paper, we
present a new tool called NTGEN that covers all the chain of
actions for characterising latency on a Field Programmable Gate
Array (FPGA) NoC-based platform. The toolkit, can be used for
generating traffic scenarios that can be automatically launched.
It helps manipulating as well as analysing the results in order to
represent them into meaningful information.

Keywords—Network-on-chip, toolkit, traffic generator, NTGEN,
latency.

I. INTRODUCTION

Advances in semiconductor fabrication technologies allow
chip manufacturers to include more processing cores in each
new generation of products. Scalability has been an issue that
needed to be addressed and the NoC paradigm was proposed
as a solution to this problem [1]. It is now adopted in more
and more designs [2],[3].

The effort to continue increasing performance in computer
systems is leading to the adoption of highly parallel and het-
erogeneous platforms. Through parallelism we can distribute
calculations to different Processing Elements (PEs) inside a
manycore SoC and expect to obtain a high data flow rate.
In addition, heterogeneous accelerators, adapted for handling
specific workloads contribute to better exploit the parallel
nature of such architectures.

The role of the interconnect in parallel platforms is vital
in respect to their performance. As the number of PEs is
steadily increasing the traditional interconnect technologies
were not able to maintain scalability and started becoming a
bottleneck. The NoC approach is based in the concept of taking
mechanisms from computer networks and bringing them inside
a SoC. NoCs suggest using a modular architecture of routers to
handle the communication of PEs. This implies that in a NoC
we find familiar concepts like routers and network interfaces
transformed in respect to the constraints found inside a SoC
ecosystem. We also find concepts such as routing algorithms,
arbitration, flow control and buffering.

Initially NoCs were proposed as an alternative that would
solve the scalability limits, however this quickly evolved.
Researchers have been exploring NoC architectures to evaluate

their properties and capabilities in other aspects that are im-
portant to SoCs. Some examples are reconfiguration, security,
fault tolerance and determinism.

Since future generations of platforms for time-critical or
safety critical tasks will be most likely NoCs-based, research
on NoC architecture has produced concepts that are oriented to
these domains. Through this exploration emerges the need for
tools to validate models at a high level of detail and precision.
Since such thorough validation is time consuming there is an
interest for these tools to be optimised in order to perform those
tasks as efficiently as possible and at the same time demand
minimum human intervention and supervision.

In what concerns manycore architectures with real-time
capabilities, sufficient testing needs to be performed in order to
correlate theoretical results with the system model. Exhaustive
tests might be necessary to cover all the potential scenarios of
a use case while multiple use cases need to be considered in
order to validate the system’s timeliness.

Transaction-Level Modeling (TLM) allows to validate a
model from a functionality perspective very fast and also
provides insights in performance and timeliness as shown in
[4]. However, Register Transfer Level (RTL) modeling pro-
vides more accurate results and is synthesizable which allows
to also obtain realistic information on power consumption,
chip surface, clock distribution etc. These advantages of RTL
simulation come with the heavy cost of a rather high simulation
time and high development effort to describe the hardware
model. The first can be solved through emulation which allows
to run a model at speeds that are three to four orders of
magnitude higher than simulation. In this case the RTL model
is created using a Hardware Description Language (HDL) and
since emulation works on real hardware (FPGAs) it allows us
to obtain a more realistic model. The downside with HDLs
is the complexity in describing and debugging a model which
in simulation can be more intuitive and flexible if there is a
necessity to make changes.

Concerning benchmark tools, we can cite [5] where the au-
thors present a Generic Mixed Criticality Benchmark (GMCB)
providing task execution times, task criticality levels, com-
munication patterns, and message sizes. In Milardalen bench-
marks [6], a benchmark is proposed to characterize the Worst-
Case Execution Time (WCET) of applications. For timing
analysis, the TACLebench [7] is a benchmark that can be used.

In the context of NoC, the MCSL benchmarks [8] can
also be used to experiment classical signal processing ap-

plications including a H264 decoder, Fourier transforms, and
Reed-Solomon encoders/decoders. With this benchmark, it is
possible to define flow parameters (message size, paths) and
the execution time of flows in the NoC. These applications
define execution times. It is also possible to generate statistical
traffic and use recorded traffic patterns. We are not aware of
an open source toolkit such as the one presented in this paper

Our contribution: We propose a Noc Traffic GENera-
tor (NTGEN) Verilog module that allows to produce flows
(source-sink) in a NoC and a toolkit that handles this procedure
by creating random test scenarios that cover the space we want
to explore. The toolkit also allows us to automate the execution
of all the tests, store and post-process the results. It finally also
provides visualization of the results designed specifically to
allow the user to add customized views for aspects of interest.

In section II, we describe the platform we use and provide
information on its flow profiles. In section III we express the
requirement for the toolkit and afterwards in section IV we
proceed to detail the implementation. In section V we present
the challenges we faced. Finally, we reach our conclusion in
section VI and finish the paper by proposing our future work
in section VII

II. NOC ARCHITECTURE

A. Platform

We consider a system based on a 4x4 2D mesh NoC where
each node consists of a router, a Network Interface (NI) and
an Intellectual Property (IP) element. Even though this is the
platform that the toolkit was conceived for we considered that
the effort to make it compatible with other platforms is small
and was not be a limiting factor.

Each router R, possesses five links, four located at the
edges North, East, West, South (NEWS), used to connect with
neighbor routers and the fifth is used to connect with the Local
(L) IP;,. At every input there is a buffer with the capacity of
containing four flow control digits (flits). A crossbar along with
an arbiter are handling packet transmission (XY dimension
routing) and flow control (Stop&Go). Virtual Channels (VCs)
are not implemented and this means that a packet cannot
bypass another packet that is already in an input buffer.

An illustration of a router 1%, is given in Figure 1.

Data
Stop&Go

Fig. 1. Architecture of a NoC router Rgy

The NI is in charge of serializing and de-serializing pack-
ets. Packets are then split into smaller size flits in order to

travel in the NoC. When an IP element makes a request for a
memory location, the NI will encapsulate that into a packet,
split it into flits and send them one by one to the appropriate
router. When they reach their destination, the local NI will
reassemble the packet, de-serialize it and forward it to the IP
element that will handle the request. The same applies for the
response.

A packet containing a memory response can take up 64
bytes of data and is split in 8 flits of 8 bytes each. The NI
will add a header flit containing routing information making a
total of 9 flits. A packet containing a request can be as small
as one flit.

The IP element is the end point in the NoC. It can be a
PE, memory, General Purpose Processor (GPP) or a peripheral
(slave or a master). Consequently not all nodes in a NoC can
initiate traffic.

This platform is implemented in Verilog and is able to
synthesize on a FPGA (Xilinx Virtex-7). Measurements can
be taken through a cycle accurate simulator (Xilinx Vivado)
or through traces of the FPGA output stream passing through
gigabit ethernet.

B. Network model

We consider n periodic flows transmitted in the NoC.
A periodic flow 7; sends packets respecting two parameters:
1) the period 7; which is the temporal interval between
the arrival of two consecutive packets, and 2) the maximum
transmission time C; which is the maximum time to transmit
all the flits of a packet on a router. In addition, the Average-
Case Traversal Time (ACTT) and Worst-Case Traversal Time
(WCTT) represent the average and worst-case time it took
packets to traverse their path.

Due to the dimension-order X-Y routing, each packet of
flow 7; follows a static path denoted P; which is composed
of the source and destination IPs as well as the input ports
of routers along this path. The first buffer of the source IP
is denoted first;, while the last buffer of the destination IP
is denoted last;. Then the path of flow 7; is represented by
P = {first;,...,last;}.

We consider one diffusion path in the network which means
that when packets of different flows join one path, they do
not leave this path until they are transmitted to the same
destination (source-sink model). A real use case that illustrates
this concept can be found in memory hierarchies where the last
level, a common bottleneck in Multi-Processor Systems-on-
Chip (MPSoCs), is the Random Access Memory (RAM). This
assumption also comes from Avionics Full DupleX switched
Ethernet (AFDX) network flows and is related to our previous
work in [9].

III. TOOLKIT REQUIREMENTS

In order to be able to characterize the platform mentioned
above and thoroughly validate new features we proceed by
defining the requirements of the toolkit.

We took as input two use cases: a comparison between
two arbitration schemes (First-in First-out (FIFO) and Round-
Robin) as well as in validating our past work in [9]. Although
both use cases were used to define requirements, in this paper
we present how the toolkit was used to develop measurements

and visualization concerning the first use case of arbitration
comparison. The context of this paper being to present the
toolkit, we do not present the results of the use case here.

In Figure 2, we consider the NoC described in section
II with 7 flows 7y...77 reaching one destination and where
each IP is indexed with the coordinates of its router. The
solid lines represent the paths that join to reach the desti-
nation node. We focus on flow 77 following the path P; =
{IPoo, Roo_r, Ro1_w, R11_n, Ro1_n,1P21}. The paths of the
other flows are:

Py = {IPo3, Ros_r, Ro2_g, Roi_g, Ri1_n, Ro1_n, P21 }

Ps = {IP20, Rao_r, Ro1_w, P21}
Py = {IP22,Ros 1, Ro1_g,IP21}
Ps = {IP23,Ra3 1,Ro2 £, Ro1_g,1P21}
Ps = {IP30, Rao_r, R31_w,R21_s,IP21}
7)7 = {IP327 R32_L7 R31_E7 R21_S, IP21}
‘\Boo Roi1 Ro Ro3
Rio R13
R20} Ro1} N 323
F—]
R ol =l o
R30 R31 R3] R33
Fig. 2. NoC example of the case study

The FPGA used for the measurements already has an
interface that allows us to send commands and recover traces
using the gigabit ethernet port. Basic error detection is also
implemented allowing to react when frames are lost. An
NTGEN instance at each IP element should be addressable
and modeled in a way that would make it possible to receive
commands at runtime. In addition all NTGEN modules can be
synchronized and start their transmission simultaneously.

Concerning the scenario generation, we wanted to be able
to specify the desired average link utilization of the output
node (here the link Ry to IP5;) as well as the number of
traffic sources and obtain random periods to create such a
pattern. Automated deployment is available based on the list
of scenarios generated with minimum supervision. This means
that reinitialising the NoC at the beginning of each test is also
necessary. Assuming results are obtained we are able to process
them and filter the information that is necessary. Eventually for
the visualisation phase we exploit a framework allowing to plot
the results.

During all this process we also have non-functional require-
ments such as performance and resource usage that should
be contained in order to make this toolkit compatible with
an average computer. In addition the development languages

should be chosen based on their capacity to provide reusability,
readability and ease of maintenance. In the same context,
standard data formats should be chosen avoiding customized
structures that would pose a limit to compatibility. Finally the
toolkit should have a modular architecture that would make
it portable to other NoC models and would allow anyone to
replace or add modules to improve its functionality.

IV. TOOLKIT IMPLEMENTATION

Following the requirements specified we propose a toolkit
described in Figure 3. On the left we have the FPGA which
is connected through an Ethernet cable to a host computer on
the right. On the FPGA we have the synthesized bitstream of
the NoC architecture along with NTGEN which is present in
each node. On the host side we have all the software elements
that the toolkit consists of.

A. Traffic Generator Implementation

NTGEN, as illustrated in Figure 1 is connected to the NI
similarly to an IP element. Once configured, NTGEN can
inject 9-flit long packets to the NI destined to any of the
other nodes in the network. The corresponding NTGEN in the
destination node will receive the packet and send a message
through the Ethernet interface to the host detailing the packet’s
transmission. The length of the packet was intentionally chosen
to represent a cache line transfer. However, if supported by
the NoC model longer packets can be generated in order to
represent for example Direct Memory Access (DMA) modules.
This would reduce the number of messages sent to the host as
we would have a lower packet per flit ratio. When synthesized,
NTGEN takes around 200 Look Up Tables (LUTs) which
makes it light and capable to scale as the number of nodes
might increase.

B. Scenario generation tools

For the host side of the toolkit, the starting point is the
random generation of periods [10] for each of the source nodes
in a scenario. The input information is the number of source
nodes, the desired utilization and the total number of random
scenarios that are going to be generated. The algorithm in
[10] is called to generate a set of periods and also calculate
the necessary amount of cycles (one hyperperiod equal to the
least common multiple of flow periods) that each scenario
needs to run. This file is then taken by a script that aggregates
multiple lists of different utilizations, source and destination
nodes based on user input provided to the script. The final
file generated is passed to the command interface that can
interpret it and launch each of the scenarios sequentially. It
will configure NTGEN in each of the source nodes using a
library that transforms each line of the list to commands for the
FPGA. This tool also manages the initialization of the FPGA
before each scenario, the launch of each scenario as well as
its termination when the hyperperiod is reached.

At the same time, the response interface (the counter-part
of the control interface) receives traces from the FPGA and
performs a preliminary post-processing that allows to filter a
big part of the information and keep the necessary parts that are
then saved in a file. This file is taken by the visualisation tool
whose goal is to transform the raw information into objects.
Then we can easily exploit them to produce visualization

graphs that can then be used to obtain an insight on the
temporal behavior of the model.

We can understand that the user is required to interact with
the toolkit mainly at the early stages as we tried to keep the
configuration parameters simple. If necessary, we can obtain a
finer configuration granularity by intervening inside the scripts.

[TGEN
Library

Scenario D Channel Utilvzationl
Gigabit Command Generator Randomization
Ethernet ‘/ AMATLAB

Interface # python

Response Post-| processlng @@
Interface
ﬁ I& Plotting ', puthor\ @@

Host Computer natplotlib Graphs

Virtex-7

Fig. 3. Toolkit software architecture

C. FPGA interfacing

Concerning the command and response mechanisms that
manage the tests on the FPGA and store the results, we can
see a top-level state diagram in Figure 4. Both interfaces
are launched and reach an idle state. The user launches the
command to execute test scenarios and the command interface
resets and configures NTGEN. The NoC model possesses a
reset mechanism that enables the command interface to put it in
an initial state that is consistent and allows us to perform each
test with fixed initial conditions. After NTGEN is configured
for the first scenario the command interface passes at a “wait
state” during which it is polling a pipe that is established for
communication between the two interfaces. When the scenario
is over, the response interface will send a message in that pipe
and the command interface will reset the FPGA and configure
NTGEN to continue with the next scenario. In this current
version of the toolkit, managing errors is not supported, in the
case that a packet is lost, the response interface will send a
message in the pipe and both programs will exit.

reset TGEM

received

received
packet

Wait for Process
Hypsrpedmd Packet

packet
lost

Exit with Error

end of all
scenarios

Fig. 4. Toolkit state machine

D. Visualisation

When results have been stored, we can use the visualisation
script in order to plot the information into graphics (using
matplotlib library). That way, we can get a better understanding
on the behavior of the model in addition to having raw
information.

The plotter of the toolkit provides mainly pre-coded graph-
ics that: will automatically be plotted based on the results

(see below) and allow the verification of the precision of the
tested scenarios. The capability for the user to code his/her
own graphs that can visualize additional aspects of the results.

In figures 5, 6, 7, 8, 9, 10, we present some of the graphs
that are provided by default in the toolkit.

In figure 5 we can see all the scenarios executed and
the worst case latency in each. In figures 6, 7 we have all
the scenarios grouped in relation to the link utilization at the
destination node. In figure 6 we see the average time it takes
packets to traverse the NoC. In figure 7 we have the worst
case of the worst traversal time of the scenarios with the same
link utilization. This will allow us to perform side to side
comparison between two features, being arbitration, routing
etc. In figure 8 we obtain the histogram for a specific node so
that we can observe its behavior. Finally in figures 9, 10 we
have information on the precision of the tests we performed.
This can be used to easily to verify that the traffic generation
does indeed produce correct utilization patterns.

Worst Case Transition Time (WCTT) in cycles), Tile: 0

I:I Round Robin
I:I FIFO

Transition time (cycles)

Overview of all scenarios

Fig. 5.

Average Case Traversal Time (ACTT) in cycles), Tile: 0

[EE3 Round Robin
[FIFO

50 —

60

Traversal time (cycles)
w B
=] 5]

)
S

10

0.4 0.5 0.6 0.7 0.8 0.9 10
Scenario Utilization (%)

Fig. 6. Bar graph for the ACTT

V. CHALLENGES
A. Implementation of HDL traffic generator model

HDL is quite different from software development as
it requires to keep the model synthesizable and to always
take into account the way the synthesis tool generates the

Worst Worst Case Traversal Time (WCTT) in cycles), Tile: 0

@0 Round Robin
[0 FIFO

140 —

120 Foi

100 F

80|

60

Traversal time (cycles)

40 |

20

0.4 0.5 0.6 0.7 0.8 0.9 10
Scenario Utilization (%)

Fig. 7. Bar graph for the WCTT

4.0 1e221 Histogram of tile 0

Occurences

) 20 40 60 80 100 120 140 160
Traversal Time (Cycles)

Fig. 8. Distribution of Traversal Time of node IPgg

110

100+

90+

80

70+

il

30
0

Measured utilization (%)

|

o

100 200 300 400 500 600 700
Scenario id number

Fig. 9. Precision validation between theoretical and measured values for each
scenario

Channel Utilization Precision

+ +

+ +

+ +

+
5 +

+

+ T

Measured utilization precision (%)

+

|- - e = e L &

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Theoretical utilization (%)

Fig. 10. Relative precision validation for each utilization set of scenarios

bitstream based on the code. For example, a modulo counter
implemented using the % symbol (usual in languages such as
C) will use much more resources compared to implementing
the module through a register. Validation can be challenging as
we can choose between two worlds, cycle accurate simulation
or emulation on FPGA, each having its own advantages. With
simulation we can have a very high degree of visibility of
the model’s behavior, monitor or alter any part of it and
pause the simulation at any point. The downside is that
simulation is very slow and can become inefficient in long
scenarios. Emulation on FPGA can be significantly faster as
the model is running in real-time. However, synthesizing the
bit-stream can take long (30-120 minutes) and needs to be
repeated at every modification. As a result emulation is more
suitable for long scenario validation while simulation is very
efficient in short fine grained validation as well as for the
development/debugging phase.

B. Implementation of scenario generator

The challenges in scenario generation relate to producing
enough scenarios to cover all the channel utilization needed for
testing during a sufficient duration (at least one hyperperiod).
At first we needed to produce random scenarios with a specific
bandwidth output. This was achieved by using Randfixedsum
algorithm [10] to generate each source’s transmission period.
The goal was to obtain periods that would cause the link at
the destination node to have a desired average utilization rate.
In addition, the total duration of each scenario, defined by its
hyperperiod should not be too large to test it. As a result from
all the scenarios generated, we only keep the ones that do not
exceed 1 billion cycles.

C. Implementation of communication software with the FPGA

The main challenge here relates to performance and more
specifically to the reception of packets from the FPGA. The
objective is to be able to process and store packets fast enough
to avoid dropping them due to congestion. Depending on the
channel utilization, the FPGA would output packets to the host
computer at different rates. For higher utilization scenarios the
bandwidth would reach as much as 600 MBit/s and storing this
information would generate files that as much as 8GBytes per
scenario. Considering that we would need to execute multiple

tests of hundreds of scenarios, archiving the information would
limit the capacities in testing. As a result there would have to
be some processing at the reception of each packet in order
to keep the useful parts of the information and reduce storage
requirements.

A new challenge emerges here as the amount of processing
resources is limited by the packet reception rate. The process-
ing time should not exceed the time between packets as it
will end up filling the input buffer to a point that packets will
eventually be dropped. To resolve this issue various mecha-
nisms were implemented. Firstly the CPU/memory trade-off
was shifted and the memory used for the input buffer was
maximised in order to be able to absorb more packet pressure
giving the possibility to the CPU to complete the processing.
Secondly, the processing task was attached to a specific core;
avoiding migrations to other cores would optimize the resource
usage. Finally, to ensure that there would be no other tasks
sharing the core with the processing task, creating context
switching and preemption overhead, we masked the core
making it solely available to the toolkit.

Through this challenge we are able to identify that the
major factor of scalability for the toolkit is the destination
node. Since messages to the host computer are sent each time
a packet is received, it is obvious that scaling to more cores
or adding virtual channels will not affect the volume of data
we receive at each scenario. However adding more destination
nodes will have an impact, but again only in high bandwidth
scenarios. At this case slowing the operational frequency of
the FPGA is a rather feasible solution that will add more
emulation time for intense scenarios but remain more efficient
than simulation and keep the tool scalable. Another possibility
is to offload part of the post-processing to the FPGA and
receive information that, requiring little or no processing, is
ready to be stored and exploited. This solution needs to be
evaluating its complexity in implementation and maintenance.
However, given the gain of processing in FPGAs it can have
a very high potential.

Secondary challenges involve the FPGA communication
protocol stack that we implemented in order to provide a layers
of abstraction, making the toolkit able to be adapted to other
platforms.

D. Implementation of data analysis and representation

The JSON library in Python opens data files and parses all
the content into memory in a single operation. This results in
the creation of multiple objects holding information in RAM
that is not immediately necessary but still occupies memory
space. In fact for a rather small amount of results the memory
occupied by object was so big that made us realize that the
analysis would be impossible for the full scenarios list. This
was another reason that made processing necessary before
storing the data to disk. Currently the scenario file size after
partially processing results, allows Python’s JSON parser to
cope without problems. However, in order to anticipate for
future scenarios yielding more voluminous results a more solid
solution needs to be implemented.

