DAG Scheduling Algorithm Considering Large-scale Calculation Tasks Using Many-core Architecture

1 <u>Yuto Kitagawa</u> Takuya Azumi²

1 : Graduate School of Engineering Science, Osaka University, Japan2 : Graduate School of Science and Engineering, Saitama University, Japan

Outline

Introduction

System Model

- KALRAY MPPA-256
- DAG notations
- •Open problems and our approaches
 - Open problems
 - Scheduling assumptions
 - Proposed algorithm based on list-scheduling
 - -Task-prioritizing phase
 - –Processor-selection phase
 - Scheduling example
- Conclusions

[Introduction] Multi/many core and embedded systems

- High computing performance and low power consumption are needed in embedded systems
 - Examples:

-Autonomous driving system

F1 A11 F12 X000000 X00 X

• Many-core hardwares for embedded systems are suitable for large-scale and parallel computation <u>Kalray MPPA-256</u> <u>Tilela TILE-Gx100</u> (100 cores)

[Introduction]

Deadlines for automotive systems

 Automotive systems require a strict real-time performance

- Deadline miss leads to a fatal accident
- Operation is statically determined at a development stage
- Multiple applications operate in automotive systems
 - There are multiple deadlines

Automatic brake

Collision warning

[Introduction] Scheduling Problem with MPPA-256

- •There are various processes up to applications
 - Applications with different deadlines are mixed
 - We propose a static non-preemptive scheduling method to meet deadlines with Kalray MPPA-256.

[System Model] KALRAY MPPA-256/NoC Map

•Network-on-Chip (NoC)

[System Model] DAG notations

•Data flow for an automotive system can be described as a Direct Acyclic Graph(DAG)

[System Model] DAG notations

• Graph $G = \langle V(G), E(G) \rangle$

$V(G) = \{n_1, n_2, \dots, n_{ V(G) }\}$	Node set					
$\mathrm{E}(G) \subseteq V(G) \times V(G)$	Direct edge set					
$comp(n_i)$: computation time of n_i						
$pred(n_i)$: a set of n_i 's immediate predecessor nodes						
$succ(n_i)$: a set of n_i 's immediate successor nodes						
$depth(n_i)$: a length of the longest path from entry nodes to n_i .						
$comm_{s,d}$: communication time from n_s to	n_d					

• $e_{s,d} \in E(G)$ indicate n_d can begin execution only after n_s completes transmission of a computation result

[Proposed scheduling algorithm] Open Problems

- 1. Our scheduling problem is an NP complete problem
- 2. We determine processing cores of KALRAY MPPA-256 for nodes with large computation time and those with not

[Proposed scheduling algorithm]

Our approaches to open problems

- 1. Our scheduling problem is NP complete
 - We use a list-scheduling method (Heuristic method)
- 2. We determine processing cores of KALRAY MPPA-256 for nodes with large computation time and those with not
 - We allocate cores using node's calculation time and a position to a DAG

[Proposed scheduling algorithm] Motivation example of a DAG

• We call a white node as a **non-parallel node** and call a blue node as a **parallel node**

Parallel computation are needed in parallel nodes

[Proposed scheduling algorithm] Scheduling assumptions

Processing core assignment

- <u>Non-parallel nodes \rightarrow four IOS cores</u>
- Parallel nodes \rightarrow 256 cores (16 CCs)

•The reason of core assignment

• We utilize CC resources for parallel computation

[Proposed scheduling algorithm] Scheduling assumptions

•Amdahl's law

- performance improvement rate achieved when the degree of parallelism of the computer is increased
- •Performance improvement rate : S(N)

- K : the ratio of parallelizable part to entire execution time
- ${\sf N}$: the number of cores

•Assumption : Non-parallel nodes $\rightarrow K = 0$ Parallel nodes $\rightarrow K \neq 0$

[Proposed Scheduling Algorithm]

Proposed many-core scheduling algorithm

Based on list-scheduling algorithm

A heuristic method

Scheduling process

- 1. Priority is given to all nodes (Task-prioritizing phase)
- Processor selection is performed from a node with a high priority (Processor selection phase)

•Step1 : Task-prioritizing phase

- We calculate a **rank** for each task
- From exit nodes to entry nodes

Non-parallel nodes (for exit nodes)

 $rank_{non-parallel}(n_{exit}) = comp(n_{exit})$

Non-parallel nodes (for other nodes)

$$rank_{non-parallel}(n_s) = comp(n_s) + \max \begin{cases} \max_{\substack{n_d \in succ(n_s)}} \{rank_{non_parallel}(n_d) + comm_{s,d}\}, \\ \max_{\substack{n_d \in succ(n_s)}} \{rank_{parallel}(n_d) + comm_{s,d}\} \end{cases}$$

