
 
 
 

 
 
 

Proceedings of the  
5th International Workshop on 

Analysis Tools and Methodologies for 
Embedded and Real-time Systems 

 
July 8th, 2014, Madrid, Spain 

 
 
 
 

Held in conjunction with: 
26th Euromicro Conference on Real-Time Systems 

(ECRTS 2014) 
8-11 July 2014 

 
 
 
 
 
 
 
 
Edited By Julio Medina and Tullio Vardanega 
 
 



 ii

 
 
 
 
© Copyright 2014 held by the authors 



 iii

Preface 
 
Welcome to Madrid and to the 5th International Workshop on Analysis Tools and 
Methodologies for Embedded and Real-time Systems (WATERS’2014).  
 
Broadly speaking, this workshop series pursues the mission to help bridge the gap 
between industrial practice and state-of-the-art research into methods for the rigorous, 
rapid and assured development of real-time embedded systems. Despite the evident 
disparity between the vastness of the problem area and the tiny size of the workshop 
crowd, the challenge is worth taking. This workshop series styles itself as intending to 
foster experimentation and practice for all software tools, methodologies, 
comprehensive data sets from real-world use cases, and representative benchmark suites 
that have potential for helping in the quest for mastering the rising complexity of 
modern systems. 
 
A very distinct theme emerges for this fifth edition of the workshop series: the quest for 
benchmark-type solutions to help developers understand and dimension schedulable 
utilization in complex software systems. The sought solutions cover a broad space of 
possible approaches: ways to relate software and systems models (which precede and 
determine implementation): schedulability tests to support for exploring the 
implementation space (often called “platform” in the modelling speak); simulation tools 
to assist in the choice of scheduling algorithms when insufficient experience is available 
at the developer’s end (and, for the case of multicore processors, also at the research 
end). 
 
In keeping with its very nature, WATERS seeks solutions that are mature enough for 
industrial fruition or can be made so within modest time and effort. This theme 
distinctly emerged out of the push from two independent and compelling pressure 
points. One was the evidently common slant of most of the papers accepted for 
inclusion in the workshop program; the other was the research agenda in the back of the 
mind of the program co-chairs. 
 
This year’s program includes presentations, demonstrations and a panel discussion that 
all revolve around the above questions. It is very healthy and reassuring to see that the 
all of the three elements of the program were easy to fill with valuable contents. These 
proceedings reflect this worth and we hope the readers will see and enjoy that. 
 
In closing these proceedings, we wish to thank the members of the WATERS technical 
program committee for their reviewing efforts, the authors for their submissions and 
their interest in this workshop as a community-building effort and as the means to 
advance their research work. Special thanks also go to the ECRTS 14 organizers, Juan 
Antonio de la Puente, Rob Davis, and Gerhard Fohler, for their support and helpful 
guidance. 
 
 
Julio Medina and Tullio Vardanega 

Program Co-Chairs of the 5th International Workshop on Analysis Tools and 
Methodologies for Embedded and Real-time Systems 
July 2014 
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Implementing and Evaluating Various Response-Time Analyses for
Mixed Messages in CAN using MPS-CAN Analyzer
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∗ Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

† Arcticus Systems, Järfälla, Sweden
{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract—We integrate the Response Time Analysis (RTA)
with offsets for mixed messages in Controller Area Network
(CAN), where the CAN controllers implement abortable transmit
buffers, with the MPS-CAN analyzer. Mixed messages are partly
periodic and partly sporadic. They are implemented by several
higher-level protocols for CAN that are used in the automotive
industry. MPS-CAN analyzer is a free tool that supports several
other existing RTA for periodic, sporadic and mixed messages in
CAN. We perform extensive evaluation of the newly integrated
analysis profile. Using the analyzer, we also perform a detailed
comparative evaluation of various RTA for CAN.

I. INTRODUCTION

Controller Area Network (CAN) [1] is a multi-master,
event-triggered, serial communication bus protocol supporting
bus speeds of up to 1 Mbit/s. It has been standardized as ISO
11898-1 [2]. It is a widely used protocol in the automotive
domain. There are several higher-level protocols for CAN that
are developed for various industrial applications such as CAN
Application Layer, CANopen, J1939, Hägglunds Controller
Area Network (HCAN) and MilCAN. Often, CAN finds its
applications in hard real-time systems that must ensure that
their deadlines are met. For this purpose, a priori analysis
techniques, such as schedulability analysis [3], [4], [5], have
been developed. Response-Time Analysis (RTA) [3], [4], [5],
[6] is a powerful, mature and well established schedulability
analysis technique to calculate upper bounds on response times
of tasks or messages in a real-time system or a network
respectively. Tindell et al. [7] developed RTA for CAN which
is later revised by Davis et. al [8].
A. Previous work and paper contribution

In our previous work [9] we presented first implementation
of MPS-CAN Analyzer. It is the first and only freely-available
tool that supports RTA of periodic, sporadic as well as mixed
messages in CAN1. Mixed messages are partly periodic and
partly sporadic. They are implemented by several higher-level
protocols used in the industry. In [9], we discussed the im-
plementation of basic RTA for mixed messages in CAN [11],
whereas the implementation of other analyses was an ongoing
work. Moreover, [9] did not discuss comparative evaluation of
the extended analyses for mixed messages in CAN. In [12], we
discuss the implementation of several other extensions of RTA
for periodic, sporadic and mixed messages in CAN. These
extensions support response-time calculations for messages
scheduled with or without offsets; messages having arbitrary
jitter and deadlines; CAN controllers implementing different
queueing policies, e.g., priority and FIFO; and controllers
implementing abortable or non-abortable transmit buffers.
However, the implementation in [12] does not support analysis
of mixed messages that are scheduled with offsets in the net-
work where controllers implement abortable or non-abortable
transmit buffers [13]. In this paper we implement RTA for

1A commercial tool implements basic analysis for mixed messages [10].

CAN in the system where periodic and mixed messages can be
scheduled with offsets while the CAN controllers implement
abortable or non-abortable transmit buffers. We also improve
the graphical layout of the tool to support better usability.
Furthermore, we perform extensive evaluation of newly added
analysis. We also perform a detailed comparative evaluation
of various RTA for CAN and provide recommendations.

II. MIXED TRANSMISSION PATTERNS SUPPORTED BY
HIGHER-LEVEL PROTOCOLS

There are several higher-level protocols and commercial
extensions of CAN that support mixed transmission. In this
transmission, the task that queues messages can be invoked
periodically as well as sporadically. If a message can be
queued for transmission periodically as well as sporadically,
it is said to be mixed. In other words, a mixed message is
simultaneously time- and event-triggered. We identify three
different implementations of mixed messages by higher-level
protocols for CAN used in the industry namely CANopen [14],
AUTOSAR [15] and HCAN [16]. The transmission pattern of
a mixed message in these protocols is shown in Fig. 1(a), 1(b)
and 1(c) respectively. The down-pointing arrows symbolize
queueing of messages while the upward lines (labeled with
alphabetic characters) represent arrival of events.

The CANopen protocol supports mixed transmission that
corresponds to the Asynchronous Transmission Mode coupled
with the Event Timer. A mixed message can be queued for
transmission at the arrival of an event provided the Inhibit Time
has expired. The Inhibit Time is the minimum time that must
be allowed to elapse between queueing of two consecutive
messages. A mixed message can also be queued periodically
at the expiry of the Event Timer. The Event Timer is reset
every time the message is queued. Once a mixed message
is queued, any additional queueing of it will not take place
during the Inhibit Time [14].

AUTOSAR can be viewed as a higher-level protocol if it
uses CAN for network communication. Mixed transmission
mode in AUTOSAR is widely used in practice. In AUTOSAR,
a mixed message can be queued for transmission repeatedly
with a time period. The mixed message can also be queued
at the arrival of an event provided the Minimum Delay Time
(MDT ) has expired. However, each transmission of a mixed
message, regardless of being periodic or sporadic, is limited
by the MDT . This means that both periodic and sporadic
transmissions are delayed until the MDT expires.

A mixed message in the HCAN protocol contains signals
out of which some are periodic and some are sporadic. A
mixed message is queued for transmission not only period-
ically, but also as soon as an event occurs that changes the
value of one or more event signals, provided the Minimum
Update Time (MUT ) between the queueing of two successive
sporadic instances of the mixed message has elapsed. Hence,
the transmission of a mixed message due to arrival of events
is constrained by the MUT .
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In CANopen, the Event Timer is reset with every mixed
transmission. The implementation of a mixed message in
AUTOSAR is similar to CANopen to some extent. The main
difference is that the periodic transmission can be delayed
until the expiry of the MDT in AUTOSAR as indicated in
Fig. 1(b). Whereas in CANopen, the periodic transmission is
not delayed, in fact, the Event Timer is restarted with every
sporadic transmission as shown in Fig. 1(a). The MDT timer
is started with every periodic or sporadic transmission of a
mixed message. Hence, the worst-case periodicity of a mixed
message in CANopen and AUTOSAR can never be higher
than the Inhibit Timer and MDT respectively. As a result,
the mixed message can be treated as a special case of sporadic
transmission. Therefore, all existing RTA are still applicable.

Implementation in CANopen

Event 
Arrival

Message 
Queued for 

Transmission

Periodic Transmission is independent of 
Sporadic Transmission

A B C D

1 2 5 63 4

Delayed Periodic Transmissions

A

1 2 5 63 4

Event Timer is 
reset

1 3 4

B

2

A

(a) Mixed message in CANopen (b) Mixed message in AUTOSAR (c) Mixed message in HCAN

Fig. 1. Mixed transmission pattern in higher-level protocols for CAN

However, the periodic transmission is independent of the
sporadic transmission in the HCAN protocol. The periodic
timer is not reset with every sporadic transmission. A mixed
message can be queued for transmission even if the MUT
is not expired, e.g., see the transmission of instances 4 and
6 of the mixed message in Fig. 1(c). This indicates that the
periodic transmission of a mixed message cannot be interfered
by its sporadic transmission which is unlike in CANopen and
AUTOSAR. The worst-case periodicity of a mixed message is
neither bounded by the period nor by the MUT . Therefore, the
existing analyses cannot be applied in this case. To the best of
our knowledge, there is no free tool except for the MPS-CAN
analyzer that analyzes this type of mixed messages.

III. BUFFER LIMITATIONS AND QUEUEING POLICIES

The different types of queueing polices implemented by
CAN device drivers and communications stacks, internal orga-
nization, and hardware limitations in CAN controllers can have
significant impact on the timing behavior of CAN messages.
If an Electronic Control Unit (ECU) transmits more messages
compared to the number of transmit buffers, the messages may
be subjected to extra delay and jitter due to priority inversion.

A. Abortable transmit buffers
Let us consider the case in which the CAN con-

trollers support transmission abort requests, e.g., Atmel
AT89C51CC03/AT90CAN32/64 and Microchip MPC2515
[17]. In order to demonstrate an additional delay due to
priority inversion in this case, consider the example of a
message set shown in Fig. 2(a). Assume there are three nodes
CCc , CCj and CCk in the system and each node has three
transmit buffers. m1 is the highest priority message in the node
CCc as well as in the system. When m1 becomes ready for
transmission in the message queue, a lower priority message
m6 belonging to node CCk is already under transmission. m6
cannot be preempted because CAN uses fixed priority non-
preemptive scheduling. This represents the blocking delay for
m1 . At this time, all transmit buffers in CCc are occupied by
lower priority messages (say m3 , m4 and m5 ). The device
drivers signal an abort request for the lowest priority message
in the transmit buffers of CCc) that is not under transmission.
Hence, m5 is aborted and copied from the transmit buffer
to the message queue, whereas m1 is moved to the vacated

transmit buffer. The time needed to do the swapping is
identified as swapping time in Fig. 2(a). A series of events
may occur during the swapping : m6 finishes its transmission,
new arbitration round starts, message m2 belonging to node
CCj and having priority lower than m1 wins the arbitration
and starts its transmission. Thus m1 has to wait in the transmit
buffer until m2 finishes its transmission. This results in the
priority inversion for m1 and adds an extra delay to its
response time. In [18], Khan et al. pointed out that this extra
delay of the higher priority message appears as its additional
jitter to the lower priority messages, e.g., m5 in Fig. 2(a).

1) Discussion on message copy time and delay: If the
message copy time is smaller than or equal to the inter-frame
space (i.e., time to transmit 3 bits on CAN bus or 3∗τbit time),
a lower priority message in the transmit buffer (that is not
under transmission) can be swapped with a higher priority
message in the message queue before transmission of the next
frame [1]. Hence, there will be no priority inversion. This
means that the message copy time must be, at least, 4∗τbit
for the priority inversion to occur. In Legacy systems, there
may be slow controllers, i.e., the speed of the controllers can
be slower than the maximum operating speed of the CAN
bus (1 Mbit/s). Since the amount of data transmitted in a
CAN message ranges from 0 to 8 bytes, the transmission time
of a message also varies accordingly. According to [8], the
transmission time of a CAN message with standard frame
format ranges from 55∗τbit to 135∗τbit for the amount of
data contained in the message that ranges from 0 to 8 bytes
respectively. Intuitively, the message copy time of 4∗τbit can
range from 7.3% to 3% of transmission time of a message
with 0 to 8 bytes of data respectively. Due to slow controllers
in legacy systems, the message copy time can be greater than
4∗τbit, hence, higher than 7.3% of its transmission time.

Fig. 2. Demonstration of priority inversion in the case of (a) abortable
transmit buffers, (b) non-abortable transmit buffers

B. Non-abortable transmit buffers
Now we consider the case in which the CAN controllers

implement non-abortable transmit buffers, e.g., Philips 82C200
[19], [20], [7]. Consider an example of three controllers CCc ,
CCj , CCk connected to a single CAN network in Fig. 2 (b).
Let m1 , belonging to CCc , be the highest priority message
in the system. Assume that when m1 is ready to be queued,
all transmit buffers in CCc are occupied by lower priority
messages which cannot be aborted because the controllers
implement non-abortable transmit buffers. In addition, m1
can be blocked by any lower priority message because the
lower priority message already started its transmission. In this
example m1 is blocked by m5 that belongs to node CCk .
Since all transmit buffers in CCc are full, m1 has to wait in
the message queue until one of the messages in the transmit
buffers of node CCc is transmitted.

Let m4 be the highest priority message in the transmit
buffers of node CCc . m4 can be interfered by higher priority
messages (m2 and m3 ) belonging to other nodes. Hence,
it can be seen that priority inversion for m1 takes place
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because m1 cannot start its transmission before m4 finishes its
transmission, while m4 has to wait until messages m2 and m3
are transmitted. This adds an additional delay to the worst-case
response time of m1 . In this example, this additional delay is
the sum of the worst-case transmission times of m2 , m3 and
m4 . This additional delay appears as additional jitter of m1
as seen by the lower priority messages.

C. Priority and FIFO queues
The most natural queuing policy suited to CAN nodes is

priority-based queuing. However, due to simplicity of FIFO
policy some CAN controllers implement FIFO queues, e.g.,
Microchip PIC32MX, Infineon XC161CS, Renesas R32C/160
and XILINX LogiCORE IP AXI Controller [17], [18]. In
case of nodes implementing priority queues, each node selects
the highest priority message from its transmit buffers while
entering into the bus arbitrations. The highest priority message
among them wins the bus arbitration. On the other hand, when
the nodes implement FIFO queues, the oldest message in the
transmit queue of each node competes for the bus. However,
the bus arbitration among these messages is done on priority
basis. Consider an example of three nodes that are connected
to a single CAN network as shown in Fig. 3. Assume that
Node A sends the messages m1 , m3 and m5 ; Node B sends
the messages m2 , m4 and m9 ; and Node C sends the messages
m6 , m7 and m8 . The priority of a message is indicated by its
subscript (smaller the subscript, the higher the priority).

Controller Area Network (CAN)
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Message
queue
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queue
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Fig. 3. Example to demonstrate different queueing policies

Let the nodes implement priority queues. In the first round,
Nodes A, B, and C pick messages m1 , m2 and m6 respec-
tively. m1 wins the arbitration because of higher priority and is
transmitted over the network as shown in Fig. 4. In the second
round, Nodes A, B, and C pick messages m3 , m2 and m6
respectively. m2 wins the arbitration and is transmitted over
the network. Similar priority-based selection and arbitration
occur during the rest of the rounds as shown in Fig. 4.Controller Area Network (CAN)
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Fig. 4. priority-based queues and CAN arbitration

Now we assume that the nodes implement FIFO queues. In
the first round, Nodes A, B, and C pick the oldest messages
m5 , m9 and m6 respectively. m5 wins the bus arbitration
due to its higher priority and is transmitted as shown in Fig.
5. In the second round, Nodes A, B, and C pick messages
m1 , m9 and m6 respectively. This time, m1 wins the bus
arbitration and is transmitted over the network. Similar FIFO
selection and priority-based arbitration occur during the rest of
the rounds as shown in Fig. 5. It can be seen that the priorities
of messages are sometimes not respected in the FIFO queue
within a node, e.g., a lower priority message m5 is transmitted

before the higher priority message m1 as shown in Fig. 5.
This results in priority inversions due to which higher priority
messages may have very large response times, e.g., different
response time of m2 in the systems with priority and FIFO
queues in Fig. 4 and Fig. 5 respectively.
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IV. RELATED WORK AND IMPLEMENTED ANALYSIS

A. Related work
In [21], Davis et al. extend the analysis of [7], [8] which

is now applicable to the CAN network where some nodes
implement priority queues and some implement FIFO queues.
The message deadlines in [21] are assumed to be smaller
than or equal to the corresponding periods. This assumption
is lifted in [22] by by supporting the analysis of messages
with arbitrary deadlines. Moreover, they extend their work to
support RTA of CAN for FIFO and work-conserving queues.
The analysis in [7], [8] assumes that the CAN controllers have
very large transmit buffers. However, most CAN controllers
have small number of transmit buffers [23], [22]. If all buffers
in the controller are occupied by lower priority messages, a
higher priority message released in the same controller may
suffer from priority inversion [7], [18], [20], [24]. The analysis
in [7], [8] has been extended in [18] and [23] to support the
analysis of network that contain abortable and non-abortable
transmit buffers in the controllers respectively. Most of the
CAN enabled ECUs support transmit abort requests [18].

All these analyses assume that the messages are queued
for transmission periodically or sporadically. Mubeen et al.
[11] extend the existing analysis [7], [8] to support mixed
messages in CAN where nodes implement priority queues.
Mubeen et al. [25] further extend their analysis to support
mixed messages in the network where some nodes implement
priority queues while others implement FIFO queues. RTA for
mixed messages in CAN [11] has been extended to support the
analysis of network that contain abortable and non-abortable
transmit buffers in the controllers in [26] and [27] respectively.
But, none of the analyses discussed above supports messages
that are scheduled with offsets i.e., using externally imposed
delays between the times when the messages can be queued. In
order to avoid deadlines violations due to high transient loads,
current automotive embedded systems are often scheduled
with offsets [28]. The worst-case response-times of lower
priority messages in CAN can be reduced if the messages are
scheduled with offsets [29], [30]. A method for the assignment
of offsets to improve the overall bandwidth utilization is pro-
posed in [30]. RTA with offsets for CAN has been developed
by several researchers [31], [32], [29], [33], [28].

None of the above analyses supports mixed messages that
are scheduled with offsets. Offset-based analysis [31] is ex-
tended in [34] to support response-time calculations for mixed
messages in CAN. However, this analysis is restricted due to
limitations regarding message jitter and deadlines. The source
of these limitations comes from the base analysis [31]. In
[35], Mubeen et al. removed these limitations and extended the
analysis for mixed messages [11] with offsets [28]. Mubeen et
al. further extend the analysis for mixed messages with offsets
in CAN supporting abortable transmit buffers [13].
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B. Related tools
VNA [36] is a communication design tool that supports RTA

for CAN. It implements RTA of CAN developed by Tindell et
al. [7]. Vector [37] is a tools provider for the development
of networked electronic systems. CANalyzer [38] supports
the simulation, analysis and data logging for the systems that
use CAN. CANoe [39] is a tool for simulation of functional
and extra-functional (e.g., timing) behavior of ECU networks.
Network Designer CAN is another tool by Vector that is able
to perform timing analysis of CAN. SymTA/S [40] is a tool
for model-based timing analysis and optimization. Among
other analyses, it supports statistical, worst- and best-case
timing analyses for CAN. RTaW-Sim [41] is a tool for the
simulation and performance evaluation of the CAN network.
The Rubus-ICE is a commercial tool suite developed by
Arcticus Systems [42] in close collaboration with Mälardalen
University Sweden. Among other analyses, it supports RTA
of CAN [7], [8] and RTA of CAN for mixed messages[11],
[43]. To the best of our knowledge, there is no freely-available
tool that implements RTA of CAN for mixed messages. The
main purpose of MPS-CAN Analyzer is to support RTA of
periodic, sporadic and mixed messages in CAN. The analyses
implemented in MPS-CAN analyzer are shown in Fig. 6.

Fig. 6. Graphical representation of Response Time Analysis (RTA) and its
extensions implemented in MPS-CAN Analyzer

C. Implementation and distribution
The tool is implemented in C language. Each analysis

profile supported by the tool is implemented as a separate
C file. The Layout of the tool is shown in Fig. 7. It has a
scope for further extensions in the future. The link to the tool
can be found at https://github.com/saadmubeen/MPS-CAN.

V. EVALUATION OF VARIOUS RTA FOR CAN
A. Experimental setup

The system consists of six ECUs that are connected to the
CAN network. The speed of the network is set to 250 Kbit/s.
There are 60 messages in the system. The message set is gen-
erated from the NETCARBENCH tool [44] which is a bench-
mark used in the design of automotive embedded systems. It
should be noted that NETCARBENCH cannot generate mixed
messages. We randomly assign mixed, periodic, and sporadic
transmission types to 40%, 30%, and 30% generated messages
respectively. This means, there are 24 mixed, 18 periodic and
18 sporadic messages in the system. The messages are equally
distributed among the ECUs, i.e., each ECU sends 4 mixed,
3 periodic and 3 sporadic messages over the network. All
the attributes of these messages are tabulated in the Fig. 8.
The attributes of a message mm are identified as follows. The
priority, sender node ID, transmission type, number of data
bytes in the message, offset, jitter, period, minimum update
time and deadline are represented by Pm, CCm, ξm, sm, Om,

Jm, Tm, MUTm and Dm respectively. All timing values in
the table are expressed in milliseconds. We perform a number
of tests on the message set. The network bandwidth utilization
calculated by MPS-CAN analyzer for this message set in each
test is equal to 59.203793%.