VI. CONCLUSION

In this paper we propose a new toolkit called NTGEN for
a FPGA NoCs platform performance analysis. This toolkit

can be used to perform tests to validate platform features
and functionalities and characterize the latency of flows sent
through the NoC. NTGEN can automatically generate traffic
scenarios and perform analysis to present them in useful
valuable information.

VII. FUTURE WORK

At first in order to take an orientation for a more mature
simple set of tools, we envision to converge the different
programming languages and file formats. Secondly, we plan
to enable support for traffic generation and visualization for
more than one destinations. This way the toolkit will be able
to handle more use cases and take a more general character.
Thirdly, there is an interest to be able to generate realistic
traffic patterns in addition to random ones. We intend to look
into this subject so that for example, we can record real
applications and replay them to simulate traffic.

Another interesting aspect would be to support results
acquired from simulation in addition to emulation. The effort is
minimal and it will allow to use the toolkit for small scenarios
that still need visualization.

Finally, in the long term we would like to provide a
Graphical User Interface (GUI) making the toolkit easier to
use. Scenario generation will be easier, as well as following
the progress of testing scenarios. In addition, by being able
to chose subsets of data through a user interface will make
managing the visualisation of the results much faster.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Design Automation Conference, 2001.
Proceedings. 1EEE, 2001, pp. 684-689.

[2] B.D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss
et al., “A clustered manycore processor architecture for embedded and
accelerated applications.” in HPEC, 2013, pp. 1-6.

[3] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Program-
ming the adapteva epiphany 64-core network-on-chip coprocessor,”
International Journal of High Performance Computing Applications,
p. 1094342015599238, 2015.

[4] L. S. Indrusiak, J. Harbin, and O. M. Dos Santos, “Fast simulation of
networks-on-chip with priority-preemptive arbitration,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 20,
no. 4, p. 56, 2015.

[5] J. Harbin, T. Fleming, L. S. Indrusiak, and A. Burns, “Gmcb: An
industrial benchmark for use in real-time mixed-criticality networks-on-
chip,” in Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), 2015.

[6] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mélardalen
weet benchmarks: Past, present and future,” in OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[7] “Taclebench website,” http://www.tacle.eu/index.php/activities/taclebench,
2016, [Online; accessed 26-May-2016].

[8] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and
Z. Wang, “A noc traffic suite based on real applications,” in VLSI
(ISVLSI), 2011 IEEE Computer Society Annual Symposium on. 1EEE,
2011, pp. 66-71.

[9] E. Papastefanakis, X. Li, and L. George, “Deterministic scheduling
in network-on-chip using the trajectory approach,” in Real-Time Dis-
tributed Computing (ISORC), 2015 IEEE 18th International Symposium
on. 1EEE, 2015, pp. 60-65.

[10] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), 2010, pp. 6-11.

Challenge
Solutions

Calculating Latencies in an Engine Management
System Using Response Time Analysis with MAST

Juan M. Rivas, J. Javier Gutiérrez, Julio L. Medina and Michael Gonzalez Harbour

Software Engineering and Real-Time Group, University of Cantabria, Spain.
{rivasjm, gutierjj, medinajl, mgh}@unican.es

Abstract—This paper reports solutions to the 2016 edition of
the Formal Methods and Timing Verification (FMTV) challenge.
The challenge requests calculating latencies in a complex engine
management system, of which an Amalthea model is provided. We
propose solving the challenge using MAST, which is a real-time
systems model and also a suite of tools for schedulability analysis
and optimization. The efforts to solve the challenge are mainly
focused on translating the Amalthea model into the MAST model.
Then, response time schedulability analysis tools are used. We
discuss the strengths and limitations of our approach, and present
the results obtained. Finally, we report the time needed to
understand and complete the challenge. The solutions are
available to the public in electronic form to facilitate their
assessment by the community.

Keywords— Amalthea; MAST; engine management system;
real-time, response-time analysis.

I. INTRODUCTION

This paper presents a solution to the 2016 FMTV Challenge
[1] which asked calculating tight end-to-end latency bounds in a
complex engine management software composed of a number
of cause-effect chains. The system is provided as an Amalthea
[2] model.

We propose the verification of this system by applying
response time analysis (RTA) inside the MAST [3][4] analysis
suite. Accordingly, the first effort that must be undertaken is to
define an Amalthea to MAST model transformation path. Once
an equivalent MAST model is generated, the MAST analysis
tool can be used to calculate latencies, using common response-
time analysis techniques, such as the offset-based analysis [5].
Using MAST enables the application of complex mathematical
formulation to perform the response time analysis on an easy to
understand high level abstraction model. This approach requires:
(1) the correct interpretation and transformation of the provided
model, (2) the selection of the most appropriate and less
pessimistic analysis technique, and (3) the correct interpretation
of the results provided by the tools.

The paper is organized as follows. Section Il describes the
MAST environment focusing on the most relevant elements
used to solve the challenge. Section Il deals with the
interpretation of the provided Amalthea model, and how it is
modelled using MAST. Section IV proposes an analysis for

This work has been funded in part by the Spanish Government under grant
number TIN2014-56158-C4-2-P (M2C2).

event chains. In Section V, the challenge results are presented.
Finally, Section VI presents the conclusions of this work.

Il. MAST TOOL SUITE

The MAST environment provides an open source set of tools
to perform schedulability analysis and optimization of real-time
systems [4]. These tools operate on systems described using the
MAST model [3], which is key to our solution of the challenge.
This model is aligned with MARTE (Modeling and Analysis of
Real-Time Embedded systems) [6], a standard of the Object
Management Group (OMG) for modeling and analysis of real-
time and embedded systems.

A. The MAST model

The MAST model follows an event driven approach, and
assumes a real-time distributed system with multiple processing
resources (CPUs and communication networks). The system is
composed of distributed end-to-end flows, which are released by
periodic, sporadic or aperiodic sequences of external events. The
relative phasing of the activations of different end-to-end flows
is assumed to be arbitrary. An end-to-end flow is composed of a
sequence of steps, which represent the execution of a thread in a
processor, or the transmission of a message through a network.
Each release of an end-to-end flow causes the execution of one
instance of its sequence of steps. Each step is released when the
preceding one in its end-to-end flow finishes its execution. We

A Di .
A g
L Ri3:R| J
| |
e Riz . l
< ”1 |
| | |
| lio | |
I — I
r, | i |
i i Thread 1 | ! Thread 2
|
_,e‘ c i1 J C;‘)z J C i3
gT, Ci Ci, Ciz
|
|
i Step 7;; | Step 7;, Step 73
|
: D :

Fig. 1. Example of a simple MAST end-to-end flow with three steps.

assume that the steps are statically mapped to processing
resources. The model also allows mutual exclusion
synchronization in the processors.

Fig. 1 shows an example of an end-to-end flow (I'j) with
three steps (i1, Ti2, Tia), €ach executing in a different processing
resource PRy. The end-to-end flow is released by the arrival of
the external event e;. This external event has a period Ti, which
can also represent the minimum inter-arrival time of a sporadic
arrival pattern. Steps can have an initial offset (@;) associated,
which is the minimum imposed release time of the step, relative
to the arrival of the external event. Each step has a worst-case
execution time (WCET) C;, and a best-case execution time
(BCET) ¢}

MAST supports Fixed Priorities (FP) and Earliest Deadline
First (EDF) scheduling. The timing requirements that we
consider are end-to-end deadlines (Di), which must be met by
the completion of the last step in the end-to-end flow, relative to
the arrival of the external event. The deadlines can be larger than
the periods.

As a result of the response time analysis, each step z;has a
worst-case response time (or an upper bound of it) Rj;, and a best-
case response time (or a lower bound of it) R;. These response
times are relative to the arrival of the external event (global
response times). The worst-case response time of an end-to-end
flow (R;) is the worst-case response time of its last step. The
system is said to be schedulable if the worst-case response times
of the end-to-end flows are lower or equal to their end-to-end
deadlines (Ri < Dj).

The completion time of the steps can vary for different
activations. As a consequence, the step activation time also
varies. For a step tij, we define its release jitter (J;) as its worst-
case variation in activation times. The jitter is taken into account
by the analysis techniques.

B. MAST analysis tools

To solve the challenge, we use the response-time analysis
techniques included in MAST [4] on the equivalent MAST
model generated from the Amalthea model. MAST implements
several analysis techniques that can be applied to an FP system
with end-to-end flows, ranging from the holistic analysis, to
various offset-based techniques [4].

Of particular interest for this work is the Offset-Based
Analysis with Precedence Relationships [5]
(offset_based_approx_w_pr in MAST). This technique supports
steps with offsets, and is capable of reducing the pessimism in
the results by eliminating scenarios that would be impossible
when taking into account the precedence relationships inside
end-to-end flows. This characteristic is particularly helpful with
end-to-end flows that don’t traverse different processing
resources, as it will be the case in this challenge.

Additionally, MAST can also perform sensitivity analysis by
calculating the system slack, which, if positive, is defined as the
percentage by which the execution times of all the steps in the
system may be increased while still keeping the system
schedulable. If negative, the system slack corresponds to the
percentage by which WCET’s would have to be decreased to

make the system schedulable. Similarly, slacks for each
processor can be calculated too.

MAST provides global worst-case and best-case response
times of the steps in the system. For a part of this challenge we
will need local response times of the steps. While these are not
usually provided by MAST, we have modified the tool so it
could handle local response-times too, according to [7] taking
into account offsets. Then, we define local worst-case response
times (rij), and local best-case response times (r}?) as upper and
lower bounds, respectively, on the completion times of steps,
relative to their own local activations (see Fig. 1). This custom
version of MAST will be made available in addition to the
transformation and generated models.

I1l. AMALTHEA TO MAST MODEL TRANSFORMATION

The 2016 FMTYV Challenge provides an Amalthea model of
a full blown engine management system. The complexity of the
system is made apparent just by looking at the model file, which
has approximately 71000 lines. In this section, we will describe
how we interpret the Amalthea model, and how the equivalent
MAST description of the engine management system is created.
While Amalthea defines a vast meta-model supporting many
types of elements and use-cases, we will limit our transformation
to the elements relevant for this challenge.

Amalthea tasks represent the schedulable elements in the
model. For the case of the challenge, they have the following
characteristics:

e Tasks are activated by periodic or sporadic stimuli with
minimum inter-arrival times. Stimuli are assumed to
have arbitrary phasing (property “Clock” of the stimuli is
undefined). Timing constraints are given as deadlines
that the tasks must meet. In this case, deadlines are equal
to the periods (tasks must finish before their next
activation).

e Tasks are statically assigned to a core, and are scheduled
with a fixed priority policy. Tasks can be preemptive
(they can preempt any lower priority task at any
moment), or cooperative (they can preempt lower
priority cooperative tasks only at the termination of
runnables). In the provided model, cooperative tasks
always have lower priority than preemptive tasks.

e Each Amalthea task in the model executes a sequential
list of Runnables. Each Runnable is composed of three
sequential stages: (1) label (memory) read accesses, (2)
execution of instructions in the assigned processing core,
and (3) label (memory) write accesses. Some Runnables
don’t write or read from memory.

We interpret Amalthea tasks as MAST end-to-end flows, in
which each runnable is transformed into a MAST step. For
sporadic Amalthea tasks, the resulting MAST end-to-end flow
will be periodic, with a period equal to the minimum inter-arrival
time. This interpretation is only correct for flows with offsets
within the periods [8]. Since in the Amalthea model the flow
deadlines are within the periods so are the step offsets. If the
offsets were larger than the periods, the MAST flows would
need to be sporadic and the worst-case response times would be
larger. The deadline of the Amalthea task is directly used as the

end-to-end deadline of its corresponding MAST end-to-end
flow.

MAST lacks a specialized element to model memories.
Additionally, it also doesn’t implement any mechanism to model
the blocking of a processor while it is accessing a memory, thus
disallowing us to model memory as a general purpose device.
With these limitations in mind, we will model the memory
accesses as execution times added to the MAST steps,
accounting for the worst-case and best-case costs of accessing
the memory. The worst-case cost of accessing a label
pessimistically assumes that every core is accessing that
memory at the same time. Therefore, if we consider that only the
global memory is used (second question of the challenge), the
worst-case cost of accessing a label is 4*9 cycles. Similarly, the
best-case cost of accessing a label assumes that no other core is
in the queue for that memory, so this value is just 9 cycles (no
contention).

Accordingly, in the runnable to MAST step transformation,
the worst-case execution time of the step (Cj) is calculated as the
sum of two elements: (1) the execution time of the upper bound
of the number of instructions of the runnable, and (2) the worst-
case cost of accessing the labels. If a runnable accesses N labels
(read and/or write), the worst-case cost would be N*4*9 cycles
if we assume that only global memory is used. Likewise, the
best-case execution time (Cf) of the step is calculated as the sum
of the lower bound of the instructions of the runnable, and the
best-case cost of accessing the labels (N*9 cycles).

Additionally, we also take into account the blocking effect
in a thread accessing the memory due to a label being accessed
by a lower priority thread in the same core, even though this is
almost negligible. This is modeled by including in each core a
shared resource protected by the Immediate Ceiling protocol that
is accessed by each step during 9 cycles. This produces one
blocking of 9 cycles to each higher priority thread, which is the
intended effect.

Fig. 2 depicts the transformation of a simple Amalthea task
(Fig. 2a) into a MAST end-to-end flow (Fig. 2b). If memory
accesses are ignored, as stated in the first question of the
challenge, the executions times of the resulting MAST steps
only include the execution times produced by the instructions.

(a) AMALTHEA Task
Labels read Labels written
v v
stimuli q g N
> |M| Instructions_1 |M|—»M| Instructions_2 |M—>M| Instructions_3 (M
& [Trin T
Runnable_1 Runnable_2 Runnable_3
Worst-case
(b) memory access cost
w4
External =
event
S Step 33 > Step 71, > Step 713
g Tmin
Cll Cl C13

Worst-case memory accesses

| |
< gl
! !
| |
| StepWCETas instructions + |
| |
| |
Iy End-to-end deadline =D o

Fig. 2. (a) Example of a simple Amalthea task with three Runnables, and (b)
its MAST end-to-end flow equivalent used in this work

From Premptive AMALTHEA Task

@ MAST Thread Priority: P,
External
event C [C
et Czl.l 5 C;z N C;!
2 Tlmm 11 12 13
Step 731 Step 73, Step 713
From Cooperative AMALTHEA Task
b
®) MAST Thread Priority: P,
External
event C. C C,
S Cil N c'Z'Z N c,z,s
2 T2min 21 22 23
Step 7 Step 7, Step 7,3
Longest
Runnable
Dummy Shared Resource
MAST Thread Longest Priority: P3
Runnable
External
event C C C:
—— C:l Y ng Y Cg:{
2 T3m|n 31 32 33
Step z3; Step 73, Step 733

From Cooperative AMALTHEA Task

Fig. 3. Equivalent Amalthea tasks as MAST end-to-end flows, for (a)
preemptive , and (b) cooperative Amalthea tasks.

MAST supports non-preemptive tasks, but they cannot be
preempted by any task. This is not aligned with the behavior of
Amalthea cooperative tasks, which can be preempted by
preemptive tasks. To model cooperative tasks, we will take into
account that in the worst-case scenario, these tasks will be
blocked by an amount equal to the longest cooperative runnable
with lower priority. In MAST we can induce this blocking
adding a dummy shared resource that is used by the longest
runnable of each cooperative task. MAST automatically finds
the longest possible blocking that affects each task. Fig. 3a
depicts a MAST end-to-end flow transformed from a preemptive
Amalthea task, while Fig. 3b shows the transformation of two
Amalthea cooperative tasks.

IVV. ANALYSIS OF EVENT CHAINS

We interpret event-chains as a latency model for non-
consecutive runnables communicating via shared memory. The
first runnable in the event-chain writes a result in a label. Then
the next runnable in the chain reads this label, process it, and
writes its result in another label, and so on. Runnables in an
event-chain can belong to the same Amalthea task or not. Even
though MAST does not support this kind of “virtual” end-to-end
flows, it provides results that can be used to calculate bounds for
the best and worst-case latencies of the event-chains.

We distinguish two types of event-chains: event-chains that
stay in the same Amalthea task; and event-chains that traverse
different Amalthea tasks. Each kind requires a different
formulation to calculate the end-to-end latencies.

A. Event-chains that traverse different Amalthea tasks

Fig. 4 shows the MAST equivalent model of a simple event-
chain that traverses three Amalthea tasks. This is the behavior
that follows EffectChain_2 and EffectChain_3 event-chains in
the challenge. Let us use the simple example shown in Fig. 4 to

‘ 4’{ H ’ Event Chain
EE
2T, |
™ Yo T Y T3
2T, | |
Ty 7 " T3
I33
—>
2T, I
T o " Tz3

Fig. 4. Interpretation of an event-chain traversing different MAST end-
to-end flows.

explain how to formulate the latencies for this kind of event-
chain.

The worst-case latency of the event-chain (L) comprises the
sum of the worst-case local response times of the steps in the
chain (r;;), and the periods of all the end-to-end flows but the first
one. The periods should be added because in the worst-case
situation it is assumed that at the time a label is written, the next
runnable in the chain has just executed, so the chain cannot
continue until the next period. For sporadic stimuli, the period
added must be its upper bound. Similarly, the best-case latency
(L") is calculated by summing the best-case local response times
(r3). In this case periods are not added, because the best case is
built when a label is read immediately after the previous
runnable in the chain updated its value. The formulation for the
worst and best case latencies for the event-chain shown in Fig. 4
is formalized as follows:

L=r1+T,+1y+T;+133

L’ =1{y + gy + 13

L H

’ Event Chain
@)
ET,
(201 T12 713 T4 715
V\\
) R T-Rp
«—> Rb;, T-Rb,
Rll
Rbll

Fig. 5. Interpretation of an event-chain going backwards in the same
MAST end-to-end flow.

B. Event-chains that go back in the same Amalthea task

Fig. 5 shows the MAST equivalent model of a simple event-
chain that traverses the same Amalthea task backwards. This is
the behavior of EffectChain_1 in the challenge. For this kind of
event-chains it is trivial to see that to go backwards, the chain
requires an additional activation of the Amalthea task.

Using the simple example shown in Fig. 5 as reference, for
this type of event-chains the worst-case latency (L) occurs when
the first label in the chain is read as soon as possible (R?,), so
the chain has to wait the maximum amount of time until the next
activation of the end-to-end flow. Then, the event-chain must
wait for the worst-case completion time of step t11 (R,,). Since
the end-to-end flow must finish before its next activation, the
response time of step 115 is irrelevant in this calculation. The
total worst-case latency for this type of event-chain is formalized
with the following equation:

L= (Tl - sz) + Ry

Likewise, the best-case latency (L") of the event-chain
occurs when the first label is read as late as possible (R,,) and
step 111 finishes as soon as possible (R?,). The best-case latency
for these kind of event-chains can be calculated with the
following formula:

P = (T1 - R12) + Rf1

V. EVALUATION

To transform the provided Amalthea model to MAST we
developed an ad-hoc tool written in Java, consisting on less than
400 lines of code. This tool reads the challenge model using the
Eclipse EMF framework [9], and builds an equivalent MAST
model piece by piece using the interpretations described in
Section I1l. The transformation of the given Amalthea model to
MAST takes approximately 10 minutes, most of which are spent
by the EMF framework loading the Amalthea model. The
generated MAST model has approximately 23000 lines.

We proceed to solve the questions raised in the challenge,
that is, to calculate end-to-end latencies that are as tight as
possible. The challenge doesn’t explicitly specify which are the
end-to-end latencies that must be calculated. We provide end-to-
end latencies for the Amalthea tasks (since they all have timing
requirements), and for the event-chains described in the model.
The analysis technique used has been the Offset-Based Analysis
with Precedence Relationships [5]. This is the less pessimistic
technique for end-to-end flows that only traverse one processor.
The analysis tool takes from 1 to 5 minutes to execute,
depending on the utilization of the system. The calculations of
the slacks took up to 2 hours, since they involve iterative
executions of the analysis tool.

In a first attempt to get analytical worst-case latencies, we
used the upper bounds of the number of instructions of the
runnables as the WCET of the MAST steps. The total utilization
of that system goes above 100%. Using response time analysis
in such situation automatically yields unbounded (infinite)
worst-case response times. While utilizations over 100% can be
handled by other techniques (e.g., simulators), they are not
appropriate when applying response time analysis. After
knowing that all upper-bounds in the original Amalthea model

can never occur at the same time, and not having the realistic
models for each relevant real-time situation, we decided to
consider two scenarios: Scn-ACET, and Scn-WCET.

In Scn-ACET, the worst-case execution times of the steps
are calculated using the mean value of the number of instructions
of the runnables. In Scn-WCET the worst-case execution times
of the steps are calculated with the upper bound of the number
of instructions (as described in Section I11). In both scenarios we
calculate latencies for different CPU clock frequencies, from the
default 200Mhz and above (233Mhz, 266Mhz, etc.), until the
timing requirements in the system are met. We essayed common
CPU frequencies only. Additionally, for each analyzed case, we
also calculate the system slack, and the slack of each core.

