
DAG Scheduling Algorithm Considering
Large-scale Calculation Tasks
Using Many-core Architecture

Yuto Kitagawa

Takuya Azumi

1 : Graduate School of Engineering Science, Osaka University, Japan

2 : Graduate School of Science and Engineering, Saitama University, Japan

1

2

Outline

Introduction

System Model

• KALRAY MPPA-256

•DAG notations

Open problems and our approaches

•Open problems

• Scheduling assumptions

• Proposed algorithm based on list-scheduling

–Task-prioritizing phase

–Processor-selection phase

• Scheduling example

Conclusions
2

[Introduction]

High computing performance and low power
consumption are needed in embedded systems

• Examples:

–Autonomous driving system

Many-core hardwares for embedded systems
are suitable for large-scale and parallel
computation

Multi/many core and embedded systems

Tilela TILE-Gx100
(100 cores)

Kalray MPPA-256
(256 cores)

Automotive systems require a strict real-time
performance

•Deadline miss leads to a fatal accident

•Operation is statically determined at a development
stage

Multiple applications operate in automotive
systems

• There are multiple deadlines

4
Automatic brake Collision warning

[Introduction]

Deadlines for automotive systems

Scheduling Problem with MPPA-256

There are various processes up to applications

• Applications with different deadlines are mixed

•We propose a static non-preemptive scheduling
method to meet deadlines with Kalray MPPA-256.

5

[Introduction]

Collision warningAutomatic brake

V2V/I2V cameravelocity

Distance calculation

Localization

Collision judgment

Deadline : 300 msec Deadline : 100 msec

Kalray MPPA-256

High computing performance

Lower power consumption

KALRAY MPPA-256 architecture

6

KALRAY MPPA-256

・Scalability: 256 + 16 cores
・High power efficiency
・NoC (Network-on-Chip)

16
• 16 computing cores per cluster

• NoC interface

Compute Cluster (CCs)

• 4 IO cores per cluster

• NoC interface

• Ethernet, PCIe

I/O Cluster

[System Model]

4

44

4

16

16

16

16

16

16

16

16

16

16 16

16

16

16 16

7

[System Model]

KALRAY MPPA-256/NoC Map

DMADMA DMADMA

DMADMA DMADMA

DMADMA DMADMA

DMADMA DMADMA

DMA1 DMA2 DMA3 DMA4

D
MA
1

D
MA
2

D
MA
3

D
MA
4

D
M A
1

D
M A
2

D
M A
3

D
M A
4

DMA1 DMA2 DMA3 DMA4

R0 R1

R128 R129

R2 R3

R130 R131

R8 R9

R4 R5

R10 R11

R6 R7

R192 R193

R12 R13

R194 R195

R14 R15

R160

R162

R161

R163

R224

R226

R225

R227

R# … NoC Router

… Network route
(Bus)

Network-on-Chip (NoC)

Data flow for an automotive system can be
described as a Direct Acyclic Graph(DAG)

8

DAG notations
[System Model]

Collision warningAutomatic brake

V2V/I2I cameravelocity

Distance calculation

Localization

Collision judgment

Deadline : 300 msec Deadline : 100 msec

Deadline : 300 msec Deadline : 100 msec

Blue nodes have heavy computation time

Graph 𝑮 =< 𝑽 𝑮 , 𝑬 𝑮 >

𝑒𝑠,𝑑 ∈ 𝐸 𝐺 indicate 𝑛𝑑 can begin execution only after 𝑛𝑠
completes transmission of a computation result

DAG notations

9

[System Model]

𝑉 𝐺 = {𝑛1, 𝑛2, … , 𝑛|𝑉(𝐺)|}

E 𝐺 ⊆ 𝑉 𝐺 × 𝑉(𝐺)

Node set

Direct edge set

𝒄𝒐𝒎𝒑 𝒏𝒊 : computation time of 𝑛𝑖

𝒑𝒓𝒆𝒅 𝒏𝒊 : a set of 𝑛𝑖’s immediate
predecessor nodes

𝒔𝒖𝒄𝒄 𝒏𝒊 : a set of 𝑛𝑖’s immediate
successor nodes

𝒅𝒆𝒑𝒕𝒉 𝒏𝒊 : a length of the longest path from entry nodes to 𝒏𝒊.