•Step1 : Task-prioritizing phase

Parallel nodes (for exit nodes)

Amdahl's law

•An illustrative example(Task-prioritizing phase)

Calculate final rank

Non-parallel nodes

$$final \ rank_{non-parallel}(n_i) = \ rank_{non-parallel}(n_i) * \frac{1}{depth(n_i)^2}$$

Parallel nodes

$$final rank_{parallel}(n_i) = rank_{parallel}(n_i) * \frac{1}{depth(n_i)^2}$$

•<u>Results</u>

Node	n_0	n_1	n_2	n_3	n_4	n_5	n_6	n_7	n_8	n_9
$rank(n_i)$	508	513	447	391	332	155	130	11	47	23
$depth(n_i)$	1	1	2	3	4	5	5	6	6	7
CC _{request}	0	0	0	0	16	11	5	0	0	0
final rank(n _i)	508	513	111	43	20	6.2	5.21	0.31	1.31	0.47

•Put nodes to a priority queue from large *final rank* value

Priority Queue = $\{n_7, n_9, n_8, n_6, n_5, n_4, n_3, n_2, n_{0_1}, n_1\}$ Low priority High priority

[Proposed scheduling algorithm] Processor selection phase

•Step2 : Processor selection phase

•Non-parallel nodes

- We decide EST (Earliest Start Time) and EFT (Earliest Finish Time)
- For each processors, EST is determined by maximum values of
 - the target processor is available
 - processing end time of preceding nodes + communication time

$$EST_{non-parallel}(n_d, p_{dest}) = \max\{avail[p_{dest}], \max_{\substack{n_s \in pred(n_d) \\ proc(n_s) = p_s}} \{EFT_{non-parallel}(n_s, p_s) + comm_{s,d}\}, \\ \max_{\substack{n_s \in pred(n_d) \\ proc(n_s) = CC_{request}}} \{EFT_{parallel}(n_s, CC_{request}) + comm_{s,d}\}\}$$

[Proposed scheduling algorithm] Processor selection phase (non-parallel nodes)

Non-parallel nodes

• EFT is determined by

 $EFT_{non-parallel}(n_d, p_{dest}) = EST_{non-parallel}(n_d, p_{dest}) + comp(n_d, p_{dest})$

•We allocate a non-parallel node to a processor that yields the smallest EFT.

[Proposed scheduling algorithm] Processor selection phase (non-parallel nodes)

An illustrative example (processor selection of non-parallel nodes)

[Proposed scheduling algorithm] Processor selection phase (parallel nodes)

Parallel nodes

• We utilize calculation time and a position to a DAG

$$CC_{request}(n_i) = \left(16 * \frac{comp(n_i)}{\sum_{n_k \in D_{n_i}} comp(n_k)}\right) * 16$$

 D_{n_i} : A set of parallel nodes having the same depth value

elements in one CC

•We determine EST and EFT of parallel nodes

$$EST_{parallel}(n_{entry}, p_{dest}) = \max\{avail[p_{dest}] \\ EST_{parallel}(n_d, p_{dest}) = \max\{avail[CC_{request}], \max_{\substack{n_s \in pred(n_d) \\ proc(n_s) = p_s}} \{EFT_{parallel}(n_s, CC_{request}), comm_{s,d}\}\} \\ \max_{\substack{n_s \in pred(n_d) \\ proc(n_s) = CC_{request}}} \{EFT_{parallel}(n_s, CC_{request}), comm_{s,d}\}\} \\ EFT_{parallel}(n_d, p_{dest}) = EST_{parallel}(n_d, CC_{request}) + \frac{comp(n_d, p_{dest})}{CC_{request}}$$

[Proposed scheduling algorithm] A scheduling example

- •K=0.7 for all parallel nodes
- •Left figure
 - We divide CCs using *CC_{request}* equation
- Right figure
 - We do not divide CCs

[Conclusions] Conclusions and future work

Problems

- Our scheduling problem is a NP complete problem
- KALRAY MPPA-256 core allocation
- Approaches
 - Based on List-scheduling algorithm
 - Non-parallel node processing using four IOS cores
 - Parallel node processing using CC_{request} equation

• Future work

- We consider deadline in rank formula
- We consider NoC link communication contention
- We consider a pipeline scheduling

•Discussion topic

- Heuristic method
- How to divide computer clusters (CCs)