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Message from the Program Chairs

Research in real-time systems has gone very far from the initial seminal pa-
pers back in the 70s. Many algorithms, design methodologies, techniques
and tools have been proposed, spanning several application areas, from Real-
Time Operating Systems to distributed systems, from safety critical to soft
real-time systems. However, unlike other research areas (e.g., networking)
there are no widely recognized reference tools or methodologies for compar-
ing different research works in the area.

In fact, the comparison among results achieved by different research
groups becomes non-trivial or impossible due to the lack of common tools
or methodologies by means of which the comparison is done. For example,
different authors use different algorithms for generating random task sets,
different application traces when simulating dynamic real-time systems, dif-
ferent simulation engines when simulating scheduling algorithms. Therefore,
research in the field of real-time and embedded systems would greatly ben-
efit from the availability of well-engineered, possibly open tools, simulation
frameworks and data sets which may constitute a common metrics for evalu-
ating simulation or experimental results in the area. Also, it would be nice to
have a possibly wide set of reusable data sets or behavioural models coming
from realistic industrial use-cases over which to evaluate the performance of
novel algorithms. Availability of such items would increase the possibility to
compare novel techniques in dealing with problems already tackled by oth-
ers from the multifaceted viewpoints of effectiveness, overhead, performance,
applicability, etc.

The ambitious goal of the International Workshop on Anaysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) is to start
creating a common ground and a community to collect methodologies, soft-
ware tools, best practices, data sets, application models, benchmarks and
any other way to improve comparability of results in the current practice
of research in real-time and embedded systems. People from industry are
welcome to contribute with realistic data or methods coming from their own
experience.

The WATERS Workshop collects original contributions on methods and
tools for real-time and embedded systems analysis, simulation, modelling
and benchmarking. In particular, areas of interest include, but are not
limited to:

• Simulation of real-time, distributed and embedded systems

• Tools and methodologies for real-time analysis

• Instrumentation of Operating Systems

• Tracing methods and overhead analysis
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• Power consumption models and experimental data for real-time power-
aware systems

• Realistic case studies and reusable data sets

• Comparative evaluation of existing algorithms

We would like to thank the Euromicro organization for having allowed us
to organize this event, and particularly Gerhard Fohler for his prompt and
ready support. We would like to thank all the authors for having submitted
their work to the workshop for selection, the Program Committee members
for their effort in reviewing the papers, the presenters for ensuring interesting
sessions, and the attendees for participating into this event. We hope that
interesting ideas and discussions will come out of the presentations, demos
and the questions that will alternate along the day. We hope you will find
this day interesting and enjoyable.

The WATERS 2010 Chairs
Giuseppe Lipari and Tommaso Cucinotta

Real-Time Systems Laboratory
Scuola Superiore Sant’Anna, Pisa (Italy)
{g.lipari, t.cucinotta} @ sssup.it
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• Mark Bartlett (University of York, UK)

• Athanassios Boulis (NICTA, Australia)

• Ian Broster (Rapita Systems Ltd, York, UK)

• Anton Cervin (Lund University, Sweden)

• Michael Gonzalez (Universidad de Cantabria, Spain)

• Damir Isovic (Mlardalen University, Sweden)

• Julio Medina (Universidad de Cantabria, Spain)

• Luigi Palopoli (University of Trento, Italy)

• Luigi Rizzo (University of Pisa, Italy)

• Rodrigo Santos (Universidad Nacional del Sur, Bahia Blanca, Ar-
gentina)

• Simon Schliecker (Technische Universitaet Braunschweig, Germany)

• Lothar Thiele (ETH Zurich, Switzerland)

• Zlatko Zlatev (IT-Innovation Center, Southampton, UK)
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Techniques For The Synthesis Of
Multiprocessor Tasksets
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Rapita Systems Ltd
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paule@rapitasystems.com
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CA, USA

Robert I. Davis
Department of Computer Science
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Abstract—The selection of task attributes for empirical eval-
uations of multiprocessor scheduling algorithms and associated
schedulability analyses can greatly affect the results of experi-
ments. Taskset generation algorithms should meet three require-
ments: efficiency, parameter independence, and lack of bias.
Satisfying these requirements enables tasksets to be generated in
a moderate amount of time, allows effects of specific parameters
to be explored without the problem of confounding variables, and
ensures fairness in comparisons between different schedulability
analysis techniques. For the uniprocessor case, they are met by
the UUniFast algorithm but for multiprocessor systems, where the
total desired utilisation is greater than one, UUniFast can produce
invalid tasksets. This paper outlines an algorithm, Randfixedsum,
for the underlying mathematical problem of efficiently generating
uniformly distributed random points whose components have
constant sum. This algorithm has been available via a MatLab
forum for a number of years; however, this is the first time it has
been formally published. This algorithm has direct application
to multiprocessor taskset generation. The importance of period
generation to experimental evaluation of schedulability tests is
also covered.

I. INTRODUCTION

To address demands for increasing processor performance,
silicon vendors no longer concentrate on increasing processor
clock speeds, as this approach is leading to problems with high
power consumption and excessive heat dissipation. Instead,
there is now an increasing trend towards using multiprocessor
platforms for high-end real-time applications. As a result,
multiprocessor task allocation and scheduling has become an
important and popular area of research.

While optimal algorithms and exact schedulability tests are
known for uniprocessor scheduling, multiprocessor scheduling
is intrinsically a much more difficult problem due to the
simple fact that a task can only use one processor at a
time, even when several are free. As a result, no efficient
algorithms are known that can optimally schedule general
sporadic tasksets (without restrictions on deadlines). Much
of the research into multiprocessor scheduling has therefore
involved the analysis of heuristic scheduling policies, and the
development of sufficient schedulability tests.

A number of different performance metrics can be used
to assess the effectiveness of multiprocessor scheduling al-
gorithms and their analyses. These include: optimality, com-
parability (or dominance) [1], utilisation bounds [2], resource

augmentation or speedup factors [3], and empirical measures
such as the number of tasksets that are deemed schedulable.

The research in this paper is motivated by empirical ap-
proaches to evaluating scheduling algorithm and schedula-
bility test performance. A systematic and scientific study
of the effectiveness of different scheduling algorithms and
analyses requires a method of synthesising tasksets to which
the scheduling algorithms and tests can be applied. We can
identify three key requirements of this taskset generation
problem: efficiency, independence, and bias.

1) Efficient — in order to achieve statistically significant
sample sizes, large numbers of tasksets need to be
generated for each taskset parameter setting (or data
point) examined in experiments.

2) Independent — it should be possible to vary each
property of the taskset independently. For example,
experiments might examine the dependency of schedu-
lability test effectiveness on the number of tasks, on
taskset utilisation or on the range of task periods. The
parameter of interest must be varied independent of other
parameters which are held constant.

3) Unbiased — the distribution of tasksets generated should
be equivalent to selecting tasksets at random from the
set of all possible tasksets, and then discarding those
that do not match the desired parameter setting.

We assume the sporadic task model commonly used in
real-time systems research. A sporadic taskset comprises n
tasks with the following attributes: period or minimum inter-
arrival time Ti, worst-case execution time Ci and deadline
Di. The utilisation of a task is defined as Ui = Ci/Ti.
Two important taskset parameters used for understanding the
behaviour of scheduling algorithms and their analyses are the
taskset cardinality n and the total taskset utilisation u. Hence
we are interested in taskset generation algorithms that select
utilisation values Ui so that:

n∑

i=1

Ui = u (1)

for n tasks where the target total utilisation is u. Once periods
have also been generated, worst-case execution times can then



WATERS 2010 7

Fig. 1. 2 · 104 tasksets generated by UUniFast with total utilisation 0.98

be set with the formula:

Ci = UiTi (2)

Task deadlines must also be selected. These can be set equal
to Ti or randomly generated based on a proportion of the
task’s period or execution time. This paper focuses mainly
on selecting utilisation values though a method of task period
generation is given in section III.

II. RELATED WORK

A. Uniprocessor Taskset Generation

In 2005, Bini and Buttazzo [4] created an algorithm called
UUniFast that efficiently generates task utilisation values for
tasksets with a chosen number of tasks and total utilisation.
The distribution of utilisation values in tasksets generated
by UUniFast are equivalent to uniformly sampling each task
utilisation value and then only keeping those tasksets with the
correct total utilisation. A taskset containing n tasks can be
plotted in an n dimensional space where the utilisation of each
task gives the distance from the origin in each dimension. If
this is done for a set of tasksets all having the same total
utilisation, then the tasksets will lie in an n − 1 dimensional
plane. Tasksets generated by the UUniFast algorithm will be
evenly separated in this plane. Figure 1 shows 20000 tasksets
containing 3 tasks generated by UUniFast all having a total
utilisation of 0.98.

Bini and Buttazzo considered experiments which evaluated
how many tasksets could be scheduled using rate monotonic
fixed priority scheduling versus other scheduling policies.
They noted that, if periods are uniformly sampled, tasksets
are more often schedulable when the difference between the
greatest and least task utilisation is large. This phenomenon is
shown by figure 2. The plot shows the subset of 105 tasksets,
again generated by UUniFast with a utilisation of 0.98, deemed
schedulable using rate monotonic fixed priority scheduling

Fig. 2. Subset of 105 tasksets which can be scheduled by rate monotonic
fixed priority scheduling (approx 1.8 · 104 tasksets)

with periods uniformly sampled between 10 and 104. 17953
tasksets are contained within this subset, i.e. a similar number
of tasksets as shown in figure 1. The points in figure 2 appear
more densely packed towards the edges of the plane whereas
those in figure 1 are evenly distributed.

The motivation for Bini and Buttazzo’s work was that pre-
vious evaluations of scheduling policies, such as by Lehoczky
et al. [5], had biased results by concentrating on the area in
the centre of the plane shown in figure 2 where fewer tasksets
can be scheduled by rate monotonic fixed priority scheduling.

The UUniFast algorithm is efficient, allows variable inde-
pendence, and generates unbiased utilisation values. UUniFast
has been widely used by researchers interested in investigating
the performance of scheduling algorithms and schedulability
tests for single processors [6], [7].

B. Multiprocessor Taskset Generation

In the multiprocessor domain, the UUniFast algorithm has
not been widely used. Researchers recognised that the algo-
rithm cannot generate tasksets with total utilisation u > 1
without the possibility that some tasks will have individ-
ual utilisations that are invalid (i.e. > 1). Instead, many
researchers [8], [9], [10], [11] have used an approach to
taskset generation based on randomly generating an initial
taskset of cardinality |P|+ 1 for the set of processors P and
then repeatedly adding tasks to it until the total utilisation
exceeds the available processing resource. This approach has
the disadvantage that it confounds two variables, utilisation
and taskset cardinality, and does not necessarily result in an
unbiased distribution of utilisation values.

Recently, Davis and Burns [12] observed that UUniFast can
be used in the multiprocessor domain, at least for some values
of n and u, provided that tasksets containing invalid tasks
are simply discarded. We give more details of this modified
UUniFast algorithm, referred to as UUniFast-Discard in sec-
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tion IV-B. While UUniFast-Discard addresses a proportion of
the parameter space of n and u, there are values of n and u
where this approach becomes infeasible, due to the very high
ratio of invalid to valid tasksets produced.

This paper addresses the problem of generating tasksets
for multiprocessor systems. Stafford’s Randfixedsum algo-
rithm [13] is used to generate unbiased sets of utilisation
values for any values of n and u.

The remainder of the paper is broken into two main
sections. Section III discusses the associated issue of task
period selection. Section IV explains why existing algorithms
for generating tasksets with total utilisation greater than 1
are inadequate and suggests the use of the Randfixedsum
algorithm. Section V concludes with a summary of the main
contributions of the paper.

III. TASK PERIOD SELECTION

In this section, we discuss task period selection. In commer-
cial real-time systems, it is common for systems to have tasks
operating in different time bands [14] (e.g. 1ms – 10ms, 10ms
– 100ms, 100ms – 1s). For example, a temperature sensor will
likely sample at a lower rate than a rotation speed sensor [15].

Davis et al. [6] showed that schedulability test efficiency
can be heavily dependent on the number of order of magnitude
ranges of task periods (effectively the ratio between the small-
est and largest task period), and that bias can result if studies
do not fully explore appropriate distributions of task periods.
For example, choosing task periods at random according to
a uniform distribution in the range [1, 106] results in 99% of
tasks having periods greater than 104, thus the effective ratio
of maximum to minimum task period is far less than might
be expected (closer to 102 than 106 for small tasksets).

To avoid these problems, a log-uniform distribution of task
periods can be used, with tasksets generated for different ratios
of the minimum (Tmin) to the maximum (Tmax) task period.
The parameter Tg defines the granularity of the periods chosen
(which are all multiples of Tg).

ri ∼ U(log Tmin, log(Tmax + Tg)) (3)

Ti =

⌊
exp(ri)

Tg

⌋
Tg (4)

The uniform random values ri produced are assumed to lie in
the range [log Tmin, log(Tmax+Tg)). Tmin and Tmax should
be chosen as multiples of Tg .

Note that when applying equation (2) the worst-case execu-
tion time is usually rounded to the nearest integer which will
affect the distribution of actual utilisations in the generated
taskset. Changing the unit of time to use larger numeric values
will decrease this loss of accuracy.

The effects of different period sampling algorithms were
examined with some simple experiments. In each case 1000
tasksets were generated and tested using exact schedulability
analysis for fixed priority pre-emptive scheduling on a unipro-
cessor [16]. Periods were sampled from either a uniform or
log-uniform distribution within a certain range. The correct
total utilisation for a chosen number of tasks was achieved
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distributions.

with the UUniFast algorithm. Taskset deadlines were set equal
to their periods and priorities assigned according to rate
monotonic priority ordering.

Figure 3 shows the proportion of schedulable tasksets for
varying taskset cardinality and total utilisation. The period
range was set to [10, 1000] for all experiments. The plot shows
that many more tasksets are schedulable when taskset periods
are sampled from a log-uniform distribution for all utilisation
levels up to 0.98. The difference in the number of schedulable
tasksets is also much smaller at lower utilisation values over
the different taskset sizes when using log-uniform sampling.

Lehoczky [5] calculated that tasksets with a greater range of
periods would be easier to schedule using exact rate monotonic
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analysis. Lehoczky assumed periods were sampled from a
uniform distribution. This is supported by the results shown
in figure 4. The graph shows the proportion of schedulable
tasksets for different period ranges and total utilisations. All
tasksets were of size 20. These results show the phenomenon
described by Davis [6] that, when a uniform distribution of
periods is used, the number of schedulable tasksets does not
continue to increase for large period ranges because nearly all
period values will be of the same magnitude. The period range
has a much larger effect on schedulability of periods sampled
from a log-uniform distribution. In fact, for uniform period
sampling, there is no significant increase in schedulability as
the range widens to more than a factor of 100 and many results
overlap on the graph. Even a range whose maximum is only
10 times greater than its minimum produces more schedulable
tasksets with a log-uniform period distribution than ranges
over 4 orders of magnitude when uniform sampling is used.

IV. TASK WORST CASE EXECUTION TIME GENERATION

Rather than generate worst case execution time (WCET)
values directly, it is more common to generate task utilisation
values then calculate WCET values from equation (2). This
is done since the total taskset utilisation is an often used
covariate in experiments with schedulability tests. This total
taskset utilisation value is written as u in this paper. The other
common covariate is taskset cardinality and this should be
possible to control independently from taskset utilisation.

A. UUniFast

Motivated by the need for an unbiased distribution of
tasksets, Bini and Buttazzo [4] decided that task utilisation
values should be sampled from a uniform distribution but with
the constraint that they summed to a constant desired total
taskset utilisation. An algorithm for doing this is to randomly
select utilisation values x1, . . . , xn−1 ∼ U(0, 1) and then set
xn = 1−∑n−1

i=1 xi. However, if the sum term is greater than
1, the set must be discarded and the operation repeated. If
successful, utilisation values are set according to Ui = uxi.
Bini and Buttazzo call this algorithm UUniform and explain
that it is infeasible in practice since the probability that the
sum of the first n− 1 values is less than u is 1/(n− 1)! [4].

The UUniFast algorithm [4] is an efficient equivalent of
the above algorithm. The principle of the algorithm is to
first sample a value which represents the sum of n − 1 task
utilisation values and then set a task utilisation value to the
difference between the required total and this sampled value.
This is then repeated for each task with the sampled value in
the previous iteration acting as the required total.

The probability density function for the sum of m indepen-
dent random variables uniformly selected from [0, 1] is

UniSumPdf(x;m) = 1
(m−1)!

bxc∑

k=0

(−1)k
(
m

k

)
(x− k)m−1

(5)
We refer to this distribution as the UniSum distribution. It is
adapted from Hall’s derivation for the density of the mean of m
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Fig. 5. UniSum probability density function which could be used to sample
the sum of n− 1 values.

independent uniform random variables [17]. It is a piecewise
function where each region [a, a+ 1] for a = 0, . . . ,m− 1 is
defined by a different polynomial of degree m−1. Therefore,
if we wish to sample a value which represents the sum of
n − 1 utilisation values as required for UUniFast, m is set
to n − 1. The graph of this probability density function is
shown in figure 5. The domain which must be sampled from
for UUniFast is [max(u− 1, 0), u]. For uniprocessor tasksets,
u ≤ 1. The relevant area of the graph is highlighted in
figure 5. The cumulative distribution function in this region is
proportional to xm = xn−1 and is easily invertible. UUniFast
makes use of this fact to perform inverse transform sampling
in order to obtain values for the sum of n − 1 values. The
UUniFast algorithm is given below.