Fig. 7. MPS-CAN Analyzer layout, inputs and outputs

Pm CCm ξm sm Om Jm Tm MUTm Dm Pm CCm ξm sm Om Jm Tm MUTm Dm Pm CCm ξm sm Om Jm Tm MUTm Dm

1 5 M 8 0 0 25 25 25 21 4 M 8 3 0 70 70 70 41 2 M 1 7 1 70 70 70
2 3 S 7 0 0 0 70 70 22 1 M 0 4 1 60 60 60 42 1 P 1 6 0 70 0 70
3 1 S 8 0 1 0 70 70 23 2 S 0 0 1 0 70 70 43 4 S 8 0 2 0 80 80
4 5 M 8 2 0 70 70 70 24 3 S 6 0 0 0 70 70 44 5 S 8 0 2 0 70 70
5 4 P 7 0 0 70 0 70 25 3 M 8 5 1 70 70 70 45 6 S 8 0 2 0 70 70
6 1 S 6 0 0 0 70 70 26 2 P 6 3 0 70 0 70 46 3 M 2 8 1 80 80 80
7 3 M 7 0 1 70 70 70 27 5 M 2 7 1 60 60 60 47 3 S 4 0 2 0 70 70
8 3 P 8 2 0 70 0 70 28 4 P 1 5 0 80 0 80 48 6 M 8 7 2 70 70 70
9 5 S 5 0 0 0 60 60 29 3 M 6 5 0 70 70 70 49 1 M 8 8 1 70 70 70
10 5 P 8 3 0 60 0 60 30 1 P 1 5 0 70 0 70 50 6 M 7 8 1 70 70 70
11 4 S 8 0 0 0 60 60 31 2 M 7 4 1 70 70 70 51 6 P 8 0 2 70 0 70
12 4 M 0 1 0 70 70 70 32 1 S 8 0 0 0 70 70 52 6 P 6 2 1 70 0 70
13 1 M 6 2 0 60 60 60 33 2 S 8 0 0 0 70 70 53 6 S 1 0 1 0 70 70
14 3 P 8 3 0 50 0 50 34 2 P 8 5 2 80 0 80 54 6 P 2 3 0 70 0 70
15 5 M 8 4 0 70 70 70 35 2 P 5 5 0 60 0 60 55 6 S 1 0 1 0 70 70
16 4 M 5 4 0 50 50 50 36 4 S 8 0 1 0 70 70 56 6 M 2 4 1 70 70 70
17 2 S 8 0 1 0 80 80 37 1 P 5 6 1 70 0 70 57 5 S 8 0 2 0 20 80
18 2 M 8 1 0 70 70 70 38 4 P 1 6 1 80 0 80 58 1 M 8 7 2 70 70 70
19 5 P 8 4 0 70 0 70 39 3 P 8 7 1 80 0 80 59 6 M 8 8 1 70 70 70
20 5 P 7 5 1 70 0 70 40 4 M 0 7 1 70 70 70 60 2 M 7 8 1 70 70 70

Fig. 8. Attributes of the message set under analysis

B. Comparison of various RTA for CAN
In this subsection, we perform five different tests as follows.
1) All ECUs implement priority queuing policy while the

number of transmit buffers are large enough to avoid
aborting transmissions. The message set is analyzed
using the RTA for mixed messages in CAN with no
buffer limitations [11].

2) All ECUs implement priority queuing policy and
abortable transmit buffers. The message set is ana-
lyzed using the RTA for mixed messages in CAN with
abortable transmit buffers [26], [13].

3) All ECUs implement priority queuing policy and non-
abortable transmit buffers. The message set is analyzed
using the RTA for mixed messages in CAN with non-
abortable transmit buffers [27].

4) All ECUs implement FIFO queues. The message set is
analyzed using the RTA for mixed messages in CAN
with FIFO queues [25].

5) Heterogeneous system: two ECUs implement priority
queuing policy and abortable transmit buffers; two ECUs
implement priority queuing policy and non-abortable
transmit buffers; and two ECUs implement FIFO queues.
The MPS-CAN analyzes each ECU differently using the
corresponding analysis profile from the above three tests.

Response times of the messages calculated in all five tests are
plotted in Fig. 9. It can be seen that the response times are
lowest (best) in the first test because we have considered ideal
conditions (no buffer limitations in the CAN controllers). The
second test results in the second best response times. However,
they are higher compared to the first test due to extra delay
from priority inversion due to transmission abort requests. The
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third test results in overall third best response times (with some
exceptions). It can be seen that the extra delay due to priority
inversion in non-abortable transmit buffers is higher compared
to abortable transmit buffers. The fourth test yields the highest
response times because of high buffering time and delays
due to priority inversion in FIFO queues. Furthermore, the
response times of messages are significantly high compared to
the rest of the tests. The response times in the heterogeneous
system are higher compared to first three tests but significantly
lower than the fourth test where FIFO queues are used. From
the results, one can infer that the ECUs that implement FIFO
queues in the CAN controllers should be avoided. In order to
calculate correct (not optimistic) response times, the RTA for
CAN should correctly match the queueing policy and practical
limitations in the CAN controllers.

Fig. 9. Analysis results using various RTA for CAN

C. Effect of message copy time on schedulability
In this subsection, we compare the effect of message copy

times on their response times. We perform four tests where
all ECUs implement abortable transmit buffers. However, the
message copy times are different in these tests. In the first test,
the message copy time for each message is equal to 4∗τbit
time (see Subsection III-A1). In the rest of the tests, it is
10, 20 and 30 percent of corresponding transmission times
of messages respectively. The calculated response times of
the messages in all test are plotted in Fig. 10. The results
indicate that the increase in the response times of messages is
directly proportional to the increase in the amount of message
copy times. If the message copy time is less than the inter-
frame space (time required to transmit 3-bits of data on CAN),
the response times of messages in the system with abortable
transmit buffers becomes equals to the response times of same
messages in the system with no buffer limitations.

D. Effect of offsets on schedulability
Finally, we perform four more tests on the message set

to explore the effect of offsets on the schedulability of the
message set. In the first two tests, the message set is analyzed
using RTA for mixed messages in CAN with no buffer limita-
tions [11] and with abortable transmit buffers [26]. However
the offsets of all messages are assumed to be zero. There
is a newly added check box “Neglect offsets” in the MPS-
CAN analyzer as shown in Fig. 7 that actually neglects the

offsets when analyzing the messages. In the next two tests, the
first two tests are repeated while considering message offsets.
Also, the messages are analyzed using the newly implemented
RTA with offsets for mixed messages in CAN supporting
transmission abort requests [13]. The response times calculated
in the four tests are plotted in Fig. 11. The results indicate
that the response times can be reduced when messages are
scheduled with offsets. We observe 2.462% improvement
in the schedulability of the system when the messages are
scheduled with offsets. As discussed earlier, NETCARBENCH
cannot generate mixed messages, hence, the offsets assigned
to the mixed messages are not optimal. The schedulability can
be further improved if an optimal offset assignment algorithm
for mixed messages is used. The percentage improvement in
schedulability is calculated as follows.[( ∑
∀mm∈ℵ

[
R
{no−offset}
m −R{offset}m

Dm

])/
(sizeof(ℵ))

]
∗100

Where, mm, Rm, Dm and ℵ represent a message, response
time, deadline and the set of all messages in the system
respectively.

Fig. 10. Analysis results: effect of message copy time on schedulability

VI. CONCLUSION

We implemented a new RTA for CAN in a free tool
MPS-CAN analyzer. The implemented RTA supports periodic,
sporadic as well as mixed messages in the system where
transmission abort requests in CAN controllers all allowed.
Mixed messages are partly periodic and partly sporadic and
are implemented by several higher-level protocols for CAN
that are used in the automotive industry today. We con-
ducted a number of tests to perform detailed evaluation of all
RTA profiles available in MPS-CAN analyzer. These analyses
consider various aspects and practical limitations such as
mixed messages; messages scheduled with offsets; messages
with arbitrary jitter and deadlines; priority or FIFO queueing
policies; limitations of transmit buffers in CAN controllers
such abortable or non-abortable; and heterogeneous systems
that consist of different types of ECU’s. We can make several
recommendations based on the analyses results and their
evaluation. The ECUs that implement FIFO queues should
be avoided because of high buffering time and delays due
to priority inversion in FIFO queues. Due to lower response
times, the controllers that implement abortable transmit buffers
should be preferred over those that implement non-abortable
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transmit buffers. The schedulability of the system can be
improved if messages are scheduled with offsets. We observed
2.462% improvement in schedulability in one of the tests when
the messages are scheduled with offsets. Finally, it can be
concluded that if RTA for CAN does not correctly account
for transmission patterns by higher-level protocols, queueing
policies and practical limitations in the CAN controllers, the
calculated response times of messages can be optimistic.

Fig. 11. Analysis results: effect of offsets on schedulability

ACKNOWLEDGEMENT
This work is supported by the Swedish Research Council within the project

SynthSoft. The authors thank the industrial partners Arcticus Systems, BAE
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with Offsets for Mixed Messages in CAN Supporting Transmission
Abort Requests,” in 19th IEEE Conference on Emerging Technologies
and Factory Automation (ETFA), sept. 2014.

[14] “CANopen Application Layer and Communication Profile. CiA Draft
Standard 301. Version 4.02. February 13, 2002,” http://www.can-
cia.org/index.php?id=440.

[15] “AUTOSAR Techincal Overview, Version 2.2.2., Release 3.1, The
AUTOSAR Consortium, Aug., 2008,” http://autosar.org.
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Abstract—The real-time systems community invests
significant efforts in the study and analysis of hard real-
time systems, decoupling the functional correctness of
the system from the verification of the timing (schedu-
lability) properties. In reality, many control systems
are tolerant to delays and deadline misses, and the
scheduling choices affect the system performance in a
way that is different from a simple binary (safe/not safe)
outcome. The Truetime Simulink package developed at
Lund is probably the best known attempt at the inte-
gration of scheduling and functional control simulation,
allowing for the analysis of the performance impact of
computation and communication delays on systems. In
this paper we present an extension to the TrueTime
project that attempts at better modularity and possible
integration in a Model-driven flow in which parts of
the model are automatically generated from SysML
specifications. The project is still under development
but its early version, for single- and multi-core systems
is freely available as open source.

I. Introduction
Most Real-time schedulability theory and analysis tools

work under the assumption of a separation of concerns
between the functional side of the problem and the time
properties of the computations. In the envisioned flow,
designers select the functional model of the controls in such
a way that the outputs are stable within the assigned peri-
ods and deadlines, then select and purchase the execution
hardware and produce a task (code) implementation that
realizes the control law. The software code is then analyzed
on the selected platform in order to verify that the time
assumptions made at the times the controls are designed
are satisfied and all tasks complete with the assigned rates
within their deadlines.

This model has several issues and, even in the best case,
it portrays an approximate (and sometimes inaccurate)
view of the schedulability problem as a binary decision
process (go/no go). The first issue is the possibility of vali-
dating the selection of the hardware platform, the resource
management policies and the software implementation only
late, at testing time. The second problem is related to the
assumption that all control problems are of type hard real-
time. In reality, several systems may miss deadlines without
losing stability, and indeed, several systems (including fuel
injection [1]) actually operate in spite of deadline misses,
at the boundary of overload conditions.

An evaluation of the impact of computation (scheduling)
and communication delays on the performance of controls

in a virtual environment (at design time) requires a toolset
that allows to model the controlled system or plant, the
controller logic, and the computation and communication
resources, together with the task and message implemen-
tation of the controller functionality. Such tools are not
readily available from the market, even if several academic
projects provide solutions to some or even most of the
problems in this context.

A practical solution to the problem cannot ignore the
use of commercial standards, such as, for example, the MAT-
LAB/Simulink toolset and the Modelica standard, or the
OMG Model-Driven Architecture (MDA). Simulink allows
the modeling of continuous-, discrete-time, and hybrid sys-
tems, and allows to verify the system functionality against
a dynamic model of the controlled system (plant). However,
it lacks the capability of modeling physical computing
architectures (and to some degree tasks and resources),
as well as computation and communication delays that
depend on the platform. Model-Driven Engineering (MDE)
and Architecture Description Language (ADL) are very
good at representing architectural aspects and are designed
for extensibility. Also, they typically provide mechanisms
to transform models expressed in a language into another.
MDE and ADL languages may support the modeling of
the execution platform [2], but the tools supporting these
languages seldom allow for simulation and the automatic
generation of the behavioral code.

The analysis of computation and communication delays
can be performed using the Truetime blockset in Simulink.
TrueTime [3] is a freeware Matlab/Simulink-based simula-
tion tool that has been developed at Lund University since
1999. It provides models of multi-tasking real-time kernels
and networks that can be used in simulation models for
networked embedded control systems. TrueTime is used by
many research groups worldwide to study the (simulated)
impact of lateness and deadline misses on controls. The
TrueTime Kernel block simulates a computer node with a
generic real-time kernel, A/D and D/A converters, external
interrupt inputs and network interfaces. The Network block
simulates network scheduling. Kernel and Network blocks
are configured by an initialization script (usually written in
Matlab code), where a specific API is used by the designer
to create tasks, messages, timers and interrupt handlers
and define the scheduling and network management policies
and the communication resources.

In TrueTime, the model of task code is represented
by code functions that are written in either Matlab or
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C++ code. Data connections among Simulink models are
implemented in code using a purposely offered API and
the application of a TrueTime Scheduler to an already
existing Simulink model of controls requires substantial
rewriting, mixing the controller functionality, and models
of the task and message set, the scheduler, and the physical
execution platform. Because of the monolithic architecture
and the number of code artifacts that are needed for
system configuration (e.g., initialization script and code
functions), the current TrueTime implementation is hardly
compatible with an automatic model generation and a M2M
transformation flow.

In this paper, we provide a short introduction to a
project for the realization of an open toolset, based on
the Simulink platform and several open source projects
and modeling environments, for the modeling of exe-
cution platforms, task and message implementations in
SysML/MARTE (Modeling and Analysis of Real-Time
and Embedded Systems [4]). The framework allows the
definition of the mapping of the Simulink model into
the execution platform components and the definition of
the task and message model. The project includes the
development of Simulink custom blocks for a modular
representation of tasks, message and schedulers, and a
framework that allows to co-simulate real-time scheduling
together with the hybrid Simulink models of the controller
and the plant. Finally, we are implementing a set of
transformation rules to automatically generate an extended
Simulink with blocks representing the execution of the
Simulink controller model into a set of real time tasks, with
their execution times, under the control of a scheduler, and
the exchange of messages over a network. The modularity
of the framework allows to easily build a set of examples by
simple extensions to existing Simulink models, with only
incremental modifications.

The project is entirely open source. A web site
(http://retis.sssup.it/tres) is dedicated to it. The current
development stage is the following. A full implementation
for the single and multicore scheduling part is available.
Support for networking is still work in progress (in the
design stage). Examples of applications ar available on
the web site, including a model for the control of three
electrical motors (adapted from the TrueTime examples),
and a model of a quadcopter (from [5]). We describe here
the main architectural concept of the system as a whole,
integrating the description of the parts that are already
completed with the design concepts that apply to the part
under development.
State of the Art

In the model of complex (cyber-physical) systems, sepa-
ration of the functional and platform models is advocated
by many. The OMG (a standardization organization) in its
Model-Driven Architecture (MDA) [6] defines a three stage
process in which a Platform-Independent Model or PIM is
transformed in a Platform-Specific Model or PSM by means
of a Platform Definition Model (PDM). Finally, the auto-
motive industry AUTOSAR standard [7] defines a virtual
integration environment for platform-independent software
components and a separate model for the (distributed)
execution architecture, later merged in a deployment stage

(supported by tools). The TIMMO/TIMMO2 [8] projects
focus on the modeling infrastructure and the capability
of modeling timed events in AUTOSAR. Unfortunately,
AUTOSAR does not have a formal model for the behavior
of the functions and especially the dynamics of the plant.
Therefore, an external tool or the actual code is needed for
functional modeling and simulation. Raghav et al. [9] and
Hugues et al. [10] proposed two methods for describing the
functional behavior according to a reference architecture
and then comparing the deployed system with respect to
the reference to check whether the performance (delay)
target is guaranteed. Multi-paradigm modeling deals with
the challenges in the integration of heterogeneous models of
computation representing hardware and software. Examples
are [11] and [12]. In our work, we focus on the integration of
schedulability analysis tools and the commercial Simulink
platform.

The development of a platform model for (large and
distributed) embedded systems and the modeling of concur-
rent systems with resource managers (schedulers) requires
domain-specific concepts. The OMG MARTE standard
is general, rooted on UML/SysML and supported by
several tools. MARTE has been applied to several use
cases, including on automotive projects [13]. GeneAuto
[14], ProjectP [15], the Rubus Component Model [16] and
AADL [17] put emphasis on the modeling of task sets and
their interactions and the code generation infrastructure,
without including simulation capabilities or an explicit
formal metamodel for the internal behavior of tasks.

A very large number of projects target the evaluation of
scheduling policies and the analysis of task implementations
(more than 6 million hits when searching the keywords real
time scheduling simulator in Google). A necessarily incom-
plete list includes Yartiss [18], Storm [19], ARTISST [20],
Cheddar [21], Stress [22]. Finally, several research works
investigate the consequences of computation (scheduling)
and communication delays on controls from the standpoint
of control theory. An overview on the subject can be found
in [23]. Recent works on this subject include [24].

II. Methodology and Flow

The development flow considered in our work is sum-
marized in Figure 1. The Simulink functional model is the
starting point. Once the simulation results are satisfactory,
the designer uses the model exporter to generate an
abstract view of functional model. The abstract view is an
exported XML file that conforms to an Ecore meta-model
for SR systems. The Ecore view preserves all the structural
properties of the Simulink model, such as the types and
interfaces of the blocks and the connections among the
blocks, and also accounts for the information related to the
timed execution events, including rate and partial order
of execution constraints. Next, the Ecore representation of
the Simulink model is translated using QVT into a SysML
model in Papyrus (leveraging a profile definition). Here, it
is extended with the platform and mapping models.

The Platform model, as well as the model of the tasks
and messages, is generated using SysML [25], [26]. A
specialized profile, built on top of the OMG standard
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MARTE (Modeling and Analysis of Real-Time and Em-
bedded systems) [4] profile, is used for modeling embedded
platforms and systems, including multicore computation
nodes, networks, scheduling and resource management
policies on nodes, and arbitration policies for message
transmission on networks.

The mapping model associates functional elements
to tasks, tasks to processing (HW) elements, signals to
messages and messages to networks. The mapping model
is defined in SysML, by leveraging and extending the
standard concept of Allocation. When the SysML model
of the functionality mapped onto the platform is complete,
Matlab code is generated from the SysML model using the
Acceleo [27] open model-to-text generator. The generated
code operates on the original Simulink model and adds to it
a set of custom blocks (with connections), representing the
implementation of the Simulink subsystems of the controller
in tasks, executing under the control of a scheduler.

Functional
meta-modelmodel

exporter

Functional

Mapping

Platform

M2M

M2T

Simulink

Simulink

generate

Functional

Figure 1. The development flow for the proposed approach.

III. Architecture Overview

The architecture of the co-simulation environment for
the evaluation of the impact of scheduling and communica-
tion delays on the performance of controls is summarized
in Figure 2.
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Figure 2. The system co-simulation of the plant and functional
controls with the task and network scheduling parts.

The master simulation engine is Simulink. At simulation
time, the Simulink engine computes the model update in
an outer loop, in which major steps are evaluated. A major
step is a point in time in which the inputs and outputs of
the model blocks are computed and updated. Inside each
major step, an inner loop on minor steps is used to update
the continuous parts of the model.

Our real-time scheduling simulator is implemented as
a set of custom blocks that execute at all major steps
and interact with the Simulink main engine (capturing the
relevant events from the simulated environment).

Every time a major step occurs, the blocks implementing
the kernels and networks are invoked and process (if
there is any) the task and message arrival events and any
other event that is active at the same time. These events
are forwarded to the real-time and network scheduling
simulators, respectively, and cause an update of their
internal structures. The kernel and network Simulink blocks
will then query the scheduling and network simulators to
determine future relevant events and then use the Simulink
API to define major steps in the simulation at all the points
in time in which a scheduling event (for one of the system
tasks or messages) occurs.

In our project, the real-time scheduling and the net-
work simulator engines are not implemented directly in
the custom kernel and network blocks (as in TrueTime).
The scheduling simulator is accessed through an abstract
interface that mediates between the code of the custom
kernel block and a generic real-time simulator. This abstract
interface allows to use any scheduling simulator provided
that the user writes an adaption layer that consists of
a concrete implementation of three generic classes for
scheduler, tasks and events. To provide an example, and
allow for self-contained use of the project, such adaption
layer has already been written and made available for
the open source RTSim project (rtsim.sssup.it). RTSim
supports multi-core architectures with global scheduling
policies. A similar layer will abstract the network simulation
engine and allow for the reuse of existing network simulators.
Currently, we are defining the abstract interfaces (and
adaptation layers) that allow for the (re)use of the very
well known projects OMNet++ and NS-3.

For the execution and scheduling of tasks, our framework
assumes the same model as in TrueTime (which is also
suited to the typical code generation process for Simulink
models). The execution of a task is split in units called
segments, informally corresponding to the execution of a
function called by the task main code. Each segment is
identified by an execution time (possibly according to a
given distribution) and all segments in a task are executed
according to a pre-defined sequence. The time duration of
each segment corresponds to the execution time of the code
implementing one subsystem in the Simulink model.

In more detail, the real-time task execution of Simulink
models on single- and multi-core platforms is realized
through two custom blocks: Kernel and Task (shown in
Figure 3). The interactions between the Simulink simulation
engine and our custom blocks occur through the standard
set of Simulink API functions that allow to set inputs and
outputs and force a simulation event.

The block Kernel models a real-time kernel and the
scheduler inside it on a single- or multi-core node according
to a given scheduling policy. Each task is modeled with one
instance of the block Task and consists of the serialized
execution of segments/subsystems.

Each block Task is a triggered subsystem, executed
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Figure 3. Kernel and Task blocks.

on the occurrence of a function call event received on its
port function(). Its output interface consists of two ports:
activ and next_instr_duration. The first one is an array
of function call used to issues activation and termination
events to the Simulink subsystems executed in the the
task segments. The second port outputs a scalar signal
representing the duration of next segment executed by the
task. Each time Task is triggered, it issues the termination
signal for the previously executed segment (if any), outputs
the activation signal for the current segment, and transmits
the execution time of the new segment to the block Kernel.
The duration of segments executed by Task is set by a
variable in the Matlab workspace.

The block Kernel has two input ports: duration and
trigger. On the duration port receives an array of values,
one for each Task block, with the indication of the duration
of the next segment to be executed. On the second port, it
receives the array of activations signals of aperiodic tasks
(from external sources). The block has one output port,
named activ, which is used to signal to each task the
execution of the current segment. The (simulated) kernel is
characterized by the scheduling policy (Deadline Monotonic
- DM, Fixed-Priority - FP, and Earliest Deadline First -
EDF), with its deadline miss recovery option, and the
number of cores it manages.

The start and completion times of the task segments
correspond to the times in which the corresponding
subsystems reads or sample their inputs and produce
their outputs. To guarantee this execution semantics, the
activation of the (formerly periodic) subsystem blocks
defining the control laws are changed from periodic to
function activated (Figure 4) and a latch barrier is added
on all their outputs. The signals activating the subsystem
(and its input sampling) and the output latch are generated
by the task blocks upon the beginning of the execution and
the completion of the corresponding segment.
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Figure 4. The execution of subsystems modeled through segments.

Similar to tasks, the interaction with the network
scheduling simulation will be realized (this part is currently
under design and development) using a network block for

each network, and a Message block for each message in the
system (Figure 5). Similar to the Kernel block, the Network
block receives a specification of all the periodic messages
queued in the system. It forwards the message arrival event
to the Network simulator and queries the network simulator
for the start of transmission and end of transmission events
of the messages. When a start of message transmission event
is active, the Network block triggers the corresponding
Message block for sampling the signal values that are
transmitted with the message. When the message arrives,
another signal is sent to the Message to indicate that
the signal values are now available at their destination
and ready to be used by the reading subsystems. The
availability of the signal values at destination is indicated
by the message block by ativating a set of latches in
correspondence to all the signal values that are mapped
onto the message.
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Figure 5. The transmisison of information signals packed into
messages under the control of the network block.