A. Ignoring Memory Accesses

Table | shows the results when memory accesses are ignored.
Shadowed cells indicate tasks that don’t meet their deadlines.
We can see that for Scn-ACET, 200Mhz is enough to make the
system schedulable, with a system slack of 9.77%. If the clock
frequency is increased to 233Mhz, system slack increases to
27.73%. For Scn-WCET, schedulability is achieved at 300 Mhz,
with a system slack of 8.98%. If we observe the slack in each
core, we can see that COREL is always the most constrained
(lowest positive slack). This is to be expected, as this core has
higher utilization among all cores.

B. Adding Memory Accesses, using Global Memory Only

We repeat the process, but this time considering the memory
accesses. As a reminder, the memory accesses are modelled as
additional WCET of the steps, considering the worst-case cost
of accessing each label. The results are shown in Table Il. As
can be expected, the core utilizations now increase compared to
the case without memory accesses (Table I). The increase in
utilization is between 3% and 12%, depending on the core. As a
consequence, there is a system-wide increase in latencies too.

In this situation, Scn-ACET is not schedulable at 200 Mhz
(Angle_Sync task misses its deadline in its worst-case). In this
scenario, schedulability is achieved at 233 Mhz, with a system
slack of 13.67%. On the other hand, Scn-WCET is schedulable
at 300 Mhz, although with a marginal system slack of just
0.78%. At 333 Mhz, this system slack increases to 11.72%.

C. Re-mapping Labels

The final question of the challenge asks for an optimization
of the label-to-memory mapping to minimize the latencies.
MAST does not provide a model for mapping memories, so we
propose a reasonable solution. We identify that the majority of
the labels are only accessed from a single core. As a first step,
we map those labels into their local memories. Now the problem
is reduced to determining where to map the labels shared by
more than one core.

TABLE|. END-TO-END LATENCIES (MILLISECONDS.) AND SLACKS (%), TABLEIl. END-TO-END LATENCIES (MILLISECONDS.) AND SLACKS (%),
IGNORING MEMORY ACCESSES. INCLUDING MEMORY ACCESSES, USING GLOBAL MEMORY ONLY
Scn-ACET Scn-WCET Scn-ACET Scn-WCET
200 Mhz | 233 Mhz | 200 Mhz | 300 Mhz | 333 Mhz| D 200 Mhz | 233 Mhz | 200 Mhz | 300 Mhz | 333 Mhz| D
COREOQ Util. (%) | 71.47 | 61.35 | 97.02 | 64.68 | 58.27 COREOQ Util. (%) | 73.75 | 63.31 | 99.30 | 66.20 | 59.64
COREL1 Util. (%) | 88.38 | 75.86 | 133.57 | 89.05 | 80.22 CORE1 Util. (%) | 99.21 | 85.16 | 144.41 | 96.27 | 86.73
CORE2 Util. (%) | 71.36 | 61.26 | 106.85 | 71.24 | 64.18 CORE2 Util. (%) | 76.40 | 65.58 | 111.89 | 7459 | 67.20
CORE3 Util. (%) | 77.19 | 66.25 | 117.94 | 78.62 | 70.83 CORE3 Util. (%) | 86.10 | 7391 | 126.85 | 84.57 | 76.19
System Slack (%) | 9.77 27.73 | -27.34 | 898 21.09 System Slack (%) | -2.34 | 13.67 | -32.81 | 0.78 11.72
COREQ Slack (%) | 31.08 | 52.89 | -98.44 | 45.12 | 60.52 COREQ Slack (%) | -98.44 | 48.47 | -98.44 | 41.92 | 57.57
COREL1 Slack (%) | 10.29 | 28.46 | -9844 | 9.35 21.2 CORE1Slack (%) | -1.92 | 1420 | -98.44 | 1.18 12.21
CORE2 Slack (%) | 40.37 | 63.58 | -98.44 | 40.37 | 55.66 CORE?2 Slack (%) | -98.44 | 52.89 | -98.44 | 33.80 | 48.47
CORE3 Slack (%) | 29.1 50.21 | -98.44 | 26.56 | 40.37 CORE3 Slack (%) | -98.44 | 3450 | -98.44 | 17.87 | 3041
Angle_Sync| 5.54 3.86 0 5.59 458 |6.66 Angle_Sync| 6.95 4.85 0 6.60 496 |6.66
ISR 1| 0.03 0.02 © 0.02 0.02 | 95 ISR_ 1| 0.03 0.03 0 0.03 0.02 | 95
ISR_10| 0.02 0.02 0 0.02 0.02 | 07 ISR_10| 0.03 0.02 0 0.02 0.02 |07
ISR_11| 1.45 1.23 0 1.29 1.16 5 ISR 11| 2.26 1.27 0 1.32 1.19 5
ISR 2| 0.04 0.03 © 0.04 0.03 | 95 ISR_2| 0.05 0.04 0 0.04 0.04 |95
ISR_3| 0.06 0.05 © 0.05 0.05 | 95 ISR 3| 0.07 0.06 0 0.06 0.05 |95
ISR_4| 0.50 043 B 0.46 0.41 15 ISR_4| 0.52 0.45 0 0.47 0.42 15
ISR 5| 021 0.18 0 0.19 0.17 | 0.9 ISR 5| 0.22 0.19 0 0.20 0.18 | 09
ISR 6| 0.23 0.20 © 0.21 0.19 1.1 ISR 6| 0.24 0.21 0 0.22 0.20 1.1
ISR 7| 121 0.86 0 0.90 081 | 49 ISR_7| 1.25 0.89 0 1.09 0.83 | 49
ISR_8| 0.75 0.63 0 0.66 0.59 1.7 ISR_8| 0.78 0.65 0 0.67 0.61 1.7
ISR 9| 246 1.48 0 2.20 1.39 6 ISR 9| 253 2.15 0 2.27 1.44 6
Task 1000ms| 31.18 | 17.63 0 31.14 | 18.63 | 1000 Task 1000ms| 33.91 | 19.32 0 33.03 | 19.64 |1000
Task _100ms| 31.01 | 17.48 0 30.97 | 18.47 | 100 Task _100ms| 33.55 | 19.02 0 32.74 | 19.37 | 100
Task 10ms| 7.72 6.62 0 7.86 7.08 10 Task _10ms| 8.61 7.39 0 8.45 7.62 10
Task 1ms| 0.52 0.45 0 0.51 0.46 1 Task 1ms| 0.58 0.50 0 0.54 0.49 1
Task 200ms| 31.09 | 17.55 0 31.05 | 18.55 | 200 Task 200ms| 33.71 | 19.15 0 32.87 | 19.49 | 200
Task 20ms| 9.55 7.95 © 9.78 8.81 20 Task 20ms| 11.21 8.79 © 11.15 9.22 20
Task 2ms| 0.29 0.25 © 0.27 0.24 2 Task 2ms| 0.32 0.27 0 0.29 0.26 2
Task 50ms| 12.77 9.91 0 1299 | 1146 | 50 Task 50ms| 13.63 | 11.42 0 1357 | 11.96 | 50
Task 5ms| 0.93 0.80) 0.89 0.80 5 Task 5ms| 0.97 0.84) 0.92 0.83 5
EffectChain_1 (L)| 12.63 | 12.25 © 12.67 | 12.40 EffectChain_1 (L) | 12.93 | 12.52 0 12.87 | 12.59
EffectChain_2 (L) 25.23 | 23.10 © 25.44 | 23.86 EffectChain_2 (L) 26.17 | 23.89 0 26.07 | 24.67
EffectChain_3 (L)| 63.38 | 60.72 0 63.85 | 62.44 EffectChain_3 (L) | 64.20 | 62.20 0 64.40 | 62.91

In our pessimistic approach for modeling the memory
accesses, even if just one label in the local memory is accessed
from a non-local core, every label in that local memory would
be impacted. For example, consider a local memory with labels
that are accessed from two cores: the local core and a non-local
core. In this case, and regardless of from which core the memory
is accessed, the worst-case cost assumes that both cores are
accessing the memory at the same time, and thus that cost for
reading or writing any of its labels would be 1 cycle + 9 cycles
=10 cycles.

To preserve the advantage of local memory accesses, we
map into global memory every label shared among different
cores. Therefore, local labels are assured to be accessed without
contention (1 cycle access only), and the worst-case cost for
shared labels is modelled as in Section Il1; that is, assuming that
all cores are accessing global memory at the same time (a cost
of 4*9 cycles for each label access). Table I11 shows the slacks
and latencies obtained using this mapping, which confirms that
the new mapping improves the results. It is also worth noting
that with this new mapping, the results are closer to the case
ignoring memory accesses (Table 1), than to the case in which
all labels are mapped to the global memory (Table II).

TABLE Ill. END-TO-END LATENCIES (MILLISECONDS.) AND SLACKS (%), RE-

MAPPING LABELS TO LOCAL AND GLOBAL MEMORIES

Scn-ACET Scn-WCET

200 Mhz | 233 Mhz | 200 Mhz | 300 Mhz | 333 Mhz| D

COREO Util. (%) | 71.98 | 61.78 | 97.53 | 65.02 | 5857
COREL Util. (%) | 92.14 | 79.09 | 137.33 | 91.56 | 82.48
CORE2 Util. (%) | 72.28 | 62.04 | 107.77 | 71.84 | 64.72
CORE3 Util. (%) | 79.85 | 6854 | 1206 | 804 | 72.43
System Slack (%)] 508 | 22.66 | 293 | 586 | 17.58
CORED Slack (%) | 30.41 | 51.98 | -98.44 | 4431 | 6052
COREL Slack (%) | 5.75 | 22.94 | -98.44 | 619 | 17.87
CORE2 Slack (%) | 38.11 | 6152 | -98.44 | 38.86 | 54.72
CORES3 Slack (%) | 24.72 | 4512 | -98.44 | 24.12 | 37.38

Angle Sync| 5.78 | 450 575 | 471 |6.66

8

ISR_1| 0.03 0.02 0.02 0.02 9.5

ISR_10| 0.02 0.02 0.02 0.02 0.7

ISR_11| 147 1.24 1.30 1.17 5

ISR_2| 0.04 0.03 0.04 0.03 | 95

ISR_3| 0.06 0.05 0.05 0.05 9.5

ISR_4| 051 0.44 0.46 0.41 15

ISR 5] 0.21 0.18 0.19 0.17 0.9

ISR 6] 0.23 0.20 0.21 0.19 1.1

ISR 7| 122 0.87 1.07 0.81 49

ISR_8]| 0.76 0.63 0.66 0.60 1.7

ISR 9| 247 1.49 2.23 1.39 6

Task _1000ms| 31.63 | 17.89 31.43 | 18.81 |1000

Task _100ms| 31.42 | 17.71 31.24 | 18.64 | 100

Task 10ms| 7.98 6.85 8.04 7.24 10

Task Ims| 0.54 0.47 0.52 0.47 1

Task 200ms| 31.52 | 17.80 31.34 | 18.73 | 200

Task 20ms| 9.68 8.31 9.86 8.88 20

Task 2ms| 0.30 0.25 0.27 0.24 2

Task 50ms| 12.93 | 10.84 13.10 | 1156 | 50

Task 5ms| 0.94 0.80 0.90 0.81 5

8(88(8(8|8(8|8|8(8(|8|8(8|8|8(8|8|8(8|8|8|8]8

EffectChain_1 (L)| 12.71 | 12.33 12.73 | 12.46
EffectChain_2 (L) | 25.40 | 23.25 2556 | 23.97
EffectChain_3 (L)| 63.53 | 60.83 63.95 | 62.52

V1. CONCLUSIONS

This paper provides general guidelines to transform an
Amalthea timing model into a MAST equivalent model that can
be used in the MAST Analysis Tool Suite. Using them, response
time analysis has been applied to calculate worst case latencies
of tasks in a complex engine management system.

To understand the Amalthea model, we relied on the
documentation of the tool [2], and the document describing the
challenge [1]. While the basics of the model (e.g., tasks and
runnables) can be easily understood with these materials, special
elements of the model such as the event-chains required
additional inquiries in the workshop forum. The total amount of
time needed to completely digest the model can be approximated
to about 12-14 hours divided in several days. Once the model
was understood, the process of building the Amalthea to MAST
transformation in Java required approximately 5 man-hours to a
person familiar with MAST and EMF. The workspace used in
this paper can be downloaded from [10].

The paper answers the three main questions of the challenge,
(1) providing latencies when memory accesses are ignored, (2)
providing latencies when all labels are mapped to the global
memory, and (3) finding a new optimized mapping. Safer CPU
frequencies as well as indicators of the most loaded tasks and
cores in the system are provided. The main weakness we identify
in our proposal is its pessimism in the modelling of global
memory accesses. It uses an upper bound that cannot occur in
reality. This is done to overcome the limitations of MAST which
does not currently model the memory and the blocking of the
processor while the memory is accessed. These two
shortcomings have flagged interesting developments that we
will explore in the future.

REFERENCES

[1] 2016 Formals Methods and Timing Verification (FMTV) challenge, co-
located with the 7" International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS).
https://waters2016.inria.fr/challenge/

[2] AMALTHEA: An Open Platform Project for Embedded Multicore
Systems, http://www.amalthea-project.org/

[3] M. Gonzélez Harbour, J.J. Gutiérrez Garcia, J.C. Palencia Gutiérrez, and
J.M. Drake Moyano, “MAST: Modeling and Analysis Suite for Real Time
Applications,” Proceedings of 13th ECRTS conference, Delft, The
Netherlands, IEEE Computer Society Press, pp. 125-134, June 2001.

[4] MAST web-page, http://mast.unican.es/

[5] J. C. Palencia and M. Gonzalez Harbour, “Exploiting Precedence
Relations in the Schedulability Analysis of Distributed Real-Time
Systems,” Proceedings of the 20th Real-Time Systems Symposium, IEEE
Computer Society Press, pp 328-339, December 1999.

[6] Object Management Group, “UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems,” 2011 OMG Document, v1.1
formal/2011-06-02.

[7] J.C. Palencia, J.J. Gutiérrez, and M. Gonzélez Harbour. “On the
Schedulability Analysis for Distributed Hard Real-Time Systems,” Proc.
of the 9th Euromicro Workshop on Real-Time Systems, pp. 136-143, June
1997.

[8] J. C. Palencia. “Analisis de planificabilidad de sistemas distribuidos de
tiempo real basados en prioridades fijas”, Phd Thesis, University of
Cantabria, July 1999.

[9]1 Eclipse Modeling Framework (EMF), https://eclipse.org/modeling/emf/

[10] Amalthea workspace used for this solution:
www.istr.unican.es/members/rivasjm/workspace fmtv16 public.zip

A Novel Analytical Technique for Timing Analysis
of FMTYV 2016 Verification Challenge Benchmark

Junchul Choi, Donghyun Kang, and Soonhoi Ha
Department of Computer Science and Engineering, Seoul National University, Seoul, Korea,
Email: {hinomk2, kangdongh, sha}@iris.snu.ac.kr

Abstract—In this paper, we present solutions to FMTV 2016
verification challenges, combining the response time analysis and
schedule time bound analysis. The worst case response time of a
task is computed by the conventional response time analysis while
the end-to-end latency of a cause-effect chain is conservatively
estimated by considering the schedule time bounds of associated
runnables. Three separate challenges are discussed in order. The
proposed technique is first explained to address the first challenge
that ignores the memory latency. For the second challenge, we
estimate the memory access latency by computing the maximum
possible arbitration delay with arrival curve analysis. Finally, we
propose a heuristic algorithm that determines the mapping of
data labels to optimize the end-to-end latency.

I. CHALLENGE MODEL AND TERMINOLOGIES

We first review the Amalthea performance model [1] of the
benchmark, making some assumptions for unclear explanation
in the provided problem specification [2][3].

COREO CORE1 CORE2 CORE3
7\
| |l1 cycle | |
LRAM LRAM LRAM LRAM
0 1 2 3
A
\l | | |
‘ 9 ydle \9 eyelecposspAR ‘

Fig. 1. Microcontroller architecture used in the challenge

The provided Amalthea model contains a hardware model of
a simplified microcontroller architecture with four symmetric
cores as shown in Fig. 1. Each core A{ has its own local
memory AX. A crossbar network is used for the interconnec-
tion among cores and a global memory A,

A task 7; is a basic mapping unit onto a core and task-to-
core mapping is given. The core 7; is mapped to is denoted
by m,;. A task is invoked either periodically or sporadically.
Ip and I denote a set of periodic tasks and a set of sporadic
tasks, respectively. The minimum and the maximum initiation
interval are specified for each task 7; and are denoted as p!
and p¥. If 7; is a periodic task (r; € Ip), p is equal to p}
which means that the initiation interval becomes the period.
All tasks are simultaneously initiated at the system activation
time. The basic timing requirement for task 7; is to finish
execution before its deadline denoted by d.,. Since implicit
deadline model is assumed, deadline d, is equal to pé.

A task 7; consists of a set of runnables {r; ; | 1 < j <|r]|}
where runnable r; ; is an unit of execution and |7;| means
the number of runnables in the task. Runnables in a task are
executed sequentially on the mapped core in the ascending
index order. The lower and the upper bound of execution
time of r; j, denoted ¢!, ; and ¢ ;, are specified assuming that
code is executed directly from core-exclusive flashes without
contention. Note that memory access delay is not included
in the execution times. The runnables are assumed to read all
required data at the beginning of their execution and write back
the results after execution is completed. We assume that when
a runnable attempts to access a memory, no preemption is
allowed until the resource request is processed. 1250 runnables
are specified in the provided model.

A distinct priority is assigned to each task for the fixed-
priority scheduling. We assign each task a unique index in
the descending priority order; task 7; has a higher priority
than 7; if 4 < j. A task 7; is scheduled by either preemptive
or cooperative fixed priority scheduling policy. Sp and S¢
denote a set of preemptive tasks and a set of cooperative tasks,
respectively. A task 7, € Sp can preempt lower priority tasks
at any time, whereas a task 7; € S¢ can preempt lower priority
cooperative tasks at the boundary of runnable executions [4].
There are 21 tasks and preemptive tasks have higher priorities
than cooperative tasks in the provided model.

Oversampling

Undersampling

E2E latency from the first rg E2E latency from the third 7 ;
—

E2E latency from the second rg

Fig. 2. End-to-end latency of an example cause-effect chain

A cause-effect chain C EC; defines a chain of runnables that
are connected by read/write dependency with labels. Note that
there are no cyclic dependencies between tasks within a cause-
effect chain. Due to the potential different task periods, data
may get lost (undersampling) or get duplicated (oversampling).

We assume an end-to-end latency of a cause-effect chain
as the maximum time duration between the first input that
may be undersampled and the first output generated from the
corresponding or later input. This semantic is as same as the
reaction time constraint of the AUTOSAR [5]. Fig. 2 shows
end-to-end latencies from three stimulus runnable instances
in an example cause effect chain {rg 1,710,723} Since we
are concerned about reaction time, the second r; ¢ instance is
regarded as the reaction of the first 7o ; instance. The third
r9,3 instance is the first response to the second 71 instance
so that final reaction of the first rg ; instance is generated by
the third 7 3 instance. Three cause-effect chains are specified
in the provided model.

Data is specified by a set of labels: each size is less than
the memory transfer size 32bits. Memory arbitration model is
assumed differently in each challenge as follows:

o Challenge 1: calculate tight end-to-end latencies ig-
noring memory accesses and arbitration
All read/write accesses to labels take zero time so that
only runnable execution times affect the end-to-end la-
tencies.

« Challenge 2: calculate tight end-to-end latencies in-
cluding memory accesses and arbitration
All labels are assumed to be stored in the global memory.
Read and write accesses have symmetric memory access
times. When accessing the global memory, crossbar trans-
fer takes 8 cycles and access to global memory takes 1
cycle. When there is a contention at global memory, the
accesses are assumed to be arbitrated according to the
FIFO policy.

o Challenge 3: optimize end-to-end latencies by map-
ping the labels among the local and global memories
We can map a label in a local memory whose access
latency is 1 cycle. We assume that local memory size is
limited. Local memories are also arbitrated according to
the FIFO policy.

For all challenges, we aim to conservatively estimate the
upper bound of response time of each task 7;, denoted as L,
and end-to-end latency of cause-effect chain C'EC';, denoted
as Lcrc,, as tightly as possible.

II. PROPOSED SOLUTION TECHNIQUE FOR CHALLENGE 1

Since memory access delay is ignored in challenge 1, we
compute the worst-case response time of a task 7;, considering
the execution times only.

