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[Introduction]

High computing performance and low power 
consumption are needed in embedded systems

• Examples:

–Autonomous driving system

Many-core hardwares for embedded systems 
are suitable for large-scale and parallel 
computation

Multi/many core and embedded systems

Tilela TILE-Gx100
(100 cores)

Kalray MPPA-256
(256 cores)



Automotive systems require a strict real-time 
performance

•Deadline miss leads to a fatal accident

•Operation is statically determined at a development 
stage

Multiple applications operate in automotive 
systems

• There are multiple deadlines

4
Automatic brake Collision warning

[Introduction]

Deadlines for automotive systems



Scheduling Problem with MPPA-256

There are various processes up to applications

• Applications with different deadlines are mixed

•We propose a static non-preemptive scheduling 
method to meet deadlines with Kalray MPPA-256.
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[Introduction]

Collision warningAutomatic brake

V2V/I2V cameravelocity

Distance calculation

Localization

Collision judgment

Deadline : 300 msec Deadline : 100 msec

Kalray MPPA-256

High computing performance

Lower power consumption



KALRAY MPPA-256 architecture
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KALRAY MPPA-256

・Scalability:  256 + 16 cores
・High power efficiency
・NoC (Network-on-Chip) 

16 
• 16 computing cores per cluster

• NoC interface

Compute Cluster (CCs)

• 4 IO cores per cluster

• NoC interface

• Ethernet, PCIe

I/O Cluster

[System Model]
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[System Model]

KALRAY MPPA-256/NoC Map
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Network-on-Chip (NoC)



Data flow for an automotive system can be 
described as a Direct Acyclic Graph(DAG)
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DAG notations
[System Model]

Collision warningAutomatic brake

V2V/I2I cameravelocity

Distance calculation

Localization

Collision judgment

Deadline : 300 msec Deadline : 100 msec

Deadline : 300 msec Deadline : 100 msec

Blue nodes have heavy computation time



Graph 𝑮 =< 𝑽 𝑮 , 𝑬 𝑮 >

𝑒𝑠,𝑑 ∈ 𝐸 𝐺 indicate 𝑛𝑑 can begin execution only after 𝑛𝑠
completes transmission of a computation result 

DAG notations
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[System Model]

𝑉 𝐺 = {𝑛1, 𝑛2, … , 𝑛|𝑉(𝐺)|}

E 𝐺 ⊆ 𝑉 𝐺 × 𝑉(𝐺)

Node set

Direct edge set

𝒄𝒐𝒎𝒑 𝒏𝒊 : computation time of 𝑛𝑖

𝒑𝒓𝒆𝒅 𝒏𝒊 : a set of 𝑛𝑖’s immediate 
predecessor nodes

𝒔𝒖𝒄𝒄 𝒏𝒊 : a set of 𝑛𝑖’s immediate 
successor nodes

𝒅𝒆𝒑𝒕𝒉 𝒏𝒊 : a length of the longest path from entry nodes to 𝒏𝒊. 

𝒄𝒐𝒎𝒎𝒔,𝒅 : communication time from 𝒏𝒔 to 𝒏𝒅



Open Problems

1. Our scheduling problem is an NP complete 
problem

2. We determine processing cores of KALRAY 
MPPA-256 for nodes with large computation 
time and those with not

10

[Proposed scheduling algorithm]



Our approaches to open problems

1. Our scheduling problem is NP complete

 We use a list-scheduling method 
(Heuristic method)

2. We determine processing cores of KALRAY 
MPPA-256 for nodes with large computation 
time and those with not

 We allocate cores using node’s calculation time and 
a position to a DAG

11

[Proposed scheduling algorithm]



Motivation example of a DAG
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[Proposed scheduling algorithm]

Computation time Communication time

Parallel computation are needed in parallel nodes

• We call a white node as a non-parallel node
and call a blue node as a parallel node



Scheduling assumptions

Processing core assignment

• Non-parallel nodes → four IOS cores

• Parallel nodes → 256 cores (16 CCs)

The reason of core assignment

• We utilize CC resources for parallel computation

13

[Proposed scheduling algorithm]