IV. Modeling and Generation Overview
The functional model is created by importing in EMF

a Simulink model that includes the controller part and
the model of the plant. The Simulink model must comply
with the restriction that there is a decomposition level
in which the controller part consists of a collection of
subsystems, in which each subsystem only contains periodic
blocks with the same period (each subsystem has a single
rate). Also, subsystems must have a unique name that
is used as a reference in the following backannotation
stage. A Matlab script uses the Simulink modeling API
(programming interface) to parse the model structure and
export an XML view of the controller subsystems. The XML
conforms to a schema created in accordance with an Eclipse
Ecore metamodel, defined for representing the execution
constraints that apply to the Simulink subsystems, not too
dissimilar from the one proposed in the GeneAuto project
[14]. Also, custom functionality (for example in C or C++
code can be wrapped in a custom Simulink wrapper using
the S-function mechanisms and included in the simulation.

For the modeling of the physical (HW) part of the
execution platform we rely on the concepts provided
in MARTE, and we define our own taxonomy of stereo-
types for Basic Software (BSW) components and for
the deployment of BSW modules onto the HW. The
execution-platform meta-model concepts are organized in
two packages: HwResources and BswRTOS.

The HwResources package introduces an element rep-
resenting a HW board (HwBoard) and other HW mod-
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eling entities. The HwProcessor stereotype provided in
the HW_Computing sub-package matches the concept of
CPU and provides the attribute nbCores to specify the
number of cores, thus enabling the modeling of multi-core
architectures. Other stereotypes are under definition for
the representation of networks and network adapters with
their attributes.

The mapping model represents the execution of func-
tional elements by tasks and the allocation of tasks on cores.
The two concepts that are central to the definition of a
mapping model are: threads, represented by the stereotype
Thread, and signal variables, denoted as ComImpl. A
Thread is a unit of concurrent execution that runs on one
of the system cores under the control of an RTOS. Each
Thread is contained in a Process and is characterized by
a priority value. Concrete specializations of Thread are
AperiodicThread and PeriodicThread (with its period).

The concept of allocation completes the specification of
mapping meta-model. The FunctionToThreadMap denotes
the mapping of a functional subsystem into a Thread.
When multiple subsystems are mapped into the same
Thread, the attribute mapOrder defines how the execution
of their step() methods will be serialized in the generated
thread code. The mapping order must be consistent with
the partial order of execution imposed by the Simulink
model semantics (currently, the designer is responsible
for checking compliance. We are investigating the use of
OCL constraints for this purpose). The ThreadToCPUMap
models the deployment of a Thread to an HwProcessor.
The attribute coreAfn enables the binding of the thread
to a physical processor core (processor affinity).

A set of Acceleo Model-to-text generation templates
processes the SysML model and generates automatically the
Simulink blocks for the task and scheduler implementation.
The current set of scripts (and the Simulink custom blocks)
handle the case of single-core and multicore execution
under global scheduling policies. The Acceleo scripts are
invoked from a common main template that performs the
following sequence of operations: 1) The Simulink custom
library of tasks and scheduler blocks is opened. 2) The
functional model is saved and a new model is created for its
backannotated version. 3) A Matlab script is generated, that
creates the initialization variables for the kernel and the
task attributes. 4) Another Matlab script is generated for
the generation of the kernel and the task blocks. 5) Finally,
another set of .m files is created to modify the input model
by changing the subsystem blocks to triggered, adding
latches on the output links and rerouting the connections

V. Examples and Project availability

The project files are in part already available on a
dedicated web site as open source. The part that is available
is the code implementing the Simulink custom blocks for
the interaction with the node scheduling simulator. The
SysML profiles and the Acceleo tranformations will follow
shortly. The project is meant to be distributed with a very
large possible audience, that includes real-time researchers
and students, control developers and embedded systems de-
signers. It also impacts the modeling of embedded systems.

Therefore, it could be of interest for SysML modelers and
MDE practitioners, and especially, useful as a teaching tool
for a large set of disciplines, including simulation, control
theory, real-time scheduling, modeling, model-to-model and
model-to-text transformations. Together with the custom
block code, some examples have already been adapted or
ported to our framework to show the applicability of the
blockset, to assist in the demonstration of the tool capability
and to provide an initial nucleus for use in courses. The
experience in developing these initial examples shows that
adaption of an existing Simulink model takes only a few
hours. We are therefore confident that this initial set will
grow very quickly.

The initial examples include a three-servo example
(from TrueTime) and a quadcopter model. The three servo
Simulink example includes three PID controllers mapped
for execution onto three tasks, scheduled on a single-core
platform. The result of the mapping is the structure of tasks
in Figure 6. The model has been automatically generated
starting from an initial model of the controls (without
tasks and scheduler) and processing a SysML model of
the implementation with Acceleo M2T transformation
scripts. The model has one kernel block (Kernel1) and
three instances of task blocks with three latches and
the connections. Task blocks manage the activation and
termination signals of the PID subsystems/segments.
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Figure 6. The three servo example.

Figure 7 shows the output of the DC-servos with respect
to the reference signal. when a Rate Monotonic (RM, on
the left) or EDF scheduling policy (on the right) is used. In
both cases, task Task1_1 (on top) has the lowest priority. In

 17

 



0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Time [s]

Am
pl

itu
de

Three Servos with RM Scheduler
o2

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Time [s]

Am
pl

itu
de

o1

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Time [s]

Am
pl

itu
de

o0

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Three Servos with EDF Scheduler
o2

Time [s]

Am
pl

itu
de

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
o1

Time [s]

Am
pl

itu
de

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
o0

Time [s]

Am
pl

itu
de

Reference
TrueTime
T−Res + RTSim

Reference
TrueTime
T−Res + RTSim

Reference
T−Res + RTSim

Reference
T−Res + RTSim

Reference
T−Res + RTSim

Reference
TrueTime
T−Res + RTSim

Figure 7. Verification by simulation on the back-annotated model.

this example, the CPU utilization factor is U ' 1.23. This
overload condition induces some performance degradation
of controls with respect to the simulation results obtained
from the Simulink model without back-annotations. This
difference is clear in the results on the left and right side
of Figure 7. In the case of RM, the task with the lowest
priority cannot guarantee a stable control, because of too
many deadline misses. In the case of EDF, the delay due to
scheduling and tasks’ execution times tends to be spread
among the three tasks, and after an initial transient all
tasks miss their deadlines. However, the motion of the DC-
servos is still controlled with a reasonable error, and the
overall control performance is still satisfactory.

VI. Conclusions and Future Work
We present a framework for the definition of execution

platforms and task implementations of Simulink functional
models. The platform makes use of a purposely developed
co-simulation environment for real-time scheduling and
network communication, and allows to obtain Simulink
models that evaluate the impact of computation and
scheduling delays on the performance of the controls. The
(open source) project is currently being extended with the
modeling of networks, messages and communication delays.
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Abstract—Real-time systems need to be analyzed at an early
stage of the development life-cycle in order to check if all the
timing requirements are met. One of the main difficulties that
the system designers face is to find the appropriate analysis tests
helping to validate and/or to dimension properly their designs. In
this paper, we propose an approach to improve the way designers
check their system designs. Our approach unifies modeling and
schedulability analysis efforts. It has been used with a modeling
language in order to orient designers for choosing the most
suitable analysis models and tests. Furthermore, this work is
also dedicated to research teams to share their researches and
prototypes. Hence, we aim at increasing the usability of the real-
time scheduling theory.

I. INTRODUCTION

The life-cycle of hard real-time systems (RTS) can last
several years, where the system developers have to cope
with new hardware/software/standards. To reduce the time-to-
market, the design phase of RTS is treated as one of the earliest
phase where the validation of timing properties can reduce the
cost of the development process. Nevertheless, expert designers
in both design and analysis of RTS are uncommon.

Model-driven engineering (MDE) becomes increasingly
used to propose solutions and tools for modeling and analyzing
RTS. Recently, a set of standard design languages has been
proposed for RTS (e.g. UML-MARTE1, AADL2), by modeling
different systems artifacts and non-functional requirements so
as to support different analysis kinds. The implementation of
the schedulability analysis techniques has also taken advantage
of MDE. In the past few years, several academic and industrial
tools have been proposed as providers of the well-known anal-
ysis techniques (validation and dimensioning). They offer the
possibility to apply some subsets of schedulability tests during
the analysis stage. Some examples of those tools are: Rt-Druid
[1], MAST [2], ASIIST [3], SymTA/S [4] and Cheddar [5].
These tools allow real-time designers, especially modelers, to
operate during the analysis phase. Since the analysis tools are
based on different input analysis models, they facilitate the
utilization of the schedulability analysis tests.

However, the analysis tools, as they are used currently, are
also driven by the real-time designer’s experience. Therefore,
determining what type of the analysis technique or the analysis
model to use for a given analytical situation may be difficult.
Then, extracting the relevant information to define the analysis

1www.omgmarte.org
2www.aadl.info

model may be laborious. Indeed, the following motivating
example shows that yet the utilization of the current solutions
still requires deep knowledge of the real-time scheduling or the
presence of an expert in the schedulability analysis domain.

Motivating example. We consider an application com-
posed of four periodic independent tasks where each task is
defined by a set of properties (See Table I). Tasks are preemp-
tive and ordered by decreasing priority. Task1 is the highest
priority task and Task4 is the lowest priority task. The task-
set is executed on a uniprocessor architecture with priority-
based scheduling. We assume that the model is done via a
design framework and the transformation is done correctly.
Although, after launching the analysis process through two
different analysis tools which are Rt-Druid [1] and MAST [2],
two different results have been provided for the same input
model. Table II shows the response-time values provided by

Task Worst-case execution time Deadline Period Release time
Task1 3 ms 15 ms 20 ms 2 ms
Task2 4 ms 8 ms 23 ms 0 ms
Task3 5 ms 13 ms 23 ms 5 ms
Task4 9 ms 23 ms 23 ms 7 ms

TABLE I. VALUES OF TASK CHARACTERISTICS

MAST and Rt-Druid. While the Rt-Druid result shows that the
system is not schedulable because the response-time of Task4
exceeds the deadline, the Mast result shows that the system is
schedulable and provides more accurate response time values
(i.e. the result provided by Rt-Druid is pessimistic).

Task Worst-case response-time (MAST) Worst-case response-time (Rt-Druid)
Task1 3 ms 3 ms
Task2 7 ms 7 ms
Task3 8 ms 12 ms
Task4 21 ms 33 ms
TABLE II. WORST-CASE RESPONSE TIMES CALCULATED BY TWO

ANALYSIS TOOLS

The results provided by Rt-Druid are more pessimistic than
those provided by MAST on this example.

Explanation. The difference is not related to a wrong
implementation of the analysis methods, but to the input
analysis model. The example shown in Table I is considered
by MAST as a transaction model [6]. Then, the mathematical
formula calculating the response-time takes the release-times
into consideration. Whereas, the analysis functionality chosen
via Rt-Druid masks the release-times and considers the anal-
ysis model as a simple periodic model [7]. Then, the mathe-
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matical formula calculating the response-times considers that
tasks are non-concrete (i.e. the release-times are unknown).
Consequently, the tool considers the worst-case behavior of
the analysis model by supposing that tasks are simultaneously
released. In fact, the result provided by Rt-Druid does not
mean that the tool does not support the transaction analysis
model, but the analysis functionality chosen via the tool does
not provide adequate analysis. In some cases, choosing a very
abstract model is not a wrong choice. For instance, the anal-
ysis functionality chosen via Rt-Druid (i.e. the analysis test)
offers the possibility to use a sensitivity analysis like the test
proposed in [8] (which is a dimensioning technique) enabling
to tune the system design. To the best of our knowledge,
no similar analysis test (i.e. similar to the sensitivity analysis
tackled in [8]) exists for the transaction model.

This research proposes a novel strategy leading to get
several analysis repositories playing the role of “decision
supports”. This latter helps designers during the analysis phase
in order (i) to detect the analysis situation corresponding to
the system design and (ii) to choose the most suitable analysis
tests. Thus, an analysis repository model is proposed in order
to be instantiated and to customize their instances (i.e. a set
of analysis repositories) as needed. Therefore, the consistency
and the accuracy of the final system design obtained following
the choices proposed by an analysis repository depend on the
content of this latter. To enhance the applicability of the real-
time scheduling analysis theory, this work can be used as
showcase and teaching-aid allowing the research teams to show
their results (e.g. analysis models, tests, home tools) and also
to share them with other teams of the RTS community.

Following this introduction, Section II presents the relevant
elements of our analysis repository approach. Section III is
devoted to present the capabilities of the analysis repository
and its ability to be used with a modeling design language, a
brief proof of concept is also presented. Finally, Section IV
summarizes and concludes this article.

II. ANALYSIS REPOSITORY MODEL

This section is devoted to detail our approach in order to
unify modeling and analysis efforts. Our idea is to propose
a model of analysis repository, which can be instantiated and
enriched continuously by analysts. Then, the content of each
analysis repository (i.e. instance of the analysis repository
model) plays the advising role towards designers by identifying
which analysis model(s) and test(s) are fitting the system
design.

The analysis repository model is based on a set of no-
tions, which are presented and described in the following
subsections. Most of those notions are related to the real-time
scheduling theory.

A. Real-Time Context and Identification Rule

The notion of “real-time context” represents the corner-
stone of the analysis repository model. In the literature, an
analysis model represents the formalization of information
extracted from a design model. This information is related to
the execution requirements, the tasks behavior, the commu-
nication protocols, etc. Every analysis model is characterized
by a set of assumptions representing the context χi of the

analyzed system. Each assumption εj is related to the software
architecture, the timing behavior or the hardware architecture.

Let X = {χ1, χ2, .., χm} be a set of real-time contexts,
and every real-time context χi = {ε1, ε2, .., εn}. For instance,
if χi represents a context of independent periodic tasks,
with arbitrary deadlines, executed on homogeneous multicore
processor, and scheduled by a global fixed-job priority policy
[9], then χi is characterized by the the following assumptions:

• ε1 = Hardware execution platform is multicore;

• ε2 = Processing cores are homogeneous;

• ε3 = Tasks are independent;

• ε4 = Tasks are periodic;

• ε5 = Tasks are preemptible;

• ε6 = There is no self-suspension;

• ε7 = Priorities are assigned following a fixed-job
policy;

• ε8 = Full migration is authorized;

• ε9 = Deadlines are arbitrary.

For factoring the number of assumptions and to guarantee
the scalability and the incremental enrichment of the analysis
repositories, we suggest that analysis repository model pro-
poses to instantiate a set of identification rules R.

Let R = {r1, r2, .., rn} be a set of identification rules.
Every rule ri represents an interrogation checking the system
design and leading to an assumption characterizing one or
several real-time contexts. It is common to find several real-
time contexts characterized by the same subset of assumptions,
or the opposite subset of assumptions. For example, let:
− ra be a rule checking if “all tasks are preemptible”
− rb be a rule checking if “all tasks are not preemptible”
We consider the following real-time contexts:
χ1 supports “only preemptible tasks”;
χ2 supports “only non-preemptible tasks”;
χ3 supports “preemptible and non-preemptible tasks”.

If the evaluation of ra referring to a system design M is
equal to:

• True (we note M |= ra), hence M is close to χ1 and
χ3;

• False (we note M |= ra), hence M is close to χ2 or
χ3;

• Undefined, hence M is close to χ3. In this case, the
“undefined” means that we can not conclude about the
satisfaction of the checked characteristic. That can be
due to the absence of sufficient elements in the design
M.

If the evaluation of rb referring to a system design M is:

• True, hence M is close to χ2 or χ3;

• False, hence M is close to χ1 or χ3;

• Undefined, hence M is close to χ3.

 20

 



Therefore, we define a function “Spec” as a relationship
between the set of contexts X and the set of identification rules
R, where:

Spec: X x R→ {True, False, Undefined}. In this case, the
“Undefined” means that among the rules defining a context, we
can find many rules and their opposites.
For instance: Spec(χ1, ra) = True, Spec(χ1, rb) = False,
Spec(χ3, ra) = Undefined, Spec(χ3, rb) = Undefined.

Meta-modeling. Figure 1 shows the formalization of X
and R and their relationships by using concepts of UML
class diagram. Indeed, every identification rule ri is an in-
stance of IdentificationRule class defined by an id,
a description of the rule in natural language helping
users to understand the goal of the rule, and a formal
expression. This latter depends on the modeling language
expressing the design which requires analysis. For instance,
let Sys = {τ1, τ2, .., τn} be a system composed of a set
of tasks, where every task τi is characterized by a period T i

and a relative deadline Di, then τi:=<T i, Di>. Consequently,
the formal expression property of an identification rule aiming
to check if the deadlines of all tasks are constrained will be
expressed as follows: ∀ τi ∈ Sys, T i ≤ Di.

Fig. 1. real-time context and identification rule classes and their relationships

Every real-time context is an instance of Context class.
This latter is characterized by a unique name, an optional
description explaining the real-time context in native
language, and references attribute showing research papers
which have introduced the real-time context. Each Context
instance should be specified by a set of identification rules via
three relations. Spec (χi, rj) has been translated to three kinds
of relations as mentioned in Figure 1.

B. Analysis tests and their characteristics

Scheduling analysis tests have two major purposes: valida-
tion (like the response time analysis [10], [7]) and dimension-
ing (like the sensitivity analysis [8] or the processor allocation).

T = {t1, t2, .., tn} denotes a set of analysis tests contained
in the repository.

Every analysis test ti is related to one or many real-time
contexts. When applied to a system, the conclusion provided
by the test is correct if all the assumptions of the context
are valid for the system. Moreover, validation tests can be
considered by a set of characteristics related to the feasibility
and the sustainability.

The feasibility characteristic permits to conclude about
the accuracy of the test referring to the applicant system.
In other words, a schedulability test is defined to be a
sufficient condition if all of the task-sets that are deemed
schedulable according to the test are in fact schedulable. A
test can also be referred as a necessary condition if the failure
of the test will indeed lead to miss the deadline at some points

during the execution of the system. Schedulability test that is
both sufficient and necessary is labeled as exact condition.

In most cases, the parameters of analysis models considers
the worst-case values (e.g. worst-case execution time, minimal
period, maximal release jitter). During the on-line execution
of the system, the task parameters are often better than those
considered. Then, the analysis should be sustainable [11] with
the new parameter values. So, a schedulability test with respect
to a system is sustainable, if the task-sets deemed schedulable
by the schedulability test remains schedulable when the param-
eters of one or more individual jobs are changed in any, some,
or all of the following ways: (i) decreasing execution times, (ii)
increasing periods or inter-arrival times, (iii) decreasing jitters
and (iv) increasing relative deadlines. Furthermore, when a
change is only related to:

• decreasing the execution-time, then the test ensures
the C-sustainability (also known as predictability).

• decreasing the jitter, then the test ensures the J-
sustainability.

• increasing the periodicity, then the test ensures the T-
sustainability.

• increasing the deadline, then the test ensures the D-
sustainability.

Meta-modeling. Every Context instance χi can be analyzed
by a set of the analysis tests (see Figure 2). Every test
ti is an instance of Analysis Test class, and it has a
set of properties like the id the description, and the
references of papers proposing the analysis test. Moreover,
feasibility and sustainability characteristics (i.e. instance of
Test Characteristics class) may vary depending on
the context.

Fig. 2. Analysis test class and its properties

For instance, the mathematical formula of the response time
analysis presented in [7] is a validation test representing a
sufficient condition for any real-time context corresponding to
analysis model with offset (i.e. the release-times are known).
However, the same mathematical formula is an exact condi-
tion (sufficient and necessary) for contexts corresponding to
the periodic analysis model with non-concrete tasks (i.e. the
release times are unknown).

C. Analysis tools

As our objective is not to propose a new analysis tool, we
aim to take advantages of the existing ones. We give a special
attention to classify analysis tools capabilities. By “analysis
tool” we do not mean the whole tool like Rt-Druid, but only
the analysis functionality provided by the tool. We consider
each analysis engine inside an analysis tool as an independent

 21

 



functionality. Hence, the same analysis functionality inside
another analysis framework is considered as another engine.
Indeed, a specific analysis test ti may be related to different
analysis tools that are implementing the test. We note E = {e1,
e2, .., en} a set of analysis tools inside the analysis repository
and which are automatizing various analysis tests.

Meta-modeling. Figure 3 shows the Analysis Tool class
and its properties, like id and description. Differ-
ent analysis tests are implemented by different tools. That
allows to compare different output results related to the
same test. For this purpose, the Analysis Tool class
provides the transformation_model_To_tool prop-
erty. This property is devoted to mention the location of
an external file (e.g. it can be an executable program or
a web service, etc.) permitting the transformation of the
system design to the input formalism of the analysis tool.
The transformation_tool_To_model property is ded-
icated to contain the location of a program ensuring the restitu-
tion after the analysis process (i.e. the reverse transformation).

Fig. 3. Analysis tool class and its properties

D. Analysis repository

Every instance of the analysis repository model Ar consists
of a set of identification rules , a set of real-time contexts X , a
set of analysis tests T and a set of analysis tools E. We note,
Ar = <R, X , T , E>.

Meta-modeling. Every Ar is an instance of the
AnalysisRepository class. It is the root element
of other analysis repository elements (contexts, tools, tests,
etc.). Then, it is possible to instantiate analysis repositories
for every company/organism/research-team to orient their
designers and to share their recent results concerning
schedulability analysis.

E. Identification process

In order to be manipulable by designers and integrate the
design process, the analysis repository model proposes two
services. (1) Once the instance of the analysis repository is
chosen, the first service loads the system design which needs to
be analyzed (e.g. an AADL model or MARTE model). Besides,
all the identification rules contained in the chosen analysis
repository are evaluated based on the system that needs anal-
ysis. (2) The second service loads the results summarizing the
evaluation done by the first service, then it compares them
with the real-time contexts existing in the analysis repository
in order to find the appropriate real-time context if it exists.
These two services represent the identification process, which
its correctness and its accuracy depend on the content of the
chosen analysis repository.

III. PROTOTYPING AND INTEGRATION INTO A DESIGN
FRAMEWORK

Since our goal is to assist designers to conclude about
the schedulability of their designs, an instance of the analysis
repository model has to be invoked by a system design.
Consequently, the analysis repository model has to be linked
to the design language, which is used to get the system
design. Thanks to the formal expression attribute of
Identification Rule class (presented in Section II-A),
the analysis repository model can be linked to any design
language based on Ecore or UML. In other words, the current
implementation enables the analysis repository model to be
linked to any design language supporting OCL (Object Con-
straint Language) [12]. Indeed, the formal expression
attribute is being the constraint expression formalized depend-
ing on both, the OCL notation and the design language used.

In our case, we have chosen to attach the MoSaRT design
language (Modeling Oriented Scheduling Analysis of Real-
Time systems) to an analysis repository instance. The next
subsection gives a brief description of MoSaRT language.

A. MoSaRT design language

MoSaRT language contains several concepts which are
very close to the schedulability analysis. It enables to have
different kinds of models, each kind focuses on a specific part
of the real-time system. Thus, the MoSaRT design language
provides the hardware model, the software architecture model,
the behavioral model and the functional model. The implemen-
tation of MoSaRT design language is based on Ecore [13]. For
more details about the MoSaRT language, readers can see the
related papers [14], [15].

B. Proof of concept

1) Instantiation of the analysis repository model: First of
all we start by illustrating the analyst’s tasks. Hence, we pro-
vide an analysis repository containing a real-time context cor-
responding to the Liu and Layland model [16]. This context is
based on several identification rules (some of them are shown
in Figure 4). Each rule is mapped to a formal expression im-
plemented as an OCL constraint related to the design language
of the system that needs analysis (i.e. the MoSaRT design lan-
guage). Figure 4 shows the formal expression of the identifica-
tion rule called “UniprocessorArchitecture”. More-
over, we have chosen the response time analysis test presented
in [7] as an analysis test for the context corresponding to the
analysis model of [16]. This test is implemented by several
tools like Rt-Druid.