Let r1, . . . , rn−1 ∼ U(0, 1)
sn = u
si−1 = si ∗ ri−11/(i−1) for i = n, . . . , 2 and s0 = 0.
ui = si − si−1

There are a few points of note regarding extending UUniFast
for total taskset utilisation values u > 1. The distribution given
by equation (5) is symmetrical about (n−1)/2. If an algorithm
can sample values for 0 ≤ u ≤ n/2 then sampling values for a
total utilisation u′ > n/2 can be obtained by sampling values
with u = n − u′ and then using u′i = 1 − ui for each task
utilisation value.

The complex piecewise nature of the UniSum distribution
makes it difficult to sample from in the general case. The sum
of n independent random variables will approach a normal
distribution but the accuracy of the approximation is heavily
dependent on the number of tasks and region of the distribution
being sampled from. Saddlepoint approximations [18], [19]
are more accurate. However, in either case, sampling from a
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Fig. 6. Tasksets generated with UUniFast-Discard for n = 3, u = 1.5

truncated section of the distribution is difficult to do efficiently
since it usually requires rejecting a number of samples as well
as calculating the distribution itself.

B. UUniFast-Discard

UUniFast-Discard is a simple extension to UUniFast sug-
gested by Davis and Burns [12]. This algorithm applies
UUniFast unchanged for values of u > 1 and then discards
any tasksets which contain an individual task utilisation greater
than 1. The issue with this algorithm is that it becomes
increasingly inefficient as the value of u approaches n/2.
Figure 6 shows this effect for n = 3 and u = 1.5. The valid
tasksets lie inside the marked hexagon but the area of the
plane within which tasksets are generated is 50% larger than
this meaning 1/3 of tasksets will be discarded in this case.
The algorithm becomes extremely inefficient for large values
of n with values of u close to n/2.

Davis and Burns [12] used a pragmatic discard limit of 1000
to avoid UUnifast-Discard making intractable attempts to find
valid tasksets. This limit restricts the maximum number of
attempts at taskset generation to 1000 times the number of
tasksets required.

C. Randfixedsum Algorithm

Stafford’s Randfixedsum [13] was designed to efficiently
generate a set of vectors which are evenly distributed in
n − 1 dimensional space and whose components sum to a
constant value. The key to its efficiency is that it does not
require any random samples to be rejected. It can be applied
directly to the problem of task utilisation generation with a
chosen constant total taskset utilisation. This algorithm was
made public with an open source Matlab implementation
accompanied by a document explaining the theory behind the
algorithm. However, it has not been formally published before.

Fig. 7. Triangular axes for plotting triplets with sum 1

To explain how the Randfixedsum algorithm works, we will
first turn to the case of n = 3 and u = 1. All valid tasksets
with cardinality 3 and total utilisation 1 can be plotted on
triangular axes, each of length 1. Such a set of axes is shown
in figure 7. As noted by Stafford [13], if the points in the
triangle are evenly distributed then the number of points inside
any area within the triangle will be proportional to that area.
A smaller triangle can be created as shown in figure 7 by
drawing a line between (a, 0, 1 − a) and (0, a, 1 − a). The
area of the large triangle is

√
3
4 and the area of the smaller

shaded triangle is
√
3
4 a2. For the correct proportion of points

to lie inside the shaded triangle compared to the whole, the
probability of a point being inside the shaded triangle should
be a2. This is equivalent to requiring P (u3 > (1 − a)) =
P ((1 − u3) < a) = a2. This can be done by selecting a
uniform random value r2 and then setting u3 = 1 − r

1/2
2 as

is done in UUniFast. Following this, a value u2 is selected
between 0 and 1− u3 along a line. Any segment of this line
should contain a number of points proportional to its length.
This is done in UUniFast by setting u2 = (1−u3)−r1 where
r1 is another uniform random value.

Extending the concept above to several dimensions, it can
be seen that UUniFast will evenly distribute points inside an
n − 1 dimensional simplex. Stafford’s algorithm divides up
the valid region of points into multiple n − 1 dimensional
simplexes and then applies an algorithm similar to UUniFast
to select points within a randomly chosen simplex. By making
the probability of selecting each simplex proportional to its
volume, points are evenly distributed throughout the entire
valid region. The remainder of this section describes how the
simplexes are generated.

To divide the valid region into simplexes, the centre point at
(u/n, u/n, . . . , u/n) is chosen. From here, we select a point
by moving to 1 or 0 in one of the dimensions and then move to
the centre of the boundary that was hit. For example the point
(0, u/(n − 1), . . . , u/(n − 1)) or the point (1, (u − 1)/(n −
1), . . . , (u−1)/(n−1)). This is done repeatedly until we reach
a point where the sum of 0s and 1s is exactly k = buc. At
this stage, if another 0 or 1 is selected, then the only way to
maintain the constant sum is to pick a point outside the valid
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Fig. 8. Two types of simplex generated by Stafford’s algorithm for n = 3,
u = 1.75

region. The 1s can be selected for any k of n− 1 dimensions
and the sequence of points (including the initial centre point)
used to construct the simplex can be ordered in n! ways. This
creates

(
n−1
k

)
n! different simplexes.

Figure 8 shows the
(
2
1

)
= 2 types of simplex for n = 3

and u = 1.75. 3! = 6 of each type of simplex are needed to
cover the entire valid region. Stafford’s algorithm calculates
the hypervolume of each type of simplex and uses this for
its probability of selection. Points are then evenly distributed
inside each simplex. The final stage of Stafford’s algorithm is
to randomly permute the order of dimensions within each point
to get coverage of the whole valid region. Stafford’s algorithm
is available online [13] written in the Matlab language. We
aim to implement the algorithm within a taskset generation
tool which will be made publicly available.

V. CONCLUSION

The research described in this paper was motivated by the
need for taskset generation algorithms to support the study of
scheduling algorithm and schedulability test effectiveness for
multiprocessor real-time systems.

The main contributions of the paper are as follows:
• Investigation of how sampling periods from uniform and

log-uniform distributions affects the schedulability of
tasksets running on a single processor using fixed priority
scheduling.

• The application of Stafford’s Randfixedsum algorithm to
the selection of task utilisation values for tasksets with a
total utilisation greater than 1. This algorithm generates
an unbiased distribution of task utilisation values, and
is capable of doing so for any valid values of taskset
utilisation and taskset cardinality.

If the experimental region of interest is where the total
taskset utilisation is either very small or large compared to the
taskset cardinality then UUniFast-Discard is efficient is simple

to implement. As the taskset utilisation approaches n/2 from
either above or below, the algorithm is much less efficient and
impractical for larger tasksets.

The existing Matlab implementation of Randfixedsum is
highly efficient in all regions of the parameter space. We there-
fore recommend its use in multiprocessor taskset generation.
We aim to make implementations of this algorithm in other
languages available shortly.
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Abstract

Simulation-based analysis methods make few restric-
tions on the system design and scale to very large and
complex systems, therefore they are widely used in timing
analysis of complex industrial embedded systems. This pa-
per presents a statistical approach to validation of tem-
poral simulation models extracted from complex real-time
embedded systems, by introducing existing mature statisti-
cal methods to the context. The proposed approach first
collects sampling distributions of response time and execu-
tion time data of tasks in both the modeled system and the
model, based on simple random samples (SRS). The sec-
ond step of the approach is to compare the sampling dis-
tributions, regarding interesting timing properties, by using
the non-parametric two-sample Kolmogorov-Smirnov test.
The evaluation using a fictive system model inspired by a
real robotic control system with a set of change scenarios,
shows a promising result. The proposed algorithm can iden-
tify temporal differences between the target system and its
extracted model, i.e., the algorithm can assess whether the
extracted model is a sufficiently accurate approximation of
the target system.

1 Introduction

To date, most existing embedded real-time software sys-
tems have been developed in a traditional code-oriented
manner, over extended periods of time, sometimes spanning
decades. As a result, many such systems become large and
increasingly complex. Further, to maintain, verify and reuse
these systems is difficult and expensive. There are many in-
dustrial embedded systems having a very complex runtime
behavior, due to that they are highly configurable and event-
triggered. Such systems consist of millions of lines of C
code, and contain 50 - 100 tasks or more, out of which many
tasks have real-time constraints. One example of such sys-

tems is the robotic control systems developed by ABB [1].
Further, the temporal dependencies between tasks in such
systems vary the execution time and response time of tasks
radically. We refer to such systems as Complex Real-Time
Embedded Systems (CRTES).

Simulation-based analysis of CRTES has the potential
of not only allowing for response-time analysis of such sys-
tems [2], [3], but also facilitating migration toward a com-
ponent based real-time system by e.g., analyzing the timing
properties of the existing code and wrapping it into com-
ponents. Moreover, simulation-based methods can also be
used in timing impact analysis [4], i.e. to analyze the im-
pact of changes on a system’s temporal behavior, before in-
troducing changes to the system.

A major issue when using simulation-based timing anal-
ysis is how to obtain the necessary analysis model, which
should be a subset of the original software program focus-
ing on behavior of significance for task scheduling, commu-
nication and allocation of logical resources. For many sys-
tems, manual modeling would be far too time-consuming
and error-prone. Two methods for automated model extrac-
tion are proposed in [5]. A tool for automated model extrac-
tion is in development, named MXTC - Model eXtraction
Tool for C. The MXTC tool targets large implementations
in C, consisting of millions of lines of code, and is based
on program slicing [6]. The output of MXTC is simulation
models for the RTSSim simulation framework [7].

However, there is one important issue to be raised, i.e.
model validity, which is defined as the process of deter-
mining whether a simulation model is an accurate repre-
sentation of the system, for the particular objectives of the
study [8]. As a model is an abstraction of the system, some
system details may be omitted in the model, for instance
when using probabilistic execution time modeling. Thus,
the results from a simulation of such models may not be
identical to the recordings of the system, e.g., with regard
to the exact task response time. In order to convince system
experts to use simulation-based methods, the models should
reflect the system with a satisfactory level of significance,
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i.e., as a sufficiently accurate approximation of the actual
system. Moreover, other threats to model validity are the
configuration of the model extraction tool and bugs in the
model extraction and analysis tools. Therefore, an appro-
priate validation process should be performed before using
the models.

In this paper, we present a statistical approach for valida-
tion of temporal simulation models extracted from real in-
dustrial control systems containing intricate task execution
dependencies. That is, to consider this particular problem as
a statistical problem, then, which could be solved by using
existing, mature methods from the field of statistics.

The proposed method StatiVal collects sampling distri-
butions by combining using simple random samples (SRS)
[9] with our presented mechanism to eliminate dependen-
cies among raw Response Time (RT) and Execution Time
(ET) data caused by task execution dependencies in the sys-
tem. Next, our method will produce results concerning
whether the model is a sufficiently accurate approximation
of the target system, from the perspective of relevant tim-
ing properties such as response time and execution time of
tasks in the modeled system and the extracted model, by us-
ing the non-parametric two-sample Kolmogorov-Smirnov
test [10]. Since our tool for model extraction (MXTC) is
not yet ready, in this work, we evaluate StatiVal by using a
manually created simulation model inspired by an industrial
robotic control system. Then, the original model is com-
pared with different variants of the model, each of which
variant corresponds to a particular change scenario. Our
evaluation of this method shows the promising results, i.e.,
StatiVal can identify timing differences between the mod-
eled system and models, and should be applicable in a non-
trivial industrial evaluation and deployment of our frame-
work for simulation-based analysis.

The remaining part of the paper is organized as follows:
Section 2 introduces the simulation model used in this work.
Section 3 presents the related work about model valida-
tion at first, and then gives problem formulation, descriptive
statistics of raw RT and ET data of tasks in the evaluation
model, and the problems with using parametric statistics,
respectively. Section 4 and Section 5 introduce our pro-
posed method and evaluation results, and finally, Section 6
concludes the paper and discusses future work.

2 RTSSim Simulation Models

The proposed validation method primarily targets simu-
lation models for the RTSSim simulation framework, which
is quite similar to ARTISST [11] and VirtualTime [12].
An RTSSim simulation model consists of a set of tasks,
sharing a single processor. Each task in RTSSim is a
C program, which executes in a “sandbox” environment
with similar services and runtime mechanisms as a nor-

mal real-time operating system, e.g., task scheduling, inter-
process communication (message queues) and synchro-
nization (semaphores). The default scheduling policy of
RTSSim is Fixed-Priority Preemptive Scheduling (FPPS)
and each task has scheduling attributes such as priority, pe-
riod, offset and jitter. RTSSim allows for three types of
selections which are directly controlled by simulator input
data: Selection of execution times in execute statements;
Selection of task jitter; Selection of task behaviors, depend-
ing on the system environment, e.g., random number of
external events generated by sensors. In RTSSim, Monte
Carlo simulation is realized by providing randomly gener-
ated input data. A more thorough description of RTSSim
can be found in [7].

3 Model Validation

3.1 Related Work

For the sake of space, we only briefly introduce the re-
lated work concerning the model validation process. There
are various methods to do the comparison; these methods
are either objective or subjective. Subjective methods are
often used for validation of simulation models; examples
of subjective methods are Face Validation, Graphical Com-
parisons and Sensitive Analysis [13], which are highly de-
pendent on domain expertise and hence error-prone. Objec-
tive methods use mathematical methods to compare outputs
from the real system with output from the simulation model.
In [14], the authors presented a notation of model equiv-
alence based on observable property equivalence which is
used to compare results of a model and an actual system.
A method in [15] is presented for automated validation of
models extracted from real-time systems by checking if
the model can generate the same event sequences as the
recorded event sequences from the system using a model
checker.

3.2 Problem Formulation

We are given a model S
′

which is extracted from a
real system (or modeled system) S containing a task set
Γ including n tasks, where n ∈ N. Let RTsamples(S

′
, τi),

RTsamples(S , τi), ETsamples(S
′
, τi) and ETsamples(S , τi) de-

note the sampling distributions of the response time and ex-
ecution time measured for a task τi in S

′
and S respectively.

The goal of the problem is then to find: whether there are
statistically significant differences between the system and
model distributions with respect to response times and exe-
cution times of the adhering tasks, or can they be considered
statistically equal (i.e., from the same population).
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3.3 Descriptive Statistics of Raw RT and ET Data

Table 1 shows the numerical summary of the center and
the spread (or variability) of sampling distributions of the
response time (RT) data of tasks in Model 1 (M1) contain-
ing intricate execution dependencies, used for the evalua-
tion in Section 5. In Table 1, Std. Dev, Q1 and Q3 repre-
sents standard deviation, first quartile and third quartile of
the sampling distribution respectively. As we can see, the
skewness of sampling distributions for all the tasks except
for the IO task are right (positive) skewed (i.e., the numer-
ical representation of tasks’ skewness are positive; in the
view of graph, the sampling distribution has relatively few
high values, and the mass of the distributions is concen-
trated on the left of the figure). Further, the outliers existing
in raw RT data as well as ET data of all tasks cannot be
removed since they are not generated due to system errors
or hardware failures. Therefore, we have the reasoning to
add the five-number summary introduced in [9] consisting
of Min, Q1, Median, Q3 and Max to Table 1. Due to lim-
ited space, we only show the sampling distribution of raw
RT data of one task i.e., the CTRL task when the number of
samples is large enough i.e. 199 990 in one simulation run
(refer to row Samples for the CTRL task in Table 1), as an
example shown in Figure 1. Further, note that the outliers
in the picture might not be clear enough to see, though in
fact, they approximately exist in the range of [3 000, 6 829]
along with the horizontal axis.

Table 1. Descriptive statistics of sampling distributions of
raw RT data of tasks in the system model M1 used in the
evaluation.

DRIVE IO CTRL PLAN
Samples 199994 400000 199990 199988

Mean 222.08 125.0 1967.3 2002.9
Std. Dev 14.291 45.576 389.98 412.46
Skewness 6.7334 0.00128 0.38184 7.0644

Min 220 0 1024 332
Q1 220 100 1594 1631

Median 220 125 1919 1931
Q3 220 150 2339 2376

Max 420 250 6829 45957

3.4 Dependencies between Raw RT and ET Data
of Tasks

In our case, due to intricate task execution dependencies
in the system, an upcoming RT data may not be indepen-
dent with the RT data previously recorded at each simula-
tion run (we refer to such RT and ET data as raw RT and

Figure 1. The sampling distribution of raw RT data of the
CTRL task in the evaluation model M1.