A. End-to-end latency of a preemptive task

If a higher priority task is released during the execution
of a preemptive task 7. € Sp, it is preempted by all
runnables in the higher priority task. Thus we can formulate
the upper bound of the latency between the release time of
a runnable 7. ; to the finish time of a runnable 7. ;, denoted

UBLf (Tc,ia T'c,j)
the response time analysis:

, as follows using

UBLf(rC Tej) =

S ¥

ThE€hp(Te)

|7h|
-‘ Zchk ey

[UBL TeyirTe,j
ph

where hp(r.) = {mn|m) = me,c > h} is a set of higher
priority tasks. Then the estimated end-to-end latency of a
preemptive task 7. becomes L, = UBL/(r., Te,mi))-

B. End-to-end latency of a cooperative task

For a cooperative task 7, the release of 7. can be blocked by
at most one runnable execution of a lower priority task mapped
on the same core. Higher priority cooperative tasks released
after the start time of a runnable 7. ; have no effect on the fin-
ish time. We formulate the upper bound of the latency between
release time of a runnable r, ; to start time of a runnable 7 ;,
denoted UBL*(7, 7. ;) where 1 < i < j < || as follows:

max
ri, L €VULp(T;)

UBLS(T’C’Z',’I"CJ) = <Z =17

j—1
u o, u
g 0) + E Cek
k=i

X [7h|

UBL“"?“”,TC,

e e X
h

>

ThE€hp(Te)

where Ip(1.) = {m|m; = me,c <1} is a set of lower priority
tasks mapped on the same core. The first, second, and third
terms indicate the maximum blocking from a lower priority
task, the sum of maximum execution times of runnables,
and the maximum preemptions from higher priority tasks,
respectively. Blocking delay is zero when ¢ # 1 since any
lower priority task cannot start after the first runnable starts.
Note that UBL*(rc,i,7c,;) + 1 is used in the third term to
include the higher priority tasks released between the finish
of the (j — 1)-th runnable and the start of the (j)-th runnable.
Then UBL/ (re,i,Te,;) can be estimated as follows:

max
T, KkEUlP(Ts)

UBL! (rei7e;) = (z =17

J
Cﬁk . 0) + E Cg’k
k=i
I7nl

2 ci

[Tn|

Z Chok)

P>

ThEERhP(T:)NSP

DY

ThERp(Te)NSC

{UBL ru,r”—‘
[UBL (TeisTe,j) —‘

All requests of higher priority preemptive tasks within
UBL/(r.;,7.;) are accounted in the third term while the
requests of higher priority cooperative tasks after r. ; starts
are excluded. Then the estimated worst-case response time of
a cooperative task 7, becomes L, = UBLf (Te,1,Te|r,])-

74 70 € Ig ph = 0.7ms pl = 0.8ms

k51 L€l pl = 2ms p¥ = 2ms
(a) 7, T, Elp ph =5ms p¥ = 5ms

73 €L pl =10ms p¥ = 10ms

T4 T, €Elp pk = 50ms py = 50ms

75 75 €lp pl=100ms | p¥=100ms

CECy = {T3,149'7“3,243'7”3,272'7”3,107}
| py = 10ms |

"BCST(r3,149)

CEICI = {7”5,% 3,19, rz,s}

(d

713 [
BCST(ry,3)

pt

2ms

| BCST(1335) WCFT(ry36)

Fig. 3. End-to-end lantency computation of three example cause-effect chains.
A white box indicates the schedule time bound of a runnable while a red or
a blue box indicates an execution time of the runnable.

C. End-to-end latency of a cause-effect chain

In this section, we compute the end-to-end latency of a
cause-effect chain. Before explaining the latency computation,
we define two variables BC'ST (1. ;) and WCFT (r. ;) which
mean a lower bound of start time of r.; and an upper bound
of finish time of r.; respectively. WCFT (r. ;) is formulated
as WCFT(rc;) = UBL' (rea,7e,i)- Since a cooperative
task is not blocked by a low priority task in the best case,
BCST(r,;) for either a preemptive task or a cooperative task
can be formulated in the same way:

i—1

BCST(re;) = chp &
k

)
=1

p>

Th€hp(Te)

|Th‘
max(0, BCST (rq;) — op + 1
Pp k=1

“4)

where 6, = p¥ — ‘kzll ¢l ... For each higher priority task,

the maximum initiation interval and the minimum execution
times are considered to compute the minimum interference.
A cause-effect chain is defined by a sequence of runnables
that have read/write dependency over a label between each pair
of runnables. Fig. 3 shows three example cause-effect chains
and the activation patterns of five tasks are summarized in
Fig. 3 (a). A cause-effect chain CECj in Fig. 3 (b) consists

of four runnables in the same task 75. In this case, we have to
analyze how many task instances are involved in the chain. If
the (i+1)-th runnable of the chain has a smaller index than
the i-th runnable, labels written by the i-th runnable will
be read by the (i+1)-th runnable in the next task instance.
Hence the number of the instances involved in the chain
is computed by counting how many times runnable indices
decrease in the task sequence. In Fig. 3 (b), two task instances
are involved in the chain since index decrease appears only
once in the chain (73,272 — 73,107). If one task instance covers
the cause-effect chain, the end-to-end latency can be computed
as UBLf(ch,,rc,e) where r.p and r. . are the first and the
last 7. runnables in the chain. Otherwise, the worst-case end-
to-end latency becomes the distance from the BCST of the first
runnable to the WCFT of the last runnable plus the task period
multiplied by the count of index decreases in the chain, which
gives p§ + WCFT(r3107) - BCST(r3,149) for the example
of Fig. 3 (b).

A cause-effect chain CEC; in Fig. 3 (c) consists of
three runnables with different activation patterns. In this case,
we consider the schedule time bound of the first runnable
(BCST(r57), WCFT(rs,7)) and examine all possible BC-
STs of the second runnable 7319 that may appear after the
first runnable. In the example of Fig. 3 (c), there are three
possible BCSTs of 73 19. If we consider a pair of runnables
only, the worst-case scenario is that the second runnable starts
just before the first runnable finishes and the label written by
the first runnable is read by the second runnable at the latest
in the next task instance. Based on this observation we define
a set of starting points of the first runnable as shown in blue
color in the figure. The set includes the schedule of the first
runnable whose finish time coincides with a possible BCST
of the second runnable as well as the earliest and the latest
schedule within the schedule bound.

For the subsequent pair of runnables, for instance the second
and the third runnables in the example of Fig. 3 (c), we need
to consider the schedule time bound of the successor and the
WCEFT of the predecessor. If the WCFT of the predecessor lies
in the schedule time bound of the successor, the label written
by the predecessor should be read by the successor runnable at
the latest in the next task instance. For each candidate starting
point of the first runnable in the chain, the figure shows the
longest cause-effect chain by green arrows where red and blue
boxes mean the executions of runnables. Among all candidate
starting points, we find one that gives the worst-case chain
latency that is represented by a red bounding box in the figure,
which corresponds to the second candidate starting point.

In this example, we consider a single runnable involved in
each task. In case more than one runnable of the same task is
included in the chain, we group them as a sub-chain. Then, a
cause-effect chain consists of a sequence of sub-chains where
each sub-chain consists of a set of runnables in the same task.
If the worst-case latency of the sub-chain spans more than one
task instance like the case of Fig. 3 (b), we need to consider
only one starting point for the sub-chain for the second case.

The third case shown in Fig. 3 (d) is the case that the cause-

effect chain starts with a sporadic task: the first runnable in
CEC5 belongs to a sporadic task 7. Since the sporadic task
may start anytime, we find the worst-case scenario in which
the finish time of 7¢ 3 is aligned with the best case start time
of the first 7 3 instance. Then the end-to-end latency from r¢ 3
to 71 3 is bounded by UBLf(’I‘O,g, r0,3)+py +WCFT(r1,3)—
BCST(r1,3). Note that we need to check only one starting
point, which makes the finish time of the sub-chain be aligned
with the best case start time of next sub-chain, unlike the case
of periodic tasks in Fig. 3 (c). We repeat this computation
for all task instances of the first periodic task in the chain
within the hyper-period of tasks. In Fig. 3 (d), 7; is the first
periodic task. If we repeat computation for all 7; instances,
the maximum latency occurs with the third 7; instance since
labels written by the third 7; 3 instance is missed by the first
4,36 instance.

Algorithm 1 Algorithm to compute the end-to-end latency of

a cause-effect chain
: E2FE + 0,d_len + 0
if the first sub-chain is in a sporadic task then

d_len <—end-to-end latency of the first sub-chain

while all sporadic sub-chains before the first periodic sub-chain do

d_len < d_len + (one period) + (WCFT of the last runnable) —

(BCST of the first runnable)
6: end while
7: end if
8: for all instances of the first periodic sub-chain within hyperperiod do
9 find all candidate starting points of the first runnable
10 for all candidate starting points do
11: start < (candidate starting point)
12:
13
14
15

RN

end <—corresponding end point
for all sub-chains after the first periodic sub-chain do
if sub-chain is in a sporadic task then
: end < end + (one period) + (WCFT of the last
runnable) — (BCST of the first runnable)

16: else

17: end <—minimum WCFT among runnable instances whose
BCST is no smaller than end

18: end if

19: end for

20: E2F < max(E2E, end — start)

21: end for

22: end for

23: return E2E + d_len

Now we summarize the proposed technique for the esti-
mation of the end-to-end latency of a cause-effect chain with
Algorithm 1. At first, if the chain starts with sporadic tasks,
we compute the end-to-end latency d_len of those sporadic
sub-chains (lines 2-7). Then for the first periodic sub-chain,
we examine all instances of the first periodic sub-chain within
the hyperperiod of the chain. (lines 8-23). For each instance,
we find all candidate starting points and compute the latency
from the starting point to the end time of the chain (lines 9-
21). If the chain starts with a sporadic task or a sub-chain
that spans more than one task instance, we need to consider
only one starting point which is the BCST of the runnable.
Otherwise, we find all candidate starting points as Fig. 3 (c).
From each starting point, we find the end point of the chain
(lines 13-19).

III. PROPOSED SOLUTION TECHNIQUE FOR CHALLENGE 2

In the second challenge, we consider the worst-case mem-
ory access delay in the latency computation. Since memory
accesses are arbitrated according to the FIFO policy and a core
is assumed to be blocked during memory access, one memory
access may be delayed by at most three accesses (one per each
core). Hence a naive way to find a conservative upper bound
is to assume that each access experiences blocking by three
queued accesses. To find a tighter bound of memory access
delay, however, we analyze the maximum number of memory
accesses issued by tasks in each core within any time window
of size At by adopting the event stream model [6]. Then we
can bound the number of memory accesses that are issued
from remote cores. For example, if there are total 10 accesses
during the worst-case response time of a task 7;, L, and all
accesses are assumed to be blocked by three accesses, the total
memory access delay will be 10-(8+3+1) cycles. If we know
that some cores cannot issue more than 10 accesses within any
time window of size L.,, we can tighten the upper bound of
memory access delay.

Since we aim to find the maximum number of accesses
within a time window, we consider the lower bound of
execution time and the lower bound of initiation interval in
this section. For brevity, we define a variable C; as the sum of
best case execution times of all runnables in 7; plus memory
access delay without contention.

For a given time window of size At, we have to compute the
maximum memory access requests from each core. To tackle
this problem, several approaches that find an upper bound of
the number of shared resource accesses within a time window
have been proposed ([7], [8]). In this paper, we propose an
improved technique by accounting for the scheduling pattern
of tasks. For each core, we have to find out the task execution
scenario that produces the maximum memory access requests
within the time window. Since the number of task execution
scenarios is enormously large, we consider the partitioning of
the time window to tasks in the core. The partitioned time
means the net execution time of a task. Note that a task may
have multiple task instances in the time window that may not
be continuous due to preemption or periodic appearance. Since
the total execution time within a time window cannot exceed
At, we check all combinations of task net execution times. For
instance, suppose that there are two tasks in a core and At = 3.
Then we check all possible combinations of execution time
partitions: (0,3), (1,2), (2,1), and (3,0) where (a,b) means the
net execution times of two tasks. If we compute the minimum
and the maximum bound of net execution time that a task may
take within a time window At, we can eliminate the infeasible
partitions. If the first task cannot take 3 time units in any time
window of size 3, (3,0) becomes impossible. With a given net
execution time of a task, we find the upper bound of memory
access requests.

At first, we define two functions t7"(At) and "% (At)
that represent the minimum and the maximum execution
time amount a task 7; may take within a time window At,

1 L

pi ! !
Ci Lr,— L‘ri LT-’
@) E_ ________ . “&\\\\\3 § i &\\\\\\\\ﬁf—\
R . pi Popt
P p! P} \
(b) 7 7 :

Fig. 4. The minimum execution time scenario (a) and the maximum execution
time scenario (b) in a time window At

respectively. Fig. 4 illustrates two scheduling patterns of task
7; that correspond to ¢/ (At) and ¢7"%*(At), respectively. In
the figure, a dashed rectangle indicates the time window At,
and the task is invoked with the minimum initiation interval
pﬁ. The start time of a task may be delayed by L,, —C; in the
worst-case by preemption or memory arbitration delay, which
is represented as the grey area in the execution profile.

For a task 7; to take the minimum net execution time in the
time window, the worst-case interval between two consecutive
job instances should be considered. The worst-case interval is
observed when an instance finishes its execution as soon as
possible with response time of C; and the start times of all
subsequent instances are maximally delayed by L., — C; as
shown in Fig. 4 (a). Then the minimum net execution time
is found when the time window starts immediately after the
finish time of the first instance. In summary, we can derive
the function 7" (At) as follows:

£ (AL) = C; - [max(0, At — ™) /pl |
+ min(C;, max (0, At — ™) mod p}))

where ¢ = p! + L., —2-C;. The first term and the second
term indicate fully included executions and partially included
execution, respectively.

On the contrary, we should consider the shortest interval
between two 7; instances in order to compute the maximum
execution time in time window At: an instance starts as late as
possible to finish at its end-to-end latency L., and subsequent
instances start immediately at their request time. The execution
time amount is maximized in time window At when the time
window starts at the start time of the first task instance, as
illustrated in Fig. 4 (b). The maximum amount of execution
time t7%*(At) is derived as follows:

£ (At) = min (AL, C; - | (At + ") /p]|
+ min(C;, (At + ¢***) mod pi)) (6)

max

where ¢ = L. — C;. The first term and the second
term indicate fully included executions and partially included
execution, respectively.

Now we compute how many instances may exist in a time
window At. Fig. 5 shows the same task schedule scenario of
Fig. 4 (b) and the dashed rectangle indicates the time window
to achieve the maximum execution time ¢"**(At) in a time
window At. In order to cover the task instances as many as

b bi pi
o o e 1
Ly C; G 1. Gi
— - — =
. K1 I NN
cpax Time window for t/***(At)

ﬁ Shifted time window for t;"m (At)
i

Fig. 5. The shifted time window by C; — 1 from the time window for
1T (At)

possible in the time window, we shift the time window to the
right direction. If the shift amount is greater than or equal to
C;, the first task instance becomes outside of the time window,
making the number of instances decreases. Hence the shift
amount should be less than C;. On the other hand, we need
to shift the time window as much as possible to include the
instances at the right side of the time window. In summary, to
make the maximum number of task instances that may lie in
the time window, the time window should be shifted by C; — 1.
In the figure, the shifted rectangle contains one more instance
of the task than the dashed rectangle.

Note that when the number of task instances laid in the time
window is maximized, the net execution time may be smaller
than that for the case when the net execution time in the time
window is maximized. Hence we need to compare two cases
to find the maximum possible resource demand; (1) the case
the number of task instances is maximized and (2) the case the
net execution time is maximized. Then we need to compute
the maximum net execution time for the first case and the
maximum number of task instances for the second case. The
number of instances for the second case can be computed as

n;(At) = PCA—‘ . We denote the maximum net execution

time for the first case t;’;”“z"(At), where arrow indicates that
the time window is shifted by C; — 1 to maximize the number
of instances. Then ¢t7***(At) can be formulated as follows:

17 (AL) = ¢, - |max(0, At — %) /pl |
+ min(C;, max (0, At — c;m‘%) mod pt) @)

where c;”a? = pl — L,,. We denote the maximum number of
7; instances laid in the time window At as 72} (At) and 72} (At)

— ymad
can be computed from ¢"**(At) to be {%W + 1L

Finally, we formulate memory access bound function
D e ¢ (At) which finds the maximum number of accesses
from a core Aic to global memory A“ within any time window
of size At. When we distribute the time amount At to tasks
mapped onto A, we should consider the constraint that a task
Tk can be assigned the bounded net execution time ¢, between
tmin(At) and £7'% (At). And, for a given At, we consider two
cases where the number of instances of a task 7 is ny(Atf)
or nj, (At) as the access bound function of each individual
task, Drk, ¢ (tk, At). In summary, the memory access bound

function is formulated as follows:

D o 4c(At) =

> e =At
max{ > D ety At) m=AZ }

my=AC Vine=acte > #man (At)

®)

g (minty, 1" (A1)
=

A0 (min(ty, 77 (A1)

©))
where 7! 4o (t) is the maximum number of resource accesses
that may be issued from n instances of a task 73 to a memory
AS when the net execution time of 7; does not exceed t time
units. 7! 4c (t) can be computed by moving the time window
of size ¢ on the n task instances that are executed one after
another and finding the maximum number of resource accesses
among all time windows.

D ,c 4c(At) can be obtained by the max-plus convolution
of individual demand bound functions of (9) in polynomial
time since the max-plus convolution has associative property
and commutative property. D, ,(At) is used to bound the
arbitration delay during the lateﬁéy computed by equations (1),
(2), and (3). For a preemptive task, it may be blocked by one
memory access from a lower priority task. For a cooperative
task, we consider the maximum blocking by one lower priority
runnable with its worst case memory access delay (8+3+1 per
one access). This blocking delay is independently computed
and included in the worst-case latency. After computing the
lower priority blocking delay, we consider memory accesses
that are issued from the target task and higher priority tasks. To
bound the interference from a core, we compute the number of
memory accesses from the core during the latency of interest.

D, 4c(ty, At) = max <

IV. PROPOSED SOLUTION TECHNIQUE FOR CHALLENGE 3

In this section, we propose a greedy algorithm that deter-
mines a label-to-memory mapping to optimize the end-to-end
latencies. If a label is mapped to a local memory A%, we can
save the crossbar transfer delay (8 cycles) which is larger than
the worst-case arbitration delay (4 cycles).

Algorithm 2 presents a pseudo code of the proposed greedy
algorithm to determine label-to-memory mapping. Initially
labels are mapped to a global memory A% (line 8). At first, we
compute each fitness value of a mapping of L[i] to A, F[i][j]
(line 9). The fitness value is higher if L[¢] is more frequently
accessed from Ajc. Then we determine a mapping of each
label (lines 11-18). We select the most beneficial mapping
according to the fitness values (line 12). Since we assume a
limited local memory size, the label L[I] can be mapped to
AL in case AL has enough memory size (lines 13-16). The
progress is repeated until there is no mapping that optimize
the memory access delay (line 11).

Unlike the latency computation in challenge 2, the memory
accesses from A{ to AL do not involve transfer delay so that
only arbitration delay at the memory should be considered.
The technique to compute memory arbitration delay bound

Algorithm 2 Greedy algorithm to determine label-to-memory
mapping

Input: a set of labels L, an array of label sizes S7, and local memory size s
Output: an array of label mapping M

1: Sps < one dimensional array of size 4

2: F < two dimensional array of size |L| x 4

3: > Sr[d] is a label size of Li]
4: > M{i] is a memory a label L[] is mapped to
5: > Spr]¢] indicates available memory size of Aj
6: > F[i][4] is a fitness value of a mapping of L[i] to A;
7:for 0< i< |L|,0<j<4do
8: MM(—A ,S]u[j}(—s
9: F[l] []] - Z #accesses v;fl‘rk to L[1]

mk:AJC k
10: end for

11: while 3; ; F[¢][5] > 0 do
12: find indices I and m that F[l][m] = max; ; F[i][j]
13: if S]w[m] > S [l] then

14: Sju[m] < S]V][m] — SL[Z]
15: Ml = AL
16: end if

17: F[l]lm] <0
18: end while

explained in challenge 2 can be easily extended to compute
the memory access bound function of each memory separately.

V. CHALLENGE RESULTS

The estimated end-to-end latencies of all tasks and cause-
effect chains from the proposed technique are summarized in
Table. I. In the table, WCRT and E2E L. mean the worst-
case response time and the end-to-end latency, respectively.
(C1), (C2), and (C3) columns show the estimated results for
challenge 1, challenge 2, and challenge 3, respectively. We
assume unlimited local memory size in the experiment since
no constraints are given.

Even without memory access delay, 6 out of 21 tasks in the
challenge model are unschedulable according to our analysis
results since core utilizations are too high: utilizations are
97%, 133.5%, 106.8%, and 117.9% for each core. There is
even a task that has the worst-case execution time larger
than its deadline (Task_10ms). End-to-end latencies of cause-
effect chains cannot be analyzed due to the runnables in
unschedulable tasks. We claim that the worst-case execution
time should be decreased to make the system schedulable.

Results show that the portion of the memory access delay
in the worst-case response time is not significant. Task_50ms
becomes unschedulable when memory access delay is not
ignored. Because of the memory access delay, its worst-
case response time becomes over 8,000,000 and one more
preemption of Task_20ms whose worst-case execution time
is 2,093,688 occurs, making the response time larger than the
deadline. Almost all read/write accesses go to local memory
after label-to-memory mapping is done so that the mem-
ory access delay decreases accordingly. Task_20ms is barely
schedulable after label-to-memory mapping.