In order to ease the use of the analysis tools implementing
the analysis tests, we provide two transformation programs.
The first one is based on ATL and transforms the system
design from MoSaRT language to Rt-Druid formalism. The
second transformation program transforms the system design
from MoSaRT language to MAST formalism. Since MAST
is based on a textual format, the transformation is based on
Acceleo3.

3www.acceleo.org
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Fig. 4. Part of an analysis repository highlighting the details of a context

2) Utilization of the MoSaRT language for modeling:
Figure 5 shows the design corresponding to the motivating
example (see also Table I). Parts (A) and (B) represent the
architecture layer of the system (software architecture mapped
to the hardware architecture). Part (C) shows the software
behavioral model of the system, where every task of the
software architecture is represented by a taskActivity
element. The software behavior model shows also the trigger
of each task and its timing properties.

3) Utilization of the instantiated analysis repository and its
impact: Once the system design is done and becomes ready
for analysis, we can select the analysis repository previously
instantiated. Figure 6 shows the result that is found after calling
the identification process. Indeed, the basic periodic model
proposed in [16] is the real-time context which corresponds to
the treated example. The result window (See Figure 6) contains
also the “Context Characteristics” tab which summarizes the
assumptions related to the found context, and the “Analysis
Test” tab for orienting designers to the appropriate tools.
Furthermore, Figure 6 shows that the design can be analyzed
by the response time analysis (rta1), and the Rt-Druid tool is
one of the tools implementing this test. So, we can generate a
model respecting the Rt-Druid formalism after launching the
transformation. Note that the obtained result depends on
the content’s consistency and the richness of the analysis
repository.

The right column of Table II evinces the analysis result
provided by Rt-Druid. The result means that the system is
not schedulable and it is pessimistic because the test provided

Fig. 5. Different views of a design model that corresponds to the example of
Table I. (A): Software architecture model. (B): Hardware architecture model.
(C): Software behavior model.

by the analysis repository is only sufficient. In this case, a
designer can try to change the task set characteristics or to
modify the hardware architecture by using a faster CPU or
a multicore processor for example. Nevertheless, this design
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Fig. 6. screenshot of the identification result provided by the analysis
repository

model can be analyzed differently in order to avoid the over-
dimensioning. Thanks to the identification process’s result, the
designer should be informed that the design model can be
considered as a transaction model [6]. Indeed, the transaction
model takes tasks with different offsets into consideration.
Consequently, the identification process shall propose the
response-time analysis test (rta2), which is more appropriate
to analyze the transaction model. The test is provided by
several tools, like MAST, which was used for the analysis
of the treated system, and led to the results illustrated in the
left column of Table II.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the MoSaRT analysis
repository as a helpful modeling support avoiding wrong de-
sign choices at an early design phase. Thus, it helps designers
to cope with the scheduling analysis difficulties and to be more
autonomous during the analysis stage.

The presented contributions are also dedicated to academic
researchers in order to increase the usage of the real-time
scheduling theory. So, our contribution can be used as a
teaching-aid and also as a way of transferring the scheduling
theory results from academia to industrial practice by making
it more accessible to industrial users, and also to be compared
with other researches.

We are working to improve the utilization of MoSaRT
analysis repository by adding relationships between “real-
time contexts” and also relationships between “identifications
rules”. For example, the “generalization” between real-time
contexts is one of the relationships that may be taken into
account.

We are also working on a special use of the analysis
repository, that is when designers know the context of their
system, hence they can set their choice at the beginning of the
design. In this case the utilization of the analysis repository
seems like a design pattern. Then, at each design change
(e.g. adding tasks, removing processor, etc.) different analyses

will be recalculated interactively at run-time to provide results
within the modeling.

In this paper, we have used the analysis repository model
with the MoSaRT design language, but it can also be easily
used with MARTE or AADL. The use of the analysis repos-
itory with these languages may help users to set their own
methodologies related to the standard language (like Optimum,
a methodology related to MARTE [17]).
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[6] J. C. Palencia and M. González Harbour, “Schedulability analysis for
tasks with static and dynamic offsets,” in IEEE Real-Time Systems
Symposium (RTSS), 1998, pp. 26–37.

[7] M. Joseph and P. K. Pandya, “Finding response times in a real-time
system,” Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[8] E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity analysis for fixed-
priority real-time systems,” Real-Time Systems, vol. 39, pp. 5–30, 2008.

[9] S. K. Baruah and T. P. Baker, “Global EDF schedulability analysis of
arbitrary sporadic task systems,” in Euromicro Conference on Real-Time
Systems (ECRTS), 2008, pp. 3–12.

[10] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, no. 2-3, pp. 117–134, 1994.

[11] A. Burns and S. K. Baruah, “Sustainability in real-time scheduling,”
Journal of Computing Science and Engineering (JCSE), vol. 2, no. 1,
pp. 74–97, 2008.

[12] OMG, “Object constraint language, omg available specification, version
2.0,” www.omg.org/spec/OCL/2.0/, 2006.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[14] Y. Ouhammou, E. Grolleau, M. Richard, and P. Richard, “Model
driven timing analysis for real-time systems,” in IEEE International
Conference on Embedded Software and Systems (ICESS), 2012, pp.
1458–1465.

[15] ——, “Towards a simple meta-model for complex real-time and em-
bedded systems,” in International Conference on Model and Data
Engineering (MEDI). Springer LNCS, 2011, pp. 226–236.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[17] C. Mraidha, S. Tucci-Piergiovanni, and S. Gerard, “Optimum: a marte-
based methodology for schedulability analysis at early design stages,”
ACM SIGSOFT Software Engineering Notes, vol. 36, pp. 1–8, 2011.

 24

 



Model-driven Deployment Optimization for
Multicore Embedded Real-time Systems: the

OptimAll Approach

Federico Ciccozzi, Juraj Feljan
School of Innovation Design and Engineering (IDT)

Mälardalen University
Västeras, Sweden

E-mail: federico.ciccozzi@mdh.se, juraj.feljan@mdh.se

Abstract—The power of modern embedded systems is contin-
uously increasing together with their complexity, thereby making
their development more challenging. In the specific case of the
adoption of multicore solutions, while processing power is heavily
increased, the issue of allocating software tasks to specific cores on
the target platform arises. In this paper we introduce OptimAll, an
automated model-driven approach that aims at providing support
in the delicate phase of task allocation at design time. Besides
introducing the entire approach, in this work we focus on the
automatic generation of a suitable input to the task allocation
optimization mechanism from a UML–MARTE system design
model, as well as on the actual optimization mechanism and its
outcomes in relation to the design model elements.

I. INTRODUCTION

Nowadays most computer systems that connote our every-
day life are embedded and characterised by real-time proper-
ties. One of the main traits that affects the development of this
kind of systems is their ever-increasing performance demand,
as they include more and more complex functionality. In most
cases, the higher performance needs are tackled by increasing
the processing power through, e.g., the adoption of multicore
and manycore solutions; in this work we focus on the former. A
multicore processor is a single chip that contains two or more
processing units that are tightly coupled together in order to
preserve energy-efficiency.

Adopting a solution with multiple processing units intro-
duces the challenge of how to deploy software components
to the available cores to best utilize the hardware platform.
In OptimAll we address deployment of software components
as a two-step phase: (i) allocation of software components to
software schedulable entities (i.e., tasks) and (ii) allocation of
these entities to specific cores. In this work we focus on the
latter step, namely the allocation of tasks to processing units,
with respect to extra-functional properties (EFPs) relevant for
real-time systems.

In our solution, we exploit Model-Driven Engineering
(MDE) [1] for providing automation and aiding the developer
in the delicate phase of deployment optimization at design
time. One of the main goals of MDE is to shift the focus of the
development from hand-written code to models that represent
an abstraction of the problem at hand, and from which early
analysis, simulation and testing are made possible through the
exploitation of model transformations [2].

More specifically, we exploit MDE for modelling the sys-
tem under development and in particular the details related to
the task allocation problem. Model transformations are defined
in order to automatically generate a suitable representation
of the task allocation, which can be simulated in order to
obtain performance predictions. This in turn enables task
allocation optimization — we asses a number of task allocation
candidates in search for one that satisfies the constraints on
EFPs. We also support visualization of the resulting EFPs for
an allocation candidate.

Contribution. In this work we introduce OptimAll, a
model-driven deployment optimization approach for multicore
embedded soft real-time systems. In the long run OptimAll
is meant to offer automatic full code generation capabilities
as well as back-propagation features for optimization based
on monitored system runs (as described in Section IV). In
this paper we lay the foundations of the approach and we
focus on the modelling and prediction-based optimization
phases. Starting from a deployment model, we show how
OptimAll automatically generates a suitable input for the task
allocation optimization mechanism [3] through a set of model
transformations, and then iterates the simulation runs in search
for a good allocation candidate.

The remainder of the paper is organized as follows. Sec-
tion II provides an overlook on related approaches documented
in the literature, while Section III describes the basic concepts
on which our approach is built upon. In Section IV we describe
the OptimAll approach in all its intended features. In Section V
a running example is exploited to show OptimAll at work. The
paper is concluded with Section VI where we provide a short
recall of the paper’s contribution and an outlook on the coming
planned activities.

II. RELATED WORK

MDE for embedded systems has a general goal of lifting
the level of abstraction from code to models thus simplify-
ing software development. Models are used both to reason
about the EFPs of the system under development, and as
a specification from which the implementation can be au-
tomatically generated. Regarding the former, models enable
obtaining performance predictions already at an early stage
of development, prior to the implementation, via model-based
analysis and model simulation, in line with what software
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performance engineering advocates [4]. These model-based
performance predictions make it possible to quickly asses a
large number of system configurations (e.g., deployment of
software components to hardware nodes), thus enabling system
optimization at an early development stage. In the remain-
der of this section, we present related work by discussing
several approaches for model-driven performance prediction
and optimization. However, in contrast to OptimAll, none
of the approaches are specifically tailored for soft real-time
multicore embedded systems, and cover the complete cycle
of automatically going from models, through an optimization
engine to code and back.

ProCom [5] is a component-based and model-based ap-
proach for developing automotive embedded systems. It has a
notion of a rich component, which is a set of models, docu-
mentation and code. Through different modelling formalisms,
ProCom can be used to analyse worst-case execution times,
end-to-end response times, and resource usage. It also provides
support for automatic synthesis of code from the models,
however it does not enable optimization or back-propagation
of information from code to models.

ArcheOpterix [6] is a framework for optimizing embed-
ded systems modelled using the Architecture Analysis and
Description Language (AADL). It supports several categories
of EFPs, such as reliability and performance. The optimization
mechanism employs various general purpose heuristics includ-
ing genetic algorithms, Bayesian learning and hill climbing.
The approach can account for uncertainties of design time
parameter estimations, through its extension called Robust
ArcheOpterix [7] — it proposes architectures that reduce the
impact of the uncertainties.

Additional approaches (not limited to embedded systems)
can be found in the survey of component-based approaches for
performance evaluation by Koziolek [8], and in the survey of
architecture optimization approaches by Aleti et. al. [9].

III. BACKGROUND

In this section we set the domain of the work and describe
techniques and technologies employed for defining the solu-
tion.

A. Task allocation problem

The domain of our work is represented by embedded
soft real-time systems, where accurate timing behaviour is
crucial for the correct functioning of the system, but occa-
sional deadline misses are tolerated (as opposed to hard real-
time systems where the absence of deadline misses must be
guaranteed beforehand). Therefore, the EFPs we are interested
in are related to timing, and include end-to-end response time,
deadline misses and core load. These properties depend heavily
on the allocation of tasks to cores. An intuitive example is
allocating too many tasks to the same core, which will become
overloaded and the tasks will therefore miss their deadlines.

It is desirable to identify a good allocation early in the
development process, already prior to the implementation. The
earlier design faults that lead to performance issues are caught,
the cheaper and simpler it is to correct them [10]. Therefore
we base our work on MDE concepts, and strongly rely on

model-based analysis at design time. Since we focus on the
average-case behaviour (as opposed to worst-case behaviour
in hard real-time systems), and since the aforementioned EFPs
depend heavily on the dynamic interplay between tasks, they
cannot be derived analytically from task parameters. Rather,
we obtain the property values by performing simulation of an
allocation model.

B. Task model

In our approach we support tasks of two kinds: periodic
and event-triggered (triggered by other tasks finishing their
execution). Each task is assigned a number of parameters:
priority, affinity (specifying which core the task is allocated
to), best-case execution time (BCET), worst-case execution
time (WCET). Moreover, in the specific case of periodic
tasks, two additional parameters, namely deadline and period,
are defined. An event-triggered task is considered to have
missed its deadline if it is triggered again while its previous
instance has still not finished executing. Currently, only a
uniform distribution of task execution times is implemented.
However, additional distributions are planned to be added. A
task chain represents the flow of execution, and it is defined by
a periodic task starting the chain and a set of event-triggered
tasks triggered in ordered sequence. End-to-end response times
are EFPs that are defined at chain level, and represent the
duration between the point in time when the periodic task at
the start of the chain begins its execution, until the point in
time when the last task in the chain finishes its execution.
During their execution tasks do not move between cores, as
they are statically allocated. Each core has a scheduler in
charge of running the tasks assigned to it and we currently
support preemptive and non-preemptive fixed priority-based
schedulers.

Next we formalise the aforementioned notions of task,
periodic task, event-triggered task and chain.

Definition 1: A task T is a non-instantiable tuple T =
〈B,W, pr, a〉, where B represents T ’s BCET, W represents the
WCET, pr represents T ’s scheduling priority and a represents
the affinity parameter identifying the core to which T is
allocated.

Definition 2: A periodic task PT is an instantiable special-
ization of T defined as the tuple PT = 〈T, pe, d〉, where T
represents the tuple 〈B,W, pr, a〉, pe represents PT ’s period
and d represents T ’s deadline.

Definition 3: An event triggered task ET is an instantiable
specialization of T defined as the tuple ET = T , where T
represents the tuple 〈B,W, pr, a〉.

Definition 4: A chain C is a non-empty ordered set of tasks
{PT, T1, T2, . . . , Tn} with |C| ≥ 1 and where the first element
is always represented by a periodic task PT .

C. Modelling language

The reference modelling language exploited in the Op-
timAll approach is represented by UML [11] for functional
descriptions, and by its profile for Modeling and Analysis of
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Real Time and Embedded systems (MARTE) [12] for extra-
functional as well as deployment modelling. Moreover, the ap-
proach is implemented and runs on top of MDT Papyrus [13],
an open source integrated environment for editing EMF [14]
models and particularly supporting UML and related profiles,
on the Eclipse platform.

Concerning the functional modelling of the system we
follow the component-based pattern [11] where each com-
ponent is equipped with provided and required interfaces
realised via ports and with state-machines and other standard
UML diagrams to express functional behaviour. Moreover, the
Action Language for Foundational UML (ALF) [15] is meant
to be exploited for defining complex behaviours. Functional
models are decorated with extra-functional information either
through MARTE stereotypes or through specific annotations
defined appositely for the purpose. For describing deployment
information we exploit specific concepts provided by MARTE
through which the modeller defines allocation of software
components first to schedulable tasks and then to processing
units.

D. Model transformations

Following the MDE paradigm, a system is developed by
designing models and refining them starting from higher and
moving to lower levels of abstraction until code is generated;
refinements are performed through transformations between
models. A model transformation translates a source model
to a target model while preserving their well-formedness [2].
More specifically, in OptimAll we exploit the following kinds
of model transformation:

• Model-to-model (M2M): which translates between
source and target models that can be instances of the same
or different languages;

• Model-to-text (M2T): which is a particular case of M2M
where the target artefact is represented by text;

• Text-to-model (T2M): that operates in the opposite di-
rection as the M2T, generating a model from a textual
representation.

Moreover, any of these types of model transformations can
be defined as in-place, meaning that source (or one of the
sources) and target are represented by the same model; in this
case, the transformation provides as output an updated version
of (one of) the model(s) in input. Except for the in-place
transformations which are by nature endogenous, the other
transformations entailed in OptimAll are exogenous meaning
that they operate between artefacts expressed using different
languages [2]. M2M transformations are implemented with
the Operational QVT1 language, M2T transformations with
Xpand2, and T2M transformations with Java.

IV. THE OptimAll APPROACH

The goal of the OptimAll approach is to provide support
to the developer in optimizing the deployment, already at
design phase, by iteratively exploiting simulation based on (i)
predicted performance-related EFPs, as well as on (ii) actual
runtime performance-related EFPs gathered by monitoring

1http://www.eclipse.org/mmt/?project=qvto
2http://www.eclipse.org/modeling/m2t/?project=xpand

Fig. 1. The OptimAll Approach

the execution of automatically generated code. In Fig. 1 the
OptimAll approach is depicted; note that the contribution of
this paper provides a solution for the steps grouped in the
dashed box. The approach is meant to operate at design
level starting from a design system model defined in UML
describing functional aspects. Deployment is modelled using
MARTE and encompasses allocation of (i) software entities
to tasks and (ii) tasks to specific processing units. From
the design model, an M2M transformation (Fig. 1.a1) is in
charge of generating an allocation model from which an M2T
transformation (Fig. 1.a2) generates a simulation model to be
fed as input to the task allocation optimization mechanism.
This mechanism performs an iterative search process, where
in each step the simulation model is executed, EFPs are derived
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from the simulation results, and a new allocation candidate is
generated for testing in the next iteration (Fig. 1.b). After the
cycle finishes, it outputs the best allocation it was able to find
(Fig. 1.c). Together with the allocation, the mechanism outputs
the corresponding values of the EFPs and a visual trace of how
the EFPs changed during the simulation (see Section V).

Simulation and optimization results are meant to be back-
propagated (Fig. 1.d) through specific in-place M2M transfor-
mations to the design model in a similar way to what was
proposed in [16]. Selected EFPs would be shown as extra-
functional decorations of the functional model elements they
pertain to, while the optimal allocation is meant to be shown
in the design model through hints to the user by means of
suggested optimal allocation links.

The first run of the task allocation optimization is based
on predicted performance-related EFPs (expert estimations)
and aims at providing a fair approximation of the actual
optimal allocation. In order to reach a solution even closer
to the theoretically optimal, OptimAll will have to exploit
actual runtime values rather than predictions. In order to do
that, the approach will first automatically generate target code
from the design model (Fig. 1.e) taking into account the best
allocation based on predictions (Fig. 1.d). Such an ability is
pivotal in order not to jeopardize the consistency between
modelling artefacts, as well as the validity of simulations and
optimizations run on them, and the final implementation of
the system. In this respect, the generated code is not meant
to be edited by hand. Possible optimizations are indeed not
performed directly through code editing, but rather by re-
iterating the code generation process once the task allocation
has been refined according to the optimization mechanism.

Actual runtime values of EFPs to be exploited by the task
allocation optimization mechanism are gathered by monitoring
the execution of the generated code (Fig. 1.f, 1.g), similarly
to what is proposed in [17]. Once gathered, EFPs are back-
propagated to the design model (Fig. 1.h), and finally the task
allocation optimization mechanism can be re-run leveraging
the back-propagated values. The whole approach is iterated
until the user is satisfied with the identified allocation.

V. SOLUTION

In this section we describe the various steps of the approach
and show how they operate on a running example.

A. Modelling the system

Since in this work we address task allocation to cores,
we focus on the modelling artefacts describing the deploy-
ment. In OptimAll the deployment of software components
to the processing nodes is achieved through two intermedi-
ate layers: (1) a software component is allocated through a
one-to-one connection to a specific schedulable task (stereo-
typed as �swSchedulableResource�), (2) a task is allocated
through a one-to-one connection to a core (stereotyped as
�hwComputingResource�). An excerpt of the deployment
model we will exploit for showing the proposed solution at
work is depicted in Fig. 2.

As mentioned in Section III, we support two kinds of
tasks: (i) periodic (defined as PeriodicTask in the model), and

Fig. 2. Design model

(ii) event-triggered (defined as EventTriggeredTask ). Cores are
defined as Core in the model and they have a main scheduler,
defined in the stereotype’s property mainScheduler that refers
to a scheduler instance (stereotyped as �scheduler�). In
the example two instances sched0 and sched1 of a fixed
priority preemptive scheduler (defined as FPP_scheduler) are
shown.

The allocation links are stereotyped as �allocate�. In
Fig. 2 we can see, e.g., that component c1 is allocated to
task t3, which is in turn allocated to core cc0 with scheduler
sched0. Additionally, since the task allocation optimization
mechanism is based on task chains, we model this information
through directed dependency links called chain; in the coming
enhancements of the approach we plan to introduce a spe-
cific MARTE’s stereotype providing the needed chain-related
attributes for this purpose. In Fig. 2 we can see two chains,
one constituted of periodic task t3, event-triggered task t4
and event-triggered task t2 and the other one constituted of
the sole periodic task t1. In the next increment of OptimAll
we plan to automatically derive this information from the
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connections among software components in order to relieve
the developer from a manual definition of chains which might
be laborious and error-prone for complex systems.

As aforementioned, the model portion depicted in Fig. 2
does not represent the complete running example which in fact
consists of the following elements:

• Event-triggered tasks: t2 = 〈1, 2, 5, cc0〉, t4 = 〈2, 4, 4,
cc0〉, t6 = 〈3, 6, 3, cc1〉, t8 = 〈4, 6, 2, cc0〉, t10 = 〈5, 8, 1,
cc1〉;

• Periodic tasks: t1 = 〈1, 3, 5, cc1, 10, 10〉, t3 = 〈2, 4, 4,
cc0, 20, 20〉, t5 = 〈3, 5, 3, cc0, 20, 20〉, t7 = 〈4, 7, 2, cc0,
25, 25〉, t9 = 〈5, 8, 1, cc0, 50, 50〉;

• Chains: c1 = {t1}, c2 = {t3, t4, t2}, c3 = {t5, t6},
c4 = {t7, t8}, c5 = {t9, t10}.

B. Generating the simulation model

From the system model, the approach automatically ex-
tracts the information needed for running the task allocation
optimization, that is to say tasks, chains, schedulers, cores and
the allocation of tasks to cores. The generation of the simula-
tion model that will be fed as input to the task allocation opti-
mization, is a two-step process. First an M2M transformation
generates an allocation model, conforming to the allocation
metamodel depicted in Fig. 3. From the allocation model,
an M2T transformation generates the actual simulation model,
i.e. the input to the task allocation optimization mechanism.
The reason for such a multi-step approach resides in our
goal to maximise independence of the approach from the
entailed modelling language. In fact, employing the approach
for similar purposes starting from a non-UML system model
would be possible just by redefining the M2M transformation
generating the allocation model, while the rest of the approach
would remain unchanged. Nevertheless, in order to have a full
UML-complaint approach, we aim at bypassing the allocation
model and generate the Java simulation model directly from the
UML–MARTE system model, possibly leaving the allocation
model as an optional generated artefacts.