ET data). The same problem applies for raw ET data. Sec-
ond, in the conventional statistical procedure (parametric
test), e.g., t-test, analysis of variance (ANOVA) [16], one
important assumption is that the underline population is as-
sumed to follow a normal distribution. However, such as-
sumption cannot be made since the sampling distribution of
either raw RT data or raw ET data of all tasks often is con-
forming to a multimodal distribution having several peaks
(consider Figure 1 as an example). Specifically, because of
such distinctive feature of our target industrial control sys-
tem, it is difficult to bring conventional statistical methods
into the context. A new way of constructing the sampling
distributions of tasks’ RT and ET data has to be introduced,
in order to fulfill the basic requirement given by probabil-
ity distribution, i.e. the variable described by a probabil-
ity distribution is a random variable, of which value is a
function of the outcome of a statistical experiment that has
outcomes of equal probability. We will present the proposed
mechanism in the following Section 4.2.

4 Algorithm

4.1 Simple Random Samples

In order to eliminate bias on the sampling, which is a
key issue of selecting samples from the population of all in-
dividuals concerning the desired information, the technique
of simple random samples (SRS) [9] is adopted. SRS gives
every possible sample of a given size the same chance to
be chosen. For instance, Monte Carlo simulation is used
as a way of implementing SRS to collect sampling distribu-
tions of RT and ET data of tasks in the extracted RTSSim
model. This is done by an embedded random number gen-
erator rnd inst() in the RTSSim simulator, which is an
improved version of the Pseudo-random number generator
used in C, i.e., rand() in Algorithm 1. The detailed imple-
mentation of rnd inst() is shown in Algorithm 1. More-
over, empirical results showed that the distribution of ran-
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Figure 2. A new reconstructed sampling distribution of
RT data of the CTRL task in the evaluation model M1.

dom numbers given by rnd inst() is conforming to the
uniform distribution, which assures that for each selection
in RTSSim input data, all possible values in any range are
equally likely to be chosen. Analogously, the sampling dis-
tributions of RT and ET data of tasks in the real system
can be collected based on measurements given a random-
ized system input. Some of the outliers (extreme values)
which are caused, e.g. hardware failure or system errors,
have to be removed from the sampling distributions.

Algorithm 1 rnd inst()
1: temp1← rand()
2: temp2← rand()
3: ret ← temp1 × 32768 + temp2
4: return ret

4.2 Reconstruction of New RT and ET Sampling
Distribution

In order to eliminate dependencies between raw RT and
ET data of tasks due to intricate task temporal dependen-
cies, we propose a method by first running N Monte Carlo
simulations conforming to SRS as introduced previously.
Further, for each task in the task set Γ, the highest value
of m samples RT data and m samples ET data recorded by
each simulation, will be chosen to construct new sampling
distributions of RT data and ET data. By doing this, the
new constructed sampling distributions of RT and ET data
of tasks can be considered from a random variable, since
there are no dependencies between any maximum value of
RT and ET data of tasks between two independent simula-
tions. In other words, task intricate temporal dependencies
are kept in new sampling distributions of RT and ET data,
while the dependencies between any RT data and ET data
are eliminated. Refer to Figure 2 as an example.

4.3 Problems with Using Parametric Statistics

So as to determine if the conventional statistical proce-
dure (parametric test), e.g., t-test, ANOVA, can be applied

to infer parameters of new tasks’ RT and ET sampling dis-
tributions used for validation purpose, the conclusion, that if
such sampling distributions1 are from a normal distribution,
has to be drawn at first. In this work, it is done by using a
commercial statistic analysis software EasyFit [17], accord-
ing to the results given by a Goodness of Fit (GOF) test, i.e.,
Chi-squared test at α-value of 0.052. The obtained results
clarify that new sampling distributions of RT and ET data
of all tasks do not conform to any of the 65 known distribu-
tions, e.g., Normal, Uniform, Student’s t, Lognormal. The
null and alternative hypotheses used in Chi-squared test, at
significance level 0.05, are as follows.

1. H0: the sampling distribution concerning the RT or ET
data of task τi follows a specific distribution;

2. Ha: the sampling distribution concerning the RT or ET
data of task τi does not follow a specific distribution.

Note that the 65 known distributions can be found in
[17]. Further, in t-test, the mean value µ0 of the popu-
lation has to be known beforehand, which is not the fact
in our case. Because a parametric test cannot be reason-
ably applied in this work, we thereby use the two sam-
ple Kolmogorov-Smirnov (hereafter KS test) which is non-
parametric and makes no assumptions on the underline pop-
ulation of a sampling distribution.

4.4 StatiVal

The proposed method, StatiVal, is shown in Algorithm 2.
The algorithm returns the result concerning if there exist a
statistically significant difference between the two data sets
that are from the modeled system S and the model S

′
, in

the view of system timing properties including tasks’ re-
sponse time and execution time. Further, in this work, since
we cannot perform the validation between the real modeled
system and the extracted model, we will instead compare
a system model S inspired by a real industrial robotic con-
trol system (considered as the modeled system) with a set
of models S

′
where a specific change scenario (as shown in

Table 3) is applied. Both of S and S
′
, are in this case simula-

tion models, analyzed using Monte Carlo simulation which
in Algorithm 2 is modeled as a function, MTC, with four
parameters: m - the number of samples drawn from each
simulation trace, τk - the task on focus in KS test, Property
- either RT or ET of the task τk and rnd inst() - a random
number generator in RTSSim simulator. When the refer-
ence for comparison is a real system, the sampling distri-
bution is built by using random measurement (e.g., by ran-
domizing inputs to the system) at first, and then removing

1In our case, the number of samples i.e., 20 000 in sampling distribu-
tions of RT and ET data of tasks is statistically enough to represent the
underline population.

2α = 0.05 means that we are requiring that the RT and ET data of tasks
give evidence against H0 so strong that it would happen no more than 5%
of the time when H0 is true.
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outliers from the sampling data that are caused by hardware
failure or system errors during each system runtime obser-
vation, and finally, choosing the highest value of RT and ET
data of tasks in the system. Further, because such activity is
also application-specific, we therefore will not discuss it in
details in this work. The outline of StatiVal is as follows:

1. Construct the sampling distribution of N RT and ET
data of all the tasks in both the system S and the model
S
′

by Monte Carlo simulation MTC() respectively (re-
fer to lines 1 to 16 in Algorithm 2).

2. Use KS test to compare if sampling distributions of
RT and ET data of each task τk in the task set Γ in
both S and S

′
are statistically significant iteratively. If

the result given by KS test is Ha, then Algorithm 2
draws the conclusion C1, i.e. the model S

′
is not a suf-

ficiently accurate approximation of the system S due
to an improper model extraction process, and finally,
stops the validation process; Otherwise, the entire val-
idation process will terminate after all the tasks are
evaluated by KS test (refer to lines 18 to 33 in Algo-
rithm 2). In practice, KS test is conducted by using
a commercial software XLSTAT [18], which is a plug-
in to EXCEL and returns the result by comparing two
sampling distributions containing 20 000 samples per
each, in a few seconds.

5 Evaluation

5.1 The Evaluation Model

Currently, we are not able to perform the model vali-
dation process concerning the extracted model and a real
system. Therefore, in this work, we examine the idea by us-
ing a simulation model Model 1 (M1) describing a fictive,
representative industrial robotic control system developed
by ABB. It is designed to include some behavioral mecha-
nisms from the ABB system:

1. tasks with intricate dependencies in temporal behavior
due to Inter-Process Communication (IPC) and glob-
ally shared state variables;

2. the use of buffered message queues for IPC, which
vary the execution time of tasks dramatically;

3. although FPPS is used as base, one task, i.e., the CTRL
task, changes its priority during runtime, in response to
system events.

Further, the task model is presented in Table 2. The de-
tails of the model are described in [7].
5.2 Change Scenarios and Results

The RT and ET data of tasks produced by the original
simulation model M1 is used as reference, for comparing
the impact of a set of change scenarios which are initially
introduced in [19] and outlined in Column Changes De-
scription in Table 3. Moreover, for Case 4, 5 and 6, there

Algorithm 2 S tatiVal(Γ)
1: for all τk such that 1 ≤ k ≤ n in Γ in both S and S

′ do
2: for all i such that 1 ≤ i ≤ N do
3: Xi ← xi,1, ..., xi, j, ..., xi,m ← MTC(m, τk,RT, rnd inst())
4: Xτk ,i ← Max(Xi)
5: Yi ← yi,1, ..., yi, j, ..., yi,m ← MTC(m, τk, ET, rnd inst())
6: Yτk ,i ← Max(Yi)
7: X

′
i ← x

′
i,1, ..., x

′
i, j, ..., x

′
i,m ← MTC(m, τk,RT, rnd inst())

8: X
′
τk ,i
← Max(X

′
i )

9: Y
′
i ← y

′
i,1, ..., y

′
i, j, ..., y

′
i,m ← MTC(m, τk, ET, rnd inst())

10: Y
′
τk ,i
← Max(Y

′
i )

11: end for
12: Xτk ← Xτk ,1, ..., Xτk ,i, ..., Xτk ,N

13: Yτk ← Yτk ,1, ..., Yτk ,i, ..., Yτk ,N

14: X
′
τk
← X

′
τk ,1
, ..., X

′
τk ,i
, ..., X

′
τk ,N

15: Y
′
τk
← Y

′
τk ,1
, ..., Y

′
τk ,i
, ..., Y

′
τk ,N

16: end for
17: ret ← 0
18: for all τk such that 1 ≤ k ≤ n in Γ in both S and S

′ do
19: ret ← kstest(Xτk , Xτ

′
k
, α)

20: if ret = H0 then
21: ret ← C0

22: else
23: ret ← C1

24: return ret
25: end if
26: ret ← kstest(Yτk , Yτ′k , α)
27: if ret = H0 then
28: ret ← C0

29: else
30: ret ← C1

31: return ret
32: end if
33: end for
34: return ret

is a DUMMY task added to the model S
′

with different pri-
orities, execution times and periods (denoted as C and T
in Table 3 respectively). Finally, we compare the outputs
against the original model to investigate the performance of
the method. The results given by StatiVal are shown in Ta-
ble 3, which are in line with the expected results in [19].
More importantly, our evaluation shows a promising result,
i.e. the proposed algorithm can identify temporal differ-
ences between the target system and its extracted model by
showing the evidence whether the extracted model is a suf-
ficiently accurate approximation of the target system.

6 Conclusions and Future Work

This paper has presented our work on validation of tem-
poral simulation models extracted from real industrial con-
trol systems containing intricate task execution dependen-
cies. In particular, we have presented and evaluated the
method by using a fictive system model inspired by a real
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Table 2. Tasks and task parameters for M1. The lower
numbered priority is more significant, i.e., 0 stands for the
highest priority.

Task Period (µs) Offset (µs) Priority
DRIVE 2000 12000 2

IO 5000 500 5
CTRL 10000 or 20000 0 6 or 4
PLAN 40000 0 8

system with a set of change scenarios, which shows that
the proposed method has the potential to identify temporal
differences between the modeled system and the extracted
models. As part of future work, an effort will be spent on
evaluating more scenario changes on the evaluation model.
Moreover, we will evaluate the method on real systems.
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Abstract—In this paper we present a simulation-based analysis
to infer the fault resilience of real-time systems. Simulation is
used to favor generality, comparability and make it possible to
study the system taking into consideration its overall behavior
instead of dealing only with worst-case scenarios. In the proposed
approach, only parts of the schedule are simulated. Tasks can
be analyzed individually, which is useful since they may have
different criticality levels. We show how the results collected from
simulation can be analyzed for different scheduling models.

I. I NTRODUCTION

Fault tolerance is a key aspect in real-time systems and
several approaches have been proposed in this area. Most of
them aim at providing a means of timeliness assessment (i.e.
schedulability analysis) taking into account the possibility of
error occurrences. As will be seen in Section II, usually, such
approaches artificially assume a given worst-case scenario
for error occurrences (error pattern) and then adapt standard
schedulability analysis accordingly to check if a given system
is schedulable when subject to a given error pattern.

In spite of being useful, since they provide some sort of
timeliness assessment, such analyses are strictly linked with
the scheduling policy and fault assumptions used, which may
present some shortcomings. For example, results for fixed-
priority systems [1], [2], [3], [4] cannot be applied for dynamic
priority ones [5], [6] and vice-versa. Even two similar analysis
techniques for the same scheduling policies may be incompa-
rable due to the different error patterns assumed [2], [3]. This
means that if one is deciding to implement a given system,
he/she might not be able to choose the best approach because
they are not comparable. Moreover, violating the assumed
error pattern does not necessarily imply system failure since
the analysis is carried out based on worst-case scenarios. Also,
errors are in fact random events and do not follow a predefined
pattern. Thus, it would be helpful to have a tool that can
measure fault resilience. In this paper we present such a tool,
which is based on simulation. As will be seen in Sections III
and IV, the considered system model is reasonably general so
that one can plug different scheduling and/or recovery models
into the simulation procedure. This favors comparability,as
will be seen in Section VII, where a comparison from the
fault resilience viewpoint of EDF and RM is given.

Common criticisms regarding simulation-based analysis in-
clude the fact that it usually takes too much time and does not
cover all possible execution paths. However, they do not apply
to our approach, since only a sample of possible execution

paths is needed. The idea is to simulate the system during
specific time windows, which are defined based onsimulation
scenarios, a concept explained in Section V. For each time
window, the simulation engine, described in Section VI, finds
a lower bound on the number of errors necessary to cause
a time failure in the system. By doing so for a random
generated sample of simulation scenarios, one can infer the
fault resilience for a given task, which is very useful since
they may have different criticality levels.

II. RELATED WORK

Most work on analyzing fault tolerant real-time systems
focus on analyzing if the system is schedulable when subject
to a given error pattern (fault model). Several assumptions
on the error patterns have been considered. For example,
some approaches assume that errors are periodic in the worst
case [9], [2], [10], [11] while for others a maximum number
of errors per task/job is predefined [5], [6], [12], [13], [3].
Indeed, the derived equations for schedulability analysisare
strongly tied to the assumed scheduling and/or fault models.
Thus, results depend on the assumed models, which prevents
one to compare different systems/models from fault resilience
viewpoint. As illustration consider an EDF-scheduled system
that can tolerate at mostk faults [6] during the hyperperiod
and a RM-scheduled system that assumes periodic errors[9].
Note that each error pattern will introduce an extra workload
to the system related to recover, whose execution priority is
determined by the scheduling policy. Thus, such approaches
may not be comparable in terms of fault resilience.

Some authors have also addressed the problem of assump-
tion coverage [14], [4], [1], whose focus is to study to what
extent the assumed error pattern is violated if errors are seen
as random events. Nonetheless, due to the nature of their
fault model (periodic error occurrences), the violation ofthe
assumed error pattern does not necessarily implies system
failure. Unlike such approaches, we examine to what extent
a given system task can cope with errors. Without assuming
a specific error pattern and considering several scheduling
policies, we aim at measuring the system fault resilience of
tasks as independently as possible of the assumed scheduling
and fault models.

III. SYSTEM MODEL AND NOTATION

We consider uniprocessor and preemptive real-time systems
composed ofn periodic tasksΓ = {τ1, . . . , τn}. Task at-
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tributes are represented by fourn-tuples, which give their
periods, deadlines, worst-case execution times and recovery
times, respectively denoted asT = (T1, . . . , Tn), D =
(D1, . . . ,Dn), C = (C1, . . . , Cn) andC̄ = (C̄1, . . . , C̄n). We
assume that each taskτi is independent of each other. Also,
Ci ≤ min(Ti, Ci) andDi ≤ Ti.

We assume that the schedulability of the system can be
assessed in fault-free scenarios. Fault tolerance is provided
by executing an extra code upon error detection, which can
be the re-execution of the faulty task or the execution of an
alternative task. If errors are detected during the recovery of τi,
other recovery actions can be released. Note that this modelis
in line with most fault tolerance techniques based on temporal
redundancy such as recovery blocks or exception handlers
[15], which have been widely applied to real-time systems [9],
[2] and can be implemented at the task level. We do not deal
with errors for which spatial redundancy is required, usually
implemented using a distributed/parallel architecture [16].

As tasks inΓ are periodic, each task activation is called
a job. The k-th job of taskτi is released at timeφi + (k −
1)Ti, whereφi is the phase ofτi. For the sake of notation
simplicity, we assume thatφi = 0, for all tasks inΓ, although
the proposed analysis can be easily adapted to consider fixed
values of φi > 0. Aperiodic jobs are considered for error
recovery only.J̄ and p(J) denote, respectively, a recovery
action for jobJ and its priority.

Although we do not assume a particular scheduling policy,
we consider both fixed-priority and dynamic-priority whichin-
cludes scheduling policies such as EDF, RM or DM, according
to which jobs do not change their priorities during execution,
although the priority of tasks may vary. To simplify notation
we define functionsmin(X) andmax(X), which return the
minimum and maximum values of any tupleX. We also
define the functionrand(a, b), which returns an integer value
according to a discrete uniform distribution in the interval
[a, b].

IV. SIMULATION ENVIRONMENT OVERVIEW

Figure 1 illustrates the simulation environment, which is
represented by two main components, the scheduler and the
error generator. While the former component follows a given
scheduling policy (e.g. RM or EDF) and tries to keep the
system schedulable, the goal of the latter is to generate
errors so that job deadlines are missed. The higher the effort
made by the error generator, the higher the resilience of the
system. No particular error pattern is assumed. A role of the
error generator is to derive the worst-case error patterns for
each simulation. These two components are namedsimulation
engine. It is worth emphasizing that this approach is generic in
the sense that scheduling and recovery policies, for example,
can be plugged into the simulation straightforwardly.