We conducted additional experiment to find maximum ex-
ecution times of tasks satisfying all task deadlines. For each
core, we scale down all worst-case execution times of mapped

TABLE I
END-TO-END LATENCIES OF TASKS AND CAUSE-EFFECT CHAINS
SPECIFIED IN THE PROVIDED SYSTEM MODEL (UNIT: CYCLE)

TABLE II
SCALED WORST-CASE EXECUTION TIMES FOR SCHEDULABLE SYSTEM
AND END-TO-END LATENCIES (UNIT: CYCLE)

Task WCRT (CI) | WCRT (C2) | WCRT (C3) Task WCET | WCRT | Deadline
ISR_10 (79) 6,068 6,308 6,112 ISR_10 (79) 5,825 5,867 140,000
ISR_5 (711) 57,704 58,256 57,785 ISR_5 (711) 49,570 55,472 180,000
ISR_6 (72) 63,894 64,698 63,996 ISR_6 (12) 5,942 61,434 220,000
ISR_4 (713) 137,054 138,278 137,206 \ ISR_4 (13) 70,233 131,706 300,000
COREO—15r =8 () 361,725 363.843 361,973 COREO O6%)—1sR=g8 (74) 58345 251,485 340,000
ISR_7 (75) 530,598] 534,453 531,061 ISR_7 (75) 62,375 509,791 980,000
ISR_11 (76) 853,378 859,207 854,081 ISR_11 (76) 58,729 814,042 1,000,000
ISR_9 (77) unschedulable| unschedulable] unschedulable ISR_9 (77) 71,133 896,985 1,200,000
Task_Ims (711) 152,870, 156,345 153,588 \| Task_Ims (711) 108,537 109,164 200,000
COREI Angle_Sync (712)| unschedulable] unschedulable] unschedulable] COREL (71%) Angle_Sync (r12)| 540,360 1,197,321] 1,332,000
Task_2ms (713) 80,817 82,425 81,188 Task_2ms (713) 75,159 75,511 400,000
Task_Sms (714) 267,180 270,252 267,900 Task_Sms (714) 173,317 249,170, 1,000,000
Task_20ms (716) 3,709,404 3,760,278 3,719,254 Task_20ms (716) | 1,947,129 3,383,696/ 4,000,000
ICORE2| Task_50ms (717) 7,973,611] unschedulable] 7,992,287 CORE2 (93%)| Task_50ms (717) 573,714] 7,358,075| 10,000,000
Task_100ms (718)| unschedulable] unschedulable] unschedulable] Task_100ms (71g) | 1,751,743]19,908,947| 20,000,000]
Task_200ms (719)| unschedulable] unschedulable] unschedulable] Task_200ms (719) 25,758/19,933,318] 40,000,000
Task_1000ms (720)| unschedulable| unschedulablel unschedulable] Task_1000ms (7120) 25,511{19,958,468(200,000,000
ISR_1 (73) 7,011 7,383 7,066 ISR_1 (73) 5,819 5,869 1,900,000
ISR_2 (79) 10,560 11,160 10,635 ISR_2 (79) 2,945 8,834] 1,900,000
3)
CORES—er =3 (r10) 15,347 16,247 15,448 CORE3 (83%)—1sR 3 (710) 3973 12.832 1,900,000
Task_10ms (715) | unschedulable] unschedulable] unschedulable| Task_10ms (715) | 1,944,313] 1,986,787 2,000,000
Cause-effect chain E2E L. (C1) | E2E L. (C2) | E2E L. (C3) Cause-effect chain E2E Latency
EffectChain_1 unschedulable] unschedulable] unschedulable| EffectChain_1 2,269,514
EffectChain_2 unschedulable] unschedulable] unschedulable] EffectChain_2 2,628,493
EffectChain_3 17,817,190 unschedulable] 17,835,552 EffectChain_3 13,888,054
tasks by the same percentage and find the maximum percent- REFERENCES

ages that make all estimated end-to-end latencies of tasks
below deadlines. Table II summarizes the scaled worst-case
execution times and the end-to-end latencies for challenge 3.
Note that the percentage decrease for each core is proportional
to the utilization of the core.

VI. CONCLUSION

We present a solution technique to FMTV 2016 verification
challenges, combining the response time analysis and schedule
time bound analysis. The main contribution is that we con-
sider schedule time bounds of runnables to tightly compute
end-to-end latencies of cause-effect chains. Memory access
bound functions are described to find the maximum possible
arbitration delay with arrival curve analysis. A simple greedy
algorithm is proposed to determine label-to-memory mapping.
It took about one month to understand the challenge model
and to solve the problem, applying the technique we have
developed beforehand.

ACKNOWLEDGMENT

This research was supported by Basic Science Re-
search Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Science,
ICT & Future Planning(NRF-2013R1A2A2A01067907) and
MSIP(Ministry of Science, ICT&Future Planning), Korea, un-
der the ITRC(Information Technology Research Center) sup-
port program (IITP-2015-H8501-15-1005) supervised by the
IITP(Institute for Information&communications Technology
Promotion). The ICT at Seoul National University provides
research facilities for this study.

[1

—

AMALTHEA: An Open Platform for Embedded Multicore Systems.

[Online]. Available: http://www.amalthea-project.org/

[2] 2016 Formal Methods for Timing Verification (FMTV) challenge,
co-located with the 7th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS).
[Online]. Available: https://waters2016.inria.fr/challenge/

[3] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive

benchmark for free,” in sixth International Workshop on Analysis Tools

and Methodologies for Embedded Real-time Systems (WATERS), 2015.

AUTOSAR Specification of RTE Software. [Online].

Available: https://www.autosar.org/fileadmin/files/releases/2-0/software-

architecture/rte/standard/AUTOSAR_SWS_RTE.pdf

AUTOSAR Specification of Timing Extensions. [Online]. Avail-

able: https://www.autosar.org/fileadmin/files/releases/4-1/methodology-

templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “Sys-

tem level performance analysis - the symta/s approach,” IEE Proceedings

- Computers and Digital Techniques, vol. 152, no. 2, pp. 148-166, Mar

2005.

[7]1 M. Negrean, S. Schliecker, and R. Ernst, “Response-time analysis of ar-

bitrarily activated tasks in multiprocessor systems with shared resources,”

in Design, Automation Test in Europe Conference Exhibition, 2009. DATE

’09., April 2009, pp. 524-529.

S. Schliecker and R. Ernst, “Real-time performance analysis of

multiprocessor systems with shared memory,” ACM Trans. Embed.

Comput. Syst., vol. 10, no. 2, pp. 22:1-22:27, Jan. 2011. [Online].

Available: http://doi.acm.org/10.1145/1880050.1880058

[4

—_

[5

—_

[6

[t}

[8

—_

FMTYV 2016: Where 1s the Actual Challenge?

Alessio Balsini, Alessandra Melani, Pasquale Buonocunto, Marco Di Natale
Scuola Superiore Sant’Anna, Pisa, Italy
E-mail: {alessio.balsini, alessandra.melani, pasquale.buonocunto, marco.dinatale} @sssup.it

Abstract—The FMTYV challenge has been formulated and
proposed to research groups as a case study and benchmark to
compare different analysis methods for real-time multicore fuel
injection applications. The nature of the problem is clear enough
and the challenge can be likely met by a set of conventional
analysis techniques (at least at the current level of description).
However, the formulation of the problem and its practical solution
are more than likely to reveal a number of additional issues
that go from the model of the application, to analysis techniques
that consider with much better precision the details of the HW
platform, to the need for synthesis and optimization methods.

I. INTRODUCTION

The FMTV 2016 challenge consists of a timing analysis
problem in which the AUTOSAR model of a set of cooperating
tasks in a fuel injection application is deployed onto a 4-core
platform. The objective of the challenge is to apply different
analysis methods (worst-case, simulation-based and possibly
stochastic) to models of the system with an increasing level
of accuracy with respect to the memory placement of commu-
nication variables. At the simplest level, memory access times
are simply neglected; next, different access times are assumed
under the hypothesis of global or local memory allocation;
and, finally, the problem of optimizing the placement of the
memory items is presented.

True to the spirit of the description, we tackled the objec-
tives of the challenge in a sequence, and because of timing
constraints, at the time of this submission, only the results
for some of the early activities were available. However, we
believe that in the case of this challenge, the experience
gathered along the path is at least as valuable as the final
solution, and we found several issues that are worth discussing,
beyond the presentation of the tool architecture that was used
to derive the solution and the hard data that we computed as
a result of the analysis.

From the architecture standpoint, we attempted two solu-
tions to the problem: to simulate the time behavior using
a scheduling simulator that was previously available at our
laboratory, and to analyze the task-set for its worst-case
behavior, using a set of formulas derived from the problem
description and obtained by adaptation of classical results.

We provide the results of these two analysis methods (with
an additional discussion on how to tackle the memory access
time problem), but we also believe several issues are worth
discussing. Among those:

The definition of response times when the system
contains chains of tasks or runnables communicating
asynchronously. The challenge refers to a set of definitions
(reactive and age) for which an application-level justification
is not clear enough and for which (despite being formally
presented in [1]) a solution in analytical closed form or as an

algorithm has never been presented and validated in a peer-
reviewed paper.

Next, while the challenge has the merit of restoring to the
foreground the consideration of hardware features and issues,
its description of the HW architecture details is still incom-
plete and simplistic. For example, the FIFO arbiter controlling
accesses to shared memory is likely to be integrated within the
crossbar or possibly placed after it, but this information can
only be guessed and would affect the access times to memory.

Finally, and most important, the problem probably placed
too much emphasis on the analysis part and seems to neglect
the runnables placement problem, which is most likely the
most relevant design issue for a system like this.

II. SYSTEM MODEL AND NOTATION

The challenge model is in large part compliant with the
AUTOSAR metamodel and adopts from it definitions and
most of the semantics for activation and communication of
functions (runnables in AUTOSAR). An attempt at the formal
characterization of the challenge model is the following.

A task 7; is composed of an ordered sequence of n;
runnables p; 1, ..., p;in,;, €ach of which has its execution time
defined as a statistical distribution C;, which is defined as a
truncated Weibull distribution for most if not all the runnables
in the model. For the purpose of worst-case analysis, the worst-
case execution time (WCET) C; ; and a best-case execution
time ¢; ; may be computed from the distribution C;.

The scheduling of each task is also controlled by its schedul-
ing mode (cooperative or preemptive) and its priority 7;, with
preemptive tasks having higher priority than cooperative tasks,
and cooperative tasks only preempting each other at runnable
boundaries.

The model also defines deadlines that apply to tasks and task
chains. For tasks, deadlines bound the worst case completion
time with respect to the activation and match the common
definition of a relative deadline D;. Also, all tasks are assumed
to be periodic or sporadic, with a period or a minimum
inter-arrival time 7;. When applicable, relative deadlines are
constrained to be smaller than or equal to periods, i.e.,
D,; < T;. In the end, we assume each task is defined by a
tuple (CZ‘, ¢, D;, E), where C; = 2?1:1 Ci;j, C;i = Zm:1 Cij-

We denote as I7; ; the worst-case response time of the jth
runnable of task 7;, while 7; ; denotes its best-case response
time. hpf (i) and hp®(i) denote the set of preemptive and
cooperative tasks, respectively, having priority greater than ;.
We denote as hp(i) = hp” (i) U hp© (i) the union of the two
disjoint sets.

As for end-to-end chains, the assumed model is based on the
asynchronous propagation of information by means of shared
data variables. These variables (labels in the model) are read
and written by the runnables.

Figure 1 illustrates the three effect chains that are analyzed
in the context of the challenge. Note that, in the third chain,
we replaced Label 2197 with Label 646 to fix a mistake in
the model (Label 2197 is not read nor written by the last two
runnables in the chain, while Label 646 is the only one that
satisfies the read/write relation imposed by the chain).

a
) Rioms.140 Rioms.107

b)

Rooms7

Raoo/s00us.3

c)

Fig. 1: Effect chains in the model.

The following semantics have been considered for end-to-
end latency calculation (from [1]):

o Last-to-First (L2F): it considers the delay between the
last input that is not overwritten until the first output
generated with the same input;

o First-to-First (F2F) or Reactive: it considers the delay
between the first input that may be overwritten until the
first output generated with the next different input;

e Last-to-Last (L2L) or Maximum Age: it considers the
delay between the last input that is not overwritten until
the last output, considering duplicates.

The problem with this definition is that it is hardly formal,
and even in the original reference there seems to be no single
point in which a formal definition appears. Hence, we used
the following definitions.

Assume a chain of periodic communicating runnables I" =
{p1,p2,...pn}. Also, assume a; j denotes the h-th activation
of runnable p;, f; 5 its finishing time, and I; 5, O;) are the
sets of input and output values that are respectively read from
and written to the labels accessed by the h-th instance of p;.

Then, the L2F latency of the chain I' is the maximum value
fn,r — a1, (finishing time of the r-th instance of p,, minus the
activation time of the p-th instance of p1), such that for some
p,q,r

Vi = 1, ey (n - 2) OivP = Il'-‘qu and Oi+1,q = Ii+27r
and 41,4 # liv1,g—1 and Ijpo, # Liyo 1.

Similarly, the F2F latency of the chain I is the time interval
between the latest a;, and the earliest f,, 41 such that for
some p,q,T

VZ = 1, ey (Tl — 2) OLP = Ii-&-l,q and Oi-i—l,q = Ii+277-
and Iit1,q # Liv1,g+1 and Lo 7 Ligo i
Finally, the L2L latency of the chain I' is the maximum
value f,, — a1, (finishing time of the r-th instance of p,,

minus the activation time of the p-th instance of p;), such that
for some p, q,r

Vi = 1, ey (TL - 2) Oi,p = Ii—&-l,q and Oi+1,q = Ii+2,r~

Figures 2 and 3 exemplify the definitions in the case
of undersampling and oversampling effects, respectively. In
particular, referring to the chain {pi, p2, p3} in Figure 2, the
end-to-end delay by the L2F semantics corresponds to the time
interval between the activation a; ; and the finishing time of
the runnable activated at time ag 1; the end-to-end delay by
F2F corresponds to the time interval [aq1, f3,2]. By L2L, it
is measured as for the L2F semantics (i.e., f31 — a1,1). In
case of oversampling (Figure 3), the end-to-end delay can be
measured by the L2F semantics as f3 o — a1,1; by F2F it is
f3,5—a1,1, while the L2L semantics accounts for the same data
read by multiple runnable instances (e.g., in the time interval

f3a—a1,1).
a4 IZTLS
[} .
P2 X

N
X X
a3 a3,
P3 |

First-to-First (F2F)
Last-to-First (L2F)
Last-to-Last (L2L)

ap,

mt

a1 |

P [N

a3 |

N

Fig. 2: End-to-end delay in the case of undersampling.

31 a a3
P1 | [
o | H| Ll—ak\“lail\

o e E\Eﬁ\h

First-to-First (F2F)

Last-to-First (L2F)

Last-to-Last (L2L)

Fig. 3: End-to-end delay in the case of oversampling.

The definition ambiguity leaves open a fundamental issue.
What is the actual meaning and relevance (in application
terms) of such definitions?

IIT. WORST-CASE LATENCY ANALYSIS

This section discusses the analytical approach to compute
the worst-case response times for tasks and chains, with and
without consideration of the timing for the access to (shared
and local) memory.

A. Analysis without memory access times

For any preemptive task, the worst-case response time of
runnable p; ; is given by the fixed point iteration of the
following formula (starting with RY; = >} _, C; p):

-:zj: 1h+2{ W . (1

kehp(i)

The above formula quantifies the higher-priority interfer-
ence suffered by p; ; by considering the synchronous periodic
arrivals of higher-priority tasks.

For cooperative tasks, the worst-case response time needs to
consider also the blocking time by lower-priority cooperative
runnables and the fact that the last runnable does not suffer
any preemption by higher-priority cooperative tasks once it
has started executing. In addition, by analogy with the limited
preemptive scheduling with fixed preemption points [2], it
is not enough to compute the response time of the first job
after the critical instant. In particular, the computation must be
carried out for all jobs s € [1, K;] falling within the so called
Level-i Active Period L;, such that K; = %-‘ Therefore, in
case of a cooperative task 7;, we can compute the worst-case
finishing time of the sth job of p; ; by the fixed point iteration
of the following formula:

J s
— . o . 4,J
=Y Cin+Bij+(s—1)Ci+ > | [TJCH
h=1 kehpP (1)
s Oy
> (B 1) e
. Tk
kehp® (i)
where
Biﬂ' = max Oq h
q€lp® (4)
h=1,...,nq4

represents the maximum blocking time imposed by lower-
priority cooperative tasks.

Then, the worst-case response time of p; ; can be computed
as:
(s —1)T;. 2)

R;; = max f’. —
el KT

0J
Worst-case start time computation. Another quantity of
interest for the end-to-end latency computation is the worst-
case start time .S; ; of runnable p; ;. The calculation is the
same for both the case of preemptive and cooperative tasks,
and is given by:

,J—e+ZCZh+ > {

kehp(i)

-‘ Ch» 3)

where € is an arbitrarily small constant.

Best-case response time computation.
For preemptive tasks, the best-case response time of

runnable p; ; is [3]:
(]

Tij = Zcz n+ Z
h=1 kehp(3)

For cooperative tasks, a lower-bound on the best-case re-
sponse time can be computed by considering a zero blocking-
time from lower-priority tasks and the minimum amount of
interference from higher-priority tasks [3], [4]:

rig —ZcthrZ (FTJ 71) ckJrZ {%J -

kehpP (i) k€hpC)

B. End-to-end Latency Calculation

The end-to-end latencies have been computed according to
the semantics reported in Section II. For each chain, we first
compute the end-to-end latency by the Last-to-First (L2F)
semantics, and then extend it to obtain the latencies by the
F2F and L2L semantics.

Last-to-First semantics. The end-to-end latency of chain

p1,--.,pn according to the L2F semantics can be computed
as:
N—1
Z R; 4+ min(T;41 — ri11,T5)) + Ry (6)
i=1

First-to-First semantics. With respect to the L2F semantics,
in the F2F semantics we need to add one cycle delay for the
first runnable in the chain, in order to consider the previous

input. Therefore, the end-to-end latency of chain pi,...,pN
according to the F2F semantics can be computed as:
N-1
T + Z (R; + min(Ty41 — 7341, 13)) + RN 7
i=1

Additionally, the F2F semantics considers previous inputs that
are overwritten. In order to compute how many times in the
worst case an input is overwritten between consecutive stages
of the chain (i.e., between runnables p; and p;41), we need to
find the largest possible integer 7 > 1 that satisfies:

Tiy1+ Siy1 —rig1 201 +r; — Ry, (8)
This relation guarantees that the longest interval between two
consecutive reads is greater than the shortest interval between
7 consecutive writes. If the above relation holds (i.e., input
overwriting takes place), we compute the end-to-end latency
of chain py,...,pnN as:

N—-1
Ty + Y (R +7T}) + Ry. ©)

i=1

Last-to-Last semantics. With respect to the L2F semantics,
the L2L also considers subsequent outputs that are overwritten.
In order to compute how many times in the worst case an
output is overwritten between consecutive stages of the chain,
we need to find the largest possible integer n > 1 that satisfies:

Ty —ri+ Ry > nTip1 — rig1 + Siq1- (10)
This relation guarantees that the longest interval between
two consecutive writes is greater than the shortest interval to
perform 7 consecutive reads. If the above relation holds (i.e.,
output overwriting takes place), we compute the end-to-end
latency as:

N-1
> (Ri +ATi41 — rig1) + Ruv. (11)
i=1

Otherwise, the end-to-end latency by the L2L semantics is as
the one obtained under the L2F semantics.

C. Analysis with memory access and arbitration times

In the proposed model, the four cores contend for access to
a shared global memory (GRAM) with FIFO arbitration. Each
read/write access to GRAM costs 9 cycles (there is no caching
effect). Therefore, in the worst case each memory access might
get blocked by pending accesses from other cores, i.e., each
access can be delayed for 9(m — 1) = 27 cycles. Adding
up the memory access cost for the current request, we obtain
a worst-case memory-access penalty of 36 clock cycles. By
exploiting the knowledge of how many labels are read/written
by each runnable, we can compute the worst-case memory
access latency for its read/write phases.

In the best case, memory accesses do not experience any
delays from other cores, leading to a best-case memory-access
time of 9 clock cycles. Accordingly, we can compute the best-
case memory access latency for the read/write phases.

Such values need to be added to the execution time of each
runnable, to which the analysis described in Section III-A can
be applied identically.

The worst-case estimate of 9(m — 1) cycles implies that the
9 cycles access cost is repeatedly applied on each FIFO access,
which is most likely a pessimistic estimate given the lack
of detailed information on the HW (memory) configuration.
Careful consideration of the memory access costs require a
model of the execution HW more detailed than what is
typically available in scheduling analysis papers.

D. End-to-end Latency Calculation
The end-to-end latency calculation can be performed as
described in Section III-B, with the following differences.
Last-to-First semantics. Equation (6) is replaced by:
N—-1
> (R — 5% + min(Tisr, Th)) + Ry,

=1

12)

where 77¢4? denotes the best-case response time of the read
phase of p;.

First-to-First semantics. (8) is replaced by:

Tiv1+ Siv1 — T;’iﬁd >nl; +r;, — R;. (13)
Last-to-Last semantics. (10) is replaced by:
T, —ri+ Ry > 0T — 51 + RS, (14)

where R7°®® denotes the worst-case response time of the
read phase of p;, which can be computed similarly as in
Section III-A.

E. Experimental Evaluation

In order to make the system analyzable, the WCETs of
those tasks that were not deemed schedulable by our analysis
were scaled down by considering the largest scaling factor
o € (0, 1] that guarantees schedulability. In particular, starting
from ¢ = 1, WCETs are iteratively scaled down in steps of
0.01 until the system becomes schedulable by the proposed
analysis. Table I reports the scaling factor o for each task,
and the scaling factor o™ obtained when memory access
and arbitration are accounted for. The analytical approach
described in Section III has been implemented in C++, and
the code is fully available online [5].