The allocation metamodel depicted in Fig. 3 represents
the allocation of tasks to cores and it is defined through Ecore
in the Eclipse Modelling Framework3. The main element is
Configuration that contains tasks, chains, schedulers and
cores. Tasks are represented through the abstract metaclass
Task that defines the common properties of a task. Task
is specialised by (i) EventTriggeredTask, which
represents event-triggered tasks, and (ii) PeriodicTask,
representing periodic tasks. Any Task can trigger a number
of EventTriggeredTask and is allocated to, at most,
one Core. Each Core may have a scheduler (Scheduler)
of type NonpreemptivePriorityScheduler or
PreemptivePriorityScheduler. Chains are
represented by the metaclass Chain which points to an
ordered set of Task elements. Once the allocation model4 is
generated, an M2T transformation takes it as input to generate
the simulation model. The simulation model can be seen as
an executable textual representation of the allocation model.
As the optimization mechanism is implemented using Java,

3https://www.eclipse.org/modeling/emf/
4Due to space limitation and to its straightforwardness once defined the

allocation metamodel, we do not show the allocation model.

Fig. 3. Allocation metamodel

the simulation model is a Java class that reflects the allocation
model — it defines the existing tasks, their groupings into
chains and their allocation to the available cores.

C. Task allocation optimization

Task allocation optimization is performed with respect to
end-to-end response times. The goal of the optimization is
to keep the number of deadline misses in the system below
a desired boundary, while minimizing the average response
time for a selected task chain. Generally, the optimization
mechanism is envisioned to be extended for other EFPs.

The simulation model serves as input to the task allocation
optimization. In each step the optimization mechanism exe-
cutes the simulation model, and then derives relevant EFPs
from the obtained simulation results. The EFPs are used
in order to quantify the current allocation candidate against
the best allocation candidate found thus far. If the current
allocation is better than the best one, it becomes the new
best allocation. As last step in each iteration, the optimization
mechanism proposes a new allocation candidate to be tested in
the following iteration. This is done using our custom heuristic,
which takes the best allocation candidate as basis, and then
identifies a task to be relocated to a different core. The more a
task delays other tasks and the more it is itself delayed by other
tasks, the bigger the chance it will be picked for relocation.
When choosing a new core for the picked task, core load is
taken into account — the lower the load of a particular core,
the bigger the chance that the picked task will be allocated
there. More details and an evaluation of the heuristic can be
found in [3]. Having relocated a task means that the simulation
model is updated, and the updated version will be assessed in
the next iteration of the optimization mechanism. After having
performed the desired number of iterations, the optimization
mechanism outputs the best allocation candidate it was able to
find.

Next we illustrate one optimization run, using the running
example. The optimization is set to run for 100 iterations. In
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Fig. 4. Task execution trace

each iteration, the simulation is performed for 1000 time units,
which corresponds to 10 hyperperiods in the running example.
The chain we are optimizing (i.e., whose average response time
is to be minimized) is c2. The limit of allowed deadline misses
is set to 0. The starting allocation results with no deadline
misses for chains c1 and c2, 1 deadline miss for c3, 30 deadline
misses for c4 and 19 deadline misses for c5, so the heuristic
will first try to find an allocation with no deadline misses. Task
t7 is selected for relocation from core cc0 to core cc1. This
new allocation candidate is assessed in the second iteration —
c3 now has no deadline misses, c4 has 11, while c5 has 5.
Since there are now less deadline misses in the system, this
becomes the new best allocation candidate, and the one used
as basis for proposing the next candidate. The optimization
continues in the same way.

The best allocation is found in step 71: it has no deadline
misses and an average response time for chain c2 of 7.46. A
more detailed illustration and assessment of the optimization
mechanism can be found in [3]. Other than the best allocation
specification, as mentioned before, the optimization mecha-
nism outputs a visual trace of the relevant performance metrics
for any desired allocation. The ones currently supported are:
task execution (an excerpt for the best allocation for core cc0
is shown in Fig. 4), core load, task deadline misses and chain
deadline misses.

VI. OUTLOOK

In this paper we introduced the OptimAll approach for
model-driven deployment optimization of multicore embedded
soft real-time systems. Besides an overall description of the
foundations of the approach, we described in more details
the core modelling and prediction-based optimization phases.
From a deployment model, we showed how OptimAll auto-
matically generates an input model for the task allocation op-
timization mechanism and then iteratively runs the simulation
in search for a good allocation candidate. In the ongoing work
we started to address the steps of the approach that were not
covered by this contribution:

• Automatic code generation: from system models we aim

at generating instrumented code tailored for multicore,
which can be executed and monitored to gather the
information needed to optimise deployment;

• Monitoring: when executing code, we want to be able
to observe and gather selected EFPs through specific
extensions to the platform (e.g., monitoring routines at
OS-level);

• Back-propagation of EFPs: the values resulting from
model-based simulation described in this work as well as
the values gathered at runtime through monitoring shall
be propagated back to the system models, in the form
of both extra-functional decorations as well as computed
textual/graphical allocation hints, for user’s investigation.

Moreover, regarding the phases described in this paper, future
enhancements will cover: (i) the automated generation of
task chains from message passing and function calls among
software components instead of manually modelling them, (ii)
the entailment of multi-branch chains meant as the possibility
for one task to be triggered by or to trigger several tasks.
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Abstract—In recent years a series of important achievements
have paved the way for the introduction of probabilistic
analysis in the area of soft real–time systems design. In this
paper, we present an extensible design tool that facilitates
the access to this technology for a potentially large number
of researchers and industrial practitioners. Although the tool
is currently limited to single–task applications, it enables
probabilistic analysis of the temporal performance of real–time
tasks under fixed priority and reservation based scheduling.
In case of resource reservations, the tool also supports the
synthesis of scheduling parameters that optimise a quality
metric related to the probabilistic behaviour of the tasks.

Keywords-Soft real–time systems, Probabilistic Guarantees

I. INTRODUCTION

In the classic context of hard real–time systems, a system

consists of a set of tasks; each one generates a stream of jobs

that have to terminate before a deadline. For soft real–time

systems this requirement is too strict and can be revisited in

a probabilistic sense. One of the possibilities is to specify a

probability for the termination of a task within a deadline,

or more generally, a desired distribution of the delays.

It is argued that the Quality of different type of industrially

relevant applications can be easily related to such prob-

abilistic metrics. This consideration, along with the ever-

increasing variability of modern real–time applications, has

stimulated an intense research on probabilistic real–time

systems. A very important line of work is on the probabilistic

generalisation of analysis technique initially developed in the

hard real–time domain such as time demand analysis [1] and

computation of the response time of tasks scheduled with

fixed priority and with stochastic computation time [2], [3],

the inter-arrival time [4] or both [5].

Other papers assume reservation based scheduling [6].

In a reservation-based scheduler tasks enjoy the temporal

isolation property, which allows the designer to decouple

the behaviour of the different tasks. Based on this, Abeni

et al. [7] have proposed an analysis technique based on

queueing theory for reservation-based schedulers. Recently,

approximated solution techniques have been proposed to

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement n ICT-2011-288917 DALi - Devices for Assisted Living
and by the HYCON2 NoE, under grant agreement FP7-ICT-257462.

decrease the complexity of the algorithm used to compute

the probability of meeting the deadline [8], [9].

The time is ripe to make some of the most effective

techniques for probabilistic analysis of real–time systems

available to a wide community of researchers and industrial

practitioners. This is the purpose of the PROSIT (PROba-

bilistic deSIgn of real-Time systems) tool, which is based on

two important concepts: stochastic analysis of soft real–time

systems and definition of a quality metric which depends

on probabilistic deadlines. In the recent literature, it is

shown that the analysis of the stochastic behaviour of real–

time tasks can be reduced to that a of particular class of

discrete–time Markov Chains (DTMC) called Quasi-Birth-

Death process [10]; this holds both for fixed priority schedul-

ing [2], [3] and for resource reservations [8]. This property

allowed us to use some of the most efficient numeric and

analytic algorithms [11] as a basis for the implementation

of the system analysis. The definition of the Quality as a

function of the probability of meeting deadlines (or more

generally of the distribution of the delays) allowed us to

revisit in a probabilistic framework the ideas proposed in

such frameworks as QRAM [12], and to develop algorithms

for the optimal choice of the scheduling parameters.

II. PROBLEM PRESENTATION

In this paper, we consider a set of independent applica-

tions each one composed of various real–time tasks. The

applications share the same computing resources, but do not

interact in other ways. In this paper, we restrict our focus to

single-task applications, reserving extensions to multi-task

applications for our future work.

A real-time task τi is a stream of jobs Ji,k; job Ji,k
arrives (becoming executable) at time ri,k, finishes at time

fi,k after executing for a time ci,k, and is characterised

by a deadline di,k = ri,k + Di, (where Di is the relative

deadline of τi). We consider a generalisation of the tradi-

tional notion of deadline, called probabilistic deadline [7].

A probabilistic deadline is a pair (δi, pi), where pi is the

steady-state probability of respecting a relative deadline δi
(di,k = ri,k + δi). The probabilistic deadline is respected

if Pr {fi,k ≤ ri,k + δi} ≥ pi. It is possible to specify

a sequence of probabilistic deadlines for τi,
(

δ
(1)
i , p

(1)
i

)

,
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(h)
i ≥ p

(f)
i if δ

(h)
i > δ

(f)
i ,

formulating in this way a specification on the distribution

of the delays.

The computation time of each job ci,k is a stochas-

tic process Ui described by the probability mass function

(PMF) Ui(c) = Pr {ci,k = c}. Likewise, the inter-arrival

time (the distance between two subsequent activations) is

assumed to be a stochastic process Ii with PMF Ii(t) =
Pr {ri,k+1 − ri,k = t}. As a special case, when the Ii(t)
distribution is given by a Kronecker delta centred in Ti

(Ii(t) = δ(t− Ti)) the task is periodic of period Ti.

A. Application Quality

While probabilistic deadlines effectively capture the real–

time constraints, the quality perceived by the user of the

application is not immediately expressed by such quantities.

Much more useful is a quality index µi, which is necessarily

application specific and is related to the design choices.

This index is related to the probabilistic deadlines by a

functional dependence. In the simplest case, we can consider

a single probabilistic deadline where δi is equal to the

relative deadline Di. In this case the index µi is a monotone

non decreasing function of probability pi. More generally,

if we consider a sequence of probabilistic deadlines, µi is a

function of the vector
[

p
(1)
i , . . . , p

(Hi)
i

]

.

Our notion of a Quality function is inspired to the QRAM

framework [12]. However, QRAM assumes a functional

dependence between scheduling parameters and µi, which

can be difficult to identify. On the contrary, we relate

the quality to the probabilistic temporal behaviour of the

task, which depends on the scheduling parameters in non-

obvious ways. This allows the designer to reason about the

system quality in a natural conceptual framework without

committing to any particular scheduling policy.

As an example, in the domain of control applications,

a quality index of this kind could be the steady state

covariance of the controlled plant state, which is known to

be a function of the distribution of the delays [13]. Likewise,

for a media processing application, we can define µi as the

PSNR or SSIM between the original media and the one

reproduced by the application [14]. Under the assumption

that video frames decoded by jobs finishing late are not

displayed, when a deadline is missed the PSNR or SSIM

is computed using the last frame decoded in time [15] and

degrades with the frequency of this event.

B. Scheduling

Although fixed priority scheduling [16] is probably not the

best possible choice for soft real–time systems, its enormous

popularity suggested us to consider it within the PROSIT

framework.

A more reputable scheduling choice for this domain

are the so called CPU Reservations [6]: each task τi is

associated with a reservation (Qs
i , T

s
i ), meaning that τi is

guaranteed to execute for Qs
i (budget) time units in every

interval of length T s
i (reservation period). The PROSIT tool

operates with any reservation scheduler as long as it respects

the temporal isolation property: the amount of computation

time Qs
i is reserved to τi regardless of the behaviour of the

other tasks. The ratio Bi = Qs
i/T

s
i is termed bandwidth and

corresponds to the fraction of CPU allocated to the task.

C. The Analysis and the Synthesis problem

The first problem we address, called the Analysis Prob-

lem, can be shortly described as follows: given a set of

applications, each one characterised by its probability dis-

tributions, a quality function, a scheduling algorithm, a set

of scheduling parameters pari and a sequence of proba-

bilistic deadlines, decide if the steady state probabilities
[

p
(1)
i , . . . , p

(Hi)
i

]

are respected and compute the Quality µi

for each of the applications. The scheduling parameters pari
are given by the priorities prioi for a fixed priority scheduler

and by the pair (Qs
i , T

s
i ) for a resource reservation scheduler.

In the analysis problem the scheduling parameters are

assumed chosen by the designer. The synthesis problem

is different since it requires the computation of optimal

scheduling parameters. The idea is that a choice of schedul-

ing parameters determines a set of steady state distribution

and hence a different quality for each of the applications.

The different qualities can be collected to form a global

quality function f(µ1, . . . , µn). The synthesis problem can

be expressed as maxpar
1
,..., par

n
f(µ1, . . . , µn) subject to

µi ≥ li and to a schedulability condition. An example of

schedulability condition for resource reservations is CPU

time allocated to the different tasks cannot exceed a specified

value
∑n

i=1 Bi ≤ U lub [7].

III. OVERVIEW OF THE TOOL

The typical workflow in using the PROSIT tool are

sketched in Figure 1, which represent two use cases related

to the solution of the problems described above.

A. The Analysis Problem

For the analysis problem (top half of the figure), the

designer is required to provide the definition of the task set

that he/she wishes to analyse.

If the chosen scheduling algorithm is resource reservation,

in order to analyse one task the user only needs to provide

its timing requirements (distribution of the inter-arrival time

Ii(t) and of its computation time Ui(c)) and its scheduling

parameters (Qs
i and T s

i ). This is because the temporal

isolation property allows decoupling the analysis of the

different tasks. On the contrary, if fixed priority scheduling

is used, the analysis is possible only for periodic tasks

and requires the knowledge of the temporal requirements

of the task and of all those having a higher priority [2],

[3]. The distributions can either be chosen from a library

(e.g., uniform, beta, Gaussian, etc.) customising the required
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parameters or specified in a file. In addition to specifying

the task set, the user also chooses a solution algorithm for

the probabilistic analysis and the Quality evaluator (i.e., the

function µi relating the application quality to the proba-

bilistic deadlines). This information can be inserted using

command line parameters or a system specification file.

As a result of the tool invocation, a C++ object is gener-

ated that captures all the information required for the anal-

ysis. One of the methods of this object (solve) computes

the probabilistic deadlines. This is a virtual method, which

is overloaded with the specific solution strategy chosen by

the user. The quality corresponding to the distribution of the

probabilities for the probabilistic deadlines is computed by a

different method (Quality), which is itself virtual to allow

for different quality models. The tool prints the result and

the computation time to screen (and/or to a file).

B. The Synthesis Problem

The solution of the synthesis problem is currently avail-

able only for the resource reservations. The tool requires

a system specification file containing a description of the

temporal information of all the tasks (see Figure 1). For

each task, the user specifies the temporal parameters, the

server period T s
i , the solution algorithm, the Quality function

and the minimum required value for the quality. The budget

Qs
i is computed by the optimisation algorithm. One could

legitimately argue over the choice of fixing T s
i and leaving

Qs
i as decision variable. The motivation is rooted in the

philosophy of the resource reservations, in which T s
i is used

to control the granularity of resource allocation, while Qs
i

is used to control the bandwidth.

In the system specification file, the user also specifies

the global quality function f . This function composes the

quality associated with each application, which is a non-

negative real number. Possible choices are the infinity

norm - f(µ1, . . . , µn) = maxni=1 µi - and the one norm

- f(µ1, . . . , µn) =
∑n

i=1 µi. After the tool execution is

started, the parser generates C++ object instances for each

task and hands them over to the optimiser (which is itself a

C++ object). The optimisation algorithm iteratively calls the

quality method of the task (and indirectly the solve

method) to compute the quality associated to a choice of

decision variables or to estimate the gradient and eventually

produces the optimal choice of parameters.

A possible workflow to derive the information required

by the PROSIT tool for its operations is shown in Figure 2:

the application is executed on a real (instrumented) kernel

(for example, the Linux kernel with ftrace) to extract

information about the tasks’ inter-activation and execution

times, etc. Such information is then inserted in a system

specification file, which is used by PROSIT to define the

type of problem (analysis or synthesis), describe the taskset,

specify the scheduler, and provide a Quality model. Each

task is associated with a symbolic name and a type, that

can be chosen from a library of existing types. A task type

is associated with a solution algorithm for the probabili-

ties (in the example the analytic bound [9]) and with the

quality computation. In the tasks definition it is possible to

specify inter-arrival times and execution times (both inter-

arrival and execution times can be constant or described

by a Probability Mass Function). The user-provided Quality

model is specified by a type (chosen in a library) and by

a set of parameters. For example, it is possible to adopt a

simple linear model (see Section VI for more details) with a

lower bound for the quality of service. An important problem

is how to derive the computation requirements of the task

(distribution of computation time, period, distribution of the

inter-arrival time). This is relatively easy if the designer is

in control of the source code and can instrument it with

probes pinpointing the start and the termination of each job.

The task is much harder for legacy applications and can

be accomplished using two external modules: a tracer that

operates inside the kernel and notes all the events related to

the application and an event analyser, which detects periods

and estimates the distribution of the computation time.

C. The Application Programming Interface

The tool is based on a C++ library designed to be flexible

and extensible. Most of the features of the tool are exposed

to the software developer through an API for the possible

benefits of using some of the library components outside the

PROSIT tool. For instance, one could use the library for an

admission test based on probabilistic deadlines.

The library can be easily extended in several directions by:

1) the definition of new solution algorithms for probability

computation, 2) the definition of new quality metrics, 3) the

definition of different distribution types, 4) the definition

of different optimisation algorithms. In some cases, such

extensions are made by sub-classing and redefinition of a

few methods. In others (e.g., for the quality metrics), the

user has to define her/his own function objects using a

factory design pattern [17], along with a couple of auxiliary

functions for XML parsing, which make the newly defined

extensions readily accessible within the tool.

IV. ALGORITHMS ANALYSIS AND SYNTHESIS

A. Probabilistic Analysis

The cornerstone of our tool is the probabilistic analysis.

For the sake of brevity, let us focus on periodic tasks using

reservation-based scheduling. As shown in the literature [7],

a stochastic process vi,j can be introduced to model the

amount of time to be executed after the arrival of the jth

job Ji,j . The initial backlog vi,0 is obviously equal to ci,0
and vi,j+1 can be easily computed as

vi,j+1 = max{0, vi,j −NiQ
s
i}+ ci,j+1 (1)

where Ni = Ti/T
s
i is an integer number describing

the number of reservation periods contained in the task
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period Ti. This model is easily generalised to the case

of aperiodic tasks (making the conservative simplification

that the activation of each job is considered only at the

beginning of a reservation period) [8] and describes the

evolution of a discrete–time Markov Chain (DTMC). A very

important feature of this model is its recursive structure,

leading to which qualifies the DTMC as a Quasi-Birth-

Death (QBD) process. As discussed by Diaz et al. [2],

if one considers the probabilistic a set of tasks scheduled

by fixed priority, the analysis reduces to one of a DTMC

having the same structure. This consideration are of the

greatest importance because very effective numeric solutions

exists for QBD processes. In particular, in the PROSIT tool

we have implemented logarithmic reduction [18] and cyclic

reduction [11]. The two implementations can serve as a

template for the implementation for any of the plethora of

algorithms documented in the literature [10].

Given the specific structure of the QBD, it is also pos-

sible to compute an analytical bound for the probability of

deadline miss. The algorithm is shown in [9]; as discussed

in the paper and shown in the experimental section this

bound is particularly useful in the synthesis problem for the

computation of suboptimal solutions of acceptable quality

with substantial savings of time.

Procedure 1 Solve Optimisation

Input: taskList; /*List of the tasks */; µ
i
; /* Lower bounds for quality*/

Output: µ; /*optimal value */ Qs
i ; /* Optimal budgets */

1: BA = 1.0;
2: ∀i µi = τi.reservationPeriod();

3: if
∑

τi∈taskList

τi.invQuality(µ
i
)

τi.reservationPeriod()
> 1.0 then return UNFEASIBLE;

4: end if

5: µ = mini=1, ..., n µ
i
; µ = mini=1, ..., n µi

6: for τi ∈ taskList do
7: Qs

i = τi.invQuality(µ);
8: if Qs

i < τi.invQuality(µi
) then Qs

i = τi.invQuality(µi
);

9: taskList− = τi;BA− =
Qs

i

τi.reservationPeriod()
;

10: end if

11: end for

12: if
∑

τi∈taskList

Qs

i

τi.reservationPeriod()
< 1.0 then

13: µ = µ;
14: else

15: while µ− µ > 0 do

16: µ =
(

µ+ µ
)

/2;

17: for τi ∈ taskList do
18: Qs

i = τi.invQuality(µ);
19: if Qs

i < τi.invQuality(µi
) then Qs

i = τi.invQuality(µi
);

20: taskList− = τi;BA− =
Qs

i

τi.reservationPeriod()
;

21: end if

22: end for

23: if
∑

τi∈taskList

Qs

i

τi.reservationPeriod()
< BA then µ = µ

24: else µ = µ
25: end if

26: end while

27: end if

B. Synthesis

As discussed in Section II, the synthesis amounts to the

solution of optimisation algorithm, which in the current

version of the tool is possible only for resource reservations.

The solution is very efficient when the infinity norm is

used and the following assumption can be made: the quality

increases if the budget reserved to the application, and

hence the probability of meeting the deadline increases. In

all cases of practical relevance that we have examined, this

assumption is easily verified.

The monotonicity of the function allows us to apply the

efficient solution algorithm reported in Procedure 1. The

first lines of the algorithm (3 through 5) are to verify if the

total bandwidth required to attain the lower bounds of the

specification exceeds 100%, the problem being unfeasible in

this case. The search for the optimal solution is reduced to

within two bounds (line 6); the lower one (µ) derives form
the lower bound constraints, while the higher one is obtained

by assigning 100% of the bandwidth to the task (Qs
i = T s

i ).

The method invQuality computes the budget required

to attain a specified level of quality; since the Quality is

assumed monotone increasing, the inversion can be carried

out by a simple dichotomic search. The operation can be

expensive because it entails repeated calls to the solve

method. The code segment between line 7 and 15 computes

the budget required to each task for the upper bound µ. If
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some of the tasks is constrained to a lower bound µ
i
higher

than µ, this task is removed from the subsequent search

phases and it is allocated a bandwidth sufficient to attain its

lower bound. The execution of the algorithm is terminated if

the total required bandwidth is lower than 100% (meaning

that µ is attainable and is therefore the optimum). In the

opposite case, a binary search is carried out, in which the

same steps applied to µ between line 7 and 15 are applied to

the midpoint between µ and µ. The search is stopped when

the two extreme coincides. It can easily be shown that this

algorithm converges to the optimum.

V. EXTERNAL MODULES

As shown in Figure 2, the distributions of the execution

and inter-arrival times U(c) and I(t) can be extracted by

analysing the execution traces of the task. As an example,

the external tool TrcUtils [19] can be used for this purpose.

The tool uses the Linux ftrace functionality to capture

such traces and is organised as a pipeline of trace filters: the

first stage of the pipeline (the import filter) transforms the

text traces generated by ftrace (which contain redundant

information) into an internal binary format, which only

contains the relevant information and can be used by later

stages of the pipeline. The next stages of the TrcUtils

pipeline consist of a second set of filters that export traces in

different formats, parse the internal format to gather various

statistics about tasks execution, display the schedule, etc. In

this context, the interesting functionality is the generation

of PMFs of the execution and inter-arrival times, which can

be exported by a new filter into the PROSIT XML format.

Currently, this mechanism operates correctly only for self-

suspending tasks (that is, real-time tasks for which a job

never blocks, and the task blocks only at the end of each

job). Work is being done to overcome this limitation taking

inspiration from other techniques [20].