Parallel nodes
processing 

Non-Parallel nodes
processing 



𝑆 𝑁 =
1

1 − 𝐾 +
𝐾
𝑁

Scheduling assumptions

Amdahl’s law

• performance improvement rate achieved when the 
degree of parallelism of the computer is increased

Performance improvement rate : 𝑆(𝑁)

Assumption :  Non-parallel nodes → 𝑲 = 𝟎
Parallel nodes → 𝑲 ≠ 𝟎 14

[Proposed scheduling algorithm]

K : the ratio of parallelizable part to entire execution time

Non parallelizable parallelizable

N : the number of cores



Proposed many-core scheduling algorithm

Based on list-scheduling algorithm

•A heuristic method

Scheduling process
1. Priority is given to all nodes

(Task-prioritizing phase)

2. Processor selection is performed from a node 
with a high priority
(Processor selection phase)

15

[Proposed Scheduling Algorithm]



Task-prioritizing phase

Step1 : Task-prioritizing phase

• We calculate a rank for each task

• From exit nodes to entry nodes

Non-parallel nodes (for exit nodes)

Non-parallel nodes (for other nodes)

16

[Proposed scheduling algorithm]

𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑠) = 𝑐𝑜𝑚𝑝 𝑛𝑠 +max
max

𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠
{ 𝑟𝑎𝑛𝑘𝑛𝑜𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑},

max
𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠

{𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑}

𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑒𝑥𝑖𝑡) = 𝑐𝑜𝑚𝑝 𝑛𝑒𝑥𝑖𝑡



Step1 : Task-prioritizing phase

Parallel nodes (for exit nodes)

Parallel nodes (for other nodes)
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Task-prioritizing phase
[Proposed scheduling algorithm]

𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑠) =
𝑐𝑜𝑚𝑝 𝑛𝑠

𝑆 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡
+max

max
𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠

{ 𝑟𝑎𝑛𝑘𝑛𝑜𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑},

max
𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠

{𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑}

𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑒𝑥𝑖𝑡) =
𝑐𝑜𝑚𝑝 𝑛𝑒𝑥𝑖𝑡

𝑆 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

Amdahl’s law

Amdahl’s law



An illustrative example(Task-prioritizing phase)

18

Task-prioritizing phase
[Proposed scheduling algorithm]

𝑟𝑎𝑛𝑘 𝑛9 = 23

𝑟𝑎𝑛𝑘 𝑛8 = 17 + 23 + 7 = 47

𝑟𝑎𝑛𝑘 𝑛7 = 11

𝑟𝑎𝑛𝑘 𝑛6 = 80 +max 11 + 7, 47 + 3 = 130

Computation time

Successor rank + communication time



Calculate final rank

• Non-parallel nodes

• Parallel nodes

Results

19

[Proposed scheduling algorithm]

𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 = 𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 ∗
1

𝑑𝑒𝑝𝑡ℎ 𝑛𝑖
2

𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 = 𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 ∗
1

𝑑𝑒𝑝𝑡ℎ 𝑛𝑖
2

Node 𝒏𝟎 𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒 𝒏𝟓 𝒏𝟔 𝒏𝟕 𝒏𝟖 𝒏𝟗
𝑟𝑎𝑛𝑘(𝑛𝑖) 508 513 447 391 332 155 130 11 47 23

𝑑𝑒𝑝𝑡ℎ(𝑛𝑖) 1 1 2 3 4 5 5 6 6 7

𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡(0 0 0 0 16 11 5 0 0 0

𝑓𝑖𝑛𝑎𝑙
𝑟𝑎𝑛𝑘(𝑛𝑖)

508 513 111 43 20 6.2 5.21 0.31 1.31 0.47

Task-prioritizing phase



Put nodes to a priority queue from large 
𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑛𝑘 value 
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[Proposed scheduling algorithm]

Priority Queue  = {𝑛7, 𝑛9, 𝑛8, 𝑛6, 𝑛5, 𝑛4, 𝑛3, 𝑛2, 𝑛0, 𝑛1}
Low priority High priority

Task-prioritizing phase



Step2 : Processor selection phase

Non-parallel nodes

• We decide EST (Earliest Start Time) and EFT (Earliest Finish 
Time)