Unlike existing simulation-based analysis, the simulation
environment in Figure 1 does not need to simulate the whole
system execution (e.g. system hyperperiod), which might be
too time consuming in general. The idea is to simulate
specific time windows and then to derive fault resilience by

TASK SET

ERROR

GENERATOR

SIMULATION

SCENARIOS

SCHEDULER ERROR PER

SCENARIO

SCENARIO

GENERATOR

SIMULATION ENGINE

Fig. 1. Simulation Environment

statistically analyzing simulation data. These time windows
are defined based onsimulation scenarios, which are given by
the scenario generator. Assuming that tasks are periodic and
Ci = min(Ci, Ti), simulation scenarios are actually reference
points, represented by tuples of task release times. In order
to motivate the concept of simulation scenarios, consider the
following example.

Example IV.1. ConsiderΓ = {τ1, τ2, τ3} a periodic task
set, whereT = (10, 15, 20). Recovery is carried out by re-
executing the faulty task. Tasks must finish their executionby
their deadlines even in the presence of errors.

In this example,h = lcm(T1, T2, T3) = 60 is the task set
hyperperiod. There areh/Ti simulation scenarios for taskτi,
which represents the number of its released jobs withinh.
We represent the set of simulation scenarios ofτi asΩi. This
set will be formally defined shortly. For now, we give only
some intuition. Three distinct simulation scenarios forτ1 are
(0, 0, 0), (10, 0, 0) and(40, 30, 40). More details about how to
generate such values are presented in Section V. Based on each
simulation scenarioS ∈ Ωi, the simulation engine determines
thesimulation window. Considering that one wishes to analyze
τ1 andS = (40, 30, 40) regarding Example IV.1, a simulation
window could be[20, 50), say. Indeed, the simulation starts at
some time beforer = min(S) so that it is possible to estimate
the backlog atr. Also, it is not needed to simulate the system
after time40 + D1 since this is the absolute deadline of the
analyzed job ofτ1 for the chosen simulation scenario.

Once a sample of simulation scenarios are randomly cho-
sen, the corresponding simulation windows are simulated as
outlined above. The main result of this simulation is the
effort made by the error generator, measured as the mini-
mum number of errors (fS

i ) which makesτi unschedulable
for a given simulation scenarioS. As will be seen,fS

i is
an approximation since it is obtained by simulation and is
conservatively computed. Nonetheless, it serves well as a fault-
resilience metric. After the values offS

i are computed, one can
carry out statistical analysis to infer the fault resilience of τi.

Indeed, some characteristics of the proposed analysis must
be highlighted such as the possibility of carrying out the
analysis for different scheduling and error recovery models,
which enables a comparison between different approaches.
Also, the fault resilience of tasks is determined individually
and based on the overall behavior of its jobs, not only worst-
case. Moreover, such approach does not focus on determining
whether the system is schedulable for a given error pattern.
Instead, the result of the simulation represents the capacity of
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tasks to recover from errors.

V. SCENARIO GENERATION

The concept of simulation scenarios, as well as some useful
operations have been recently discussed [17] and will be
briefly presented here to make this paper self contained.

A. Simulation Scenarios

As mentioned before, simulation scenarios are defined as
tuples of task release times. Since we are considering that tasks
or their recoveries take their worst-case execution times to
finish, this simplified representation of simulation scenarios is
enough for our purpose. Nonetheless, not all tuples of release
times are simulation scenarios:

Definition V.1. Tuple S = (S1, . . . , Sn) is a simulation
scenario of a periodic task setΓ = {τ1, . . . , τn} if the
following predicate holds:

scenario(Γ,S)
def
= ∃w ∈ R,∀Si :(Si + w)modTi = 0

∧ max(S) − Si < Ti (1)

Both conditions defined by the above predicate mean that:
(a)S is a tuple of tasks release times; and (b) only the closest
jobs, released before the last released job, are considered.
For Example IV.1, it can be seen that according to Definition
V.1 tuples(0, 0, 0), (20, 15, 20) and(40, 30, 40) are simulation
scenarios. However, tupleS = (40, 15, 40), say, is not. Note
that, althoughSi is a possible release time ofτi (i = 1, 2, 3),
the release time ofτ2 should be30 instead of15 to makeS
a simulation scenario for this task set example.

Consider tuplesS = (20, 15, 20) andS′ = (30, 25, 30), say,
both scenarios for Example IV.1. Note thatSi = S′

i + 10 for
all tuple elementsSi. This means that the same simulation
effects would be observed whenS or S′ were simulated. In
this case, it is said thatS is equivalent toS′. More formally:

S ≡ S′ ⇔ ∃w ∈ R,∀i ∈ {1, . . . , n} : Si = S′
i + w (2)

The time-shift operation, which returns equivalent simula-
tion scenarios for a periodic task setΓ, is defined as:

tshift(S, w)
def
= (S1 + w, . . . , Sn + w), w ∈ R (3)

Clearly, simulation taken from equivalent simulation
scenarios must be avoided. If two simulation scenarios
are not equivalent, they represent possible release
time distances between jobs of distinct tasks ofΓ.
Taking Example IV.1 for illustration and considering
task τ1, it is not difficult to see that Ω1 =
{(0, 0, 0), (10, 0, 0), (20, 15, 20), (30, 30, 20), (40, 30, 40),
(50, 45, 40)} within the interval[0, 60).

Consider one of the possible simulation scenarios for Exam-
ple IV.1, sayS = (20, 15, 20). This scenario takes place after
time advances by 20 time units from the origin. On the other
hand, backtracking fromS 10 time units, scenario(10, 0, 0) is
found. This reasoning suggests the following useful operation

that gives a new scenarioS′ based onS. More formally,
S′ = tadd(S,Γ, w), w ∈ R, whereS′ is defined as

S′
i = Si +

⌊
max(S) + w − Si

Ti

⌋
Ti, i = 1, . . . , n (4)

It is important to notice that the time-add operation always
lead to a valid simulation scenario [17]. Also, observe that
tadd(Γ,S, w) is a step-function which changes its values
whenever max(S) + w − Si is multiple of Ti. Further,
since h = lcm(T1, . . . , Tn), it is not difficult to check that
tadd(Γ,S, w) ≡ tadd(Γ,S, w+h). These observations imply
that there is a finite set of values forw that can be used to
generate all simulation scenarios. In the following section we
show how to generate random subsets of simulation scenarios.

B. Generation Procedure

Algorithm 1 is a procedure which generates a random and
not biased subsetΩ∗

i for a given taskτi ∈ Γ in m steps, where
m = |Ω∗

i |. Each step takes a time interval of sizeh∗, where
m = h/h∗ (line 2). For simplicity, we assume that all jobs
are released at timet = 0, although any other value could be
assumed. Note that for each interval the algorithm chooses a
random valuek which always leads to a valid scenario (line
5). Both tadd and tshift operations (lines 8 and 9), are used
to bound the task release times, which reduces the complexity
due to large numbers arithmetics. Indeed, the running time
of Algorithm 1 depends on the value ofh∗. For example, if
h∗ = Ti, Algorithm 1 works with numbers as large asTi.
On the other hand, ifh∗ = h, the algorithm has to deal
with numbers as large ash. Clearly, running the algorithm
several times with a big value ofh∗ is not recommended. One
possibility is to bound the bit-size of numbers generated bythe
algorithm according to the target architecture to achieve agood
trade-off between the number of steps and the time/memory
needed for arithmetics. Since the time complexity of line 5 is
O(n log2 h∗) and this line is executedm = h

h∗ times, the time
complexity of the algorithm isO(nh

h∗ log2 h∗).

Algorithm 1 : Random generation procedure. Is is assumed
that m < h/Ti.

Ω∗ ← ∅; j ← 0; S← (0, . . . , 0);1
h← lcm(T1, . . . , Tn); h∗ ← ⌊h/m⌋;2
repeat3

k ← rand(0, (h∗ − Ti)/Ti);4
S′ ← tadd(Γ,S, kTi);5
Ω∗

i ← Ω∗
i ∪ S′;6

j ← j + 1;7
S← tadd(Γ,S, h∗);8
S← tshift(S,−S1);9

until (j = m) ;10

Considering Example IV.1, taskτ1 and definingm = 3 (i.e.
h∗ = 20), the algorithm chooses a value ofk ∈ {0, 1} in each
of its steps. In the first step two possible scenarios can be
generated,(0, 0, 0) or (10, 0, 0). Note thatS is kept constant
in each step, serving as a base scenario for generatingS′.
Table I illustrates the behavior of Algorithm 1. The last column
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of the table indicates the equivalence between the generated
scenariosS′ and those that would be generated if line 9 was
removed from the algorithm.

TABLE I
Ω∗

1 FOR EXAMPLE IV.1.

step S k S′ S′ ≡

1st (0, 0, 0)
0 (0, 0, 0) (0, 0, 0)
1 (10, 0, 0) (10, 0, 0)

2nd (0,−5, 0)
0 (0,−5, 0) (20, 15, 20)
1 (10, 10, 0) (30, 30, 20)

3rd (0, 5, 0)
0 (0, 5, 0) (40, 45, 40)
1 (10, 5, 0) (50, 45, 40)

VI. SIMULATION ENGINE

In this section we describe both the simulation and the error
generator procedures. Assume that a task inΓ = {τ1, . . . , τn}
is to be analyzed for a specific simulation scenarioS =
(S1, . . . , Sn). The job of this task, released atSi, namely
Ji, is called hereafter the analyzed job. Figure 2 sketches the
simulation process. ScenarioS and a previous scenarioS′ are
indicated in the gray area of the figure. The first release time
of jobs inS, indicated by the vertical arrows, whose priorities
are at leastp(Ji) is denoted asr ≤ Si in the figure. This job
must be considered when analyzing the effects of errors in the
execution ofJi.

r S
i

t
b

i

S + D
i i

k

S’ S

Backlog computation
STEP 1

Error generation
STEP 2

{ Simulation time for S

Fig. 2. Two step simulation procedure.

The simulation of the system regardingS involves two
problems: (a) determining the execution backlog atr, which
is related to jobs released beforer; and (b) generating the
minimum number of errors fromr onwards so that the
analyzed job misses its deadline. Nonetheless, exact solutions
to problems (a) and (b) may be computationally too expensive.
Thus, our approach to solving them is to derive an upper bound
for (a) and a lower bound for (b) so that the effort of the error
generator is not overestimated. The simulation procedure has
two steps, as shown in Figure 2, which will now be detailed.

A. Backlog Computation

The backlog computation aims at determining the interfer-
ence from jobs in a previous scenarioS′ in the analyzed job.
To do so, we estimate the backlog forS (a) going back to
a previous scenarioS′ and (b) forcing the release time of all
tasks inΓ be at timetb = min(S′). The remainder execution
time after simulating the system within[tb, r) should give the
desired upper bound. IdeallyS′ should be a scenario which

gives a good trade-off between simulation time and backlog
estimation. In this work, though, we follow a simple approach
to computingS′, which is going back to the closest scenario
beforeS. In experiments we have also used others scenarios
but on average the effects on the backlog was not significant.

Once tb is computed, the simulation starts executing the
jobs released in[tb, r) but with the error generator deactivated.
Since some jobs are artificially released attb, as illustrated
by the dotted-arrowed line in Figure 2, there could be an
execution overload in[tb, r) which are generated for the
purpose of backlog estimation only. In order to reduce this
artificial overload, the jobs that are executed in[tb, r) until
their deadlines are missed, time at which they are discarded.
This is done to reduce the pessimism of the simulation-based
analysis. Jobs in[tb, r) are calledbacklog jobs.

B. Error Generation

The simulation during[r, Si + Di) is carried out with the
error generator active. The strategy is to generate errors in
the job which causes the highest interference in the analyzed
job Ji. As the goal is to estimate a lower bound on the
minimum number of generated errors that makeJi miss its
deadline, faulty jobs are allowed to execute beyond their
deadline (except forJi). In other words, the optimization
problem of determining which jobs fail during simulation is
circumvented. According to this approach the found number
of errors is guaranteed not to be overestimated but can be
underestimated.

Consider a scenarioS and a time interval[r, t), r < t < Si+
Di in which Ji is active. The set of all jobs that may interfere
in Ji during [r, t) is defined ashpS

i (r, t). Indeed, since the
error generator must not letJi meet its deadline, every time
t at whichJi would successfully finish its execution an error
must be generated in a jobJj ∈ hpS

i (r, t) which causes the
greatest interference inJi. In order to find outJj , we define the
concept ofinterference distance(∆S

i,j), illustrated in Figure 3.
Let ej be the finishing time ofJj when no errors take place

andCk(t) the pending worst-case execution cost at timet of
anyJk ∈ hpS

i (r, t). Observe that timet is a possible successful
finishing time ofJi and so the error generator must generate
an error in some job inhpS

i (r, t) so as to preventJi from
finishing. There are three possibilities denoted in Figure 3as
Jja , Jjb andJjc . Note thatJjd is only active aftert and so it is
not considered as an option. Also, note thatJjc was released
after Si and beforet. In this case,∆S

i,jc
= 0 and so any error

in Jjc would cause an extra interference in the execution ofJi.
This is not true for jobsJja andJjb . Indeed,Ji would suffer
interference of these jobs due to errors only if their recovery
times are greater than their interference distances,∆i,ja and
∆i,jb , respectively.

In the example no previous errors were considered. Now
consider a general case where the error generator is to generate
an additional error andfS

i errors have already been generated.
In this case, the error may be generated in (a)Jj ∈ hpS

i (r, Si)
or (b) Jj ∈ hpS

i (Si, t). The maximum interference between
jobs in (a) and (b) gives the desired lower bound on the number
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r eja ejb Si ejc t Si +Di

Jja

∆i,ja = Si − eja − Cjb , ∆i,jb = Si − ejb , ∆i,jc = 0

Jjb Jjc Jjd

Fig. 3. Interference distance.

of generated errors wheneverfS
i + 1 errors makeJi miss its

deadline.
It is important to emphasize that this strategy can be used

because we are considering that a chosen faulty jobJj is
assumed to execute beyond its deadlineSj +Dj . This is done
for the sake of analysis only and does not imply that we are
restricting the system task model. It is clear that sinceJj has
the highest interference in the execution ofJi according to
this assumption, any other combination of faulty jobs cannot
cause a greater interference. Therefore, we are conservatively
determining the error generator effort as mentioned before.

C. Simulation Procedure

Algorithm 2 : Simulation engine

t′ ← Si + Di; r ← minJk∈hpS
i
(Sk);1

S′ = tadd(Γ,S,−min(T));2
tb ← min

Jk∈hpS′
i

(S′
k); t← tb;3

foreach Jk ∈ hpS
i (tb, t

′) do4
enqueue(k, Ck, p(Jk));5

enqueue(0, t− t′, p(Ji)− 1); /* a dummy job */;6
fS

i ← 0; C̄ ← 0;7
while (t ≤ t′) do8

(k, C, p)← dequeue(t);9
s← nextJob(t, p);10
if t + C ≤ s then /* Jk finishes */11

t← t + C;12
if t < r then /* backlog job */13

if Sk + Dk > t + C then14
t← Sk + Dk;15

else /* error generator active */16
if j = i ∧ t ≤ Si + Di then17

fS
i ← fS

i + 1;18
x← maxJj∈hpS

i (r,Si)
(fS

i C̄j −∆S
i,j);19

y ← maxJj∈hpS
i (Si,t)(C̄j);20

if x > C̄ + y then21
enqueue(i, x− C̄, p(Ji));22
C̄ ← x;23

else24
enqueue(i, y, p(Ji));25
C̄ ← C̄ + y;26

27

else /* Jk is preempted */28
enqueue(k, C − (s− t), p);29
t← s;30

31

Algorithm 2 implements the simulation engine. It receives
as input parameters a task setΓ, one of its simulation scenarios

S, and a task to be analyzed regardingS, whose job is
released atSi. The simulation interval[tb, t′) is set in lines
1-3. VariablesC̄ and fS

i store the sum of recovery times of
faulty jobs and the number of errors, respectively. The final
value of fS

i is the generated number of errors by the error
generator that makeJi miss its deadline, meaning that scenario
S is resilient to at leastfS

i − 1 errors. Initially, all jobs in the
simulation interval are enqueued according to their priorities
and release times (lines 4-5). A dummy job is also enqueued
at priority levelp(Ji)−1 (line 6) which is used for advancing
time during idle intervals.

Any job is dispatched to execution at timet as follows.
The highest priority ready job att is dequeued (line 9). Then
thenexJob function returns the next release time of the job
with priority at leastp whose release time is greater thant. If
t+C > s, the dispatched jobJk is executed until times when
a preemption occurs. Otherwise, there are three situationsto
be checked. IfJk is a backlog job, it is executed until either
time t+C or timeSk+Dk. In the former case, time is simply
advanced tot+C. In the latter case,Jk misses its deadline at
timeSk+Dk and is discarded (lines 14-15). Finally, ifJk = Ji

andJi meets its deadline, an additional error is generated in
the job which maximizes the interference inJi, as explained
in Section VI-B. Note that the recovery time of the faulty job
is added toCi. This avoids possible backtracking to execute
the recovery ofJj , simplifying the simulation.