Another important activity supported by external tools is

the generation of the mapping between probabilistic dead-

lines and applications’ quality. Work is in progress to use the

PSNRTools to evaluate the quality of media processing tasks,

based on the PROSIT outputs. PSNRTools is a set of video

processing tools that can encode an original video stream

according to some specified parameters (using ffmpeg) and

remove some parts of the video that have been lost or

corrupted by some processing application to generate an

output stream. A list of lost frames can be generated, for ex-

ample, by considering the probabilistic deadlines computed

by PROSIT. PSNRTools can then evaluate the differences

between the output stream and the original uncompressed

video stream, by computing the PSNR or SSim between

them; when a frame is lost, the quality index is computed

by using the latest correct output frame (a behaviour similar

to the one of a real player).

VI. APPLICATION EXAMPLES

In order to show the application of the tool, we considered

a scenario where four periodic real–time applications are

scheduled through a reservation-based scheduler. In Ta-

ble I we report for each task period (Ti), server period

(T s
i ), a triplet describing its computation time (where the

first two elements are the best and worst case execution

times and the third element is the distribution), the lower

bound for the QoS µ
i
and the quality of service func-

tion. By βa, b we denote the beta distribution βa, b(c) ∝

r(c)a−1 (1− r(c))
b−1

defined over the range [cmin, cmax],
where r(c) = (c− cmin) / (cmax − cmin). The Quality is,

in this example, a very simple function of the probability

p of meeting a deadline set equal to the period. Specifi-

cally, linearpmin, pmax, α(p) denotes a function equal to 0
if p ≤ pmin, to α (p− pmin) if pmin < p < pmax and

α (pmax − pmin) for p ≥ pmax. We have executed the

synthesis procedure using the infinity norm as the global cost

function. This was done using as solvers both the analytic

bound [9] and the cyclic reduction (CR) [11]. The former

produces a conservative bound on the probability of meeting

the deadline. Thereby, an optimisation algorithm based on

the analytic bound simply produces suboptimal solutions. On

the contrary, the CR solver produces an exact solution for

the probability (within the limits of a numeric solution) and

hence the application of the optimisation algorithm described

in the previous section produces the optimal solution.

The results of the optimisation using analytic bound and

CR are reported in the second and in the third group of

columns of Table I. In particular, we report the optimal value

of the budget, the corresponding probability of meeting the

deadline and the value of the quality function. In order to

make a fair comparison, we have re-evaluated the probability

for the optimal budgets using an exact solver (CR) also

for the analytic solution. The CR solution clearly produces

a closer approximation of the optimal as compared to the

suboptimal produced by the analytic solution. Indeed, the

infinity norm of the quality is 0.45 for CR and 0.36 for

the analytic bound. But, the computation time was 15744
µs for the analytic bound and 8963983 µs for CR. These

computation times have been measured on a MacBook Air

equipped with an Intel Core I7 dual processor operated at

1.7Ghz and with 8GB of RAM; the tool was compiled with

a gcc 4.7.3 and -O8 optimisation switch. As a preliminary

observation, the analytic approach is viable if a quick

computation is required (e.g., if the tool is used on-line),

while the exact approaches are preferable when an offline

execution of the tool allows for a more precise solution.

VII. CONCLUSIONS

We have described a software tool for probabilistic design

of real–time systems called PROSIT, shown concrete use

cases and discussed its algorithmic foundations. An intense
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Table I
EXPERIMENTAL RESULTS

Task Description Analytic Sol. CR Sol.

Task T T s
i [cmin, cmax, Ui(c)] µ Quality func. Qs

i pi µ Qs
i pi µ

τ1 400 200 [10, 370, β1.5, 15.1] 0.1 linear0.01, 0.85, 0.7 31 0.67 0.46 30 0.67 0.46
τ2 600 100 [20, 560, β1.5, 10.1] 0.1 linear0.01, 0.92, 0.5 27 0.86 0.42 30 0.92 0.45
τ3 300 100 [20, 260, β1.5, 8.1] 0.1 linear0.01, 0.7, 1.1 26 0.69 0.74 24 0.56 0.61
τ4 300 100 [20, 200, β1.5, 8.1] 0.1 linear0.01, 0.95, 0.5 23 0.73 0.36 28 0.92 0.46

development activity covering a significant number of fea-

tures of the tool, such as a full support for fixed priority, and

different optimisation algorithms, is currently ongoing. From

the modelling point of view, we are looking at different types

of real–time applications (e.g., multi-task and distributed

applications); the analysis of real applications will extend

the library of available quality functions.
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Abstract—In this paper, we present SimSo, a simulator de-
signed for the comparison and the understanding of real-
time scheduling policies. This tool is designed to facilitate the
implementation of schedulers in a realistic way. Currently, more
than twenty-five scheduling algorithms are available in SimSo. A
particular attention is paid to the control of the computation time
of the jobs therefore introducing more flexibility, for instance by
taking into account cache-related preemption delays. In addition,
SimSo offers an easy way to generate the tasksets, to perform
simulations and to collect data from the experiments.

I. INTRODUCTION

Davis and Burns referenced more than thirty real-time
multiprocessor scheduling algorithms in 2011 [11] and more
than a dozen of new algorithms have emerged since then,
e.g. [26], [22]. Such a large number of scheduling algorithms
makes their evaluation and comparison difficult. The evalua-
tion generally comes from theoretical analysis, simulation or
an actual implementation, according to criteria that can include
utilization bounds, success rates, number of preemptions,
migrations, and/or algorithm complexity.

Our long-term objective is to compare the various sched-
ulers with ease while taking into account the capacity of the
hardware architecture (e.g. caches, dynamic frequency scaling,
or system overheads) to have an effect on their performance.
This effect is currently very difficult to evaluate using theoret-
ical analyses such as schedulability tests or resource augmen-
tation. On the other hand, while using a real system would
seem to be a better approach, the effective implementation
of a scheduler as an operating system component requires a
substantial amount of time and the results are too specific
to the system. As a consequence, we think that simulation
could be a good compromise to efficiently evaluate scheduling
algorithms.

This paper deals with SimSo, our tool to simulate mul-
tiprocessor real-time schedulers and that aims at facilitating
the design of experimental evaluations. In a prior publication,
some design choices regarding the simulation kernel have
been presented [7]. More recently, we showed using SimSo
how the use of the WCET could bias the evaluation of
scheduling algorithms and how the impact of the caches could
be integrated in the simulation [8]. As a consequence, the
concept of execution time model was introduced.

Contribution. This paper presents SimSo and the main nov-
elties that now enable to conduct large scheduling evaluations
using it. It is indeed possible to automate the simulation of
scheduling algorithms from the generation of the systems to
the collection of the resulting data. The main task generators
are now included and the number of available schedulers
increased from five to more than twenty-five. Our methodology
to automate the evaluation of multiple scheduling algorithms
is described through an example.

Paper organization. The remainder of this paper is orga-
nized as follows: in Section II, related work is summarized.
Section III presents SimSo, and Section IV shows how it can
be used through an example. Finally, Section V provides some
concluding remarks and envisages future work.

II. RELATED WORK

Our work addresses the evaluation of the performance of
scheduling algorithms using empirical measures. Empirical
evaluations of scheduling algorithms focus on the overheads
involved in scheduling decisions. The main studied causes of
overheads are context switches, preemptions, migrations and
computational complexity. Two approaches are typically con-
sidered to evaluate them. The first one is based on measured
performance on a real platform with a dedicated operating
system, e.g. the experiments done with LITMUSRT [4], an
extension of the Linux Kernel developed at the University
of North Carolina, or the experimental work of Lelli et
al. [20] on a dedicated implementation of Linux with RM
and EDF multiprocessor schedulers. This method could also
be conducted on a cycle-accurate simulated architecture with a
real operating system as in [31]. The second approach is to use
tools dedicated to the simulation of real-time systems. Most of
these tools are designed to validate, test and analyze systems.
MAST [16] proposes a set of tools to model and analyze
distributed real-time systems with, for instance, feasibility tests
or sensitivity analyses. MAST also includes a simulator, JSim-
MAST. Cheddar [28] proposes a GUI comprising a simulator,
many feasibility tests and it is also used to simulate AADL
models. RTSIM [5] is a collection of programming libraries
for the simulation of real-time control systems. It is used in
particular for experimenting new scheduling algorithms. The
last version was published in 2007.
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STORM [30] and YARTISS [6] are the closest tools to
what we aim. They offer a simulator to conduct evaluation
on scheduling algorithms with the possibility to easily join
new scheduling policies. However, due to its time triggered
simulation engine, STORM does not provide an efficient
way to model the unit of time below a tick of simulation
which is a significant limitation for us. YARTISS is certainly
the most suitable tool to evaluate scheduling algorithms by
considering overheads or hardware effects. However, we began
the implementation of our tool in 2011, before YARTISS was
published. Moreover, its design is focused on the study of
energy consumption and customizing it for our needs would
have been difficult.

III. SIMSO

To facilitate the experimentation of scheduling algorithms,
we thus propose a dedicated tool: SimSo1, a real-time schedul-
ing simulator designed to be easy to use as well as extend. This
software is freely available under an open source license.

The design of SimSo has been driven by the components
available in real systems so that practical issues regarding the
implementation can be taken into consideration. Such issues
would have been hard or even impossible to integrate into
theoretical studies.

A. Architecture

The core of SimSo relies on SimPy2, a process-based
discrete-event simulation framework. The use of discrete-event
simulation allows it to deal with short and long durations at the
same cost. Its process-based nature offers a convenient way to
express the behavior of the simulated components.

The characteristics of a system are modeled by a Con-
figuration object that contains all the information about the
system (tasksets, processors, duration, scheduler, etc). This
object provides some methods to configure the system but also
to save it into an XML file.

Figure 1 shows the main classes of SimSo and their mutual
interactions. The design of SimSo is inspired by real systems:
there are processors, tasks, jobs, timers, etc. Each of these
objects simulates the behavior of the corresponding part on
the system: Tasks release the jobs; Jobs emulate the execution
of the task’s code; Timers can launch a method on a processor
at a given time; etc. The instances of Processors are actually
the central part of the simulation because they simulate both
a processor and the operating system executing on it. Each
processor can execute a job or be interrupted to execute a
method of the scheduler. Finally, the Scheduler object is not an
active process. It could be considered as a part of the operating
system and as a consequence, its methods are only called by
the Processors.

The Model object is the conductor of the simulation. It takes
as a parameter the Configuration object. When the run model
method is called, the objects described above are created and
launched.

1SimSo: http://homepages.laas.fr/mcheramy/simso/
2SimPy: http://simpy.readthedocs.org/

Fig. 1. Interactions between main class instances. Processor, Task, Job and
Timer are Process objects and can have multiple instances.

The design of SimSo allows it to take into consideration
various time overheads that occur during the life of the system.
This includes direct overheads such as context-switches and
scheduler calls (with fixed time penalties) but also indirect
overheads with a simplified system of locks to forbid the
parallel execution of a scheduler if needed. Such overheads
are applied on the processor they are supposed to occur (e.g.
the time spent in the scheduler is taken into account on the
processor that called the scheduler).

We would also like to draw attention to the fact that the
above-mentioned overheads only consume extra-time without
changing the time used to execute the jobs. Indeed, as an
example, these overheads do not take into account the possible
cache misses that could slow down a job and increase its
duration. This important aspect can also be taken into account
by SimSo and is explained in section III-D.

B. Writing a Scheduler

The first requirement for the experimentation of a real-
time scheduling policy is, undoubtedly, a way to specify the
algorithm. This should be able to deal with any kind of online
scheduler: global, partitioned, semi-partitioned, etc. Moreover,
the implementation of a scheduler in a simulator should also
be realistic in the sense that it should rely on mechanisms
available on a real system. For instance, the choice of which
processor should run the scheduler may have an impact on
the performance or even the schedulability. Another example
is the finite precision of the timers: this may introduce a tiny
difference compared to the theoretical schedule and cause a
major issue.

One of the advantages of using a simulator is to simplify
the experimentation. Writing a scheduler should therefore be
as easy as possible and rely on useful methods. We decided to
use Python, a high-level language that benefits from a growing
interest from the scientific community (e.g. the SciPy project).
In practice, most of the schedulers that we have implemented
contain less than 200 lines of code. The language is different to
the one that would be used on a real implementation, however,
this does not change the underlying algorithms and logic.

A scheduler for SimSo is a Python class that inherits
from the Scheduler class and is loaded dynamically into the
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simulator. The following methods must be implemented:
• init: The init method is called when the simulation starts,

it is used to initialize the scheduler.
• on activate: This method is called whenever a job is

activated.
• on terminated: This method is called when the execu-

tion of a job is done or when a job is aborted.
• schedule: This method returns the scheduling decisions.

This method is called when a processor has been re-
quested to take a scheduling decision. This request is
usually done during a job activation, a job termination
or by a timer.

As an example, figure 2 shows the source code of a global
multiprocessor Earliest Deadline First scheduler3.

from simso.core import Scheduler

class G_EDF(Scheduler):
def init(self):

self.ready_list = []

def on_activate(self, job):
self.ready_list.append(job)
# Send a "schedule" event to the processor.
job.cpu.resched()

def on_terminated(self, job):
# Send a "schedule" event to the processor.
job.cpu.resched()

def schedule(self, cpu):
decision = None # No change.

if self.ready_list:
# Look for a free processor or the processor
# running the job with the least priority.
key = lambda x: (1 if not x.running else 0,

x.running.absolute_deadline if x.running else 0)
cpu_min = max(self.processors, key=key)

# Obtain the job with the highest priority within the ready list.
job = min(self.ready_list, key=lambda x: x.absolute_deadline)

# If the selected job has a higher priority
# than the one running on the selected cpu:
if (cpu_min.running is None or

cpu_min.running.absolute_deadline > job.absolute_deadline):
self.ready_list.remove(job)
if cpu_min.running:

self.ready_list.append(cpu_min.running)
# Schedule job on cpu_min.
decision = (job, cpu_min)

return decision

Fig. 2. Code of a global multiprocessor Earliest Deadline First scheduler.

C. Available Schedulers

In order to check the ability to express a wide range
of algorithms, we have already implemented more than 25
schedulers. The main uniprocessor schedulers, RM, DM, FP,
EDF and M-LLF [24] are available. The DVFS schedulers
Static-EDF and CC-EDF [25] are also available.

The library of schedulers provided with SimSo also includes
a large variety of multiprocessor real-time scheduling algo-
rithms, from partitioning to global ones.

The partitioned approach forbids migrations and neces-
sitates a static allocation of the tasks to the processors.
The schedulers P-EDF and P-RM are available (they use
the Decreasing First-Fit assignment algorithm). Moreover, a
dedicated class is provided in SimSo to offer the possibility
to choose any uniprocessor scheduler and one of the available

3A minor modification to this code would reduce the number of migrations
by executing a job in the same processor than its previous execution.

assignment algorithms (First-Fit, Next-Fit, Best-Fit, Worst-Fit,
with or without an initial sorting). This class is intended to
ease the development of a partitioned scheduler, but it is not
mandatory.

On the other side, when migration is permitted, scheduling
algorithms are referred to as global. A first category of global
schedulers use a single list of active tasks and assign a priority
to each task. For an architecture with m processors, the m
jobs with the highest priority run in parallel. The following
algorithms belonging to that category are available in SimSo:
G-RM, G-EDF, G-FL [13], EDF-US [29], PriD [18], EDZL,
M-LLF [24] and more recently U-EDF [22].

Baruah introduced the concept of fairness as a way to
achieve optimality in terms of schedulability. SimSo provides
such PFair schedulers with PD2 and its work-conserving
variant ER-PD2 [1]. Subsequently, it was demonstrated that the
fairness constraint could be released to only apply at the job
boundaries and thus could reduce the number of preemptions
and migrations. This led to the BFair and DP-Fair techniques.
We have implemented such schedulers: LLREF [9], LRE-
TL [15], DP-WRAP [21], BF [31] and NVNLF [14].

In order to reduce the number of migrations, some hy-
brid approaches, termed semi-partitioned approaches, combine
the advantages of global and partitioned scheduling. At the
present time, SimSo proposes three semi-partitioned sched-
ulers: EDHS [19], EKG [2] and RUN [26].

D. Execution Time Model

When simulation is used to study the schedulability of
a system, it is usual that the tasks meet their worst-case
execution time at each job. However, the use of the WCET
is in fact very pessimistic: the worst-case is an upper-bound
that is hardly reached by the jobs, and it is even less likely
that the jobs of all the tasks meet their WCET at the same
time. As a consequence, we believe that the WCET approach
should not be the only way to compare policies in terms
of performance. It is non-realistic and gives an advantage to
some scheduling policies that highly depend on the WCET.
Relatedly, schedulers capable to take benefits from shorter
computation times cannot be fairly evaluated. In [8], we give
some experimental results that illustrate this fact.

Also, many scheduling evaluations only focus on the num-
ber of preemptions and migrations because they are the source
of overheads. A preemption induces a system overhead due to
the context-switching, but it may also increase the computation
time of a job by causing extra cache misses. In fact, Mogul and
Berg have shown that the Cache-Related Preemption Delays
(CRPD) are more important than the system overheads. To
increase realism, it is essential to integrate CRPD within the
computation time of the jobs.

As a consequence of the two previous remarks, it is
desirable to have the possibility to simulate a system with
customized durations of jobs, depending on the purpose of the
simulation. In SimSo this point is achieved with the Execution
Time Models (ETM). An ETM is a class that determines the
duration of the jobs during the simulation. Figure 3 shows
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the communication between a job and the ETM object (there
is a single ETM object for all the jobs). The ETM object is
informed by the jobs of any scheduling event. The job will
use the get ret method to get a lower bound of its remaining
execution time and, when that time is up, the job calls that
method again until it returns 0.

Fig. 3. Interface of any execution time model.

Several Execution Time Models are already available in
SimSo. The simplest model consists of using the WCET of
the tasks for their execution time. A second one uses a random
duration for each job to meet a given average execution time
(ACET). The ACET model uses a normal distribution defined
by its mean, its standard deviation and is bounded by the
WCET. Another model detects the preemptions and migrations
and extends the WCET4 of the job using fixed time penalties.
Finally, a more complex model tries to simulate the state of
the caches. In this latter model, the execution time of the jobs
depends on the events that happen while they are active. This
ETM is also interesting because it simulates the impact of
shared caches and, as a consequence, it is impossible to know
in advance when a job will end since it depends on external
events.

These models can also deal with Dynamic Voltage and Fre-
quency Scaling (DVFS). Indeed, when the speed of a processor
is changed, the job that was running on it is preempted and
resumed in order to inform the ETM and to reevaluate its
remaining execution time. The current DVFS model simply
considers that a job consumes its computation time propor-
tionally to the speed of the processor. This is obviously a
simplified assumption, but it is possible to implement more
realistic ETM models to deal with DVFS.

Similarly, it should also be possible to add an energy
consumption model.

E. Generation of Tasksets

A taskset is defined by the number of tasks, their utilization
factor, periods, deadlines and the total utilization. Bini and
Buttazzo showed how the random generation of the tasksets
can bias the experimental results of some scheduling algo-
rithms on uniprocessor [3].

For the multiprocessor case, several methods are used by
the researchers to generate the tasksets. The most common
algorithms are implemented in SimSo:

• Kato et al. use an approach inspired by the algorithm
described by Ripoll et al. where tasks are appended to

4In this case, the WCET is defined as the worst-case execution time without
any interruption.

the taskset until the targeted total utilization is reached
[19], [27]. The number of tasks is therefore variable.

• The algorithms UUniFast-Discard and RandFixedSum
generate a taskset with a given number of tasks and
a given total utilization [12]. At the present time, this
methods seem to be the most efficient in generating
tasksets with a weak bias.

These algorithms only generate a set of utilization rates and
must thus be combined with a period generator. The following
algorithms are made available in SimSo:

• Uniform distributions in various fixed ranges: Most eval-
uations use it and this is certainly an interesting way
to study the influence of the periods, but it may not be
relevant for realistic cases.

• Log-uniform choice of periods [10]: For a period range of
1-1000ms, the log-uniform distribution generates an equal
number of tasks in each time band (1-10ms, 10-100ms,
100-1000ms) whereas a uniform distribution would gen-
erate 90% of the periods in the range 100-1000ms.

• Random draw among a fixed set of values: One could
argue that in an industrial system, the periods are de-
rived from the specifications, which are partly written
by humans. Task periods are therefore more likely to be
rounded.

Other period generators could also be added in the future.
For instance, Goossens [17] suggested a method to reduce
the hyper-period of the system by using periods that can be
decomposed in a limited number of prime numbers.

F. Collecting Simulation Results

In order to evaluate scheduling algorithms, some data must
be collected from the simulation. The literature proposes many
measures, here is a non-exhaustive list of data that could be
recovered:

Success rate: The ratio between the number of jobs that
have exceeded their deadline and the number of jobs. It gives
a performance indicator on the schedulability of a taskset.

Preemptions and migrations: Preemptions and migrations
are a factor of overhead and many recent schedulers are
focusing on their reduction. A distinction is made between
job migration and task migration since they may have not the
same implications.

Scheduler calls: The algorithm of a scheduler requires some
time to determine which jobs should run on the processors.
Some scheduling policies are known to make many scheduling
decisions, and some require a significant amount of time to
compute. Therefore, it is interesting to keep track of the
number of calls to the various methods of the scheduler.

Normalized laxity: Lelli et al. proposed to measure the
performance of a scheduler by computing the normalized
laxity [20]. The laxity of a job is its relative deadline minus its
response-time. The laxity of each job of each task is divided
by the task period in order to obtain a normalized laxity. A
greater normalized laxity is synonym of a better safety and
better reactivity.
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During the simulation of a system with SimSo, every signif-
icant events are traced. At the end of the simulation, a Results
object is built to store these events and could be post-treated
to compute measurements. Whereas this approach is actually
heavier than just counting events such as the preemptions and
migrations during the simulation, this provides more flexibility.
Indeed, it is not necessary to modify the code of the simulator
to add the computation of new measurements one did not think
about. A set of methods are also available to ease the retrieval
of usual metrics such as the ones mentioned above.

SimSo provides a graphical user interface that helps to
configure a system and run it. That GUI is capable of dis-
playing common measures such as preemptions, migrations,
or execution times. It is also possible to display a gantt
chart, which is very useful during the development of a
scheduler. However, this GUI only shows the results for a
single simulation.

G. Conducting an Evaluation Campaign

To conduct a large evaluation campaign, it is possible to use
SimSo as a Python module. This way, a Python script can be
written to automate the creation of systems, their simulation
and the collection of the results. This choice was motivated by
the fact that the studies can be very specific and a graphical
user interface would be necessarily too frozen or too complex.
On the other hand, using a script is much more flexible.
Everything that is possible using the graphical user interface
is also possible from a script.

IV. EXAMPLE

This section illustrates the use of SimSo in conducting an
experiment on scheduling policies. SimSo is used as a module
for a Python script and the steps described below have been
programmed.

This experiment focuses on the number of preemptions and
migrations in function of the number of tasks, for various
numbers of processors and load. The objective is to compare
five schedulers: G-EDF, NVNLF, EKG5, RUN and U-EDF.