𝒄𝒐𝒎𝒎𝒔,𝒅 : communication time from 𝒏𝒔 to 𝒏𝒅

Open Problems

1. Our scheduling problem is an NP complete
problem

2. We determine processing cores of KALRAY
MPPA-256 for nodes with large computation
time and those with not

10

[Proposed scheduling algorithm]

Our approaches to open problems

1. Our scheduling problem is NP complete

 We use a list-scheduling method
(Heuristic method)

2. We determine processing cores of KALRAY
MPPA-256 for nodes with large computation
time and those with not

 We allocate cores using node’s calculation time and
a position to a DAG

11

[Proposed scheduling algorithm]

Motivation example of a DAG

12

[Proposed scheduling algorithm]

Computation time Communication time

Parallel computation are needed in parallel nodes

• We call a white node as a non-parallel node
and call a blue node as a parallel node

Scheduling assumptions

Processing core assignment

• Non-parallel nodes → four IOS cores

• Parallel nodes → 256 cores (16 CCs)

The reason of core assignment

• We utilize CC resources for parallel computation

13

[Proposed scheduling algorithm]

Parallel nodes
processing

Non-Parallel nodes
processing

𝑆 𝑁 =
1

1 − 𝐾 +
𝐾
𝑁

Scheduling assumptions

Amdahl’s law

• performance improvement rate achieved when the
degree of parallelism of the computer is increased

Performance improvement rate : 𝑆(𝑁)

Assumption : Non-parallel nodes → 𝑲 = 𝟎
Parallel nodes → 𝑲 ≠ 𝟎 14

[Proposed scheduling algorithm]

K : the ratio of parallelizable part to entire execution time

Non parallelizable parallelizable

N : the number of cores

Proposed many-core scheduling algorithm

Based on list-scheduling algorithm

•A heuristic method

Scheduling process
1. Priority is given to all nodes

(Task-prioritizing phase)

2. Processor selection is performed from a node
with a high priority
(Processor selection phase)

15

[Proposed Scheduling Algorithm]

Task-prioritizing phase

Step1 : Task-prioritizing phase

• We calculate a rank for each task

• From exit nodes to entry nodes

Non-parallel nodes (for exit nodes)

Non-parallel nodes (for other nodes)

16

[Proposed scheduling algorithm]

𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑠) = 𝑐𝑜𝑚𝑝 𝑛𝑠 +max
max

𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠
{ 𝑟𝑎𝑛𝑘𝑛𝑜𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑},

max
𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠

{𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑}

𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑒𝑥𝑖𝑡) = 𝑐𝑜𝑚𝑝 𝑛𝑒𝑥𝑖𝑡

Step1 : Task-prioritizing phase

Parallel nodes (for exit nodes)

Parallel nodes (for other nodes)

17

Task-prioritizing phase
[Proposed scheduling algorithm]

𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑠) =
𝑐𝑜𝑚𝑝 𝑛𝑠

𝑆 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡
+max

max
𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠

{ 𝑟𝑎𝑛𝑘𝑛𝑜𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑},

max
𝑛𝑑𝜖𝑠𝑢𝑐𝑐 𝑛𝑠

{𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 + 𝑐𝑜𝑚𝑚𝑠,𝑑}

𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛𝑒𝑥𝑖𝑡) =
𝑐𝑜𝑚𝑝 𝑛𝑒𝑥𝑖𝑡

𝑆 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

Amdahl’s law

Amdahl’s law

An illustrative example(Task-prioritizing phase)

18

Task-prioritizing phase
[Proposed scheduling algorithm]

𝑟𝑎𝑛𝑘 𝑛9 = 23

𝑟𝑎𝑛𝑘 𝑛8 = 17 + 23 + 7 = 47

𝑟𝑎𝑛𝑘 𝑛7 = 11

𝑟𝑎𝑛𝑘 𝑛6 = 80 +max 11 + 7, 47 + 3 = 130

Computation time

Successor rank + communication time

Calculate final rank

• Non-parallel nodes

• Parallel nodes

Results

19

[Proposed scheduling algorithm]

𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 = 𝑟𝑎𝑛𝑘𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 ∗
1

𝑑𝑒𝑝𝑡ℎ 𝑛𝑖
2

𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 = 𝑟𝑎𝑛𝑘𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑖 ∗
1

𝑑𝑒𝑝𝑡ℎ 𝑛𝑖
2

Node 𝒏𝟎 𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒 𝒏𝟓 𝒏𝟔 𝒏𝟕 𝒏𝟖 𝒏𝟗
𝑟𝑎𝑛𝑘(𝑛𝑖) 508 513 447 391 332 155 130 11 47 23

𝑑𝑒𝑝𝑡ℎ(𝑛𝑖) 1 1 2 3 4 5 5 6 6 7

𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡(0 0 0 0 16 11 5 0 0 0

𝑓𝑖𝑛𝑎𝑙
𝑟𝑎𝑛𝑘(𝑛𝑖)

508 513 111 43 20 6.2 5.21 0.31 1.31 0.47

Task-prioritizing phase

Put nodes to a priority queue from large
𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑛𝑘 value

20

[Proposed scheduling algorithm]

Priority Queue = {𝑛7, 𝑛9, 𝑛8, 𝑛6, 𝑛5, 𝑛4, 𝑛3, 𝑛2, 𝑛0, 𝑛1}
Low priority High priority