VII. STATISTICAL ANALYSIS

In this section we use classical statistical inference [18]to
estimate the confidence interval for the system fault resilience.
We determine a100(1 − α)% confidence interval for the
number of errors computed by the described approach, where
1 − α is the confidence level. In other words, as we have
used a sample of simulation scenarios to determine the fault
resilience of the analyzed system, we are interested now in
infering the fault resilience of the system for the whole setof
simulation scenarios.

First, we illustrate the analysis with an example, for which
we want to determine the mean value offS

i , for all τi ∈ Γ
and for all S ∈ Ωi. We considered a periodic task set
with 10 tasks andC̄ = C = (3, . . . , 3) and D = T =
(15, 36, 39, 40, 42, 42, 45, 45, 46, 46).

As the sample size|Ω∗
i | is necessary to determine a confi-

dence interval, we need to: (a) set an acceptablesample error
for each task, which is denoted by|f̄∗

i − f̄i|, wheref̄∗
i and f̄i

stand for the mean values related to the sampleΩ∗
i and to the

populationΩi, respectively; (b) define the standard deviation
σi based on a pilot sample; and (c) determine the confidence
coefficient 1 − α. We have set|f̄∗

i − f̄i| = 5 × 10−3 and
α = 5%. The sample size|Ω∗

i | for each taskτi ∈ Γ was
computed according to standard statiscal methods [18]. It is
worth mentioning that summing up all values of|Ω∗

i | in the
above example gives only1.30% (2682 simulation scenarios)
of what would be necessary if all simulation scenariosΩi for
each taskτi were considered. This illustrates the scalability of
the proposed analysis via statistical inference.
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Fig. 4. Fault resilience distribution

Using the computed sample sizes, Algorithm 1 generated
the random samples of simulation scenarios. Then Algorithm
2 was carried out. The found distributions offS

i , for all S ∈ Ω∗
i

and all τi ∈ Γ are shown in Figure 4 for both RM and EDF.
The boxplot diagrams indicate the quartiles of the distribution
as well as their minimum and maximum values.

As can be seen in the graphics, EDF has a better overall
performance in terms of fault resilience. Although this be-
havior was expected due to the optimality of EDF in terms
of schedulability, it is important to emphasize that now the
difference is being measured. It is worth mentioning that
τ1 has the same fault resilience for both schedulers. Indeed,
f̄S∗

i = 5 for both EDF and RM. On the other hand, for all
other tasks, EDF is clearly superior to RM in terms of fault
resilience. Obviously, we are not considering here problems
such as possible overloads caused by admission of recovery
actions, which could make EDF degrade. We stress that the
goal of the proposed analysis is to point out to what extent
the system support errors and is not on evaluating overload or
schedulability conditions.

In order to show the scalability, we considered an ex-
periment in which40 task sets composed of thirty tasks
each were randomly generated. Periods and execution times
were randomly select in the intervals[10; 800] and [3; 30],
respectively. For such task sets the calculated hyperperiod was
of the order1015. The proposed analysis was applied for all
task sets, similarly to what was explained above: we used the
sample error equal to5×10−3 andα = 5%, the fault resilience
for each system task was estimated. Table II summarizes the
mean effort, which are grouped per processor utilization range.
There were 10 task sets in each group. The95% confidence
intervals (CI) for each group are indicated. As expected, the
higher the processor utilization the less resilient the system.
Since we are carrying out the analysis for different task sets, a
higher variability is present. Hence, the sample sizes necessary
to give the desired sample error were slightly higher,7.76%
of the total simulation scenarios.

VIII. C ONCLUSION

We have described an innovative simulation-based analy-
sis technique capable of measuring fault resilience of real-
time systems. Tasks can be analyzed individually and their
overall behavior is taken into consideration. Results of the

TABLE II
FAULT RESILIENCE ESTIMATION

RM EDF
% CPU f̄i CI f̄i CI

55-65 6.35 [6.237,6.552] 6.05 [6.010,6.136]
65-75 3.01 [2.996,3.050] 3.25 [3.192,3.294]
75-85 2.33 [2.300,2.358] 2.87 [2.801,2.907]
85-95 1.95 [1.890,1.960] 2.13 [2.023,2.223]

analysis can be used to compare different systems or their
scheduling models from the fault resilience viewpoint, an
issue not addressed before. Unlike usual simulation-based
analysis, only small parts of the schedule is (approximately)
simulated, making the simulation process cost-effective.We
have shown how fault resilience information can be obtained
by statistically studying the results from simulation for two
traditional scheduling policies. Extensions of the proposed
analysis are currently being considered. Less restrictivetask
models and the incorporation of probabilistic behavior forthe
error generator can be investigated.
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Abstract—. The advancements in distributed computing have 

driven the emergence of service-based infrastructures that 
allow for on-demand provision of IT assets. However, the 
complexity of characterizing an application’s behavior, and as a 
result the potential offered level of Quality of Service (QoS), 
introduces a number of challenges in the data collection and 
analysis process on the Service Providers’ side, especially for 
real time applications. The aforementioned complexity is 
increased due to additional factors that influence the 
application’s behavior, such as real time scheduling decisions, 
percentage of a node assigned to the application or application-
generated workload. In this paper, we present a framework 
developed under the IRMOS EU-funded project that enables 
the sampling and gathering of the necessary dataset in order to 
analyze an application’s behavior. Processing of the resulting 
dataset is also conducted in order to extract useful conclusions 
regarding CPU allocation and scheduling decisions effect on the 
QoS. We demonstrate the operation of the proposed framework 
and evaluate its performance and effectiveness using an 
interactive real-time multimedia application, namely a web-
based eLearning scenario. 

I.  INTRODUCTION   

 In the light of rising computing paradigms such as Cloud 
computing ([1]), new value chains are emerging for 
outsourced hosting and execution of interactive multimedia 
applications. The latter have strict requirements on quality of 
service in order to operate effectively (e.g. latency, 
bandwidth and jitter for video streaming, response time to a 
request of the elearning server example presented later on). 
Actors in the value chain emerge where value can be added, 
e.g. at the infrastructure level through virtualized storage, 
networking and compute resources (Infrastructure-as-a-
Service), at the application level through offering a specific 
software tool on a pay-per-use basis (Software-as-a-Service) 
and in-between these two levels, comes the possibility of 
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Platform-as–a-Service (PaaS). 
For the above value chain to support applications with 

real-time attributes, careful planning is required, so that 
neither under-provisioning (likely failure of the application 
to execute) nor massive over-provisioning (unnecessarily 
high costs) occur.   

Furthermore, extensive use of techniques for incorporating 
applications with different characteristics in the 
infrastructure creates a burden with regard to the 
investigation of the application’s behavior. Such techniques 
may include the use of virtualization, specialized scheduling 
and sharing of resources between different components. 
Conclusively, extensive data sets must be collected in an 
automated way so that conclusions regarding an 
application’s behavior with varying resource allocations may 
be investigated. 

In this paper, a process for gathering extensive datasets 
from applications inside the EU-funded project IRMOS  
([11]) is described. This gathering incorporates state of the 
art components such as virtual machines (VMs) and real time 
schedulers, based on a variation of a number of parameters 
that are relevant to the investigated application and to the 
hardware configuration of the nodes of execution. Analysis 
and results regarding the effect of these parameters (such as 
changing scheduling granularity) to the application QoS 
levels are presented, in order to let the Service Provider (SP) 
use the fittest settings for the application under 
consideration. The resulting data sets will be made available 
to the general public for reusability purposes. 

II.  RELATED WORK  

Similar work to the one presented in this paper is 
described in this section. In [2], DynBench is introduced, as 
a benchmark for distributed real time applications 
infrastructures. This creates dynamic conditions for the 
testing of the infrastructures. While promising, this 
framework is mainly oriented towards investigating the limits 
of the infrastructure and not towards understanding 
application behavior with different configurations. 

In  [3], VSched is presented, an EDF-based scheduling 
algorithm. In this work, an analysis is conducted on 
application performance with the scheduler in question, 
investigating the effect of scheduling decisions and 
concurrent virtual machines execution. The analysis is very 
thorough and interesting, however no framework is presented 
for obtaining the necessary data sets. 

Distributed Interactive Real-time Multimedia Applic ations: A 
Sampling and Analysis Framework  

George Kousiouris, Fabio Checconi, Alessandro Mazzetti, Zlatko Zlatev, Juri Papay, Thomas 
Voith, Dimosthenis Kyriazis 
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In [4], DIANE is presented for Grid-based user level 
scheduling with a focus on applications. However these 
applications are more centered around execution end time 
and not on real time interactivity. 

A very interesting work is presented in [5] , where the 
users of a virtual machine are given the opportunity to 
increase through a simple interface their allocated CPU, 
based on their experience with the application. The cost of 
the increase is shown, so that the user may decide on the fly. 
While it is a very promising approach and would eliminate a 
vast number of issues with regard to application QoS levels, 
its main drawback is in cases of workflows. Inside a 
workflow, a degradation in performance may be due to a 
bottleneck on various nodes executing a part of it. The user 
will most likely be unaware of the location of the bottleneck, 
especially in cases of non experts. 

Another interesting work with regard to real time 
scheduling and virtualization appears in [12]. In this case, 
the schedulability of concurrent virtual machines is 
investigated, in relation to the application deadlines met. Our 
work differs from this due to the fact that in this paper one of 
the major goals is to investigate application behavior with 
regard to changing scheduler assignments. The same applies 
for the work presented in [13], which compares different 
scheduling algorithms. The framework presented here is 
more application centric but can also be used for comparison 
purposes of the effect of these schedulers on application 
performance.   

The remainder of the paper is structured as follows. In 
Section III, the role of the proposed framework for 
application sampling and analysis inside the IRMOS 
Framework is presented, along with details regarding the 
parameters of concern. In Section IV, the testbed used for 
the automatic collection of data is described, while in 
Section V the description of the process is presented. Finally, 
we present an analysis on the created data set, with a focus 
on the effect of the altered parameters on the application 
QoS level (Section VI) and conclusions (Section VII). 

III.  ROLE OF SAMPLING  IN IRMOS  

The major goal of IRMOS (Interactive Real-Time 
Applications on Service Oriented Infrastructures) is to 
enable the utilization of distributed infrastructures such as 
Service Oriented Infrastructures (SOIs) for interactive soft 
real time applications. In order for this to be accomplished, 
the most significant challenge is to offer guaranteed levels of 
QoS to the applications running inside the framework. 
However, these software components may be in many cases 
proprietary. Acquisition of sufficient information in order to 
deduce conclusions for their behavior can only be achieved 
through a macroscopic view. What is more, it is assumed that 
the applications are not written specifically for operation as 
IRMOS services, but rather, software components already in 
general use wrapped up as SaaS applications. As a 
consequence the actual internal operation of the application 

will be very difficult to be ascertained and used for the 
purposes of performance modeling. One way to collect this 
type of information is through executing the application for a 
variety of different parameters and determine their effect on 
the QoS output.. Through this information the IRMOS 
provider will be able to have an idea regarding what kind of 
resources should be allocated in order to meet the QoS levels 
requested by the client. Processing of these data for 
interpolation may be performed in a variety of ways 
(analytical modeling, statistical analysis, queueing theory, 
artificial intelligence etc.) however we consider this part out 
of scope for this paper. 

For real time applications, the basic aim is to provide QoS 
guarantees. These may be either extremely strict, with no 
possibility to fall below the specified levels (hard real time 
constraints) or more relaxed, allowing for a predefined 
percentage of the QoS output to be above the wanted levels 
(soft real time constraints) ([8]) . In IRMOS, the second case 
is considered. So, what is critical, is to have a probabilistic 
approach that covers the needed levels.   
The data sets needed for the creation of these probability 
distributions are obtained by general experimentation and 
sampling activities that are described in this work. 
Application runs can be performed for a series of workloads, 
with different application setup, on a variety of hardware 
configurations. More details regarding the modelling 
approach followed in the project can be found in [9].  

A. Sampling Parameters 

The parameters for which these sampling tests will be 
conducted depend on both the hardware on which the 
application is executed and the application parameters that 
will be toggled during real life executions. 

For the hardware parameters, different CPU percentage 
assignments can be given with varying granularity. The 
granularity concerns the time period in which this percentage 
is assigned and can vary from a few milliseconds to seconds 
typically. This affects the performance of an application (for 
the same percentages of CPU allocation) in many ways since 
different needs must be met in each occasion. For example, 
for interactive real time cases, the application must be able to  
be activated in specific time intervals in order to give the 
user the notion of interactivity. This period may be different 
from case to case. However frequent task switching in the 
CPU results in increased overheads for the switching process 
and the restoration of each task’s status. So a trade-off must 
be achieved between the two cases. On the other hand, on 
applications such as scientific simulations this effect may be 
different. These applications are typically time consuming 
and have no need for interactivity. Thus, the larger this 
granularity is, the better the application behavior in terms of 
overall execution time will be, since with reduced task 
switching, cache utilization will be improved. 

Other parameters have to do with the workload produced 
by the application. Different executions may produce 
different amount of work for the processor to handle. The 
effect of these factors must also be investigated in the 
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context of service oriented infrastructures. For example, in a 
server based application, this parameter is determined by the 
number of users that produce requests towards the server. 
The higher this value is, the more requests are generated and 
the more strenuous to the resources the application will be. 

IV.  SAMPLING  TEST-BED  

The sampling test-bed consists of a number of necessary 
components in order to alter the aforementioned parameters. 
These include the Virtual Machine inside which the 
application resides and is executable on all nodes of the 
infrastructure. The second necessary component is the real 
time scheduler used, that allocates the CPU share to the VM 
process and alters the granularity of this assignment. Finally, 
the application that is installed inside the VM is needed in 
addition to an external simulator. The latter is used in order 
to create application workload. More details regarding the 
role of each component are given in the following sections. 

A. Virtualization Approach  

Expanding network connectivity and the growing bulk of 
data demands for larger infrastructures, which are able to 
react dynamically on computing, networking and storage 
needs. The concept, which provides “on demand” services 
by sharing infrastructure resources and maintaining 
reliability and scalability, is associated with the term 
“cloud”. On the 32th IETF meeting in 1995 ([10])  the term 
cloud has been already used for the telecommunication 
infrastructure – now known as telco cloud – dealing with IP 
routing over large “shared media” networks. Sharing the 
computing resources over time (perceived already by John 
McCarthy in 1961) is experiencing now a renaissance due to 
the virtualization technologies. Virtualization of computing 
resources allows running multiple operating systems time-
shared on a single computer in so called virtual machines. 
The independence of the virtual machine from the real 
hardware allows it to provide the computing as an 
infrastructure service on demand on any real host with 
enough free computing power. The virtual machine needs to 
be light-weight for movement and for instant availability. 
The three main pillars computing, data storage and 
networking can be provided as a service on demand as long 
as there are some guarantees associated with it. The cloud 
infrastructure service - Infrastructure as a Service (IaaS) 
means that the infrastructure can be utilized as a service 
without expertise or control over the technology 
infrastructure ensuring certain guarantees. The guarantees for 
computing belong to virtual machines experiencing certain 
CPU time over the complete service time.  This is an 
inevitable prerequisite for enabling a real-time application 
inside a virtual machine with certain CPU time guarantees. A 
real-time capable OS of the virtual machine makes it 
possible to run real-time tasks inside.  
Inside the IRMOS framework, the Kernel-based Virtual 
Machine tool is used. For each application a VM is created 
that covers its functional requirements (OS, specific internal 
tools etc.) and which then can be executed on all nodes of a 

distributed infrastructure. Through the use of VMs, other 
parameters may easily be altered such as number of 
underlying cores used, memory  size, CPU model etc. 
 

B. Host Scheduler Description  

In order to provide scheduling guarantees to the VMUs, we 
used a hybrid deadline/priority (HDP) real-time scheduler 
([6]) developed within the IRMOS consortium for the Linux 
kernel. This scheduler provides temporal isolation among 
multiple possibly complex software components, such as 
entire VMUs. It uses a variation of the Constant Bandwidth 
Server (CBS) algorithm, ([7]) based on Earliest Deadline 
First, for ensuring that each group of processes/threads is 
scheduled for Q time units (the budget) every interval of P 
time units (the period). The CBS algorithm has been 
extended for supporting multi-core (and multi-processor) 
platforms, achieving a partitioned scheduler where the set of 
tasks belonging to each group may migrate across the 
associated CBS scheduler instances across processors, 
according to the usual load-balancing heuristic of Linux. 
Furthermore, whenever each (partition of a) reservation is 
scheduled on each core, the associated tasks are scheduled 
according to their real-time priorities. 
The scheduler exhibits an interface towards user-space 
applications based on the cgroups framework, which allows 
for configuration of kernel-level parameters by means of a 
filesystem-based interface. This interface has been wrapped 
within a Python API, in order to make the real-time 
scheduling services accessible from within the IRMOS 
platform. The parameters that are exposed by the scheduler 
are the C and D values, where C is the amount of computing 
time assigned to the VM every D interval. 