A. Generation of the Configurations

The first step is to define the characteristics of the simulated
systems. For this example, we have selected the following
parameters:

• Number of tasks: 20, 30, 40, 50, 60, 70, 80, 90, 100
• Number of processors: 2, 4, 8
• System utilization: 85%, 95%
For each configuration (tasks, processors, utilization),

twenty tasksets are generated using the methods offered by
SimSo, leading to a total of 5400 systems (9×3×2×20×5).
The RandFixedSum algorithm was used to determine the task
utilizations and the periods were chosen randomly within a
log-uniform distribution between 2 and 100 ms. The ACET
Execution Time Model is used and, for each task, the expected
value is set to 75% of the WCET and the standard deviation to

5The parameter K has been set to the number of processors.

10% of the WCET. Each system is simulated on the interval
of time 0-1000ms6.

The Configuration objects were saved into XML files for po-
tential reuse (it is interesting to repeat simulations on systems
with atypical results in order to obtain a better understanding.).

B. Simulation and Collection of the Results

SimSo executed 5400 simulations which took approxima-
tively 2 hours on an Intel Core i7 processor.

When a simulation is done, the number of preemptions and
job migrations are extracted from the Results object built by
the Model object. Preemptions caused by the system (e.g. the
scheduler is called but no decision is taken) are not taken into
account.

In order to facilitate the analysis, we stored the data in an
SQLite3 database.

C. Analysis

From that database, another script draws the charts using
matplotlib, a plotting library for Python. Each point is the
mean of the twenty tasksets sharing the same parameters. The
results for 8 processors and a system utilization of 95% are
shown on Figure 4.

A few comments on the results are provided here as a com-
plement to the figure. EKG generates a lot of migrations that
could be easily avoided with a better choice of the parameter
K or other improvements [23]. The results for NVNLF are
getting better with more processors unlike the others. U-EDF
could probably do better combined with clustering. With more
than 20 tasks, RUN acts as a partitioned scheduler most of the
time. G-EDF provides better results in terms of preemptions
and migrations but a few jobs were aborted as a consequence
of deadline misses. U-EDF and RUN could probably catch up
with G-EDF with a work-conserving variant.

V. CONCLUSION

In this paper, we have presented SimSo, a simulation tool
to evaluate the multiprocessor schedulers. Its objective is to
facilitate the comparison of the numerous scheduling policies.
To this end, we will conduct large campaigns of experiments
with many scheduling algorithms using the same tasksets. This
should allow us to reproduce numerous experiments in order to
confirm or invalidate results. At the present time, more than
twenty-five schedulers are available, showing that SimSo is
capable of handling partitioned, global and hybrid scheduling
approaches.

The architecture of SimSo, in particular the scheduling in-
terface, was briefly explained. Particular care has been taken to
keep a realistic scheduling interface so that practical decisions
are not eluded. This has also enabled SimSo to take into
consideration direct overheads such as the context-switches or
scheduling decisions. Moreover, the computation time of the
jobs is determined by a model that can be selected depending
on the purpose of the simulation. Hence, the computation time

6Unfortunately, the hyper-period for a set of 100 tasks with random periods
is far too long to be considered (in years).
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Fig. 4. Number of preemptions and migrations for a system with 8 processors and a (worst-case) total utilization of 95%. The simulation used random
durations for the job computation time.

of a job can either be a static duration, a random duration,
or even take into account cache-related preemption delays.
Additionally, a small example shows the capability of SimSo
to produce concrete results.

Future work includes an improvement of SimSo by intro-
ducing cache interferences in the simulation and introducing
more complex task behaviors such as shared resources and
precedence relations.
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[30] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM a simulation
tool for real-time multiprocessor scheduling evaluation,” in Proc. of
ETFA, 2010.

[31] D. Zhu, D. Mosse, and R. Melhem, “Multiple-resource periodic schedul-
ing problem: how much fairness is necessary?” in Proc. of RTSS, 2003.

42



Simulating real-time and embedded networks

scheduling scenarios with ARTEMIS

Olivier Cros, Laurent George, Frédéric Fauberteau, Xiaoting Li

ECE Paris

37, quai de Grenelle

75015 Paris, France

Email: {cros, lgeorge, fauberte, xiali}@ece.fr

Abstract—Real-time industrial domains are subject to strong
constraints in terms of performance and reliability that directly
increase the costs of their infrastructures. In order to build
these infrastructures and to test them, we propose to implement
ARTEMIS: Another Real-Time Engine for Message-Issued Sim-
ulation. Its aim is to manage all real-time networks like CAN
or AFDX and to simulate their behaviors in terms of scheduling
and performance delay. To implement this tool, we use a modular
way of development, building modules on a two-parts kernel.
This architecture allows our software to be generic. Moreover,
many interfaces can be easily integrated for several network
implementations.

I. INTRODUCTION

A. Network Infrastructure

Industrial domains such as aircraft or public transports
rely on real-time networks to transmit their data. For require-
ments like ergonomics, comfort or even mechanics, various
constraints are necessary in terms of reliability, safety and
performances. Respecting these constraints and testing them
imply to build high-efficiency network infrastructures. But
real-time industrial networks involve very high timing require-
ments that make their infrastructures very expensive in terms
of time, money, materials and human resources. Hence these
infrastructures have to be tested by simulation and improved
before being implemented. The review of this analysis justifies
our goals to develop tools to make building of this test plans
easier. Here, we propose a simulation software to model and
simulate behaviors on industrial networks infrastructures.

B. Functional Needs

Developing a network simulation tool from scratch is a
costly work that needs to be strongly justified. That is why
the first point before conception is too focus on the functional
needs we want our tool to complete, and to search for already
existing tools to check if this needs are not already centralized
in a tool.

The first, main objective of ARTEMIS is to be easy to
use, and to adapt itself to all kind of profiles : engineers
and developers, but also to industrials or reasearchers not
necessarily specialized in computer science. So, ergonomy and
easyness of configuration is a central point to focus on.

Moreover, we propose a list of functional requirements ac-
cording to the review of these different simulation approaches.
The main points we can emphasize are:

• ARTEMIS is as easy as possible to install indepen-
dently of the operating system,

• ARTEMIS is flexible to take into account any schedul-
ing context of network messages,

• ARTEMIS is free for research activities and accessi-
bility,

• ARTEMIS is open-source in order to easily implement
new modules and to make it well known by the real-
time community. Moreover, it allows a larger point of
view in terms of development standards and norms to
respect,

• In order to keep the genericness in the development
and to accept add-ons from any development team,
ARTEMIS is extremely modular and respects standard
protocols of data model.

C. Related Work

We can notice that many simulators already exist but each
one is oriented to a specific context. As a first general classifi-
cation, we can split all the real-time scheduling simulators in
two wide parts : processor-based and network-based.

The processor ones are schedulers which are used in a
static machine context, in order to focus on how to schedule a
set of given tasks in a computing machine. The network-based
simulators are built to focus on message scheduling through
several nodes in a network(Ethernet, AFDX [1], CAN, ...).
They are either generic or specific to a network architecture.
We present here a review of the main simulation softwares
used these two contexts:

• Network Simulator 3 (ns-3) [2] is one of the main
open-source network simulator designed for perfor-
mance evaluation in an industry-based context. Work-
ing on virtual devices which allow to model nodes and
links, ns-3 is often used as a testing framework.

• OMNET++ [3] is another industrial network simulator
for networks adapted to specific industrial needs.
Given a functional requirement, OMNET++ [4] al-
lows to adapt the size of a network and to simulate
an infrastructure with a precise number of nodes,
communication links and peripherals.

• Cheddar [5] and FORTAS [6] are uniprocessor and
multiprocessor open-source simulators. They are sim-
ulation tools which are the closest ones to the model
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we want to use. Unfortunately, they do not provide
network implementation we need to simulate tasks and
messages in AFDX, CAN or in any other network
architecture.

• SetSIM [4] is a mathematical simulator designed to
modernise switched Ethernet networks and able to
manage many different protocols like FTT-SE and
POWERLINK [7]. The cluster-based architecture it
provides allows to have either a centralized scheduling
policy or a totally distributed one with each node
applying its own independent policy.

Of course, we just present here a part of all real-time
simulators that exists, and we could also have mentioned
others like Rapitime, or either real-time operating systems
like RTLinux ou PikeOS [8]. The point is that each of these
softwares is designed for a specific kind of requirement :
industrial, simulation, dimensioning, ... But alas, each one
of these includes major lacks of functionalities or distorsion
in the employed approach that implies us to build our own
tool : closed sources, lack of modularity and interoperability
through different operating systems, difficulties to implement
network architectures like AFDX... The main aim of our work
was to design a tool to cover all the previously mentioned
requirements and to solve these problems.

D. Development guidelines

The point is to make ARTEMIS a powerful and generic
tool, but to implement a viable software, we made some
decisions concerning its development :

• ARTEMIS is designed to be used before an industrial
implementation, to compute the size of a network
infrastructure

• ARTEMIS is designed as a simulation tool first, for
reasearch and industrial activities in terms of real-time
and mixed-criticality

• ARTEMIS is wanted to be generic and to be able to
communicate and send frames to real networks.

Solving real-time

problems in high-constrained industrial networks

How to build a generic real-time network simulator ?

Modeling Network Simulating behavior

CoreModeler CoreScheduler

Fig. 1. Design of the ARTEMIS kernel.

II. MAIN MODULES

A. Java Structure

In order to implement the strong modularity and to keep a
very high portability, we have chosen to implement ARTEMIS

with an object language. Portability and free open-source
approach automatically excludes corporate languages like C#,
and leaves the classical object-languages: C++, Python, Java.
We chose Java for its portability and its high compatibility
with web-oriented languages.

One of the main points in the development of ARTEMIS
was to skip its needs in terms of setup and configuration. To
implement this, we needed to model its graphical interface
through a comfortable and ergonomic set of development-
tools, that is why we decided to implement its graphical
interface in web-oriented languages(PHP/HTML/JS). So, to
keep high-interactivity with this graphical module, we decided
to implement ARTEMIS’s kernel in Java.

B. Modular system

The main objective in the development of ARTEMIS is to
allow different teams, perhaps without any relation between
them, to work on the same tool. That is why the points we
needed to specify were the architecture of the software and the
standards of intern communication between project parts. We
decided to work on a very high-modular approach, with auto-
generated specified XML files between modules. We built a
complete simulation kernel, which is the center of the software
and implements the scheduling and modeling (see Figure 3)
and works totally independently from other parts with auto-
generated XML files.

The topology of the network, as its behavior during simu-
lation, is represented by a set of XML standardized-files, and
that is this XML standards we need to make the whole project
reliable.

First, the XML entry file of the kernel, which represents
all the network topology and structure (with nodes, links and
messages) needed to be specified properly. We decided to
represent the network as a set of nodes, each node containing
(optionally): links to other machines, messages to generate.
A link to another machine symbolizes a direct network
connection: if two machines share the same link, they are
physically binded (by a wire, for example). A message is
always generated by a machine and this machine represents
its entry point in the network.

Each message is represented by a 4-tuple (Pi, Ti,Wi, Oi)
as described bellow.

<message i d =" 1 " d e s t i n a t i o n =" 4 ">
< c r i t l v l =" 0 ">

< p a t h > 1 ,3 ,4 < / p a t h >
< p e r i o d >6< / p e r i o d >
< o f f s e t >1< / o f f s e t >
<wcet>4< / wcet>

< / c r i t >
< / message >

Fig. 2. XML representation of a message of source node 1 and destination
node 4.

Conceiving a simulator with a standardization approach
implies to use a modular paradigm. Indeed, ARTEMIS is
developed not as a global simulator software but as a set of
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UI Modules

Database

XML Files Layer

Network topology Nodes simulation

Java Kernel

CoreManager CoreScheduler

Fig. 3. Modules architecture for ARTEMIS

plug-ins connected to a central simulation kernel. First, we
want to focus on this simulation kernel.

It is splitted in two different submodules. Firstly, the
CoreManager is a modelization submodule that represents and
builds an entire set of objects to model a network topology.
Secondly, the CoreScheduler is a running-simulator which
dynamically simulates the behavior of the network at each
time-cycle.

C. Modelization Kernel

In the modelization module, an XML entry file represents
the network topology (this file is generated by the graphical
interface of ARTEMIS). Starting from it, the module builds
a set of objects for each component in the network. In our
network, there is three main kinds of components: nodes,
messages and links:

• the nodes represent the network operators (switches,
routers, machines, etc.). In order to keep the maximum
genericness, we groupes all kind of operators behind
a common concept : a node. Each operator is repre-
sented as a node object and is characterized by a set of
input and output buffers. With this approach, we can
really simulate the implementation of a network port.
For example, in the specific case of switched Ethernet,
this allows us to simulate an IP network architecture.

• the links represent the bridges of the network: two
machines sharing the same link can directly send
informations to each other.

• the messages are the informations sent through the
network. Each message is characterized by a sender
which is the machine where the messages arrives in the
network and by a receiver which is its final destination
in the network. In the XML entry file, the path of
message is defined statically. Indeed, in order to assure
the determinism of a network architecture, defining
static network path (and, so, a computable end-to-end
delay) is a unavoidable constraint.

As in classical scheduling problems, each message of index
i in the network is first characterized by a vector of three
components (Ti,Wi, Oi) where Ti is its period (the minimum
inter-arrival time of two consecutive messages), Wi is its
Worst-Case Transmission Time (WCTT) and Oi is its offset
(the activation time on the first node). As we consider also
periodic and non-periodic messages, we adapted this model to
software needs with defining the following hypothesis : a non-
periodic message is a message with an infinite period. So, to
represent a one-shot message, we just need to put a message’s
period to a limit far beyond the simulation time limit.

In ARTEMIS, we add one element to this vector : the path.
So then each message of index i is then characterized by a
vector of four components (Pi, Ti,Wi, Oi) where Pi is the
path of the message (starting from the origin machine identifier
to destination machine identifier) and the three last components
correspond to the previous definition.

D. Simulation Kernel

The simulation module of the kernel is built to imple-
ment runtime simulation of the topology by using the multi-
threading paradigm. To respect our modular approach, we have
implemented this module as two main tools: the manager
and the scheduler. Thus they provide a clear separation be-
tween two aspects of the network simulation. The first one
consists in the real-time approaches with scheduling require-
ments (scheduling policies, scheduling analysis [9], timing
constraints, etc.). The second one corresponds to the network
approaches (physical medium implementation, performance
problems, etc.).

First, the role of the manager is to build a representation
of the network components (machines, links, nodes, etc.).
It has the responsibility to ensure compliance with the link
architecture. Indeed, all components have their own manager
which builds a structure among them, and then gives it to
a global manager. Then, the manager part is a static modeler
built to represent a network topology. It is split in different sub-
managers, each one dedicated to one type of component: node,
link, message. Then, the role of the scheduler is to dynamically
simulate the network behavior. It creates a time loop and, for
each time, the scheduler makes each node generate, analyze
and send the messages through the network(see Algorithm 1).

E. Grapher and Calculator

The grapher and the calculator are two modules which are
parts of the kernel but they operate independently. Indeed, in
order to exploit the results of the kernel and to make them
understandable for users, we need to transform XML files to
graphs and to compute end-to-end delays according to node
behaviors.

The kernel builds a XML file per node to represent their
behavior over time. Using data contained in these files, the
grapher builds for each node an image representation of the
node state evolution and the currently analyzed message at
each time of the simulation.

The calculator is a timing analysis module which computes
the end-to-end delay of a given packet from the XML files ac-
cording to different methods: holistic approach [10], trajectory
approach [9].
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F. User Interface

The purpose of the user interface is to be very intuitive
and easy-to-use. Indeed, the user should be able to build and
implement a network topology as fast as possible. In order to
respect this approach, we decided to implement a web interface
linked to a MySQL database. This way, there is no constraints
in terms of installation or configuration (as far as a server is
available). The user interface provides two modes: one drag-
and-drop mode to quickly build simple topologies without any
particular configuration and a more detailed mode to accurately
configure the topologies.

In this two modes, the user just adds components (nodes,
links and messages) to a central webpage which builds and
displays automatically the global topology. Then, the user can
configure each component separately (modify the WCTT of a
message, or the scheduling policy of a node). Since all settings
have a default value, the user can acquaint itself with the
simulator without the preliminary setting up of a complicated
configuration.

Fig. 4. ARTEMIS User Interface

III. ARCHITECTURE

A. Path management

Basically, as we are working in a real-time context, the
network has to be deterministic, and so to bound end-to-end
message delays. One condition to assure this determinism is
to manually define each message’s path directly via the user
interface(UI). So, through the UI, the user can define each
message’s path through the network, starting from its entry
point to its output point.

For ergonomic issues, we built a static Dijkstra calcula-
tor(which we integrated in the UI) to allow a default trajectory
computation for each message. But this method is just for
ergonomic purposes, and does not correspond to an effective
dynamic trajectory computation in the network architectures.

B. Scheduling policies

Each node is associated to a specified Java class designed
to implement a scheduling policy. Given this, we implement

a decentralized scheduling policy: each node has a default
policy, which is the one adopted by the main manager, and
can implement its own (determined by the user, or at least by
a configuration file) at launch time. With this architecture, we
decided first to implement the main current scheduling policies
of real-time domain:

• First In First Out (FIFO) [11], [12], analyzes and sends
the messages in the order they arrived in the input
buffers.

• Fixed Priority (FP) [9], assigns a static priority to each
message and always analyze the one with the higher
priority first.

• FP/FIFO, messages are at first scheduled according to
their fixed priorities, and messages with the same fixed
priority are then scheduled FIFO.

These policies are given as examples and we can implement
any other scheduling policy (EDF [13], [14], FP-RM, FP-DM,
etc.) in ARTEMIS.

IV. NETWORK PACKETS SCHEDULING

A. Applying Scheduling Policy to Nodes

Scheduling in ARTEMIS is split into two main procedures:
analyzing and sending. Analyzing consists, for a node, of
reading and treating the bytes one by one. In our scheduling, it
is the packet transmission time consumption. The second step,
sending, is putting a message on the bound of a link to allow
the scheduler to transmit it to the node on the other bound.

Each node in ARTEMIS can adopt its own scheduling
policy, or adopt the common one given by the CoreManager.
Each node applies its scheduling policy to all its input buffers
(maximum 500), and given this policy takes the messages one
by one and sends it to an output link.

At each time, the scheduler pushes messages in output ports
to the input port on the other end of the link. By default, we
consider that passing through a link between two nodes takes
no time, which means that the network flow is infinite. In real
cases, the flow is not infinite, so the latency needed to pass
through a link is not null. So, this transmission latency can be
modified in the scheduler configuration to simulate a specific
flow between two nodes. This latency can be set generally
(same for each link) or independently.

At each time, then, the scheduler scans each machine and
decides:

• if a message is already analyzed by the machine and
its execution time is smaller than its WCTT, then we
continue to analyze it,

• if there is no message or it is the end of transmission,
the scheduler puts the message in an output port and
selects a new message from input according to the
scheduling policy.

Indeed, after a modelization cycle by the CoreManager,
the scheduling simulation of the network occurs in two times.
First, we need to schedule the behavior of each node : either
it is an entry point in the network for a message, and then it is
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T imesim = 0;
N = {Node1, Node2, ..., Noden};
Ncopy = N ;
for T imesim from 0 to limit_time do

msg = null;
while Ncopy is not empty do

currentMachine = getNextMachine(Ncopy);
if currentMachine is not busy then

msg = currentMachine.input.next();
else

Keep previous msg;
end
if msg 6= null then

if analyze(msg) ended then
StoreToOutputBuffer(msg);
Mark currentMachine as not busy;

else
Mark currentMachine as busy;

end
else

Mark currentMachine as not busy;
end
Ncopy = Ncopy − currentMachine ;

end
for currentMachine ∈ N do

sendMessages(currentMachine);
end

end
Algorithm 1: ARTEMIS Scheduling algorithm

considered as a message generator, either it contains messages
in its input ports, and then needs to get it. This first step of
the scheduling is then to get these non-treated messages and
to put it in the node. Then we analyze it(during a time equal
to the WCTT of the message) and, finally, we put the message
in an output port.

The second part is contained in a second loop and consists
on moving all messages on output ports to input ports on the
other side of the link. In order to keep the scheduling clear and
to avoid confusions, we can’t merge these two loops. So, we
can conclude that simulating the network behavior consists on
: simulating the nodes behavior, and transmitting the messages
through the nodes.

B. Sending Packets

Sending packets in ARTEMIS consists of sending a packet
from a node in its path to the next one. For this, we use a
special object in our core : the link object. An object link
consists of an association between two network addresses,
each one linked to a different node. When a packet’s analysis
finishes on a node, the scheduler proceeds in a 3-step phase
: First, the scheduler puts the packet from node’s core to
an output buffer. It symbolizes the end of its WCTT. Then,
periodically, all output buffers are emptied and all packets
in it are attached to links corresponding to the next machine
in their path. At this time, packets are no more attached to
any machine. Finally, a packet is put from the beginning of a
link (which corresponds to a network address) to the end of it
(which corresponds to the next address in its path).

In real cases, transmission of packets through links takes
time, that is why we need to consider a link object as a
kind of node, which possess its own treatment time, but
without any queuing system or scheduling policies. Each
packet sent through a link is immediately taken into account
and transmitted.

V. INTERFACING WITH REAL NETWORKS

A. Address Management

One of the main points of ARTEMIS in the context of
industrial simulation is its ability to simulate a real network
architecture, and to interface it with a real network interface
of a given machine. For example, with a simulation server, we
can emulate a given switched Ethernet network, and generate
or get packets from an external network. To do this, we just
need to define some nodes as input or output points of the
network (see 5).

ARTEMIS Network Conversion Module Industrial Network

ID>IP Conversion

Frame building

IP>ID Conversion

Model Computation

Fig. 5. Communication between ARTEMIS and real networks

To do this interfacing, ARTEMIS must implement an
address management architecture to implement a real network
behavior. That implies to include two main points. The first one
is a network address manager based on IP layer to make our
virtual network able to communicate with real infrastructure.
The second one is a real message builder which represents
messages, not only as a 4-tuples, but also as an array of bytes,
composed according to specific protocols (especially Ethernet).

B. Packet modelization

To communicate with real network nodes with our
virtually-simulated network, we have to decide which network
protocols to implement in our software. First, this kind of
modelization has to be implemented in a separate module:
added to the kernel, the objective of this module is to trans-
form virtually-simulated messages into real structured Ethernet
frames (in case of Ethernet protocol). To do this, we need to
compute the Ethernet packets header to a data manager which
allows us to build messages as real network frames.

VI. EXPERIMENTAL RESULTS

In order to show the simulation results we can manage
with ARTEMIS, we decided to model a simple network (see
Figure 6) and to test it according to specific parameters:
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• all the network is on FIFO policy, single-criticality
mode,

• we did simulate the behavior of the network during
20 time-cycles,

• our network is composed of two messages M1 and
M2 (see Fig 6).

1

2

3 4

M1 = ({1, 3, 4}, 100, 5, 1)

M2 = ({2, 3, 4}, 6, 4, 1)

Fig. 6. ARTEMIS network simulation

Fig. 7. Network simulation with ARTEMIS

The results computed by ARTEMIS are shown in Figure 7.
Indeed, we have a generated png histogram for each node in
the network (based on a separate XML file) which represents
the behavior of each node during the simulation.

We can see, for each node(1, 2, 3, 4) that the obtained
simulated behavior is conform to the hand-built mathematical
theory. So, for this small topology, we simulated it correctly
in an execution time lower than 15 seconds.

VII. CONCLUSION

To conclude, ARTEMIS is a generic real-time network sim-
ulation tool designed to mix network performance computation

and industrial architecture dimensioning. Its modular concep-
tion based on XML files allows it to communicate and interface
itself with many plug-ins, not necessarily implemented in
Java. It is conceived to reduce the need of long configuration
and installation difficulties and to centralize many previous
simulation approaches in one central software.