TABLE I: Scaling factors.

[Task [Core [o [oM “ Task [Core [o [oM]
ISR10 0 1 1 Sms 2 I I
ISR5 0 1 1 20ms 2 1 1
ISR6 0 1 1 50ms 2 1 0.52
ISR4 0 1 1 100ms 2 0.28 | 0.12
ISR8 0 1 1 200ms 2 049 | 0.78
ISR7 0 1 1 1000ms 2 0.18 | 0.15
ISRI11 0 1 1 ISR1 3 I I
ISR9 0 0.58 | 0.29 ISR2 3 1 1
Ims 1 1 1 ISR3 3 I I

Angle Sync 1 0.37 | 0.26 10ms 3 0.84 | 0.78
2ms 2 1 1

1) Effect Chain 1: In the effect chain 1: (i) all runnables
belong to the same task (7ask_IOms, allocated to core 3),
hence all runnables are bound to the same rate; (ii) there
is backward communication between the third and the fourth
runnable, which implies a one cycle delay until the last datum
is read. Therefore, the worst-case end-to-end latency of this
effect chain by L2F can be computed as:

L1L2F = Tioms + R10m87107 = 13376 ps. (15)

Given that all runnables belong to the same task, this result is
valid also when considering the L2L semantics. As for the F2F
semantics, the analysis needs to consider a one cycle delay for
the first runnable, that is:

LfQF = 2Toms + RlOms,lO? = 23376 HS. (16)

2) Effect Chain 2: Unlike the previous chain, runnables
in this chain belong to different tasks with different rates.
In this case, the end-to-end latency calculation should also
consider the over-sampling effect between pairs of consecutive
runnables. By the L2F semantics, applying Equation (6), we
obtain:

L2F :
L2 = RlOOm,s,? + Inln(CTlOTns — T"10ms,19, TlOOms)
+R10ms,19 + min(TQms - T27ns,87 TlOms)
+R2ms,8 = 52222 us

As for the F2F semantics, due to the over-sampling effect,
there are no input overwritings (Condition (8) is never veri-
fied), hence the end-to-end latency is simply given by:

LE?F = LET + Tigoms = 152222 ps.

Finally, the end-to-end latency computation for the L2L
semantics requires to verify Condition (10) for any pair of
consecutive runnables. In this case, we obtain = 13 for the
first stage and m = 5 for the second stage, which yields:

L2L
Ly™" = Riooms,7 + 13 - Tioms — T10ms,19 + R1ioms,19

+5 - Toms — T2ms,8 + RQms,S = 180222 ps.

3) Effect Chain 3: Also in this case, runnables belong
to different tasks with different rates. Task periods have
increasing values, leading to an under-sampling effect.

By the L2F semantics, applying Equation (6), we obtain:

L§/2F = R700/800us,3 +min(T2ms — T2ms,3, T?OO/SOOus)+
R27ns,3 +min(T50ms —T50ms,365 T2mS)+R50m5736 =41953 Hs

Due to the sporadic nature of the first runnable, we assume
T700/800us = 800 s in order to maximize latency.

The end-to-end latency by the F2F semantics requires to add
one cycle delay with respect to L2F and to verify Condition (8)
for any pair of consecutive runnables. In this case, we obtain
n = 2 for the first stage! and 7 = 43 for the second stage,
which yields:

Ly = T700/800us T 2 * T700/800us + F700/800us,3+
43 - To,s + R2m3’3 + R50m3,36 = 127553 us.

Finally, the end-to-end latency for the L2L semantics is
equal to the L2F case, because no output is overwritten due
to the under-sampling effect.

Similar calculations are performed to compute end-to-end
latencies accounting for memory effects, as described in
Section III-C.

Table II summarizes the obtained end-to-end latencies cal-
culated according to the different semantics adopted, for each
of the two challenges.

TABLE II: End-to-end latency upper bounds (usec) for the
first (I) and second (II) challenge.

[Chain [L2F T | L2FIT | F2F T [F2F 1 | L2L1 | L2L 1T |

1 13376 13383 23376 23383 13376 13383
2 52222 | 52796 | 152222 | 152796 | 180222 | 180796
3 41953 | 42448 127553 | 130040 | 41953 43248

IV. MODEL SIMULATOR

The analysis by simulation of the challenge model has been
performed by a purposely developed extension [6] [7] to the
C++ RTSIM [8] scheduling simulator.

A. Data Acquisition

The (engine control) application model that is the subject of
the challenge is defined by an XML file that can be parsed to
obtain the model data. The model information is then stored
in data structures internal to the simulator C++ classes.

Some of the model information requires a preliminary
elaboration, such as the execution time that is represented
by parameters of a Weibull distributions: the lower bound
(b), the upper bound (B), the mean (1), and the probability
of having values greater than the upperbound (p). Those
parameters must be converted to compute the standard Weibull
parameters: scale (\) and shape (k). The transformation has
been performed considering that the cumulative distribution
function (CDF), given an uniformly distributed random vari-
able z, is null for x < 0 and for x > 0 is defined as
CDF (z)=1—- e~(@/N" By considering that for z = B —b,
it is possible to obtain CDF (B —b) =1 — p, and after per-
forming some substitution it is possible to define A = v Blhgp
The mean value of a Weibull distribution is calculated as
n = AI' (1+), and, by substituting the first result in the
second equation, we obtain kBllE”F (1+4)—-n=0.

The approach followed by the simulator described in this
paper to obtain an approximation of the k parameter is

IThis calculation considers Tqq /800us = 800 pus, since this value
maximizes the latency of the given effect chain.

to minimize the absolute error of the previously described

function
. | /—Inp 1
rkn>151 7B—br 1+E -l (17

The function minimum is obtained by using the GNU
Scientific Library [9].

B. Cores, Kernels and Schedulers

In RTSIM the main entity for scheduling simulations is
the Kernel. Each Kernel has an associated Core. Once a
Kernel is instantiated, the programmer assigns a Scheduler
to it. Among the different available schedulers, the one used
for the challenge is the fixed priority scheduler. In RTSIM,
partitioned multi-core scheduling is obtained by instantiating
multiple Kernel objects, one for each core.

C. Tasks

Each task 7; in RTSIM is defined by its parameters: the
activation time of first job (a;), its relative deadline (D), its
period or minimum inter-arrival time (7;), and the sequence
of instructions it executes, each defined by an execution
time specification (deterministic or random). For any periodic
task, the activation time of each job is computed by adding
T; to its last activation time. For sporadic tasks, a random
value in the range [T;,77"**] is added to the last activation
time, where 7;"%" denotes the maximum inter-arrival time
of 7;. Relative deadlines are set equal to 7;. As for the
job instructions, each task executes a sequence of runnables.
According to the RTSIM syntax, we defined a new instruction
“runnable(runnableName)”, and the code of each task is of the
form

runnable (rl); runnable (r2);...runnable (rN);

D. Runnables

Cooperative tasks preempt lower priority cooperative tasks
only at runnable borders, while higher priority preemptive task
can preempt any lower priority task and runnable. In the case
of cooperative tasks, preemption within runnables is prevented
by locking and unlocking a core-specific mutex dedicated to
cooperative tasks before and after calling a runnable. The
resulting job code for a cooperative task is:

...lock (muxC) ; runnable (rX);unlock (muxC) ...

When a job calls a runnable instruction, the operations
performed, in order, are the following: updating end-to-end
statistics associated to labels reading events, virtually execut-
ing the runnable computations, updating end-to-end statistics
associated to labels writing events.

E. Results

All the simulation runs performed for the challenge sys-
tem produced the following: (i) Complete traces of the task
scheduling events; (ii) F2F and L2L end-to-end delays of each
chain; (iii) Response times of all runnables involved in each
chain. The system simulation was performed collecting sample
runs for different initial offsets of the tasks. For periodic tasks,
the initial offsets are uniformly selected in the interval [0, T;],
while for sporadic tasks they are chosen in [0,77"%*]. The
execution of the tasks has been simulated for a total virtual
time of one hour. The simulation required 28 minutes and 50

«10° Chain 1. F2F Chain 2: F2F x10° Chain 3: F2F
3 2500 2
25
2000 15
n n n
g 2 g g
Q 2 1500 e
£ 15 £ £ 1
3 3 1000 3
o 1 o o 05
05 500
2.18 2.2 2.22 2.24 1.0922 1.0923 1.0924 1.0925 1.0926 4 5 6 7
Time (ns) x 10 Time (ns) x10° Time (ns) x 10
X 104 Chain 1: L2L Chain 2: L2L Chain 3: L2L
3 2500 5000
2.5 2000 4000
n n n
o 2 @ Q
o S 1500 S 3000
(3} [4] (3]
= 15 E =
3 3 1000 3 2000
o 1 o o
05 500 1000
0 0 0
1.18 1.2 1.22 1.24 1.0722 1.0723 1.0724 1.0725 1.0726 0 1 2 3 4
Time (ns) x 10 Time (ns) X 10° Time (ns) «10°

Fig. 4: End-to-end delays obtained by simulation.

seconds on a system with an Intel i7-2630QM core running at
2 GHz and 8 GB of DDR3 RAM running at 1333 MHz.

Figure 4 represents the distribution of the F2F and L2L
latencies for each chain. For the first chain, the maximum end-
to-end delays measured by simulation are 22377 us for F2F
and 12377 pus for L2L. For the second chain, the maximum
end-to-end delays measured by simulation are 109.26 ms for
F2F and 107.26 ms for L2L. In the end, the simulation returns
61324 us for F2F and 3139.4 us for L2L as maximum end-
to-end delays for the third chain.

Additionally, Table III establishes a comparison between
the worst-case response times of the runnables by the worst-
case latency analysis of Section III (WCRT), which takes into
account the scaling factors computed in Table I to guarantee
schedulability, and the maximum response times observed
during our simulations (SIM).

TABLE III: Worst-case response times (usec) for the first (I)
and second (II) challenge.

[Runnable | WCRTI [WCRTII [SIMT |
R10ms,149 5176 5144 3556
R10ms,243 7919 7903 5431
Rioms,272 8896 8879 6139
Rioms,107 3376 3383 2377
Riooms,7 39647 39865 6992
Rioms,19 770 781 577
Roms,8 142 150 122

R700/800us,3 30 33 27
R2ms,3 49 53 46
R50ms,36 39074 39562 11151

The evaluation of the memory access costs rquires further
extensions to the simulation engine that could not be com-
pleted in time for this paper.

V. CONCLUSIONS

In this paper, we proposed two solutions for the timing ver-
ification problem of the FMTV challenge. The first approach
builds a mathematical model of the system and calculates
worst-case latencies by adaptation of existing response time
analysis techniques. Upper bounds on the end-to-end latencies
are derived by first ignoring and then including memory access
times. Then, a simulator of the given AUTOSAR model has
been built on RTSIM to compute end-to-end latencies of the
selected effect chains.

REFERENCES

[1] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in CRTS, 2008.

[2] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems. A survey.” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3-15, 2013.

[3] R. Bril, “Existing worst-case response time analysis of real-time tasks un-
der fixed-priority scheduling with deferred preemption is too optimistic,”
CS-Report 06, vol. 5, 2006.

[4] R. Bril and W. Verhaegh, “Towards best-case response times of real-
time tasks under fixed-priority scheduling with deferred preemption,” in
ECRTS, WiP session, 2005, pp. 17-20.

[51 A C++ implementation of schedulability analysis and end-
to-end latency calculation for ~ WATERS Challenge 2016,
http://retis.sssup.it/%7Eal.melani/downloads/FMT V-analysis.zip, 2016.

[6] “MetaSim2.0 event-based simulator,” https://github.com/balsini/
metasim2.0, accessed: May 17, 2016.

[7] “RTSIM real-time system simulator extended for waters challenge 2016,”
https://github.com/balsini/waters/, accessed: Branch 2016.

[8] “RTSIM real-time system simulator,” http:/rtsim.sssup.it/, accessed: Ver-
sion 2.0.

[9] “GSL gnu scientific library,” https://www.gnu.org/software/gsl/, accessed:
Version 1.16.

Computational Analysis of Complex Real-Time
Systems - FMTV 2016 Verification Challenge

Ingo Stierand, Philipp Reinkemeier, Sebastian Gerwinn, Thomas Peikenkamp
OFFIS, Oldenburg, Germany
{stierand, reinkemeier, gerwinn, peikenkamp}@offis .de

Abstract—Real-time scheduling analysis is an important step
in safety relevant embedded system design for many application
domains, such as avionics, automotive and automation. Increasing
system complexity, not least due to raising automated mobility,
requires constant evolution of the analysis approaches, resulting
in a vital research domain.

We like to contribute to the research by presenting a compu-
tational analysis approach, where the system model is unfolded
as discrete-time state transition system. The analysis engine
is tailored particularly for real-time scheduling analysis and
exploits respective optimisations. We show the applicability of
the approach on an industrial relevant problem, and discuss its
advantages and limits.

I. INTRODUCTION

The question whether a system can deliver its functions
timeliness when deployed on a hardware architecture is an in-
tegral part of the safety aspect of embedded system design for
many application domains, such as avionics, automotive and
automation. Real-time scheduling analysis is a well established
discipline, providing a wealth of methods to verify relevant
timing aspects of the deployed system. Most approaches
are based on also well-established models, so called task
networks, and differ mainly in details that reflect the focus
and capabilities of the underlying mathematical method.

Although the discipline exists for several decades, publicly
available benchmarks were rather rare for a long time. People
sporadically came up with real-world or carefully designed
artificial examples [9], [6]. Such models help the community
to compare their methods, to investigate the individual advan-
tages (and disadvantages), and to evolve the approaches.

Recently, a group of researchers came up with the idea of a
verification challenge, where particularly timing analysis prob-
lems are made public, and invited all interested parties to try
their approaches and to discuss the results. We believe this is a
very good idea, which is proven to be an effective instrument
for progress in other formal verification communities.

We would like to contribute to this effort by providing
analysis for a system model that is derived from a large real-
world application. The authors of [5] constructed a generator
from a anonymised engine control application with thousands
of functions, which can be parametrised in order to obtain
appropriate benchmarks.

The work has been partially funded by the German Ministry for
Education and Research (BMBF) under the funding ID 01IS14029H
(AMALTHEA4public) and ID 01IS15031H (ASSUME)

The present system is given as an AMALTHEA4public!
(A4P) model, and can be downloaded from the WATERS
workshop website?. On this model, we apply a model-checking
based analysis [7]. In contrast to other existing, more general
frameworks like timed automata, our approach is based on the
idea to construct a highly specialised model-checking engine
particularly tailored for real-time scheduling analysis. This has
been done before, e.g., with the TIMES tool [1]. Our approach
however exploits discrete-time state space construction, using
a variant of time darts [4] in order to reduce the footprint of
state-space representation.

We briefly discuss the system model, and how we interpret
it where needed, in the following section. Section III intro-
duces the analysis approach and details how we tackle the
verification challenge. Results are presented in Section IV,
followed by a summarising discussion in Section V. Section VI
concludes the paper.

II. SYSTEM MODEL AND ITS INTERPRETATION

The system of the verification challenge consists of a multi-
core processing unit with four identical cores, which are
connected to a crossbar switch, and five memory banks. All
system components are running at 200 MHz, resulting in a
length of 5 ns for a processing cycle.

Every core is directly connected to its local memory bank.
Additionally, the cores can access all other local memory
banks as well as the global memory bank via the crossbar
switch, however, at the cost of additional cycles. The switch,
as stated in the challenge call [3], provides full connectivity.
We interpret this such that no congestion occurs at the switch
due to concurrent memory accesses from different cores. The
switch imposes 8 cycles latency on a memory access. The
challenge call further states that accesses to the memory banks
are serialised using a FIFO strategy. This is also true for the
local memories; all accesses from the local core as well as
from other cores via the switch go to the same FIFO buffer.
Every memory access takes 1 cycle.

The system consists of 21 tasks. Each task contains multiple
runnables, which are executed sequentially, as the call graphs
in the model indicate. All runnables consist of a similar set of
runnable items, which is (1) a sequence of read accesses to
various memory cells (labels), (2) execution of an instruction

Uhttp://www.amalthea-project.org/
Zhttps://waters2016.inria.fr/challenge/

Fig. 1. Analysis Model (all four cores with associated tasks, buses and
memories are omitted)

sequence abstracted by a probability distribution, and (3) a
sequence of write accesses to memory cells, in this order. We
interpret the runnable items as a sequence, i.e., read and write
accesses to the labels are performed one after the other.

The tasks are allocated to the four cores as shown in Fig-
ure 1. Each core executes an operating system that schedules
tasks according to the OSEK standard. To this end, tasks get
priorities in ascending order, with 0 being the lowest priority.
While these priorities are globally defined, task allocation
induces unique core-local priority orders. All except five tasks
are preemptively scheduled (cf. Table I). The remaining tasks
are cooperative. Preemptive tasks can preempt lower priority
tasks — no matter whether preemptive or cooperative — at any
point in time. Cooperative tasks can be preempted by higher
priority cooperative tasks only at runnable boundaries. Note
that, while the A4P meta-model defines so called schedule
points where cooperative tasks can be preempted, the authors
of the challenge explicate it otherwise.

All tasks are activated by individual stimuli. The A4P
modelling framework defines various kind of stimuli. Two
types are used for the model, namely periodic and sporadic.
According to the documentation, periodic stimuli are defined
by two parameters. The offset defines the time of the first task
activation after system initialisation. The recurrence parameter
defines the activation period relative to the first one. Sporadic
stimuli are defined by a probability distribution defining the
minimum and maximum inter-arrival time for task activations.
All sporadic stimuli in the model are defined by a uniform
distribution with lower and upper bound. We assume, as stated
by the authors of the challenge, that also for sporadic stimuli
the first event occurs at time 0.

The model finally contains three effect chains as shown in
Figure 2, which define data flows that can be observed in the
system. All events referred to by the chains are start events of
runnables. The first chain refers to a sequence of runnables that
all belong to task Task_10ms, which is (names are abbreviated)
{R149,R243,R272,R107}. A further inspection of the model
reveals that theses runnables indeed access common memory

Task_10ms

. R107 R149_ | R243 R272 R107
~ LT PR T N e R i
—_——————— ~———— H—/!
ClrlOB C107'148 C14‘3—242 C243'271 C272—end ClrlUG
Task_100ms Task_10ms Task_2ms
R7 s R19 s R8
C1 6 C7—end Clrls Clgrend C177 CSrend
ISR_10 Task_2ms Task_50ms
R3 s R3 s R36
N ———— N——
C1-2 C3-end C1-2 C3-end C1-35 C36-end

Fig. 2. Three Effect Chains of the Challenge Model

labels; every runnable of the chain sequence (except the last)
writes to a label that is read by the subsequent runnable. As
the runnables of the task are executed in ascending numbering
order, the resulting data flow is spread over two subsequent
executions of the task, which is indicated in the top part of
Figure 2.

The other two are cross-core effect chains. The second chain
involves tasks Task_100ms, Task_10ms and Task_2ms, which
are allocated to Core 2 and Core 3, respectively. The third
chain also crosses two cores, Core 0 (ISR_10) and Core 2
(Task_2ms and Task_50ms).

The challenge states three sub-challenges. All of them ask
for tight lower and upper bounds of the end-to-end latencies
of the three effect chains. The first effect chain for example
is asking for lower and upper bound of the time between
the start events of runnables R149 and R107. The first sub-
challenge states that all memory accesses shall be ignored.
The other two state that memory accesses should be taken into
account, which induces additional latencies due to congestions
for memory accesses. Concerning the second sub-challenge,
we assume that the labels are allocated to the memory banks
as defined in the model. The third sub-challenge asks for
an allocation of the labels such that the end-to-end latencies
become minimal. We do not cope with this optimisation
challenge in the present paper.

III. ANALYSIS APPROACH

In order to keep analysis times and (memory) space manage-
able, we follow a compositional approach, where we consider
the challenge as a set of separate scheduling problems. To this
end, we re-model every core and its allocated tasks in terms of
our analysis model as exemplified in Figure 3. The top part of
the figure shows the relevant artefacts, namely event sources
(yellow boxes), tasks (blue circles) and processing units (grey
boxes). Event sources emit events according to their assigned
event stream behaviour, which is defined by four parameters
P=,P*,J and O. The time between any two subsequent
events is selected non-deterministically as follows: Given time
instants ¢/, € t; 4+ [P~, P*] the event source emits events at

3

ISR_1
ac
O

ISR_2
G —r
ISR_3
(o 2t 5 " act — RI07.f [1281,3804us),
T 10ms e R107 R149 f1753,2268us] ,
(o p 2t RO fite 3272 11468, 4287us),
Core3 fin fin. f[548,1358us]

Fig. 3. Analysis Model Example

time points ¢; € ¢} + [0, J]. Generally, the first time instant is
chosen non-deterministically from the interval [O,O + P*],
ie, th € 0,0+ P*].

Event sources are hence sufficient to model periodic as well
as sporadic stimuli of the challenge model. As the stimuli
defined in A4P send their first event at a fixed offset (in
the model always 0), we have to remove the initial non-
determinism of the corresponding event sources in the analysis
model. This is obtained by command line parameters of the
analysis tool.