C. Application Description and Preparation  

The application under investigation is an eLearning mobile 
instant content delivery, in which real-time requirements are 
combined with service oriented architecture. In this  scenario 
a user can receive on his/her mobile phone some eLearning 
contents relevant to the position where she is (e.g. walking 
near to historical monument). It consists of a Tomcat based 
e-learning application that incorporates a MySQL database 
(Figure 2). The application is able to receive queries with 
GPS data from a client, search internally in the database and 
respond with an elearning object identifier that corresponds 
to the provided GPS coordinates (Figure 1). It is provided as 
a war file and installed inside the VM. The real-time 
requirement is mainly the response time in each request and 
depends on the number of concurrent users and the size of 
the downloaded contents. 
 Furthermore, it must provide a way for the sampling 
framework to gather the reported data with regard to the 
values of interest. In the examined application, this transition 
of information was implemented with two potential ways. 
The first one was an XML report available through a URL. 
The sampling framework polled this URL with a given 
frequency and the XML report was stored and processed 
afterwards. The second option was for the application to 
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store on its own the reports inside a MySQL database, from 
which the sampling framework could retrieve them. 

 
Figure 1 

 

 
Figure 2: Application Design 

D. Application Client Simulation Description s 

In order to simulate application parameters, a client 
simulator is also necessary. This simulator can toggle the 
number of users performing queries on the server, thus 
varying the server load. By having different server loads and 
different hardware configurations we can have an analysis of 
their effect on the expected QoS output (in this case the 
response time of the server to the users).  

One significant advantage of the test-bed is that the 
components described are decoupled from one another. This 
makes it flexible, so that these components (like schedulers, 
different virtualization tools or applications) can be replaced 
with different versions, thus making comparisons between 
them easy. 

V. COLLECTION AND PROCESSING FRAMEWORK  

In order for the collection of the samples to be conducted 
as automatically as possible, a number of actions have been 
implemented. First of all, the application client simulator is 
started, with a fixed number of users, whose created traffic is 
simulated. Afterwards a Java-based program resides on the 
physical host level of the infrastructure. This code is 
responsible for retrieving the reported monitoring data from 
the application. This can be done with two ways. The first 
case is to call the URL provided by the application and 
described above in order to collect the XML reports 
produced by the latter. The reports from every sample of one 
configuration are appended in a single XML file, whose 
name is indicative of the scheduling parameters used for the 
execution (C and D).  Each sample is taken in a specific 

period, expressed through a parametric delay inserted 
between consecutive calls to the URL. This sampling 
frequency could be adjusted in case of periodic applications 
in order to obey to the Nyquist-Shannon theorem so that 
from the samples collected the entire distribution can be 
created. The second case is through the MySQL database, in 
which the reports from the application are timestamped and 
stored. For every configuration the start and end time are 
saved, and based on this information the application data that 
were stored during this interval are retrieved. 

Furthermore, in the same code, a Java-system interface is 
implemented in order to be able to change the configuration 
of the scheduling parameters through the interface script 
described in Section IV.B.  This way, consecutive 
configurations are tested automatically and their result in the 
QoS parameter of the application (response time) is 
recorded. During the time of each configuration, the 
previously examined retrieval framework takes the necessary 
measurements. The change in the scheduling parameters is 
two-fold, it involves the C/D value, which is the percentage 
of CPU assigned to the VMU (which can be considered in a 
way as a simulation of different CPU speeds) but also the 
granularity of D. This granularity is expected to affect 
application performance, as stated in Section III. Even with 
the same %CPU assignment, a very large value of D would 
result in a highly non-responsive service, especially for 
interactive applications, due to the large interval of 
deactivation. For other applications with no interactivity, e.g. 
scientific simulations, a large number of D could prove to be 
useful, due to reduction in task switches and better cache 
utilization.  

In conclusion, the Java class is responsible for altering the 
C, D parameters (both ratio and absolute values), for 
connecting to the application interface (URL available XML 
reports or MySQL DB), for extracting the reported values, 
for processing them in order to produce the necessary 
statistics (in this case mean response time and standard 
deviation) and for creating the final output. This output is 
CSV files, that contain matrices that can directly be used by 
performance estimation methods. These include columns 
with the different number of users, different C, D parameters 
and the extracted statistics.   

Finally, the number of users in the client simulator is 
changed and the process is initialized again. Due to the 
elastic form of the testbed, other parameters may also be 
investigated easily, such as the memory assignment to the 
VM, configured at the VM startup. In this particular 
application memory requirements were not extensive that is 
why it was decided not to investigate this parameter. 

The structure of the sampling framework appears in 
Figure 3. 
 In order to extract the necessary information that is needed 
in the modeling approach followed inside IRMOS as 
described in Section III, the sampled response times of the 
eLearning server are gathered for each execution and 
statistical metrics are extracted. These can be used for the 
construction of the PDFs of the QoS output in consideration, 
for use in the next stages of modeling. The basic metrics that 
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are extracted are the mean value and the standard deviation 
of the response times.  
 

 
 

Figure 3: Sampling Framework 

VI.  RESULTS  

In this section, the results from the performed experiments 
are depicted. The range of values that were altered is: 

• Number of Users: 30-150 
• C/D (CPU share) : 20-100% with a step of 20 
• D: 10000- 560000 (µsec) with a step of 50000 

 
Measurements were taken and the gathered values for 

each configuration were collected. An average of 800 
response times was collected for each different setup, in 
order to extract their mean and standard deviation values. An 
indicative set of these measurements is depicted in the 
following figures, from which useful conclusions can be 
drawn. Through the proposed framework, automated 
measurements could be performed for the 2 out of 3 
parameters investigated (C/D and D). The number of users in 
the simulator had to be changed manually each time. 

The effect of changing granularity on the deviaton of the 
response time values can be observed in Figure 4. This is 
expected since with high values of D, the service has long 
active and inactive periods. If the requests fall in the active 
interval, they will be satisfied quickly but if they fall in the 
inactive one then they will have to wait until this has 
finished. This effect decreases as allocated CPU share 
increases, since in these cases the CPU is almost dedicated to 
the application and whenever a request arrives it is served. 
The mean response time, as shown in Figure 5, seems not to 
be affected greatly given that the percentage of CPU 
assigned is the same.  

0

50

100

150

200

250

300

350

400

450

10
00

0

60
00

0

11
00

00

16
00

00

21
00

00

26
00

00

31
00

00

36
00

00

41
00

00

46
00

00

51
00

00

56
00

00

D Value

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

20% CPU Share

40% CPU Share

60% CPU Share

80% CPU Share

100% CPU Share

 
 

Figure 4: Standard Deviation with regard to changing D 
for 90 users  
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Figure 5: Mean value with regard to changing D for 70 

users and 40% CPU share 
 

In Figure 6, the comparison between the collected values 
of response times is shown for two different numbers of 
users. The difference especially in the maximum values of 
the distributions depicts the effect of the application 
workload in the response times.  

 
Figure 6:  Comparison of different number of users (blue 
30, green 50) for the same resources (40% of the CPU) 
and same D (x axis: samples, y axis: response time) 

 
In Figure 8 all the different configurations are shown for 

two different numbers of users. In this case, each group of 
columns (the first high one followed by 4 lower ones) 
represents one D configuration for different percentages. The 
high bar is for low utilization and while the utilization 
increases the response time decreases. In the horizontal axis 
the different D configurations represent increasing D values. 

 From these measurements it seems interesting that the 
fittest granularity (D) selected depends also on the 
percentage of the CPU assigned to the application. In this 
occasion, for low percentages of utilization it is best to 
assign values near the middle of the investigated interval 
(10000-560000), as is depicted in Figures 7 and 8. For 
higher percentages of utilization, lower values of D are more 
beneficial for the response times of the application. 
Furthermore, from Figure 7 the effect of the increased CPU 
share allocation to the response time can be observed. 
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Figure 7: Mean Response Time for different D’s and 
CPU shares for 110 users 

 
The data set that was produced from the process described 

in this paper and that was the basis for the above figures will 
be made available to the community, following the initiative 
for reusable data sets. 

VII.  SUMMARY  

In this paper, a sampling and analysis framework, used 
within the IRMOS project has been described. The aim of 
this framework is to easily gather extensive datasets 

regarding an e-Learning application and its real time 
requirements, in relation to characteristics such as the 
number of users of the application and the hardware 
allocation to it. This framework utilizes state of the art 
techniques in virtualization and real time scheduling, and the 
corresponding analysis of the results aids Service Providers 
in understanding the application’s behavior. It is also flexible 
in order to be used in distributed infrastructures with no need 
for alterations for the deployment in a variety of nodes. This 
in turn can lead to enhanced allocation strategies. For the 
future, one interesting aspect to investigate would be the 
interference between co-scheduled VMs. 
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Abstract—This paper presents a task recorder for Linux-based
operating systems, in the form of a loadable kernel module. To
the best of our knowledge, this is the first Linux task recorder
which does not require kernel patches (kernel modifications).
This complies with the requirements in the area of embedded
systems where reliability and stability are important properties,
hence, proven versions of Linux are therefore preferred.

The implementation is based on the loadable real-time sched-
uler framework RESCH (REal-time SCHeduler). RESCH uses
only exported Linux kernel primitives as a means for controlling
scheduling. The disadvantage with this solution is that it can only
detect scheduling events of the tasks being scheduled by RESCH
itself, since it can not directly manipulate nor have knowledge of
the tasks in the Linux task ready queue. In order to verify the
correctness of the task recording, a comparison has been made
with a second recorder, which uses a kernel patch. Our tests
indicate that the new, RESCH-based, recorder gives identical
results1.

I. INTRODUCTION

The overall aim of our research is the development of
hierarchical scheduling. Hierarchical scheduling has several
advantages, stretching from enabling design time parallel de-
velopment of system parts, simplifying integration, to runtime
temporal partitioning and safe execution of tasks. Our previous
work includes practical issues of this kind of scheduling [1]
as well as the theoretical advantage [2] of this scheduling
technique, in real-time systems. However, the hierarchical
scheduling technique is rarely an integrated part of an op-
erating system (except for, e.g., ARINC653 compliant op-
erating systems that are commonly found in avionics appli-
cations). Indeed, there is a need to develop/implement new
scheduling algorithms, such as hierarchical scheduling, in the
area of real-time systems. Looking from a practical point
of view, it is an advantage if hierarchical scheduling (and
other scheduling techniques) can be implemented easily and
efficiently without modifying the kernel. The latter makes it
easier for both developers and users since there is no need
to maintain/apply kernel patches (kernel modifications) every
time the kernel is replaced/updated. Moreover, keeping the
scheduler isolated in a kernel module, without modifying the
kernel, simplifies debugging and potential certification of its
correctness (component-based development advantages). We
see that RESCH [3] is useful because it has the advantages
mentioned.

1The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

RESCH is a scheduling framework intended to make life
easier for scheduler developers in Linux based RT/GP OSs
(Real-Time/General Purpose Operating System). A key moti-
vation for using RESCH is that it does not need any kernel
modifications, secondly, it makes scheduler development eas-
ier because it abstracts the complexity of scheduling aspects
and presents a simple and easy scheduling interface to the user.
However, while development of schedulers are simplified with
this framework, it lacks support for debugging the schedulers.
Our vision is to make the RESCH framework a complete
scheduler development base. We want it to have all necessary
tools for creating schedulers, and everything should be totally
independent of kernel patches. This also has the advantage
that it is easy to develop RESCH for other platforms, hence,
making scheduler development platform independent. In order
to comply with our vision, we want the integrated debugger
in RESCH to be free of kernel patches as well.

With this paper, we present a task execution recorder, which
is capable of debugging schedulers. The task recorder (we will
refer to it as a recorder for the rest of the paper), is able to
record the following scheduling events during run-time:

1) The time instance when a task is released (even though
it might not start to execute).

2) The time instance when a task starts to execute.
3) When there is a task switch, the recorder distinguishes

between preemption and non-preemption.
4) The time instance when a task finishes its execution.
The output from the recorder is a simple text-file containing

task switch events. We have converted this file format to fit
the trace visualization tool Tracealyzer2.

A. System model

We assume fixed priority preemptive scheduling of pe-
riodic tasks, according to the periodic task model [4].
A task i is presumed to have the following parameters,
〈Ti,WCET i, Di, pri〉, where the period Ti represents the
frequency in which the task is released for execution, WCET i

is the worst case execution time of the task, the relative
deadline Di (within the period) is when the task must complete
its execution (RESCH monitors this) and pri is the task
priority (higher value represents higher priority). Also, all tasks
are assumed to execute on the same core, i.e., single-core.

2For more information about Tracealyzer, see
http://www.tracealyzer.se/
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B. RESCH

As mentioned previously, RESCH is a patch-free scheduling
framework for Linux. It supports periodic tasks which can
be scheduled in a fixed-priority preemptive manner. RESCH
runs as a kernel module (in kernel space), giving both an
interface to users in user space (e.g. a task specific interface
like rt_wait_for_period()) as well as in kernel space.
The kernel space API (Application Programming Interface)
has the interface shown below:

1) task run plugin( )
2) task exit plugin( )
3) job release plugin( )
4) job complete plugin( )
These functions can be implemented by a RESCH plugin

(Figure 1), i.e., a kernel module that has access to the RESCH
kernel API. These functions are called in RESCH core at
certain events. Functions 1) and 2) are executed every time a
task registers/unregisters to RESCH. With register we mean
that the task does a RESCH API call, transforming it to a
RESCH task, which creates a RESCH TCB (Task Control
Block) and puts it in the RESCH ready-queue etc. A RESCH
TCB has, among other real-time specific data, a reference to its
corresponding Linux task TCB (task struct). The primitives
3) and 4) are called whenever a RESCH task is released
for execution or when it has finished its execution. The
plugins get these scheduling notifications and can thereby
affect scheduling, trace tasks etc.

RESCH
plugin

RESCH
plugin

RESCH
plugin…

fair taskLinux kernel

RESCH core

real-time task

RESCH task

Fig. 1. RESCH framework

In Linux, since kernel version 2.6.23 (October of 2007),
tasks can be either a fair task or a real-time task. The
latter group has higher priority (0-99 where 0 is highest)
than fair tasks (100-140). A task that registers to RESCH
is automatically transformed to a real-time task. RESCH is
responsible for releasing tasks, and tasks registered to RESCH
must notify when they have finished their execution in the
current period. In this way, RESCH can control the scheduling.
RESCH uses an absolute-time clock, i.e., it does not wrap
around. Also, release times are stored as absolute values, so
release patterns are exact.
The cost of having a patch-free solution is that RESCH can
only see scheduling events related to its registered tasks, i.e.,
higher priority real-time tasks, which are not registered in
RESCH, can thereby interfere with RESCH tasks without the

RESCH core detecting it. A simple solution to this problem
is to schedule all real-time tasks with RESCH.

C. Task-switch hook patch

Our previous work [5] includes an implementation of a
task switch hook (Figure 3), residing in a kernel module,
which is called by the Linux scheduler at every scheduler tick.
This solution requires modification of two code-lines in two
separate kernel source files (sched rt.c and sched fair.c).
The modification of file sched rt.c is illustrated in Figure 3
(a similar change is done in sched fair.c). Linux has (since
kernel version 2.6.23) two scheduling classes, namely the fair
and the real-time scheduling classes. When a new task should
be released, the Linux scheduler iterates through its scheduling
classes (first the real-time class, secondly the fair class) in
order to find the next task to release. This is shown in Figure 2.

1: class = sched class highest;
2: for (; ; ) {
3: p = class->pick next task(rq);
4: if (p)
5: return p;
6: class = class->next;
7: }

Fig. 2. Kernel function: pick next task

The modification (Figure 3) makes it possible to re-direct
a scheduling class’ function pick next task to a user defined
function (i.e., our function task switch hook), in a kernel
module. This function (hook) can be inserted and removed
during runtime.

Static const struct sched_class rt_sched_class = {
.
.
.

.pick_next_task = pick_next_task_rt,

sched_rt.c

re-compile
kernel

Linux kernel
rt_sched_class

.pick_next_task

Execution time monitor

task_switch_hook
after

Loadable kernel module

pick_next_task_rt

patch

before

Fig. 3. Hook patch

In this paper our overall goal is to implement a patch-free
task execution recorder in Linux for debugging purposes, i.e.,
which can be useful for a scheduler or application developer.
Our solution enables debugging on any Linux-based RT/GP
OS, as long as the Linux interface is not changed, since
RESCH and the recorder are both loadable kernel modules
that calls the Linux kernel functions. Hence, our recorder is
more general than patched solutions since it is difficult to port
these between different platforms.

The main contributions of this paper are:
1) We have implemented a (patch-free) task recorder with

the use of RESCH, which enables debugging at task
level, in Linux based RT/GP OS.



WATERS 2010 33

2) We have evaluated our solution by implementing yet an-
other (patched) recorder, using the technique presented
in [5], and compared the results from the two recorders.

The outline of this paper is as follows: in Section II
we describe the two recorder implementations. Section III
compares the trace result from the two recorders. Section IV
presents related work, and finally, Section V concludes.

II. IMPLEMENTATION

The following section presents a recorder implementation
based on RESCH, and a second implementation based on a
hook patch [5].