As it is mainly designed for network simulation, the point
is to manage concepts like mixed-criticality, real networks
communication, Ethernet frame generations and many schedul-
ing policies (FP, EDF, etc.) with it in order to compare their
efficiency on the same topology.

As a future work, we want to focus on building new
modules for ARTEMIS, connecting it to other languages and
systems. The point would be also to study its genericness by
testing simulation scenarios in uniprocessor and multiprocessor
contexts.

In order to keep it usable and performing, we also want
to focus on the execution time of simulations to improve the
efficiency of our time-based simulation model.
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Abstract—Several holistic schedulability tests exist in the litera-
ture, but they are not always used in the industry. One possibility
to increase the usability of such tests, by system designers,
is to implement them in scheduling analysis tools. This paper
shows an experience on applying holistic schedulability tests to
an industrial TDMA software radio protocol from Thales, by
implementing the tests in Cheddar, a scheduling analysis tool.
Our experience learned through this experience shows advantages
and issues of applying such tests in the industry.

I. INTRODUCTION

A Real Time Embedded System (RTES) has limited re-
sources (e.g. processors) and processing depends on time.
Most RTES have several concurrent tasks, with deadlines,
scheduled on processors. One aspect of designing a RTES
is to verify that task deadlines will be met, under a specific
scheduler; otherwise said that the system is schedulable. This
can be done through schedulability tests [20].

To apply a particular schedulability test, a system is ab-
stracted with a specific task model. Two of the first proposed
schedulability tests are the Liu and Layland test [11], based on
processor utilization, and the Joseph and Pandya test [6], based
on response times of tasks (i.e. time from release to comple-
tion). Both of these tests are applied to the periodic task model
with constrained deadlines (less than period). Since then,
several schedulability tests have been proposed for different
task models, including models to describe multiprocessor par-
titioned systems (communicating tasks allocated on processors
in a network) with shared resources. The transaction model
[22], [17] is one such task model and in this paper we focus
on its holistic schedulability tests. Holistic schedulability tests
[17] compute upper-bounds of response times of precedence
related tasks, by using the response time of the predecessor(s)
to compute the release events of the successor(s). The response
time computation is iterative. The system starts in an initial
state and task response times are updated at each iteration of
the test, until a convergence is reached.

To apply schedulability tests in an industrial context, they
must be implemented in tools. The tools generally let the user
create a model of their system according to an Architecture
Description Language (ADL) [13]. Unfortunately, tools that
implement holistic schedulability tests are not common [14].
This non-availability is thus one factor that explains why
holistic analysis isn’t widely used in the industry, the other

being the pessimism [17] of response time upper-bounds if
not adapted to a specific system.

In this paper, we investigate the applicability of holistic
schedulability tests to industrial TDMA Software Radio Pro-
tocols (SRP) [9] developed by Thales, through the implemen-
tation of such tests in Cheddar, a real-time scheduling analysis
tool [3]. Besides running on a multiprocessor partitioned sys-
tem, a TDMA SRP is both a time-triggered [8] (TDMA) and
event-triggered [8] (tasks handling data/control flows in the
radio protocol) system. Numerous works [12] have been done
previously to analyze schedulability of TDMA systems, but
they only handle the time-triggered aspect of such systems, and
they do not consider shared resources. For these reasons, our
approach consists to model a TDMA SRP with the transaction
model and assess schedulability with holistic tests. Indeed,
with the transaction model, both tasks released by other tasks
(event-triggered), and tasks released in time (time-triggered),
can be modeled [16].

The rest of the paper is structured as follows: Section
II compares some schedulability analysis tools. Section III
presents Cheddar. Section IV defines the transaction model. In
Section V, we expose and discuss our solution to implement
holistic schedulability tests in Cheddar. In Section VI, a
holistic schedulability test is applied on a TDMA SRP. Finally
we conclude with future works.

II. SCHEDULING ANALYSIS TOOLS

In this paper we focus on Cheddar, a real-time scheduling
analysis tool. There exists of course several other state-of-the-
art tools that perform scheduling analysis. These tools propose
different ADLs and scheduling analysis methods.

Some scheduling analysis tools are based on equations to
assess schedulability of a system. MAST [4] is a modeling
and analysis suite for real-time applications. In the MAST
toolset, an architecture is modeled with an ADL based on
events. Events are sent between tasks that have precedence
dependency. Tasks are allocated on processors and they may
use shared resources. MAST then transforms the event-based
architecture model to transactions for scheduling analysis.
Holistic schedulability tests for transactions can then be ap-
plied.

SymTA/S [5] is a scheduling analysis tool originally dedi-
cated to the automotive industry. As such, SymTA/S handles
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an ADL based on entities found in automotive systems, e.g.
OSEK, ECU. The architecture is modeled as components
allocated on bus and processors. Components have ports
through which they receive and send event streams. SymTA/S
thus uses an event stream propagation model for scheduling
analysis. and the tool applies a composition approach to assess
schedulability. In the compositional approach, local scheduling
analysis is first performed on a component and then propagated
through the system (using event streams) to reach a global
analysis result.

Rubus-ICE [14] is a tool suite for model-driven development
of real-time systems, with modelers, code generators and
analysis methods. The architecture is modeled in the Rubus
Component Model (RCM) language. In RCM, software func-
tions are modeled as components that communicate through
a producer-consumer scheme. Time parameters are extracted
from the component-based model and scheduling analysis
methods can then be applied. Holistic schedulability tests have
been implemented as plug-ins in Rubus-ICE.

Other scheduling analysis tools are based on simulation to
verify (non-)schedulability. STORM [24] is a simulator for
multiprocessor architectures. The architecture is described as
software and hardware components. After scheduling simu-
lation is conducted, analysis results can be shown as textual
reports or graphical diagrams.

Finally some scheduling analysis tools provide several
methods, including equation-based methods, formal methods,
and/or simulation. Rapid RMA [23] is a set of modeling and
scheduling analysis tools. The architecture is modeled with
components, with the support for CORBA (an architecture
standard focused on interoperability) compliant architectures.
Design scenarios are then modeled for scheduling analysis.
Rapid RMA uses the rate-monotonic analysis [11] to deter-
mine schedulability but it also provides a simulator.

TimeSquare [2] is a model development kit provided as a
set of Eclipse plug-ins. The architecture is modeled with an
UML MARTE (a UML profile for RTES) component-based
model. The UML MARTE model is then transformed to a
logical time model called CCSL. Model simulation can then be
performed, as well as formal verification of time constraints,
to assess schedulability.

Real-Time at Works (RTaW) [15] is a set of tools for timing
analysis of real-time systems. Systems are first modeled in
SysML (a modeling language for system engineering). RTaW
is composed of several tools, including a simulator and formal
methods to compute response times, for different architectures
respecting industrial standards. For example, RTaW supports
a number of communication buses in real-time systems, e.g.
CAN, ARINC, Ethernet.

In conclusion we see that most of the existing scheduling
analysis tool have an ADL based on components. We also see
that holistic schedulability tests are not wide-spread among
tools, which limits their usability by system designers that
wish for a ”push-button easy” tool.

III. CHEDDAR

Cheddar is a GPL-licensed open-source real-time schedul-
ing analysis tool written in Ada. The project was started in
2001 and since 2008 the tool is distributed as a module in
AADL Inspector [3]. Fig. 1 illustrates the Cheddar tool.

Fig. 1. Cheddar, Real-Time Scheduling Analysis Tool

Users first specify their architecture in Cheddar’s Ar-
chitecture Description Language (Cheddar-ADL). The GUI
provided by Cheddar can be used to generate the Cheddar-
ADL model, or model transformation [19] can be used to build
an architecture in Cheddar-ADL from a standard ADL (e.g.
MARTE to Cheddar [9], AADL to Cheddar [3]). A scheduling
analysis method provided by the tool (schedulability test
or simulation) is then used to get analysis results (i.e.
schedulability or simulation trace).

A Cheddar-ADL model is conform to its Cheddar-ADL
meta-model, which is specified in EXPRESS, a data modeling
language. Cheddar-ADL is a language that is close to seminal
scheduling analysis methods [11], [6], [21]. For example,
entities of tasks, processors and shared resources are defined.

Through a model-driven process,the Cheddar-ADL meta-
model is used to generate code of Cheddar-ADL classes, a
part of the Cheddar framework. This ensures that the code of
the Cheddar-ADL classes is always conform to the Cheddar-
ADL meta-model. The Cheddar framework is composed of
generated code from Cheddar-ADL and of manually written
code in the schedulability tests library and the schedulers
library.

To extend Cheddar, the general approach is to extend the
schedulability tests or schedulers libraries of the framework.
If necessary, the Cheddar-ADL meta-model is modified,
and code of Cheddar-ADL classes is generated. This is the
approach we have used to implement holistic schedulability
tests in the tool.

IV. TRANSACTION MODEL

The transaction model, proposed by [22], does not currently
exist in Cheddar. This model must be implemented to specify
systems on which holistic schedulability tests are applied. Let
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us remind the definition of the transaction model, according
to [16].

A transaction Γi is a group of tasks. A transaction is released
by a periodic event. A particular instance of a transaction is
called a job. A job of a task in a transaction is released after
the event that releases the job of the transaction. Assuming Γi

is released at t0, each task τij ∈ Γi is defined by the following
parameters:

• WCET (Cij) and BCET (Cb
ij): A task has a Worst Case

Execution Time (WCET) and a Best Case Execution Time
(BCET).

• Offset (Oij): The offset of a task is its earliest release
time after the time the transaction is released, i.e. a job
of τij is released at earliest at t0 +Oij .

• Jitter (Jij): A task release is delayed by an arbitrary
amount of time between 0 and the maximum jitter, i.e. a
job of τij is released in [t0 +Oij ; t0 +Oij + Jij].

• Deadline (Dij): The global deadline [16] of a task is
relative to the transaction release time, i.e. a job of τij
must complete execution before t0 +Dij .

• Blocking time (Bij): Tasks may use shared resources in
critical sections [21]. Shared resources access is mutually
exclusive so tasks may be blocked. Shared resources are
assumed to be protected by a protocol [21] that makes
it possible to bound the maximum blocking time of each
task, denoted Bij .

• Priority (prio(τij)): In case of fixed-priority scheduling,
a task has a fixed priority. When two tasks want to access
the processor, the higher priority task is given access in
preference to lower priority task.

Fig. 2 illustrates a transaction Γi with tasks τij and τik.

Ti

Oij

Oik

Jij
J ik

1 2

TDMA Frame

1 2

0 5 10 15

Dik

DijCikCij

Fig. 2. Transaction Example: Upward arrows are transaction job releases;
Double curved arrows are critical sections

Tasks in a transaction are related by precedence dependency.
A precedence dependency between a predecessor task and a
successor task is a constraint that means that a job of the
predecessor task must complete its execution before a job of
the successor task can be released [16].

Holistic schedulability tests compute Worst Case Response
Times (WCRT) of tasks: the maximum time between a task’s
earliest release time and its latest completion time.

V. IMPLEMENTING TRANSACTIONS AND HOLISTIC
SCHEDULABILITY TESTS IN CHEDDAR

We now show how Cheddar was extended for transactions
and holistic schedulability tests. First our modifications to
Cheddar-ADL is shown. Then we discuss how the tests were
implemented, focusing on implementation issues and choices
we faced.

A. Extending the Cheddar-ADL Meta-Model
To see if Cheddar-ADL is sufficient to implement the trans-

action model, we focus on a partial meta-model of Cheddar-
ADL with task entities, in Fig. 3. In the following sections,
reference of entities are those in Fig. 3.

Fig. 3. Cheddar-ADL Partial Meta-Model: Dashed box highlight extensions

1) Re-use of Existing Entities: A number of entities that
already exist in Cheddar-ADL can be re-used to implement the
transaction model. The Periodic_Task entity has attributes
of a task in the transaction model. In Cheddar-ADL any task
entity can have a Critical_Section where it uses a
Generic_Resource entity, representing a shared resource.
Furthermore a task is allocated on a Generic_Processor
entity. Through the Precedence_Dependency entity, a
precedence dependency can be specified between two tasks.

The main entity in the transaction model, that cannot be
modeled in the current Cheddar-ADL, is the transaction entity
itself.

2) New Task Group Entities: To model a transaction entity,
we introduce a task group concept in the Cheddar-ADL
meta-model. A task group is modeled by the new entity
Generic_Task_Group in Fig. 3.

A Generic_Task_Group is a set of tasks. Like
task entities, any task group entity inheriting from
Generic_Task_Group may have attributes. Task group
attributes constrain attributes of tasks in the task group.
The type of tasks that can be in a task group are also
constrained. For example the Transaction entity in Fig.
3 is used to model a transaction with period Ti represented
by its attribute period. A Transaction can only contain
Periodic_Task entities.

Fig. 4 illustrates the transaction in Fig. 2 modeled in
Cheddar-ADL (XML) with the new task group entities.
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<transaction id="tdma_tasks">

 <name>TDMA_Tasks</name>

 <task_list>

<periodic_task ref="tau_ij"/>

<periodic_task ref="tau_ik"/>

 </task_list>

 <period>8</period>

</transaction>

<periodic_task id="tau_ik">

 <name>tau_ik</name>

 <capacity>2</capacity>

 <offsets>

<offset_type>

<offset_value>4</offset_value>

<activation>0</activation>

  </offset_type>

 </offsets>

 <jitter>3</jitter>

 <deadline>10</deadline>

 <blocking_time>0</blocking_time>

 <priority>1</priority>

 <period>8</period>

</periodic_task>

<periodic_task id="tau_ij">

 <name>tau_ij</name>

 <capacity>1</capacity>

 <offsets>

<offset_type>

<offset_value>2</offset_value>

<activation>0</activation>

</offset_type>

 </offsets>

 <jitter>2</jitter>

 <deadline>10</deadline>

 <blocking_time>0</blocking_time>

 <priority>1</priority>

 <period>8</period>

</periodic_task>

Fig. 4. Task Group Example

B. Implementation of Holistic Schedulability Tests

After extending the Cheddar-ADL meta-model with trans-
actions, code for the Cheddar-ADL classes was generated.
In total 738 lines of code were generated for the new task
group entities. No extra entities or structures were added
to the framework. The holistic tests in [1], [22], [16], [18],
[10] were implemented, using the generated code. The main
differences between these tests is that they reduce pessimism
of response time upper-bounds when considering a specific
release pattern in a transaction (e.g. a task can release several
tasks immediately [18] and non-immediately [10]).

We now discuss some implementation choices we made and
expose issues we faced.

1) Advantages of Implementation Solution: The solution
we proposed to model transactions, introduces the task group
entities but re-uses most of the Cheddar-ADL mechanism for
tasks. This has an advantage in terms of meta-model and code
maintenance.

The Transaction entity we introduced, is generic
enough to model any kind of transaction. Indeed, the
main difference between different kinds of transactions
is their release pattern, i.e. tasks can have more or
less successors and predecessors [16], [18], [7]. Since
the Precedence_Dependency entity in Cheddar-ADL
is used to determine precedence between tasks, the or-
der in which tasks are grouped in a Transaction
does not determine their precedence dependencies. Any
task precedence dependency can be represented with the
Precedence_Dependency entity.

2) Drawbacks of Implementation Solution: Our implemen-
tations of holistic schedulability tests use most of the en-
tities that are already present in Cheddar. The main issue
from this implementation choice is the time performance
of the schedulability tests. Indeed, like stated previously,
the Transaction entity and Precedence_Dependency
entity are enough to represent any kind of transaction. On the
other hand, these entities may not be the best structure to
represent some kinds of transaction.

For example, let us consider the operation to get the succes-
sors/predecessors of a task, a common operation among those
necessary for holistic schedulability tests. A linear transaction
[16], where tasks have at most one successor/predecessor, is
best represented with a table. A table reduces considerably the

complexity of the operation to get the successor/predecessor of
a task in a linear transaction. Indeed, with a table, the operation
is O(1) while in our implementation, we have to loop through
all entries in the set of Precedence_Dependency, so the
operation to get a successor/predecessor is O(n).

The general solution to the complexity problem is to
implement each kind of transaction with the best adapted
data structure. However, later in this paper, we will see that
experimental results show that the current implementation
stays scalable to a real TDMA software radio protocol.

VI. EXPERIMENT

To evaluate our implementation in an industrial context,
we apply the test in [10] (called WCDOPS+ NIM and based
on [18]) to a real TDMA SRP developed by Thales. In the
following sections the TDMA SRP system is first presented
before we show how the test is applied.

A. TDMA Software Radio Protocol

A TDMA SRP is a communication protocol embedded in
a radio station in a mobile ad-hoc wireless network.

1) System View: From a system point of view, a SRP is
divided into several layers according to the OSI model for
communication systems. Fig. 5 shows an example of such
layers.

Fig. 5. TDMA SRP System View

In Fig. 5, the IPCS layer interfaces with the IP stack of
the user system above. The RLC layer handles translation
between IP packets and radio protocol packets. It also re-
routes incoming packets if necessary (e.g. a received packet’s
destination is a neighbor). The RSN layer handles network
topology and address updates (e.g. address of neighbor stations
in the network appearing/disappearing). When a SRP uses
TDMA, the MAC layer handles the TDMA protocol by
preparing/receiving protocol packets for/from the PHY layer
that sends/receives them over the air.

In Fig. 5, control and data flows pass through the different
layers. The flows are constrained by the TDMA frame. A
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TDMA frame is divided into several time slots of different
types, durations, and modes. For example in Fig. 5, the TDMA
frame has three kinds of slot: Service (S) for synchronization
between stations; Broadcast (B) for observation/signaling on
the network; Traffic (T) for effective data transmission/recep-
tion. Slots of different types do not have the same duration
(e.g. a B slot is shorter than a S and T slot). Slots can either be
in Tx (transmission), Rx (reception), or Idle mode. A TDMA
configuration defines the combination of slots (type and mode)
in a TDMA frame. A TDMA frame is repeated after it finishes,
with possibly a different configuration. We assume that in a
TDMA configuration, only the slot modes change from one
TDMA frame to the next.

2) Software and Execution Platform: Fig. 6 shows an ex-
ample of a the software and the execution platform architecture
of a SRP.

Fig. 6. Software and Execution Platform Architecture

From Fig. 6, we see that the layers are implemented by
tasks allocated on processors. In our case-study, tasks that
implement layers are POSIX threads so from now on we
will call them ”pthread”. Pthreads are scheduled by a fixed
priority preemptive policy. Pthreads may communicate and use
shared resources. Pthreads handle the flows and they are also
constrained by the TDMA frame. For example a pthread may
be released by a TDMA tick indicating the start of a slot.
Furthermore, each pthread has an execution time that depends
on a specific slot, and phreads must finish before some next
slot.

Pthreads in the MAC layer have hard deadlines to meet,
since they handle the TDMA protocol. For this reason the
MAC layer is the one that interests us for schedulability
analysis. The MAC layer is implemented on the Black CPU
and the DSP in Fig. 6.

B. MAC Layer Schedulability

In this section we show how to apply the WCDOPS+ NIM
test to a MAC layer. First the system to analyze is exposed
and modeled with a transaction. Then, after applying the test,
the schedulability analysis results are discussed. Finally we
discuss the modeling of our system with the transactions.

1) System to Analyze: The MAC layer has several pthreads
constrained by a TDMA frame. The time parameters of
pthreads instances are illustrated in Fig. 7. For readability
issues, sizes in the figure are not proportional to time values.

Fig. 7. TDMA Frame and Pthreads: Line = Instances of a pthread; Down
arrow = Deadline; Dashed arrow = Precedence; Black = Exec on Black CPU;
Gray = Exec on DSP; 9 pthreads (36 instances) in total

We see that pthreads execute on the Black CPU but they
may call a function on DSP and wait for the answer (i.e.
blocking call). We also see that pthreads communicate (i.e.
have precedence dependency).

Pthreads are dedicated to either transmission, reception or
utility. The basic pthread release pattern is that a reception
pthread is released at the start of a Rx slot. A transmission
pthread is released before a Tx slot so data is ready before
transmission over the air in the Tx slot. There is only one
utility pthread that is released at the beginning of the TDMA
frame, to prepare the configuration of the next TDMA frame.

Fig. 8 shows the transaction model of pthreads in the MAC
layer, constrained by the TDMA frame.

Fig. 8. Tree-Shaped Transaction of MAC Layer: Black tasks on Black CPU;
Gray tasks on DSP; Tick task is ghost root task [18] on unique processor
with 0 WCET

2) Analysis Evaluation: To assess the advantage of apply-
ing a holistic schedulability test to our system modeled with a
transaction, we compare WCRTs given by WCDOPS+ NIM
with those computed by the test in [6]. We choose to compare
to the test in [6] because it is a classic one for periodic tasks
and because the same approach is applied at Thales.

For each task, let us call the WCRT given by [6] RRM ,
and RWCDOPS+ NIM the WCRT given by WCDOPS+ NIM.
The ratio RRM /RWCDOPS+ NIM

is computed for each task. In
average this ratio is 5.1 so, in average, the test in [6] gives
a WCRT more than 5 times higher than WCDOPS+ NIM.
Thus to limit pessimism of analysis results, the particular task
releases (in time and by other tasks) of our system needs to be
considered. It is then beneficial to use transactions to model
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a TDMA SRP and apply a holistic schedulability test, since
it increases such system’s schedulability compared to the test
for classic periodic tasks in [6].

3) Modeling Evaluation: Notice that there are 9 pthreads in
Fig. 7 but 43 tasks in the transaction in Fig. 8. This is because
several instances of a pthread in Fig. 7 are modeled as several
tasks in Fig. 8. A pthread on Black CPU that makes a blocking
call to a function on DSP, is also modeled as several tasks in
Fig. 8. The transaction used to analyze the system is thus more
complex than the original model of the system. In general, the
more instances of a pthread there are, the more tasks there are
in the transaction. Similarly, in a pthread’s execution, the more
blocking calls of functions (implemented by other pthreads)
there are, the more tasks there are in the transaction.

The difference between model complexities raises several
issues. When WCDOPS+ NIM is applied on our model, the
time to compute WCRTs takes 7 seconds on an Intel Core i5
@ 2.40GHz. The actual time taken by the analysis is much
higher than the time taken to extract information from Fig.
7 and model the system with the transaction in Fig. 8, if
done manually. With the XML in Fig. 4, we also see that the
modeling process in Cheddar can be tedious. Finally, when the
system is modeled manually with transactions, the modeling
asks for scheduling analysis theory expertise from designers
and the risk of mistakes is not nonexistent. For this reason
model transformation tools should be developed.

VII. CONCLUSION

In this paper we showed how we implemented holistic
schedulability tests in the Cheddar real-time scheduling analy-
sis tool, to apply them to an industrial TDMA SRP developed
by Thales. We extended the Cheddar-ADL with transactions
and generated code of the Cheddar-ADL classes. New tests
[1], [22], [16], [18], [10] were then integrated into Cheddar.
Experimental results show that a holistic schedulability test,
applied to our system, gives WCRT bounds more than 5 times
less than classic tests used at Thales. Holistic schedulability
tests thus reduce considerably the pessimism of computed
WCRTs for our TDMA SRP.

The implementation of the tests in a tool like Cheddar,
increases their usability by system designers in the industry.
On the other hand, the transaction model of our system is more
complex than the original model. Thus model transformations
should be developed. In the future we will develop model
transformations to integrate the Cheddar tool in a development
process at Thales, by transforming system design models to
Cheddar-ADL models automatically.
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