Tasks are activated by incoming events (here always act)
via their input ports (small white circles), and emit events
during execution via their output ports (small black circles).
Task execution finishes with the last emitted event. Tasks must
emit at least one event. Tasks have internal state transition
systems as shown at the right part of Figure 3. Depending on
the internal state of a task and the event that activates it, the
tasks execution is performed according to the annotation of
the corresponding transition. For example, if the task in the
figure is activated by an incoming act event, it executes the
corresponding transition, which is a loop at the sole task state
in Figure 3. During execution, it sends event f to output port
R107 after 1281 — 3804 pus “consumed” execution time, an
event to output port R149 after 753 — 2268 us, and so on.
The task finishes execution with the last sent event.

The analysis model allows for two interpretations of the
execution times annotated at a transition. For simultaneous
transitions, the execution times for the individual output
events pass simultaneously. The output order of events with
overlapping execution time intervals is non-deterministic. For
sequential transitions, the execution times pass sequentially.
At the end of each execution time, the corresponding event
is emitted. Only sequential transitions where used for the
challenge.

The models used for analysis of the challenge have been
manually constructed. For the calculation of the execution
times however a simple parser tool has been implemented.
While a fully automatic translation would be possible, we
avoided the additional effort for the present work. The re-
sulting analysis model is depicted in Figure 1. The mini-
mal and maximal execution times obtained for the tasks, or
task segments, from the original model by summing up the
execution times of the involved runnables are depicted in
Table I with descending (core-local) priority order from top
to bottom. In order to enable calculation of bounds for the

TASK PARAMETERS (TIMES W/O MEMORY ACCESSES IN # CYCLES)

TABLE I

Core Task preempt. min max
0 ISR_10 yes 3.363 6.068
0 ISR_5 yes 25.825 51.636
0 ISR_6 yes 2.980 6.190
0 ISR_4 yes 33.242 73.160
0 ISR_8 yes 26.089 60.777
0 ISR_7 yes 34.678 64.974
0 ISR_11 yes 27.629 61.177
0 ISR_9 yes 35.617 74.097
1 Task_1ms yes 50.035 152.870
1 Angle_Sync yes 260.919 761.071
2 Task_2ms yes 27.748 80.817
2 Task_5ms yes 73.108 186.363
2 Task_20ms no 721.008 2.093.688
2 Task_50ms no 262.830 616.897
2 Task_100ms no 625.239 1.883.595
2 Task_200ms no 14.041 27.697
2 Task_1000ms no 13.610 27.432
3 ISR_1 yes 3.075 7.011
3 ISR_2 yes 2.064 3.549
3 ISR_3 yes 2424 4.787
3 Task_10ms yes 797.773 2.342.546

end-to-end latencies, the respective tasks have been modelled
using sequential transition executions as shown in Figure 2.
For the first effect-chain, task Task_10ms contains a sequential
transition with five execution times. The first one subsumes the
execution of runnables with numbers 1 to 106 of the tasks call
graph. The task contains a corresponding output port R107
at which the start event for runnable 107 can be observed.
The second execution segment subsumes the execution of
runnables 107 to 148, for which port R149 indicates start of
runnable 149, and so on.

During modelling, we made two notable observations. First,
execution times for runnables are expressed in terms of Weil-
bull distributions, which express probabilities for particular
execution times. The values in the model are no hard bounds,
but define an interval with a certain probability mass, which
in our case is 1 — 5 - 10~* for all runnables. The definitions
imply that there is a non-zero (although potentially very small)
probability for each runnable to have very large execution
times, which may lead to overload situations where tasks
would miss every given finite deadline. Hence, from a safety
point of view, the system has to be rejected.

Secondly, we observed that the utilization of three cores
(1, 2 and 3) is larger than 100%. For a simple fixed-priority
scheduling, this would result in an infeasible task set that
cannot be scheduled. The A4P model however defines an
OSEK scheduling scheme for all cores, and a limit of one
for the maximum number of activations for each task. The
model hence implies (considering the OSEK specification) that
for each activated task all further activations of this task are
ignored until it finishes it execution.

We exploit a model-checking approach for analysing the
effect chains, which is implemented in the tool RTANAs (cf.
footnote 3). It is fed with an analysis model and performs
a discrete-time state unfolding, resulting either in a closed

state-transition system, or terminates if it detects an infeasible
scheduling situation, such as a buffer overflow. After state
space construction, the tool performs a path analysis in order
to obtain the exact minimal and maximal latencies for the
respective effect chain. For further details about the approach
the reader is referred to [7].

For the verification challenge, we deal with the state-
space explosion problem in three ways. First, we introduce
abstractions where needed by increasing the length of discrete
time slots, at which scheduling decisions occur. The effect is
similar to the so-called tick scheduling [8]. Additionally, we
exploit the model characteristics where possible to perform
compositional analysis. Foremost, we consider the cores sep-
arately. If this does not sufficiently reduce the state space,
we incorporate analytic methods to obtain response times for
individual tasks. The results are fed back to the computational
analysis, indeed introducing additional over-approximations.
A detailed discussion of the analysis and their results is given
in the following section.

IV. RESULTS

As stated above, we took a number of measures to tackle
the problem of state space explosion. Although the analysis
exploits some symbolic representation of time, a main factor
for the resulting memory footprint is the length of discrete time
slots. With respect to the model, a suitable slot length would
be 5ns. Due to the characteristics of the challenge model with
its large execution time intervals, this leads to very large state
spaces. Hence, we decided to set the slot length to 1us, which
indeed results in an over-approximate analysis. In order to still
obtain safe approximations, we adjusted the execution times
accordingly: for lower bounds we took the floor, and for upper
bound the ceiling. More precisely, we calculated an interval
[/, u'] of 1ps slots from execution time interval [/, u] such that
U= [ﬁj and v’ = [555].

To further reduce analysis effort, we also constructed in-
dividual analysis models for the various sub-problems. For
example, two models have been constructed for the second
effect chain, where only relevant parts of the original model
remain. This includes to sum up the execution times of
runnables that are not relevant for the particular analysis task.

The following sections discuss the individual approaches
for the sub-challenges. The analysis models and result logs
are also publicly available®.

A. Sub Challenge 1 - First Effect Chain

The first effect chain does not involve further abstraction as
it involves only a single task running on Core 3. The model
used for analysing respective latency bounds is depicted in
Figure 3. The results in Table II for the first effect chain
also show the individual task response times obtained with
the analysis.

Scenarios for the results are depicted in Figure 4. The lower
bound corresponds to the situation where two subsequent

3https://vprojects.offis.de/rtana

act act act
Q R149 R243 R272 R107
u PES PEEY PR P
S . *t, *t .-
@ |
[
g " 3 ——t 3

max {Cy.145+ ;1 Cisp;} min {Cy106+> ;-1 Cisr; }
< 10ms
£ (ignored)

10ms-B+€
& R149 _&R%‘P. .QRU_Z_ E R107
S — —~1. B I -
o
&
o = 3
B B=max {Cj49.242+ C243.271+ C272.end} max {Cj.;06 +Z::1C15Ri}

> 10ms 10ms

Fig. 4. Scenarios for Sub-Challenge 1 - Effect Chain 1

activations of task Task_10ms occur, all runnables R1 — R148
and interrupt service routines ISR_1 — ISR_3 of the first
activation consume their maximum processing time, and in
the second activation R1 — R106 and ISR_1 — ISR_3 consume
their minimum processing time.

A scenario for the upper bound is shown at the bottom of
Figure 4. Here, all runnables starting from R149 of the first
activation consume their maximum execution time. The overall
task execution is slightly longer than 10 ms, resulting in
ignoring the subsequent task activation (OSEK task activation
limit). Runnables R1 — R106 and interrupt service routines
ISR_1 — ISR_3 of the third activation consume their maximum
execution time as well.

B. Sub Challenge 1 - Second Effect Chain

In order to avoid state space explosion when analysing the
second effect chain, we exploit (1) a compositional analysis
approach in combination with an analytical analysis method
implemented by pyCPA [2], and (2) a trick. While the first
and last task of the effect chain are executed on Core 2,
the intermediate task Task_10ms is executed on Core 3. The
analysis is done in three steps. First, we obtain time bounds
for execution of task Task_10ms from its activation up to the
start event of runnable R19. Second, we create a ’placeholder’
task Task’_10ms with execution time bounds according to the
results of the first step. The task is not allocated to Core 2,
causing the analysis to assume a distinct processing resource
solely assigned to the task, which hence executes without
any interferences. This way, the model provides a safe over-
approximation for imposed data flow latencies on the effect
chain. The same approach is applied to obtain time bounds
for execution of task Task_100ms from its activation up to
the start of runnable R7. To obtain these bounds we setup
a pyCPA model with all tasks from Core 2 having a higher
priority than Task_100ms. Again, we modelled a placeholder
task Task’_100ms based on these results.

Concerning the ,,trick”, cooperative scheduling as in the
challenge can be considered as temporal priority inversion.
The maximum length of the inversion is no longer than the
highest maximum execution time among all runnables of
lower-priority tasks. This time is added to the execution time
of Task_100ms, which is again a safe over-approximation of
the actual behaviour.

act act act
Task_100ms Task_10ms Task_2ms
R7 .. R19 e R8
) L) L]
Cis Crena Cris Cigena mMax {Ciz} Cgeng
? (missed
sample)
R19 R8
P ———
min {Cy.18} Cigena

Task_10ms Task_2ms

12ms + max {C;.,}

Fig. 5. Worst case scenario for Sub-Challenge 1 - Effect Chain 2

The first two analyses for the second effect chain in Table II
depicts the response time bounds for Task_10ms from activa-
tion until the start of runnable R19 and for Task_100ms from
activation until the start of runnable R7.

A scenario for the upper bound is shown in Figure 5.
Runnables R1 — R18 of task Task_10ms consume their min-
imum processing time. Runnable R19 is just started before
runnable R7 of task Task_100ms. So the effect influences
the next start of R19 in the next job of Task_10ms. Since
min{C1_1s} > max{Ci_~}, the job of task Task_2ms cannot
sample the data of the job of task Task_10ms starting at
the same time. Thus, the execution of R8 in the next job
of Task_2ms samples that data. In that job of Task_2ms the
runnables R1 — R7 consume their maximum processing time.

The calculated lower bound of 0 is due to the compositional
approach where task dependencies are lost. Therefore, the
start events of involved runnables can occur at the same time
instant, and the analysis has to assume that they might occur
in the order R7 — R19 — R8 with no delay inbetween.

C. Sub Challenge 1 - Third Effect Chain

For the third effect chain, we apply a similar approach as for
the second one. This time we insert placeholder tasks ISR_10
and Task’_50ms. Again we use pyCPA to obtain the bounds
for execution of Task_50ms up to the start of its runnable R36.
ISR_10 however is the highest priority task running on Core
0. Hence, it is sufficient to model this task without a resource,
but with its core execution times. Concerning the ,,trick”,
time is added to the execution time of Task_50ms instead of
Task_100ms, which is the maximum execution time among all
runnables of Task_100ms, Task_200ms and Task_1000ms.

A scenario for the upper bound is shown in Figure 6.
Runnables R1 — R2 of task Task_2ms consume their minimum
processing time. Runnable R3 is just started before runnable
R3 of ISR_10. So the effect influences the next start of R3
in the next job of Task_2ms. Here again a data sample might
be missed and the invocation of runnable R36 in the next job
of Task_50ms results in the worst case scenario for the third
effect chain. In that job of Task_50ms the runnables R1 — R36
consume their maximum processing time.

The lower bound of the effect chain is O for the same reasons
as for the lower bound of the second effect chain.

act act act
ISR_10 Task_2ms Task_50ms
R3 L R3 L R36
] [S
Ci2 Csena Ciz Csena max {Cjy35} Cspena
ﬁ (misseld
sample) .
(missed
Task_2ms sample)
R3
‘ Task_50ms
————
min {C;5} Csena R36

e ————
C1-35 C36-end
50ms + max {C;.35}

Fig. 6. Scenarios for Sub-Challenge 1 - Effect Chain 3

TABLE II
RESULTS FOR SUB-CHALLENGE 1
Latency Bound/ Analysis

BCRT,WCRT | Time | Space
ISR_1 [15, 36] us
ISR_2 [25, 54] ps
ISR_3 [37, 78] ps
Task_10ms [4.024, 11.871] us
Effect Chain 1 | [5.105, 19.524] us | 49s | 2 GiB
Task’_10ms [315, 831] us | 41s | 1 GiB
Task’_100ms [99, 39.890] us 1s 22 MiB
Effect Chain 2 [0, 11.826] us | 87 s | 400 MiB
ISR_10 [13, 25] ps - -
Task’_50ms [975, 39.029] us 1s 22 MiB
Effect Chain 3 [0, 89.015] us | 56's | 400 MiB

D. Sub Challenge 2

The second sub-challenge states that memory accesses of
runnables shall be taken into account. A comprehensive anal-
ysis would calculate exact bounds on the latencies imposed
by concurrent such accesses from tasks running on different
cores. As this is currently infeasible by our analysis, we have
to calculate safe approximations. This is however simple, as
all variables are mapped to the global memory bank. Hence
every memory access can be delayed by up to three other
memory accesses (from other cores). This results in an overall
latency of every memory access between 9 and 12 cycles.
Based on these adapted runnable execution times, the analysis
then follows the same scheme as for sub-challenge 1. The
results are shown in Table III

An interesting result is that the worst-case reaction time of
the second effect chain becomes lower when taking memory
accesses times into account. This is because the best-case
execution time of runnables R1 — R18 of Task_10ms increases,
resulting in a smaller time distance to the final reaction of the
effect chain.

E. Probabilistic Aspects

It is worth mentioning that the results we reported in this
section are only valid with a certain probability. This is due
to the fact that the execution times of the different runnables
are subject to random fluctuations. Within the model given

TABLE III
RESULTS FOR SUB-CHALLENGE 2
Latency Bound/ Analysis

BCRT,WCRT | Time | Space
ISR_1 [16, 37] us
ISR_2 [27, 56] us
ISR_3 [40, 82] us
Task_10ms [4.247, 12.171] us
Effect Chain 1 | [5.042, 19.782] us | 62s | 2 GiB
Task’_10ms [332, 854] us | S51s 1.5 GiB
Task’_100ms [104, 99.223] us ls 22 MiB
Effect Chain 2 [0, 11.811] us | 848 s | 750 MiB
ISR_10 [14, 26] us — —
Task’_50ms [995, 39.628] us ls 22 MiB
Effect Chain 3 [0, 89.613] us | 54 s | 400 MiB

for the challenge, these fluctuations are characterised by a
Weibull distribution. Specifically, the individual upper and
lower bounds on the execution times, which we used in
this section, mark intervals of execution times containing a
probability mass of 1 — 5 - 10~%. From this we can derive a
lower bound on the probability that the computed bounds hold.
More precisely, the computed bounds hold, if the execution
times of all runnables with random execution times fall
into their respective intervals. As the individual fluctuations
are assumed to be independent, this probability is given by
(1-5-107%)'259. However, this is a rather pessimistic bound,
as the latency bounds could still hold, even if one or more
individual execution times lie outside of the intervals used.

V. DISCUSSION

The AMALTHEAA4public project aims at defining a com-
prehensive meta-model for real-time systems with focus on the
automotive domain, being compliant with AUTOSAR where
possible. Tasks, for example, may contain call graphs, which
precisely define execution ordering of the runnables within
the tasks, as well as their internal behaviour in terms of
runnable items. From this point of view the model was easy
to understand. However, there is still room for interpretation.

First, it was an effort to retrieve the exact semantics of
stimuli. While the documentation of the A4P meta-model
defines precisely the semantics of periodic stimuli, definition
of sporadic stimuli is rather sloppy, and required clarification
by the challenge authors.

The second obstacle was the interpretation of cooperative
tasks. The OSEK standard defines various configurations,
resulting in different preemption scenarios for the entire task
set. It looks like the A4P meta-model either misses documen-
tation of the chosen interpretation or some bits of information
allowing to select the intended one. Furthermore, the A4P
meta-model defines the particular type ’schedule point’ of
runnable entity in order to explicitly define code positions
where cooperative tasks can be preempted. While no such
entities are defined in the model, the challenge authors state
that they should be implicitly assumed to exist.

In summary, it took about a day work, including reviewing
documentation, to understand model semantics as precise as
required for the analysis. No less time was required to set

up the analysis models. The main issue here was to find
suitable abstractions such that the analysis would fit into the
available memory space. While it would be possible to con-
struct a comprehensive analysis model also including memory
accesses for the entire system, it was clearly impossible to
get analysis results for such model in reasonable time and
space. Particularly memory accesses and preemption with
cooperative scheduling involved significant effort in tailoring
the models. As this is indeed somehow unsatisfactory, it
shows some deficiencies of the current analysis, and points
towards potential directions for further improvements, such as
improved combination of analytic and computational analysis.

VI. CONCLUSION

We presented a computational analysis approach for the
verification of timing characteristics of a non-trivial model
that is based on a real-world engine control application. As
always with computational approaches, the analysis soon starts
to suffer from state-space explosion for ,,interesting” system
sizes. However, as the analysis engine is particularly designed
for dealing with real-time scheduling problems, it already
shows nice performance compared to generic model-checking
approaches such as timed automata or SAT-based engines.

The model presented for the verification has some in-
teresting properties that are hard to encode with classical
analytic real-time scheduling approaches. We are convinced
that computational approaches can provide valuable results in
such cases. We strongly believe that this line of research is still
in its infancy and has much potential for further improvements.
Real-world problems such as the present are highly useful in
order to find sweet spots for such evolution.

REFERENCES

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES:
a Tool for Schedulability Analysis and Code Generation of Real-Time
Systems. In In Proc. of FORMATS 03, number 2791 in LNCS, pages
60-72. Springer-Verlag, 2003.

[2] J. Diemer, P. Axer, and R. Ernst. Compositional Performance Analysis in
Python with pyCPA. In 3rd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2012.

[3] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz. FMTV

2016 Verification Challenge. Robert Bosch GmbH Corporate Research,

Germany.

K.Y. Jgrgensen, K.G. Larsen, and J. Srba. Time-Darts: A Data Structure

for Verification of Closed Timed Automata. In Proc. of the 7th Interna-

tional Conference on Systems Software Verification (SSV), volume 102 of

EPTCS, pages 141-155. Open Publishing Association, 2012.

[5] S. Kramer, D. Ziegenbein, and A. Hamann. Real World Automotive
Benchmarks For Free. In Workshop on Analysis Tools and Methodologies
for Embedded and Real-Time Systems (WATERS), 2015.

[6] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. He-

nia, R. Racu, R. Emnst, and G. Harbour. Influence of Different System

Abstractions on the Performance Analysis of Distributed Real-Time

Systems. In Proc. Conference on Embedded Software (EMSOFT), 2007.

I. Stierand, P. Reinkemeier, T. Gezgin, and P. Bhaduri. Real-Time

Scheduling Interfaces and Contracts for the Design of Distributed Embed-

ded Systems. In Proc. International Symposium on Industrial Embedded

Systems (SIES), pages 1-10, 2013.

[8] K. W. Tindell, A. Burns, and A.J. Wellings. An Extendible Approach for
Analysing Fixed Priority Hard Real-Time Tasks. Journal of Real-Time
Systems, 6(2):133-151, 1994.

[9] K.W. Tindell, A. Burns, and A.J. Wellings. Allocating hard real-time
tasks: An NP-Hard problem made easy. Real-Time Systems, 4:145-165,
1992. 10.1007/BF00365407.

[4

=

[7

—

Schedulability and Timing Analysis of Mixed
Preemptive-Cooperative Tasks on a Partitioned
Multi-Core System

Ignacio Safudo, Paolo Burgio and Marko Bertogna
Universita di Modena, Italy
{i ghaci o. sanudool nedo, paol o. burgi o, marko. bertogna}@ninore.it

Abstract—This paper proposes a solution for the FMTV Ci
verification challenge related to the timing and schedulabity °.
analysis of an engine management system to be executed on il
a shared-memory multi-core platform. The application conssts Ti,r
of statically partitioned tasks, each one composed of mulfie -
runnables that are executed according to a read-compute-vite T ‘ ‘ | | ‘ : ‘ l
policy, where the memory labels required by a runnable are ‘ ‘ ‘ ‘ o — ‘
loaded from memory before starting its execution, and they e all D;
stored after the runnable completes its execution. Tasks nyabe
either fully preemptive or only partially at runnable bound aries.
The contribution of the paper is threefold. First, we presen a
tight schedulability analysis for this mixed-preemption tting,
neglecting memory accesses (Challenge 1). Then, memory ass
times and arbitration delays are included to the schedulabity .) .)
analysis, addressing Challenge I1. Finally, Challenge Iliis tackled ~ Of 7i, with 1 <7 < ;. The execution time of; ,. is denoted
proposing different approaches to map the labels to localighbal asC; ,.. Therefore,
memories so as to minimize the end-to-end latency of seledte
event chains. C; = Z Cir. (1)

r€[1,74]

Fig. 1. Notational model for tasks and runnables.

|. INTRODUCTION

The purpose of this paper is to present a brief overview ¥fe also denote a€’;, the cumulative execution time of
a solution to the FMTV verification challenge. The challengdunnablesr; i, ..., 7., i.e.,
proposed are: _ o _ Ci = Z Cir. @)
« Challenge Icalculate tight end-to-end latencies ignoring relir]
memory accesses and arbitration ' L
« Challenge Il:calculate tight end-to-end latencies includ-S0me of these parameters are exemplified in Figurel for a
ing memory access and arbitration accesses generic taskr;. _ _ _
« Challenge Ill:optimize end-to-end latencies by mappin? Runnables are basic workload units, whose execution fol-
the labels among the local and global memories ows a read-compute-write policy. The computational pdrt o
The rest of the paper is organized as follow. Section 2 intr§-"unnable cannot start before all its required labels age pr
duces the terminology and notation used in the paper. Sect/gaded from memory. Also, no label will be stored to memory
3 presents the worst-case response time analysis deveimpe[&efore the cqmpletlon of the runnable. The preemptllon type
solve Challenge I. Section 4 describes the approach applieoPTi may be either preemptive or c_ooperauve. P_reempt|ve ta_‘SkS
tackle memory access and arbitration accesses (Challgnge' &Y always preempt lower priority tasks, while cooperative

Finally Section 5 presents different solutions for Chaglel, [@SkS may preempt a lower priority one only at runnable
boundaries. Preemptive tasks are assumed to have always a

[I. TERMINOLOGY AND NOTATION higher priority than any cooperative task.