• For each processors, EST is determined by maximum values of

– the target processor is available

– processing end time of preceding nodes + communication 
time

Processor selection phase

21

[Proposed scheduling algorithm]

𝐸𝑆𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = max{𝑎𝑣𝑎𝑖𝑙 𝑝𝑑𝑒𝑠𝑡 , max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑
𝑝𝑟𝑜𝑐 𝑛𝑠 =𝑝𝑠

𝐸𝐹𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝑝𝑠 + 𝑐𝑜𝑚𝑚𝑠,𝑑 ,

max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑

𝑝𝑟𝑜𝑐 𝑛𝑠 =𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝐸𝐹𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑐𝑜𝑚𝑚𝑠,𝑑 }



Non-parallel nodes

• EFT is determined by

We allocate a non-parallel node to a processor 
that yields the smallest EFT.
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𝐸𝐹𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = 𝐸𝑆𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 + 𝑐𝑜𝑚𝑝(𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡)

Processor selection phase (non-parallel nodes)
[Proposed scheduling algorithm]



An illustrative example 
(processor selection of non-parallel nodes)
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Priority Queue ={𝑛7, 𝑛9, 𝑛8, 𝑛6, 𝑛5, 𝑛4, 𝑛3, 𝑛2, 𝑛0, 𝑛1}

𝑛0

𝑛2

EST = 66EST = 61
EST = 66

EFT = 73 EFT = 78 EFT = 78

Minimum !

Low priority High priority

EST =66

EFT = 78

𝑛1

𝐼𝑂 𝑐𝑜𝑟𝑒1

EST = 0

EFT = 29

EST = 0

EFT = 12

Processor selection phase (non-parallel nodes)
[Proposed scheduling algorithm]

𝐼𝑂 𝑐𝑜𝑟𝑒2

𝐼𝑂 𝑐𝑜𝑟𝑒1 𝐼𝑂 𝑐𝑜𝑟𝑒2 𝐼𝑂 𝑐𝑜𝑟𝑒3 𝐼𝑂 𝑐𝑜𝑟𝑒4



Processor selection phase (parallel nodes)

Parallel nodes

• We utilize calculation time and a position to a DAG

We determine EST and EFT of parallel nodes

24

[Proposed scheduling algorithm]

𝑪𝑪𝒓𝒆𝒒𝒖𝒆𝒔𝒕 𝒏𝒊 = 𝟏𝟔 ∗
𝒄𝒐𝒎𝒑 𝒏𝒊

σ𝒏𝒌𝝐𝑫𝒏𝒊
𝒄𝒐𝒎𝒑 𝒏𝒌

∗ 𝟏𝟔

𝐷𝑛𝑖 : A set of parallel nodes having the same depth value 

𝐸𝑆𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑒𝑛𝑡𝑟𝑦 , 𝑝𝑑𝑒𝑠𝑡 = max{𝑎𝑣𝑎𝑖𝑙[𝑝𝑑𝑒𝑠𝑡]

𝐸𝑆𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = max{𝑎𝑣𝑎𝑖𝑙 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑
𝑝𝑟𝑜𝑐 𝑛𝑠 =𝑝𝑠

𝐸𝐹𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝑝𝑠 , 𝑐𝑜𝑚𝑚𝑠,𝑑 ,

max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑

𝑝𝑟𝑜𝑐 𝑛𝑠 =𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝐸𝐹𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝑐𝑜𝑚𝑚𝑠,𝑑 }

𝐸𝐹𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = 𝐸𝑆𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 +
𝑐𝑜𝑚𝑝(𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡)

𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

16 process elements in one CC



K=0.7 for all 
parallel nodes

Left figure

•We divide CCs 

using 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡
equation

Right figure

•We do not divide 
CCs

25

[Proposed scheduling algorithm]

A scheduling example



Conclusions and future work

Problems

• Our scheduling problem is a 
NP complete problem

• KALRAY MPPA-256 core 
allocation

Approaches

• Based on List-scheduling 
algorithm

• Non-parallel node processing 
using four IOS cores

• Parallel node processing 

using 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 equation

26

[Conclusions]

Future work

• We consider deadline in rank 
formula

• We consider NoC link 
communication contention

• We consider a pipeline 
scheduling

Discussion topic
• Heuristic method

• How to divide computer 
clusters (CCs)