A. RESCH plugin recorder

The recorder is implemented as a plugin (see Figure 1) in
RESCH. Although, it could also become an integrated part of
RESCH core at a later stage.

It is important to note that in order for the recording to be
correct with this plugin, no higher priority real-time tasks (that
are not registered by RESCH) are allowed to run. Also, the
current recorder implementation does not support multi-core,
hence, load balancing must be disabled (a function in Linux
that migrates tasks to other CPUs based on load). Support
for multi-core is possible, but without load balancing. The
reason is that RESCH cannot detect task migrations made by
the Linux scheduler.

Figure 4 shows the necessary data needed to store a
scheduling event (i.e. task switch). The member rid is the
index to the RESCH task TCB. We use this identifier because
is has a smaller range than the Linux task id (PID), and
thereby require less memory. The timestamp is stored in
micro-seconds, i.e., our recorder can record approximately 35
minutes (assuming we have 32 bits) since we use one bit for
storing the preemption flag (informing whether there has been
a preemption or not).

1: struct task switch event {
2: char next rid; // rid (0− 64) is the RESCH task id.
3: char prev rid;
4: unsigned int timestamp; // Bit nr 31 hold preempt. flag.
5: };

Fig. 4. Event structure

task_run_plugin, line (1) Figure 5, is called every time
a task registers to RESCH. Since the current version of our
recorder does not support multi-core, we migrate all tasks to
one CPU (CPU #0 in this case).

Figure 5 show parts of the recorder implementation (in
simplified form) in RESCH. Line (4) and (18) (Figure 5)
are called by the RESCH core at every task release and
completion. In this way, not only can we record task switches,
but also detect when a task is released and also show this
information graphically in the Tracealyzer.

1: void task run plugin(resch task t *rt) {
2: migrate task(rt, 0); // Migrate all tasks to CPU 0.
3: }
4: void job release plugin(resch task t *rt) {
5: resch task t *curr;
6: int timestamp;
7: timestamp = linux timestamp microsec( );
8: curr = active highest prio task(rt->cpu id);
9: if(curr == NULL) {
10: store event(IDLE, rt, NO PREEMPT, timestamp);
11: return;
12: }
13: if(rt->prio > curr->prio)
14: store event(curr, rt, PREEMPT, timestamp);
15: else
16: store event(curr, rt, NO PREEMPT, timestamp);
17: }
18: void job complete plugin(resch task t *rt) {
19: resch task t *next;
20: int timestamp;
21: timestamp = linux timestamp microsec( );
22: next = active highest prio task(rt->cpu id);
23: if(next == NULL)
24: store event(rt, IDLE, NO PREEMPT, timestamp);
25: else
26: store event(rt, next, NO PREEMPT, timestamp);
27: }
28: void store event(resch task t *prev, resch task t *next,
29: char preempt, unsigned int timestamp) {

Fig. 5. Recorder implementation

B. Hook patch recorder

As mentioned previously, our patched recorder is based on
a task-switch hook implementation [5]. This implementation
consists of two hooks. One hook is executed when Linux calls
the scheduling class real-time, the other one when fair class
is called. The two hooks are never called in the same scheduler
tick, only one of them (depending on if there are any real-time
tasks eligible to execute). We use the similar data-structures
in this implementation as the one presented in section II-A. A
difference between the two approaches is that the hook patch
implementation only detects a switch between tasks, i.e., it
cannot know when a task is released (for which the RESCH
implementation can). This will differentiate the trace results a
bit.

III. EVALUATION

We have tested our RESCH plugin recorder by running
it in parallel with the hook patch implementation, i.e., the
two recorders recorded the same trace at the same time. The
recorder we compare with [5] was chosen because of its
simplicity (easy to install, load/unload, modify source code
etc.), small amount of source code and the fact that it records
correctly since its hook is placed at the point where the Linux
scheduler does the task context switches. We ran the task set
in Table I on an Intel Pentium Dual-Core (E5300 2,6GHz)
platform, equipped with a Linux kernel version 2.6.31.9,
running with load balancing disabled. The recorded tasks ran
on the same core, i.e., all tasks were migrated to CPU #0 at
initialization phase. The trace from both implementations are
visualized in Figure 9 and 10 with the Tracealyzer application.
The tasks were scheduled by the RESCH core scheduler (i.e.,
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we used no plugin scheduler) according to the parameters in
Table I.

Name T WCET D pr
rt task1 4 1 4 4
rt task2 5 1 5 3
rt task3 8 2 8 2
rt task4 9 2 9 1

TABLE I
TASK SET USED IN THE EXPERIMENTS

Note that the absolute time-line in Figure 9 is 1 second
behind Figure 10, but the relative time should match eachother
since they were executed at the same time. The task ID:s in
Figure 6 are the new modified PIDs (which are needed in
order to reference RESCH TCBs from native Linux TCBs)
and therefore different than the ones in Figure 7, which are
the native PIDs.

If the user marks a task fragment, Tracealyzer will display a
red box (e.g. task rt task4 in Figure 9 and 10) around the task
instance, if it can detect the instance (which is not the case in
Figure 10). In Figure 9 though, the Tracealyzer can separate
between task instances, since the plugin recorder records task
releases, e.g. line 20-21 in Figure 7, which represents the
fourth fragment of rt task4 in Figure 9.

Figure 6 and 7 shows the data recorded by both recorders.
The data is represented in the format: prev: <id1> <name1>

next: <id2> <name2> <t-stamp> <preempt>, where id1 and name1
represents the task id and name of the task that is finishing
(possibly preempted), id2 and name2 represents the task id
and name of the task that is starting to execute, t-stamp is
the timestamp in absolute time when this event has occurred
and the flag preempt is set to 1 or 0 depending on if there
is a preemption (1=preemption). The recorded data (Figure 6
and 7) corresponds to the graphical representation (Figure 9
and 10) from the start of the graphs (4.350.156 respectively
3.350.160) to the marked time-lines (14.354.148 respectively
13.354.149). The time in the graphs are represented in the
format second.milli-second.micro-second. The difference in
time (1 second) is due to that both recorders record absolute
timestamps (and the tool visualizes in absolute time) and one
recorder was started approximately 1 second before the other
one.

1: prev: 0 idle next: 32769 rt task1 3350160 1
2: prev: 32769 rt task1 next: 32770 rt task2 4266631 0
3: prev: 32770 rt task2 next: 32771 rt task3 5183029 0
4: prev: 32771 rt task3 next: 32772 rt task4 7038580 0
5: prev: 32772 rt task4 next: 32769 rt task1 7350149 1
6: prev: 32769 rt task1 next: 32772 rt task4 8266565 0
7: prev: 32772 rt task4 next: 32770 rt task2 8354148 1
8: prev: 32770 rt task2 next: 32772 rt task4 9270908 0
9: prev: 32772 rt task4 next: 0 idle 10726636 0
10: prev: 0 idle next: 32769 rt task1 11350157 1
11: prev: 32769 rt task1 next: 32771 rt task3 12266246 0
12: prev: 32771 rt task3 next: 32770 rt task2 13354149 1

Fig. 6. Recorded data (Hook patch)

1: prev: 0 idle next: 3900 rt task1 4350156 1
2: prev: 3900 rt task1 next: 3901 rt task2 4354149 1
3: prev: 3901 rt task2 next: 3900 rt task1 4354159 0
4: prev: 3900 rt task1 next: 3902 rt task3 4354150 1
5: prev: 3902 rt task3 next: 3900 rt task1 4354160 0
6: prev: 3900 rt task1 next: 3903 rt task4 4354151 1
7: prev: 3903 rt task4 next: 3900 rt task1 4354161 0
8: prev: 3900 rt task1 next: 3901 rt task2 5266627 0
9: prev: 3901 rt task2 next: 3902 rt task3 6183025 0
10: prev: 3902 rt task3 next: 3903 rt task4 8038576 0
11: prev: 3903 rt task4 next: 3900 rt task1 8350148 1
12: prev: 3900 rt task1 next: 3903 rt task4 9266561 0
13: prev: 3903 rt task4 next: 3901 rt task2 9354147 1
14: prev: 3901 rt task2 next: 3903 rt task4 10270905 0
15: prev: 3903 rt task4 next: 0 idle 11726633 0
16: prev: 0 idle next: 3900 rt task1 12350153 1
17: prev: 3900 rt task1 next: 3902 rt task3 12354149 1
18: prev: 3902 rt task3 next: 3900 rt task1 12354159 0
19: prev: 3900 rt task1 next: 3902 rt task3 13266243 0
20: prev: 3902 rt task3 next: 3903 rt task4 13354147 1
21: prev: 3903 rt task4 next: 3902 rt task3 13354157 0
22: prev: 3902 rt task3 next: 3901 rt task2 14354148 1

Fig. 7. Recorded data (RESCH plugin)

The difference between the two traces is that the RESCH
plugin recorder records task releases by recording a fake pre-
emption and running the released task for 10 micro-seconds,
e.g., lines 1-7 in Figure 7, though this is not the case (its just
for visualization). Although, this enables the Tracealyzer to
calculate and show the response time of a task. Other than
that the preemption depth differs in the two traces (due to that
the two recorders record preemption differently), the traces are
almost identical (the recorded time points may differ a few
micro-seconds at most). Figure 8 shows the RESCH plugin
trace, visualized with the tool Grasp [6]. The tasks vertical
positions are ordered by priority with the lowest priority at
the top (including the idle task) and the time is scaled down
100000 times. The figure clearly shows the task frequency.

IV. RELATED WORK

The idea of our solution is based on the replay debugging
approach [7], which records system events online and replays
them offline. In later work [8], the replay debugging has
been extended to be compiler- and OS-independent. While
the replay debugging works with off-the-shelf compilers for
application-level debugging, our solution is self-contained
software using Tracealyzer [9] for OS-level debugging, and
it is primarily focused on real-time scheduler debugging.

The SCHED DEADLINE project [10], which is in charge
of the EDF scheduler implementation for Linux, has used the
sched switch tracer provided by the Ftrace toolkit [11] to
output the records of context switches. The output logs are then
converted to the VCD (Value Change Dump) format so that
GtkWave can visualize the task execution traces. The trace can
of course be converted to the Tracealyzer or Grasp [6] format.
Given that Ftrace is supported by the Linux community, it is
reasonable to use this toolkit to trace task executions for kernel
debugging, but it is dedicated to the Linux kernel, so it is
not necessarily suitable for real-time scheduler debugging. For
instance, sched switch does not catch job releases, however,
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Fig. 8. RESCH plugin trace visualized with Grasp [6]

Fig. 9. Example trace with RESCH plugin

context switches are precisely traced and it can distinguish
between task completions and task preemptions. Our solution
is more flexible and integrated in that it is available not only
for the Linux kernel but also for other OSs, once the RESCH

Fig. 10. Example trace with hook patch

framework is ported.
DTrace [12], SystemTrap [13], LTT [14], and LTTng [15]

are advanced tools for OS debugging. They are oriented
for tracing entire kernel events, so it is required that the
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developers, in a high degree, understand how to use them.
Meanwhile, our solution is more simplified by focusing on
real-time scheduler debugging, and it is very easy to use in
practice.

Real-Time Application Interface for Linux (RTAI) [16] is
a collection of loadable kernel modules and a kernel patch
which together provides a rich real-time API to the user. It
gives the possibility to add/delete hooks for every task-start,
task-switch and task-delete. These hooks give the possibility
to monitor task execution in a detailed level.

V. CONCLUSION

We have implemented a task execution recorder in a stock
Linux kernel, without applying kernel patches, with the use
of the loadable real-time scheduler framework RESCH. The
recorder is able to record task releases (with or without
preemption) and task switches. The recorded data is later
converted, offline, to a format suitable for the visualization
tool Tracealyzer. In this way, the trace can be visualized
graphically. The assumptions made, in order for the tracing
to be correct, are that there should not exist any (unregistered
RESCH) tasks that have higher priority than the (RESCH)
tasks to be recorded, and that load balancing is disabled.
Our results indicate that our recorder does a correct trace,
by comparing the results with a trace made by a patched
recorder. The second (patched) recorder is assumed to trace
correct, since it is called by the Linux scheduler at every
scheduler tick. The two recorders were executed in parallel,
i.e., they recorded the same trace. Hence, an exact comparison
is possible since the execution time of the tasks will be
the same in both cases, and will therefore not affect the
comparsion results. We showed that our recorder got the same
trace result as the patched solution (with only a few micro-
seconds of difference).

As future work we will continue with evolving the RESCH
framework. This includes the development of new scheduler
plugins, such as hierarchical scheduling (for both uni- and
multi-core), adjust our recorder to fit with multi-core and
implement RESCH for other platforms. In this way, plugin
schedulers, recorders etc. can be moved to other platforms
(supported by RESCH) without modification. We will also
explore the possibilities of doing visualizations of the trace
during run-time, rather than offline as in this paper.
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[5] M. Åsberg, T. Nolte, C. M. O. Perez, and S. Kato, “Execution Time
Monitoring in Linux,” in Proc. of the W.I.P. session in the ETFA
conference, 2009. [Online]. Available: http://www.mrtc.mdh.se/index.
php?choice=publications&id=1792

[6] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems, July 2010.

[7] H. Thane and H. Hansson, “Using Deterministic Replay for Debugging
of Distributed Real Time Systems,” in Proc. of the ECRTS conference,
2000, pp. 265–272.

[8] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay
Debugging of Real-Time Systems Using Time Machines,” in Proc. of
the IPDPS conference, 2003, pp. 288–295.

[9] T. Maragria and B. Steffen, editors, “Leveraging Applications of Formal
Methods,” 1st International Symposium, ISoLA. Springer, pp. 140–141,
2004.

[10] D. Faggioli and F. Checconi, “An EDF scheduling class for the Linux
kernel,” in Proc. of the Real-Time Linux Workshop, 2009.

[11] T. Bird, “Measuring Function Duration with Ftrace,” in Proc. of the
Japan Linux Symposium, 2009.

[12] B. Cantrill, M. Shapiro, and A. Leventhal, “Dynamic Instrumentation
of Production Systems,” in Proc. of the USENIX conference, 2004, pp.
15–28.

[13] V. Prasad, W. Colhen, F. Eigler, M. Hunt, J. Keniston, and B. Chen,
“Locating System Problems Using Dynamic Instrumentation,” in Proc.
of the Ottawa Linux Symposium, 2005, pp. 49–64.

[14] K. Yaghmour and M. Dagenais, “Measuring and characterizing system
behavior using kernel-level event logging,” in Proc. of the USENIX
conference, 2000, pp. 13–26.

[15] M. Desnoyers and M. Dagenais, “The LTTng Tracer: A low impact
performance and behavior monitor of GNU/Linux,” in Proc. of the
Ottawa Linux Symposium, 2006, pp. 209–223.

[16] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza and S.
Papacharalambous, “RTAI: Real Time Application Interface,” Linux
Journal, vol. 29, no. 10, 2000.



WATERS 2010 37

Grasp: Tracing, Visualizing and Measuring the
Behavior of Real-Time Systems

Mike Holenderski, Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract—Understanding and validating the timing behavior of
real-time systems is not trivial. Many real-time operating systems
and their development environments do not provide tracing
support, and provide only limited visualization, measurements
and analysis tools. This paper presents Grasp, a tool for tracing,
visualizing and measuring the behavior of real-time systems.
Grasp provides a simple plugin infrastructure for extending
it with custom visualization and measurement methods. The
functionality of Grasp is demonstrated based on experiences
during the development of various real-time extensions for the
commercially available µC/OS-II real-time operating system. All
the tools presented in this paper are open source and freely
available on the web1.

I. INTRODUCTION

A real-time system is usually comprised of a real-time
application running on top of a real-time operating system.
One such operating system is µC/OS-II [Labrosse, 1998]. It
is maintained and supported by Micrium, and is applied in
many application domains, e.g. avionics, automotive, medical
and consumer electronics. Our choice of µC/OS-II is in line
with our industrial and academic partners.

Based on the requirements posed by the real-time ap-
plications we are researching, we have set out on ex-
tending µC/OS-II with several real-time primitives. In
[Holenderski et al., 2008] we presented an application of our
industrial partner in the surveillance domain and pointed out a
problem with their current system. We proposed a solution and
identified several extensions required from the underlying real-
time operating system. These include processor reservations
based on deferrable servers, and support for resource sharing
based on the Stack Resource Policy (SRP) [Baker, 1991].

A. Problem Description

During the development of these µC/OS-II extensions we
needed to validate the behavior of the introduced primitives.
Many commercial off-the-shelf real-time operating systems
and their development environments, including µC/OS-II, do
not support tracing, and provide only limited visualization and
analysis support. Moreover, current visualization tools only
allow to visualize single level scheduled systems. Finally, most
commercial tools are not easily extensible.

1The work presented in this paper is supported in part by the
European ITEA2-CANTATA project and the Dutch HTAS-VERIFIED
project. The Grasp player together with two demo traces is available at
http://www.win.tue.nl/∼mholende/grasp

B. Contributions

In this paper we address the problem of tracing, visualizing
and measuring the behavior of real-time systems and present
Grasp, which is a set of tools addressing this problem. It
comes with a powerful set of features out of the box, such
as visualization of servers in hierarchical scheduling and
buffer usage for tasks communicating via shared buffers. It
also provides a simple infrastructure for extending it with
custom visualization and measurement plugins. We used Grasp
extensively during the development of several extensions of
µC/OS-II. The target systems were executed in the cycle
accurate OpenRISC simulator [OpenCores, 2009].