In this section, we introduce the terminology and notation The execution time of a runnable , is computed as
used throughout the paper, considering the information aB:, = n/,/f, wheren/ . is an upper-bound on the number
stracted from the Amalthea model. Each taskis specified of instructions specified by the Weibull estimators for the
by a tuple C;, D;,T;, P;, PT;), where C; is the worst-case considered runnable, assuming one instruction-per-y.ele
execution time (WCET)]; is the relative deadlinel; is the [PC = 1), andf is the core frequency.
period, P; is the priority, andPT; is the preemption type. The platform is assumed to comprise four identical cores,
Every periodT;, each task releases a job composedypf with tasks statically partitioned to the cores and no migrat
subsequent runnables, whetg. represents the'” runnable support.

write Ly read L7 write L5e® to either preemptive or cooperative tasks. Since Challdnge
{ \ \ allows neglecting memory delays, we can focus uniquely on
T ql 7" T

the execution times of tasks and runnables.
T Ci,r‘ : [:

/ T R,

(2

read g4 A. Analysis for Preemptive Tasks

ig. 2. : | ion i | hai . . .
Fig. 2. Worst-case delay propagation in a runnable subnchai According to the considered model, preemptive runnables

can only be preempted by higher priority preemptive
runnables, and they can always preempt any lower prior-
ity task. Therefore, a preemptive task will never expergenc

In this section, we present a detailed analysis of Challéngeany blocking delay due to lower priority (preemptive or
i.e, a solution tecalculate tight end-to-end latencies ignoringcooperative) tasks. Hence, the response time for preeenptiv
memory accesses and arbitratiofhe latencies of interest aretasks can be computed adapting the classic response time
those of selected effect chains, where an effect chain isamalysis for arbitrary deadlines presented in [2]. Theteahy
sequence of producer/consumer runnables working on shadeddline model is used instead of the simpler analysis for
labels. It is worth noting that effect chains do not have eonstrained deadlines because there are configurationg whe
blocking semantic, i.e., tasks and runnables are alwaygeacthe response time of a task may be later than the activation of
and periodically activated, independently on other ruhesb the subsequent job of the same task, i.e., it maykbe- T;.
and/or external events. What is interesting to analyze és tinder these conditions, the maximum response time of a task
maximum propagation delay from an initial event to the finaé not necessarily given by the first instance released #feer
runnable involved in the effect chain. An effect chain isynchronous arrival of all higher priority tasks (also edll
triggered by an initial event, which needs to be processed bitical instant), but may be due to later jobs.

one or more runnables using a read/execute/store executiopor each task;, the analysis requires checking multiple jobs
model. A first runnabler; , may read a labelL;, compute yntjl the end of the level-busy period, i.e., the maximum
the necessary instructions, and store a result on a lBbel consecutive amount of time for which a processor may be
which will be later read by another runnabig, following in continuously executing tasks of priorit, or higher. The
the Chain, and SO On until the |aSt I’unnab|e in the Chain. Thﬁ‘lgest Leveh’_ active period can be Ca'cu'a‘ted by fixed_point

end-to-end propagation delay is the maximum time that m@¥ration of the following relation, starting with; = C;:
elapse between the initial event and the completion of tbe la

runnable in the chain. L; = {ﬂw C;. (4)
It is easy to observe that an upper bound of such a delay is jipop | 1

given by the sum of the propagation delays for each indi\lidu..'flh

runnable in the chain [1]. In particular, consider an effect

sub-chain where a runnable , writes a labelZ which is K — [ﬂ-‘ ‘ 5)

then read by another runnabtg,. The worst-case sub-chain ! T;

propagation delay is found whem, storesL right afterr; ,

started loading it, as shown in Figure 2. Under this situgtio

the effect is not propagated until the next instance;gf may

start executing in the subsequent peribd and complete its X

execution after at mosk; ,, time-units, whereR; , represents % e —

the worst-case response time of runnablg. Therefore, an fir = _ Z { T; } Ci+ (k= 1)Ci + i, 6)

upper bound on the overall end-to-end propagation delay of 3:Fi>Fi

an effect chainEC' can be computed as where the first term in the sum accounts for the higher pyiorit

interference, the second term accounts for(thel) preceding
6(EC) = Z (Ti + Rir), ®3) jobs of 7;, and the last term considers the contribution of the
Tir€BC k-th job limited to7; , and its preceding runnables.

where the sum is extended over all runnables belonging toThe response time of thie-th instance ofr; . can then be

the effect chain. Note that in case the effect chain includeasily found subtracting its arrival time:

two consecutive runnables that belong to the same task, it is

sufficient to consider only the delay contribution of theetat

one. _ o Finally, the worst-case response time of runnable can be
To compute the upper bound of Equation 3, it is necessag(ind by taking the maximum among al; jobs in the level:
to compute the worst-case response tiiye of each runnable pysy period:

7i,» involved in the chain. To this purpose, we will hereafter R;, = max {RF}. 8)
provide a tight response-time analysis of runnables béhang TkELK]

I11. M EMORY-OBLIVIOUS ANALYSIS

e number ofr;’s instances to check are therefore:

The finishing time of thek-th instance £ € [1, K;]) of
runnabler; . in the leveli busy period can be iteratively
computed as

B. Analysis for Cooperative Tasks TABLE |
. . . END-TO-END LATENCIES IGNORING MEMORY ACCESSE$/’S)
The analysis for cooperative tasks is somewhat more com-

plicated, since it needs to take into account (i) the blogkint Core Task WCRT Deadline U
delays due to lower priority cooperative tasks that can e ISR_10 30.34 700.0 0.04
preempted only at runnable boundaries; (ii) the interfeeen ISR 5 288.52 9000.0 0.33
due to higher priority cooperative tasks that can preempt ISR _6 319.47 1100.0 0.35
the considered task only at runnable boundaries; (iii) the ISR 4 685.27 1500.0 0.60
interference of preemptive tasks that may always preengt e CORED ISR_8 1308.62 | 1700.0 0.78
within a runnable. To tackle this problem, we will modify| ISR 7 2652.99 | 4900.0 0.84
and merge the analysis for limited-preemption systems with ISR_11 4266.89 | 5000.0 0.90
Fixed Preemption Points (FPP) and for Preemption Threshold ISR 9 4483.08 | 6000.0 0.93
Scheduling (PTS), both summarized in [3]. The outcome will Task 1ms 764.35 1000.0 0.76
be a necessary and sufficient response-time analysis for feOREL Angle_Sync | 5994.08 | 6660.0 0.97
considered mixed preemptive-cooperative task model. Task 2ms 262.65 2000.0 0.13

Under this model, a preemption threshold is assigned |to Task 5ms 1194.47 | 5000.0 0.31
cooperative tasks. This priority is higher than that of arly Task 20ms 16870.06| 20000.0 0.84
cooperative task, but lower than that of any preemptivestask CORE2 [Task 50ms 36776.80] 50000.0 0.90
When a cooperative task is executing one of its runnables Task 100ms | 99719.82] 100000.0 | 0.99
its nominal priority P; is raised to the thresholé;, so that Task 200ms | 99845.02| 200000.0 | 0.99
cooperative tasks cannot preempt it. The nominal priosty |i Task 1000ms| 99973.85| 1000000.0, 0.99
restored when the runnable is completed, allowing cooperat ISR 1 35.05 9500.0 0.003
preemptions from higher priority tasks. ISR 2 52.8 9500.0 0.005

As with preemptive tasks, also for cooperative tasks it isCORE3 ISR 3 76.73 9500.0 0.008
necessary to consider multiple jobs within a busy windoyv. Task 10ms 9992.16 | 10000.0 0.99
However, the busy window must also include the blockin Effect Chain End to End Latency
due to lower priority tasks. The longest Leviekctive period | Effect Chain 1 13378.124
can be calculated adding a blocking factor to the recurringEffect Chain 2 149691.134
relation of Equation (4): Effect Chain 3 72196.007

jiP>p Y than the preemption threshold of any cooperative task. To

Since a task can only be blocked once by lower prlorll9ompute this last interfering term, we compute the higher
instancesB; corresponds to the largest execution time amo iority instances that may arrive from the critical ingtantil

lower priority runnable’ e finishing time, and subtract those that arrived befoee th
starting time.
prhen S 1])¢ @z
Equation (5) can then be used to compute the number Ji”’ - ”+CZ TJF};@ T; * i (12)
instances to check in the busy window. /

The starting times?,. of the k-th instance of runnable;, Equation (7) and (8) can then be identically used to compute
can be computed taking into consideration the blocking tiniBe worst-case response tinfg . of the considered runnable.

B;, the interference produced by higher priority tasks before Since the deadlines are missed and the utilization is over
i can start, the preceding (k-1) instancesof and the 1 in almost all cores, we have reduced the worst case exe-

B, = max {Cj,}.

execution time of the preceding runnablesmof: cution time of some runnables in order to make the system
’ schedulable, Table | shows the results of the first challenge
=Bi+ Y, <{ J + 1) Cj+(k=1)Ci+ Cip. IV. MEMORY-AWARE ANALYSIS
P> Pi) In this section, we address Challenge I, including memory

and arbitration accesses in the computation of the enado-e
Yatencies. We follow an identical approach as the one dessdri
in the previous section, inflating the runnable executiores
C; » with the maximum possible interference produced by
memory-related delay.

e .] o We assume all labels be loaded/stored to global memory,
Since the lower priority task must have already arrived teefbe critical | ing the i t lated to th £l | .
instant, the actual blocking term is actually an infinitesiramount smaller. eaving the |mpr0\{emen S I’? ated to the Use. of local meraorie
We neglect infinitesimal amounts to simplify the formula. to Challenge 11l discussed in the next section. The delay for

The finishing timef is calculated by adding to the startin
time s, the execution time of the considered runnable,,
along W|th the interference of the tasks that can preempt
i.e., the preemptive tasks which have a nominal priorityhkig

a global memory access is of 8 cycles for crossbar traversing - 8;&93 SIZ;z(fB)
and 1 cycle for the memory access. Since conflicting memory SHARED 1 1690 950
accesses are assumed to be arbitrated in a First-In-Fiitst-O UNUSED || 17 -
fashion, the memory access time has to be multiplied by the ABLETI
number of coresn that may concurrently access the global LABELS
memory, i.e., four cores in our setting: = 4. The overall
memory access delay can then be found by multiplying the
single access delay by the number of reafisand writesn"”)
Labels Labels size (KBytes)

performed by the considered runnable. Therefore, thetiregul _
WCET (- for a runnable can be computed as: 2500

Cir = (') f)+ 8+ (Lxm)*nf)+ (84 (1xm)xnW) (13)

® Private Labels

m shared Labels

il
&

The multiplying factorm accounts for the maximum possi- e
ble interference by all cores in the system, that is, we assu 1

that cores continuously generate interfering traffic. Thi® | .0 i
pessimistic assumption that may be improved by accounti = _ II I I _ II I I
for data access patterns of target applications, whichrzoe/k R ; -
in the Amalthea model. In particular, a possible solution ca
be found along the lines of the work presented by Nelis et al.
in [4], where a method is introduced to model the memory
access patterns of a task considering the contention on a
shared bus (and not a crossbar, as in the considered modsl)\GRAM (256 KB). For this reason, and for the sake of
Other approaches that could be used to tackle this problem simplicity, we do not consider memory constraints in our
presented in [5] and [6]. However, the computational cost ahalysis. Enhancing our model and approach includingédithit
these solutions is exponential in the number of tasks and tmemory is left as a future work. Moreover, we assume that all
granularity of memory patterns, making it difficult to applylabels can be accessed with a single memory read, neglecting
for the considered setting. the fact that there are labels which are larger than the bus
width (i.e., occupy 64 or 128 bits against a 32-bit bus), leenc
V. MEMORY MAPPING STRATEGIES more consecutive memory accesses may be required for a label

As requested in Challenge 11, this section discusses how{gnsfer. However, the proposed methodology can be easily
optimize end-to-end latencies by means of a suitable mgppfitended to deal with this issue.
of the labels among the local and global memories. BeforeFOr the PRIVATE labels, an optimal choice seems to map
tackling this challenge, it is first necessary to questioa tthem to the local memory of the core that exclusively aceesse
notion of “optimality” for this setting. As we will show in them, because the latency of local accesses to LRAM is always
this section, a given label-to-memory mapping can reduéignificantly smaller than that to GRAM (1 cycle vs. 8+1
end-to-end latencies for certain effect chains at the cést @/Cles, respectively). Since there are no constraintsefotal
increasing those of other chains, making it difficult to takB'emory size with relation to the overall labels footpringwn
globally optimal decisions. ing local labels to c_)ther (Ioca_l or global) mempries wou_ldiyon

In a first step, we performed a preliminary analysis of thgcrease the resulting latencies. Moreover, this cannssipty
memory accesses performed by all runnables in the givegrade the delays on other cores, becauseremeoveda

Amalthea use-case. We categorized the data items (laielsPptential source of contention. This is a quite known teghei
three sets: when programming distributed Non-Uniform Memory Access

1) PRIVATElabels, which are exclusively accessed by on@IUMA) systems [71 . .
runnable: We defmgTLRAM as the tlme spent in the worst case to
2) SHARED labels, which are accessed by muItipIé’1CCesS a private label stored in local memory, #¢1xs as
! the worst-case time to access a label stored in shared memory

runnables (e.g., in a producer-consumer fashion); A ing th ; flicts in both .
3) UNUSEDIabels, which we ignore. ssuming the worst-case conflicts in both memories,

Table Il shows the number of labels in the proposed modellLran = (m — 1) x 1(FIFOqueue) 4 1(memory) = m

and their total memory occupation in KBytes, while Figur

3 shows how many (PRIVATE and SHARED) labels are“®4M = 8(zbar)+1(memory)+(m—1)x1(FIFO) = 8+m,

accessed by (runnables assigned to) each core, and their giliere numbers are in clock cycles, anmdis the number of

in bytes (right). cores in the system. Note that time to access private labels
A first consideration is that there is potentially sufficienstore in the local memory may be lower thanwhen some

space to store all labels in any of the memories of the systeofithe other cores has no label to access in that local memory.

eiher in LRAMs (size 128 KB, according to the specifications)his would reduce the number of instances waiting in the FIFO

CORED CORE1 COREZ CORE3 COREO CORE1 CORE2 CORE3

Fig. 3. Distribution of labels on runnables/cores

queue. In the extreme case where each LRAM contains onlyWe already identified possible future enhancements of our
private labels,T.rans = 1, since there will never be anyapproach, for all of the addressed challenges:

conflict in accessing local memories. 1) For Challenge I, we intend to explore how enlarging the
Moving to the mapping problem of shared labels, we could non-preemptive region beyond runnable boundaries may
use a similar approach to map each label to the LRAM “closer” improve the response time of the runnables, and related

to the core that mostly accesses it. Unfortunately, thidcdcou effect chains, as shown in [8];

worsen the latencies of other runnables on the same core whep) for Challenge II, we aim at exploring approaches based
accessing private labels stored in the local LRAM, because on memory access pattern, such as [4], [5], [6], to

now they may conflict with remote accesses from other cores. improve the computed memory access delays:

The proposed heuristic is convenient if the accesses t@ghar 3) for Challenge Ill, we intend to enhance our Java imple-
labels are more frequent than those on private labels, so mentation with automatic placement functions to mini-

that the increased conflicts in accessing private labels are mize the end-to-end latencies of selected effect chains.
_compensated by the gain in loading a shared label from LRAMnaIIy, and most importantly, we plan to apply co-scheali
instead of GRAM. _ techniques recently proposed in [9], [10] to avoid conftigti
_ I memory access patterns are not taken into account, ti&ess by design, significantly reducing the penalties due t
increase in the latency for private accesses is the same if Mi8mory accesses. We believe that the proposed use-case may
map one or all theshared labels to the local memory. AS &g 3 yseful benchmark to test the efficiency of co-scheduling
consequence, if we decide to map a single shared label og{fhroaches.
the LRAM of a core, paying the consequent private access
penalty, it would then make sense to map to that LRAM also ACKNOWLEDGMENT
other shared labels that are most frequently accessed by tharhis work was supported by the HERCULES Project,
core, since there would not be any further penalty to privatended by European Union’s Horizon 2020 research and
accesses. This seems to suggesifame, then all” approach, innovation program under grant agreement No. 688860
according to which a local memory is either left free from any
shared label, or it is filled with the most frequently accesse
shared labels by the corresponding core. [1] A. Davare, Q. 5hu, M.II D. Nate(\jle, C. Pinello,fS. ruganauian,dan
A. Sangiovanni-Vincentelli, “Period optimization for hamreal-time
Fr,om the Amalthea model, we I,(nOW that, Several,runnables distributed automotive systems,” 2007 44th ACM/IEEE Design Au-
act in a producer-consumer fashion, forming multiplgect tomation Conferengelune 2007, pp. 278-283.
chains As we showed, privileging one runnable might have thé2] J. P. Lehoczky, “Fixed priority scheduling of periodisk sets with arbi-
side effect of degrading performance for some other rurazabl tlri‘t?{ %‘iid'l'gg%' I'er;éf_'gggsysmms Symposium, 1990. Proceedings.,
on the same core, which might belong to a different effecfs] . c. Buttazzo, M. Bertogna, and G. Yao, “Limited preeivpischedul-
chain. For this reasoiit,is difficult to design a methodology for in? for real-tinlﬁe systems. a SurveyEEbE Transactions on Industrial
; ik “antimi n A ; Informatics vol. 9, no. 1, pp. 3-15, Feb 2013.
.Share“d labe,l r"napplng ,WhICh optlmlzes end-to-end latesci] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easma and
in a “generic” sense in the proposed modaNhat can be J. Lee, “Response time analysis of cots-based multicoresiaering
more easily done is tailoring the label mapping problem to the conlt?tiOfn on the sgared gnemqry bus,"gmlllEEEcloﬁh Intedr-
o : : national Conference on Trust, Security and Privacy in Cotimguan
one or few prl\{lleged effect chains, reglucmg 'the Iatency of CommunicationsNov 2011, pp. 1068-1075.
the corresponding runnables by selecting their most deitabjs] b. Dasari, V. Nelis, and B. Akesson, “A framework for memo
mapping strategy. contention analysis in multi-core platform$eal-Time Systempp. 1—
51, 2015.
[6] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccaar] L. Thiele,
“Worst case delay analysis for memory interference in roofg sys-

. . . tems,” in2010 Design, Automation Test in Europe Conference Exbibiti
This paper presented a set of possible solutions for the (DATE 2010) March 2010, pp. 741-746.

FMTV 2016 Verification Challenge. The main contribution iS[7] A. Marongiu, P. Burgio, and L. Benini, “Supporting opepnon a
a tight schedulability analysis for the considered task ehod multi-cluster embedded mpsocMicroprocessors and Microsystems

: B : : - Embedded Hardware Desigrvol. 35, no. 8, pp. 668-682, 2011.
in which cooperative and preemptive tasks are concurrently i “avaiiaple: http://dx doi.org/10. 1016/ miop2011.08.010

scheduled on the same partitioned platform. Such an asalyss) M. Bertogna, G. Buttazzo, and G. Yao, “Improving featiiiiof fixed
has then been extended to include memory access delays priority tasks using non-preemptive regions,” froceedings of 32nd

and to propose promising heuristics for mapping labels to :;ECE m%i?l-thl)Tf Systems Symposium (RTSS 204épna, Austria,

local memories. A Java implementation is available for theg; p. Burgio, A. Marongiu, P. Valente, and M. Bertogna, “Amery-centric
algorithms described in the paper, collecting the inforomat approach to enable timing-predictability within embeddeeny-core

f ; ; accelerators,” irProceedings of the CSI Symposium on Real-Time and
given by the Amalthea model and producing a response time -~ Systems and Technologies (RTEST@pber 2015.

analysis for the task system as well as valid upper bound§] a. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Speamela, and
on the worst-case end-to-end latency of the effect chains. G. Buttazzo, “Memory-processor co-scheduling in fixed yosys-

tems,” inProceedings of the 23rd International Conference on Ré&akeT
Thet:) s;néurce code and the tool may be downloaded from our Networks and Systems (RTNS1)e, France, November 2015,
wepsIte.

REFERENCES

VI. CONCLUSIONS

2http://hipert.mat.unimore.it/FMTV16/