Task-prioritizing phase

Step2 : Processor selection phase

Non-parallel nodes

• We decide EST (Earliest Start Time) and EFT (Earliest Finish
Time)

• For each processors, EST is determined by maximum values of

– the target processor is available

– processing end time of preceding nodes + communication
time

Processor selection phase

21

[Proposed scheduling algorithm]

𝐸𝑆𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = max{𝑎𝑣𝑎𝑖𝑙 𝑝𝑑𝑒𝑠𝑡 , max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑
𝑝𝑟𝑜𝑐 𝑛𝑠 =𝑝𝑠

𝐸𝐹𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝑝𝑠 + 𝑐𝑜𝑚𝑚𝑠,𝑑 ,

max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑

𝑝𝑟𝑜𝑐 𝑛𝑠 =𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝐸𝐹𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑐𝑜𝑚𝑚𝑠,𝑑 }

Non-parallel nodes

• EFT is determined by

We allocate a non-parallel node to a processor
that yields the smallest EFT.

22

𝐸𝐹𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = 𝐸𝑆𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 + 𝑐𝑜𝑚𝑝(𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡)

Processor selection phase (non-parallel nodes)
[Proposed scheduling algorithm]

An illustrative example
(processor selection of non-parallel nodes)

23

Priority Queue ={𝑛7, 𝑛9, 𝑛8, 𝑛6, 𝑛5, 𝑛4, 𝑛3, 𝑛2, 𝑛0, 𝑛1}

𝑛0

𝑛2

EST = 66EST = 61
EST = 66

EFT = 73 EFT = 78 EFT = 78

Minimum !

Low priority High priority

EST =66

EFT = 78

𝑛1

𝐼𝑂 𝑐𝑜𝑟𝑒1

EST = 0

EFT = 29

EST = 0

EFT = 12

Processor selection phase (non-parallel nodes)
[Proposed scheduling algorithm]

𝐼𝑂 𝑐𝑜𝑟𝑒2

𝐼𝑂 𝑐𝑜𝑟𝑒1 𝐼𝑂 𝑐𝑜𝑟𝑒2 𝐼𝑂 𝑐𝑜𝑟𝑒3 𝐼𝑂 𝑐𝑜𝑟𝑒4

Processor selection phase (parallel nodes)

Parallel nodes

• We utilize calculation time and a position to a DAG

We determine EST and EFT of parallel nodes

24

[Proposed scheduling algorithm]

𝑪𝑪𝒓𝒆𝒒𝒖𝒆𝒔𝒕 𝒏𝒊 = 𝟏𝟔 ∗
𝒄𝒐𝒎𝒑 𝒏𝒊

σ𝒏𝒌𝝐𝑫𝒏𝒊
𝒄𝒐𝒎𝒑 𝒏𝒌

∗ 𝟏𝟔

𝐷𝑛𝑖 : A set of parallel nodes having the same depth value

𝐸𝑆𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑒𝑛𝑡𝑟𝑦 , 𝑝𝑑𝑒𝑠𝑡 = max{𝑎𝑣𝑎𝑖𝑙[𝑝𝑑𝑒𝑠𝑡]

𝐸𝑆𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = max{𝑎𝑣𝑎𝑖𝑙 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑
𝑝𝑟𝑜𝑐 𝑛𝑠 =𝑝𝑠

𝐸𝐹𝑇𝑛𝑜𝑛−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝑝𝑠 , 𝑐𝑜𝑚𝑚𝑠,𝑑 ,

max
𝑛𝑠𝜖𝑝𝑟𝑒𝑑 𝑛𝑑

𝑝𝑟𝑜𝑐 𝑛𝑠 =𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝐸𝐹𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑠, 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝑐𝑜𝑚𝑚𝑠,𝑑 }

𝐸𝐹𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡 = 𝐸𝑆𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑛𝑑 , 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 +
𝑐𝑜𝑚𝑝(𝑛𝑑 , 𝑝𝑑𝑒𝑠𝑡)

𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡

16 process elements in one CC

K=0.7 for all
parallel nodes

Left figure

•We divide CCs

using 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡
equation

Right figure

•We do not divide
CCs

25

[Proposed scheduling algorithm]

A scheduling example

Conclusions and future work

Problems

• Our scheduling problem is a
NP complete problem

• KALRAY MPPA-256 core
allocation

Approaches

• Based on List-scheduling
algorithm

• Non-parallel node processing
using four IOS cores

• Parallel node processing

using 𝐶𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡 equation

26

[Conclusions]

Future work

• We consider deadline in rank
formula

• We consider NoC link
communication contention

• We consider a pipeline
scheduling

Discussion topic
• Heuristic method

• How to divide computer
clusters (CCs)