C. Outline

The remainder of this paper is structured as follows. In
Section II we summarize the related work, followed by a
description of our execution environment in Section III. Sec-
tion IV is the main contribution of this paper. It presents
Grasp, illustrated with examples from extending µC/OS-II
with additional real-time primitives. Section V concludes the
paper and outlines the future work.

II. RELATED WORK

In this section we outline the existing work related to the
real-time operating system under consideration, followed by
a discussion of the support for tracing, visualization, and
measurements provided by existing tools.

A. µC/OS-II and its tools

Micrium provides the full µC/OS-II source code accom-
panied by an extensive documentation [Labrosse, 1998]. The
µC/OS-II kernel provides preemptive multitasking, and the
kernel size is configurable at compile time, e.g. services like
mailboxes and semaphores can be disabled. It is well suited
for proprietary extensions and experimentation.

A µC/OS-II application can enable a built-in statistics
task, which collects information about the processor usage
of all tasks in the system. Micrium also provides a powerful
monitoring tool called µC/Probe, allowing to inspect the state
of any variable, memory location, and I/O port in a µC/OS-II
enabled application during runtime. However, there is no
tracing support for µC/OS-II.
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B. Tracing

There are basically two approaches to tracing: instrumen-
tation and sampling [Mughal and Javed, 2008]. With instru-
mentation, code is inserted in key places of the system (such
as the top of particular method calls). This code then records
the events at runtime for later offline analysis. With sampling,
the system remains unmodified and is instead analyzed peri-
odically by a profiler during runtime, allowing inspection of
metrics such as the amount of CPU time used by processes
and/or functions. Grasp and all other tools presented in this
section take the instrumentation approach, where a recorder
component generates a trace file which later serves as input
for the visualization application.

The format of the trace file has several implications.
A standard textual file format (e.g. XML used by VET
[McGavin et al., 2006]) can be used as input for other tools
with relatively little effort. A binary file format (e.g. used by
the Tracealyzer [Mughal and Javed, 2008]) results in smaller
trace files, which can be important when tracing is a part of the
target system after deployment in the field. A Grasp trace is a
Tcl [Welch et al., 2003] script. It is less verbose than XML,
but not as compact as a binary representation. However, its
main advantage is the flexibility it offers for the Grasp player,
as explained in Section IV.

C. Trace visualization

Traces contain huge amounts of data, which may be of
no interest for a particular investigation. Several visualization
tools therefore provide filtering mechanisms, which allow
the user to display only those events he is interested in.
Tracealyzer [Mughal and Javed, 2008] offers predefined filters
which can be changed during the visualization, allowing to
hide certain events, such as locking of a semaphore. VET
[McGavin et al., 2006] provides a plugin mechanism allowing
an expert user to implement custom filters, which then can then
be reused by regular users. The Grasp player presented in this
paper allows to filter trace events referring to certain tasks.

A trace can be visualized in different ways, e.g. one may
want to show the task execution on a timeline, or how each
task contributes to the current processor load. Tracealyzer
provides a timeline and load view. VET provides a message
sequence and class association diagrams, but also supports
tracing of custom events, and an API which can be used to
implement custom visualizations. This API, however is limited
to a fixed event structure. The file format for Grasp traces
allows to easily extend the trace with arbitrary custom events
and visualizations.

To the best of our knowledge, all existing tracing tools
can visualize only single level scheduling. Grasp on the other
hand, also allows to visualize hierarchical systems by means
of illustrating the budget consumption of servers. In case
tasks communicate via shared buffers, Grasp can also provide
insight into the contents of the buffers at any moment during
the traced system execution.

D. Trace measurements

Tracealyzer measures the execution time, response time and
number of fragments for each job and the corresponding worst
case and average case values of all jobs of a task. Grasp
measures the execution and response time of jobs and provides
a summary of the average, best case and worst case times of
all jobs of a task. It also allows to easily implement custom
measurement tools, as illustrated in Section IV-D.

III. SIMULATION PLATFORM

To run our target systems we needed an execution envi-
ronment supporting µC/OS-II. To avoid the inconveniences of
running the target systems directly on hardware, we chose to
run them inside the cycle-accurate OpenRISC simulator.

The OpenCores project [OpenCores, 2009] provides an
open source platform architecture, including software devel-
opment tools. The hardware architecture comprises a scalar
processor and basic peripherals to provide basic functional-
ity [Bolado et al., 2004]. The small and predictable processor
architecture makes the OpenRISC processor suitable for real-
time computing [Whitham and Audsley, 2006]. The accompa-
nying Software Development Kit (SDK) is based on GNU
tools. It includes a C/C++ compiler, linker, debugger and ar-
chitectural simulator. The OpenRISC simulator allows simple
code analysis and system performance evaluation. Recently,
we created a port for µC/OS-II to the OpenRISC platform2.

Unlike other µC/OS-II simulators, such as the Windows and
Linux ports [uco, 2007], the OpenRISC port provides a cycle-
accurate simulation: it is independent of the system load due to
other applications on the host operating system and therefore
provides predictable timing behavior for timed events.

It is important to note that the only interface to the simulator
during runtime is via the standard input and standard output.
In particular, there is no support for reading from or writing
to files on the host operating system.

IV. GRASP

Grasp is composed of three entities, shown in Figure 1. The
recorder is responsible for generating the trace of the target
system. The generated trace file contains the raw data from a
particular run, which is not comprehensible in its raw form.
The player reads in a trace and displays it in an intuitive way.

Note that the recorder and the player are independent
of each other, as long as the trace follows the predefined
format. In this paper we demonstrate a Grasp recorder for
µC/OS-II. Porting Grasp to other operating systems requires
only implementing a Grasp recorder.

A. Grasp recorder

The Grasp recorder is implemented as a library providing
functions to initialize the recorder, log events, and finalize the
recorder. Calls to the event logging methods are inserted at
several places inside the kernel to log common events, such
as context switches and the arrival of periodic tasks. The

2A precompiled OpenRISC tool chain for Linux (Ubuntu 8.10) is available
at http://www.win.tue.nl/∼mholende/ucos
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Fig. 1. The Grasp architecture

recorder also provides a function to log custom events, which
the programmer may call inside his application.

To limit the interference with the target system, during run-
time the µC/OS-II Grasp recorder stores the event information
in a binary format in an array in the memory. Each event
occupies 20 bytes of memory and takes 218 instruction cycles
to log (on a 32-bit OpenRISC architecture).

At the end of a simulation the log array is traversed, a
trace is generated and written to a file in text format. This
way the I/O overhead associated with writing the trace to a
file is postponed until the very end and limits the interference
with the target system during a simulation run. Note that the
OpenRISC simulator has no file system support, but does allow
to print to the standard output via the printf() method. The
recorder therefore prints the contents of the trace file to the
standard output, which is then redirected to a file on the host
operating system.

B. Grasp trace

The Grasp trace file is actually a Tcl [Welch et al., 2003]
script. An excerpt from an example trace is shown in Figure 2.

1 ...
2 plot 50 taskArrived Task0x11da50
3 plot 50 jobPreempted Job0x11d948_1 \\
4 -target Job0x11da50_1
5 [Job Job0x11da50_2] initWithTask Task0x11da50 \\
6 -name "Task1 2"
7 plot 50 jobResumed Job0x11da50_2
8 plot 60 jobCompleted Job0x11da50_2
9 plot 60 jobPreempted Job0x11da50_2 \\
10 -target Job0x11d948_1
11 plot 60 jobResumed Job0x11d948_1
12 ...

Fig. 2. An excerpt from a trace file.

Each line in the trace is a Tcl command. A Tcl command
has a very simple syntax: method name followed by a possibly
empty list of arguments separated by spaces. Let us take a
closer look at the first line in Figure 2, which indicates the

arrival of task Task0x11da50. The meaning of this command
is the following:

• plot is the method name responsible for handling this
trace event. In Section IV-D we will see how this
dispatching mechanism is used to implement plugins.
The method determines the semantics of the following
arguments. In this case, the plot method expects at least
two arguments:

• 50 is the event time. Time is measured in ticks. In our
simulations 1 tick corresponds to 1ms.

• taskArrived is the event kind.
• Task0x11da50 is an additional argument. In this case it

identifies the task which has arrived. In Grasp each trace
object such as a task or a job has a unique identifier.

Figure 2 shows also several other events. For example at
time 50 the job with id Job0x11d948_1 is preempted by the
job with id Job0x11da50_1. In the following sections we
will describe other events supported by Grasp.

Every task or job referred to by an event needs to be created
first. Line 5 in Figure 2 creates a job with id Job0x11da50_2

for a task with id Task0x11da50. The optional parameter
-name specifies a custom job name, referring to the second
job of task Task1.

Note that since a trace is a Tcl script it may contain any
Tcl code, in particular it may define its own methods, include
loops, etc. While we do not exploit this feature in this paper,
we have used it during the development of Grasp itself.

C. Grasp player

The Grasp player is written in the Tcl scripting language1.
The job of the Grasp player is basically to provide an ex-
ecution environment for the script inside a Grasp trace, by
implementing all methods called in a trace file.

The Grasp player goes through the following stages:
1) Load the default methods, e.g. the plot method in

Section IV-B.
2) Load any plugins, which define additional methods.
3) Read in and execute the trace script.
4) Do any post processing, e.g. export a postscript file.
Note that step 3 is a single Tcl command, but it is also the

place where the main work happens and where the trace is
actually visualized.

A handy feature of the Grasp player is the option to export
the trace visualization to a postscript file and an option to print
a legend. These are useful for automatically creating figures
for research articles. An example of such a figure is shown in
Figure 3, which visualizes the complete trace from Figure 2.

Shared resources: Grasp can visualize the synchronization
of tasks in case they share resources.

Figure 3 demonstrates the behavior of three fixed priority
scheduled tasks, with two of them (Task2 and Task3) sharing
one logical resource according to the Stack Resource Pol-
icy [Baker, 1991]. The highest priority task has the lowest
index number, i.e. Task1 has the highest priority. In this
example, the execution of a critical section is visualized by
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Fig. 3. Example trace visualization created by the Grasp player.

a dark section. Acquiring and releasing of mutexes is traced
by the events jobAcquiredMutex and jobReleasedMutex,
which are not visualized in the example.

Hierarchical scheduling: An interesting and unique feature
of Grasp is the built in support for visualizing behavior of
servers in a hierarchical real-time system. An example is
shown in Figure 4.

There are four server events:

1) serverReplenished sets the capacity of a server.
2) serverDepleted creates a depleted message for a

server.
3) serverResumed starts consuming a server’s budget at

a constant rate of 1 unit per time unit.
4) serverPreempted stops consuming a server’s budget.

These four events are sufficient to visualize the be-
havior of most servers in the real-time literature. We
have extended µC/OS-II with polling [Lehoczky et al., 1987],
periodic idling [Davis and Burns, 2005] and deferrable
servers [Strosnider et al., 1995].

Figure 4 shows a Grasp player window after loading a trace
file. The task execution is shown on top, with the server
capacities illustrated underneath. In this particular example
Task1 is assigned to the Deferrable Server, and Task2 is
assigned to the Polling Server. The different shapes under-
neath the timeline indicate different events. For example, a
triangle pointing upwards indicates a server replenishment and
a square indicates the arrival of a periodic task. Clicking on a
shape with the mouse reveals details about the event, e.g. the
name of the server which is replenished.

The thin vertical line spanning across the tasks and servers
is the time marker. It moves with the mouse cursor and
indicates the current time in the visualization, also shown in
the windows title bar.

During the development of the different servers Grasp
provided useful insight into their behavior and speeded up
the debugging process considerably.

D. Grasp plugins

Choosing the Tcl script format for a Grasp trace allows
for a very simple interface for implementing plugins: a Grasp
plugin is a set of methods which are called within a Grasp

Fig. 5. Example of a trace visualization using the BufferPlot plugin.

trace. There are no restrictions on the syntax of the plugin
methods, as long as they do not conflict with the default Grasp
player methods.

To facilitate plugins which depend on the current time
indicated by the time marker, Grasp provides an abstract event
<<TimeChanged>>. A plugin can register for an abstract event
using the Tcl bind command.

Plugins are loaded into a Grasp player by executing the
player from the command line with the -plugins option
followed by a list of paths to Tcl scripts implementing the
plugins. Alternatively, the plugin scripts can be placed in the
plugins subdirectory. All scripts residing in this directory are
loaded automatically by the player.

In our recent work on mode changes in multimedia applica-
tions [Holenderski et al., 2009] we investigated an application
comprised of a set of tasks communicating via shared buffers.
We used Grasp to gain insight into the behavior of buffers and
to measure the mode change latencies. We have implemented
two plugins for this purpose.

The BufferPlot plugin defines four new events: push,
pop, insert and drop. BufferPlot is implemented as a
XOTcl class, which is an object oriented extension for Tcl.
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Fig. 4. Example of a trace visualization for hierarchical scheduling. The Task1 and Task2 tasks are assigned to the Deferrable Server and Polling Server,
respectively.

It follows the same structure as the Plot class behind the
plot command, and implements the new events as instance
methods. In the trace the new events are passed as arguments to
the bufferplot command, rather than plot, which then dis-
patches the appropriate BufferPlot method. Figure 5 shows
an example of how this Grasp plugin correlates the contents
of the buffers with the task execution of the application.

The Tcl file format of a Grasp trace makes it possible to
embed plugins inside a trace file. Since a plugin is simply a
definition of methods called within a trace file, inserting the
plugin code at the beginning of the trace file will make sure
that the necessary methods are defined before they are used.
This allows to distribute a single self-contained trace file which
can be visualized with any Grasp player, independent of the
available plugins.

E. Grasp measurement

The Grasp player measures the execution and response time
of jobs and provides a summary of the average, best case and
worst case times for all jobs of a task. This information is
shown on demand, by clicking on a job or a task label, or by
selecting “Measurements” from the menu, shown in Figure 6.

The Grasp plugins also allow to easily implement custom
measurement tools, as we did for measuring the mode change
latencies for our recent work [Holenderski et al., 2009].

To measure the mode change latencies we have added
a simple plugin which extended the Plot class with

Fig. 6. Example of trace measurements, summarizing the worst-case
(WCET), average-case (ACET) and best-case (BCET) execution times, and
the worst-case (WCRT), average-case (ACRT) and best-case (BCRT) response
times for all application tasks.

three new events: latencyStart, latencyStop and
latencySummary. The first two events are generated through-
out the simulation whenever a mode change occurs. The latter
event is generated at the end of the simulation. Its handler
collects all the latencies, uses the gnuplot tool [gnu, 2010]
to plot them on a graph, and automatically writes the graph
to a postscript file.

V. CONCLUSIONS

In this paper we presented the Grasp toolset for tracing,
visualizing and measuring the behavior of real-time systems.
Grasp can be used to evaluate new algorithms and scheduler
implementations in an operating system. We have used Grasp
extensively during the development of several extensions for
the µC/OS-II real-time operating system, some of which were
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used in this paper to illustrate the Grasp features.
Grasp is composed of three parts: (i) the recorder, (ii) the

trace file and (iii) the player. The Grasp’s recorder takes the
instrumentation approach to tracing, catching all events of
interest. It limits the interference by storing the traced events
in memory during runtime and writing the trace to a file only
at the end of a run. The recorder is the only operating system
specific part of the Grasp toolset. A Grasp trace is stored in the
Tcl script format. The expressiveness of this format allows to
easily extend Grasp functionality with visualization and mea-
surement plugins. The Grasp player interprets the Tcl script
containing the recorded trace. It visualizes task execution, task
synchronization, servers in hierarchical scheduling and buffer
usage for tasks communicating via shared buffers.

Future work

We have implemented a Grasp recorder for µC/OS-II within
the OpenRISC simulator. Our current research focusses on
(i) deploying the Grasp recorder in an embedded environment,
and (ii) investigating the applicability of the Grasp recorder in
other real-time operating systems.

In this paper we have shown how to visualize a Grasp trace
using the Grasp player. A trace, however, can also be used
for validating the behavior of the target system by comparing
its trace to a reference trace automatically. To make sure
that a change in the implementation of one primitive has no
impact on other parts of the system, we have setup a test
suite which automatically checks whether a new µC/OS-II
extension did not invalidate existing behavior. The test suite
is comprised of a set of test applications with reference traces
and a shell script. The script executes all the test applications
and compares the new traces against the reference traces.
Currently, two traces are considered to be equivalent if they
exhibit the same timing behavior, modulo the unique identifiers
(e.g. job identifiers) particular to every simulation run. This
approach, however, may result in false positives, when a trace
exhibits correct behavior, but is not equivalent to the reference
trace due to different overheads of the primitives resulting in

different computation times of tasks and consequently leading
to a different preemption behavior, which nonetheless may be
correct. As future work we would like to investigate more
resilient testing methods for exploiting the Grasp traces to
validate the timing behavior of a real-time system.
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